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Abstract Solutions to eigenvalue problems come in two
parts, an eigenvalue and an eigenvector, and these solution
pairs occur at discrete points in the range of possible eigen-
values. Multiparameter eigenvalue problems similarly have
solutions that have a dimension smaller by 1 than the space
of the eigenvalues - solutions to a 2-parameter problem are
discrete curves in a plane, and in general, solutions to an
n-parameter problem are hypersurfaces in an n dimensional
space. These curves/surfaces/hypersurfaces are eigenvalue
interaction curves (/surfaces, etc.), and they might be flat.
An unchanging eigenvector leads to a flat interaction, almost
trivially. This paper addresses the question if an interaction
is flat (in particular, if an interaction curve is straight), what
conditions does this place on the eigenvector?

1 Introduction

Many structural problems lead to algebraic eigenvalue for-
mulations: conventional finite element modelling of struc-
tural vibration gives eigenvalue equations

(K − ω2M)u = 0, (1)

where K and M are the structure stiffness and mass matri-
ces, and solutions are eigenvalue/eigenvector pairs (ω2, u),
which are a frequency-squared and a vibration shape. Buck-
ling similarly gives

(K − P S)u = 0, (2)
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where S is a stability matrix showing changes in stiffness for
some pattern of loading, and the solution (P, u) is a magnitude
of this loading pattern and a buckled shape.

The simply supported uniform beam/column of Fig. 1a
has a lowest natural frequency of ω2 = π4EI/ρL4, where
L is the span, EI is the rigidity and ρ is the mass per unit
length, with a vibration mode as shown. The same structure
loaded as in Fig. 1b buckles into the shape shown, at a lowest
buckling load of P = π2EI/L.

Vibration of a loaded structure is governed by

(K − P S − ω2M)u = 0. (3)

This is a multiparameter eigenvalue problem, with solutions
(P, ω2, u), and eigenvalues (P, ω2) form a curve in a P, ω2

plot, as shown in Fig. 2 (the dimensional terms L, EI and
ρ have been dropped, for simplicity). This is an eigenvalue
interaction curve, where, for example, point A shows that
a beam with an axial compression of π2/2 vibrates with a
frequency of ω2 = π4/2.

The interaction curve of Fig. 2 is a perfectly straight line,
which is uncommon. It is straight here because the vibra-
tion mode of Fig. 1a and the buckling mode of Fig. 1b are
identical.

This paper asks the question what is the general rela-
tion between a straight interaction curve and the eigenmode
along the curve? The answer is somewhat surprising, and
more complex than might be expected. But first, some back-
ground.

2 Background

1. Interaction can be between any two (or more) eigenvalues,
not only between vibration and buckling, and without loss
of generality, it is written here as a buckling interaction
between two different loadings

(K − P1S1 − P2S2)u = 0. (4)

2. The argument of the introduction leads to one interaction
curve. The real structure has an infinity of buckling loads,
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P

(a) Vibration (b) Buckling

Fig. 1 Simply supported beam/column a Vibration b Buckling

Fig. 2 Vibration-buckling interaction for the beam of Fig. 1

and an infinity of natural frequencies, and with this, an
infinity of interaction curves. Algebraic models, seen in
Eqs. (1)–(4) have a finite number, limited to the number
of freedoms in the model. Figure 3 shows the previously
used beam-column with a second independent loading at
midspan, and the first few interaction curves, labelled c1
to c5.

3. K is assumed to be the stiffness of a stable structure, and is
therefore positive-definite. Displacements u can be trans-
formed so that K becomes diagonal. This can be done
in many ways, but in all cases, all (diagonal) terms of K
will be positive. For any chosen values of P1 and P2, K −
P1S1 − P2S2 can be formed and similarly diagonalised,
leading to a number π of positive terms, a number ν of
negative terms, and a number ζ of zero diagonal terms.
These numbers are the positive, negative and zero inertias
of the matrix (Parlett 1980), and are independent of how
the diagonal form is found. They are obviously functions
of (P1, P2) and allow the P1, P2 plane to be separated into
regions. In Fig. 3b, the regions Ri are defined by the neg-
ative inertia ν, that is, for any point (P1, P2) in, say, R2,
when K − P1S1 − P2S2 is formed and diagonalised in
any way whatever, it will have exactly two negative ele-
ments. The interaction curves are the boundaries between
these regions - ci separates Ri−1 and Ri . In passing, if any
straight line is drawn starting from within R0, it will pass
through the regions R1, R2 etc. in increasing order - this
is the basis of Sturm sequence or mode counting meth-
ods for solving the eigenvalue problem (Wilkinson 1965;
Parlett 1980).

4. Suppose that an interaction curve is straight. The origin is
moved to some point on this curve (which is assumed to
be a point on this curve and no other). The P1, P2 axes are
rotated to P̄1, P̄2, with P̄1 directed along the interaction

curve, so that Eq. (4) is now (
�

K −P̄1S̄1 − P̄2 S̄2)u = 0.

With this construction, (
�

K − P̄1S̄1)u = 0 ∀P̄1. The sub-
scripts and overscores are now dropped, and the problem
is written

(K − P S)u = 0 ∀P (5)

where it is emphasised that u = u(P ). When diagona-
lised, K has exactly one zero (diagonal) element, πK pos-
itive elements and νK negative elements (νK is 1 less than
the number of the curve of interest). Further, the non-zero
elements are assumed to be ± 1, with no loss of generality.

3 Results and proofs

Result 1:

The eigenmode u(P ) along a straight interaction curve can
vary with P , but only as an nth order polynomial 1 in P , and
then iff both the positive and negative inertias of K and S are
all ≥ n. This means that the number of the interaction curve
is at least n+1, and is at most N −n, where N is the number
of freedoms in the formulation.

Proof

a. Necessity: if the eigenvector u(P ) on a straight interac-
tion curve is a linear combination of n independent vectors
then it is an n − 1th order polynomial in P , the curve is
at least the nth, and the number of freedoms is at least
2n− 1. The following argument considers an eigenvector
that is a combination of five vectors, but this is for clarity:
the same arguments apply for any number.

The eigenvector u(P ) is assumed to be the combination of
five independent vectors

u(P ) = α1(P )u1 + α2(P )u2 + α3(P )u3

+α4(P )u4 + α5(P )u5 (6)

where none of the αi(P ) ≡ 0, that is, u(P ) cannot be written
as a function of fewer than five independent vectors.

Step 1. The form of Eq. (6) is a 4th order polynomial
in P :

Any independent vectors expressible by Eq. (6) can be
used in the basis for u(P ). u(0) is uK, the unique null vector
of K, and as P → ∞ u(P ) → uS, some null vector of S
(S could have multiple null vectors). uK and uS (which are

1 More precisely, since eigenvectors are unscaled, u(P ) can be scaled
to an nth order polynomial. The scaling factor could be a function of P .
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Fig. 3 The beam column of Fig. 1, with independent loadings. a Structure. b Interaction curves

different - if uK = uS then the mode u(P ) is constant along
the interaction curve, and is not a function of five vectors) are
used in the basis for u(P ), which is scaled so the multiplier
of uK is 1, and Eq. (6) becomes

u(P ) = uK + α1(P )u1 + α2(P )u2 + α3(P )u3

+αS(P )uS. (7)

With this,

(K − P S)u(P )

= α1Ku1 + α2Ku2 + α3Ku3 + αSKuS

−P SuK − α1P Su2 − α2P Su2 − α3P Su3 = 0. (8)

Multiplying Eq. 8 by uT
i K, i = 1, 2, 3, S gives




uT
1 KKu1 uT

1 KKu2 uT
1 KKu3 uT

1 KKuS

uT
2 KKu1 uT

2 KKu2 uT
2 KKu3 uT

2 KKuS

uT
3 KKu1 uT

3 KKu2 uT
3 KKu3 uT

3 KKuS

uT
S KKu1 uT

S KKu2 uT
S KKu3 uT

S KKuS







α1

α2

α3

αS




−P




uT
1 KSuK

uT
2 KSuK

uT
3 KSuK

uT
S KSuK


 (9)

−P




uT
1 KSu1 uT

1 KSu2 uT
1 KSu3

uT
2 KSu1 uT

2 KSu2 uT
2 KSu3

uT
3 KSu1 uT

3 KSu2 uT
3 KSu3

uT
S KSu1 uT

S KSu2 uT
S KSu3







α1

α2

α3


 = 0

or

A




α1
α2
α3
αS


 = P




a1
a2
a3
a4


 . (10)

The ai are constants of no particular interest, andA is a matrix
with 1st order polynomials in P for its first three columns,
and constants in its last column (these polynomial orders are
the maximum possible - they could be lower). It follows that

all terms of the adjoint of A (Aitken 1956) 2 are polynomials
of 3rd order, or lower.

When Eq. (10) is multiplied by adj(A)

det(A)




α1
α2
α3
αS


 = v, (11)

where v is a vector of 4 polynomials in P , each of 4th order,
at most. Next, a term of det(A)αK is added to both vectors in
Eq. (11) as a new first row, where αK(P ) is the multiplier of
uK in Eq. (7), which is αK = 1. Thus

det(A)




αK
α1
α2
α3
αS


 =




det(A)

v


 . (12)

The multipliers αi give an eigenvector, which has arbitrary
scale, and can be taken as the vector on the right of Eq. (12).
Det(A) is a 3rd order polynomial, allowing Eq. (6) to be writ-
ten as a polynomial, 4th order at most,

u(P ) = u0 + P u1 + P 2

2!
u2 + P 3

3!
u3 + P 4

4!
u4. (13)

For it to be a function of five independent vectors, all ui �= 0,
and u(P ) is a polynomial of 4th order, not lower.

This argument has a potential flaw: det(A) is a polyno-
mial of order 3 at most, and could be the zero polynomial,
invalidating Eqs. (11) and (12). A = A(P ), and A(0) is the
square matrix of Eq. (9), where all terms are scalar products
of Kui , i = 1, 2, 3, S, and det(A(0)) = 0 iff these are depen-
dent vectors. A dependence �βiKui = 0 is K(�βiui ) = 0,
so �βiui is a null vector of K. But K has only one null vec-
tor, uK, so ui , i = K, 1, 2, 3, S are dependent, contrary to the
construction of Eq. (7). Kui , i = 1, 2, 3, S are independent
and det(A(0)) �= 0. Det(A) is not the zero polynomial.

2 In this reference, an adjoint matrix is known by the alternative name
adjugate.
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Step 2. The vectors ui satisfy uT
i Kuj = 0 and uT

i Suj

= 0 ∀ i, j :

Writing (K −P S)u(P ) = 0 with u(P ) as in Eq. (13), differ-
entiating repeatedly with respect to P , and evaluating the
resulting expressions at P = 0 produces the sequence

Ku0 = 0 (14a)

Ku1 − Su0 = 0 (14b)

Ku2 − 2Su1 = 0 (14c)

Ku3 − 3Su2 = 0 (14d)

Ku4 − 4Su3 = 0 (14e)

Su4 = 0. (14f)

Since all ui are non-zero, Eqs. (14a) and (14f) identify u0 as
uK and u4 as uS.

The first and last of these equations are multiplied by
uT

j , j = 0, . . . , 4, giving

uT
j Ku0 = 0 and uT

0 Kuj = 0, j = 0, . . . , 4 (15a)

and

uT
j Su4 = 0 and uT

4 Suj = 0, j = 0, . . . , 4 (15b)

(in each case, the second equation follows from the first
through the symmetry of K or S - these symmetries are under-
stood without further mention).

Eqs. (14b–e) are now multiplied by uT
4 and uT

0 , giving

uT
4 Kuj − juT

4 Suj−1 = 0, j = 1, . . . , 4 (16a)

and

uT
0 Kuj − juT

0 Suj−1 = 0, j = 1, . . . , 4. (16b)

Equations (15) and (16) now give

uT
4 Kuj = 0, j = 1, . . . , 4 (17a)

and

uT
0 Suj = 0, j = 0, . . . , 3. (17b)

This establishes the scalar products uT
i Kuj = 0 and uT

i Suj =
0 for the shaded cells in the following table:

Next, the second and second last of Eqs. (14) are multi-
plied by uT

j , j = 1, . . . , 3, giving

uT
j Ku1 − uT

j Su0 = 0, j = 1, . . . , 3 (18a)

and

uT
j Ku4 − 4uT

j Su3 = 0, j = 1, . . . , 3. (18b)

From Eqs. (17) and (18)

uT
j Ku1 = 0, j = 1, . . . , 3, (19a)

and

uT
j Su3 = 0, j = 1, . . . , 3. (19b)

Equations 14c,d are now multiplied by uT
3 and uT

1 , giving

uT
3 Kuj − j uT

3 Suj−1 = 0, j = 2, . . . , 3, (20a)

and

uT
1 Kuj − j uT

1 Suj−1 = 0, j = 2, . . . , 3. (20b)

From Eqs. (19) and (20)

uT
3 Kuj = 0, j = 2, . . . , 3 (21a)

and

uT
1 Suj = 0, j = 1, . . . , 2. (21b)

Scalar products uT
i Kuj = 0 and uT

i Suj = 0 are now estab-
lished for the shaded cells shown below

Recursive use of this process fills all cells, establishing

uT
i Kuj = 0 and uT

i Suj = 0 ∀ i, j. (22)

Step 3. Both the positive and negative inertias of K must be
at least the order of the polynomial in Eq. (13):

K has zero, positive and negative inertias ζK, πK and νK, and
since the origin is assumed to be at a point on an interaction
curve which is a single solution, ζK = 1. Coordinates u are
chosen so that K has the form

K =



0
Iπ

−Iν


 . (23)

The vectors u0 · · · u4 are orthonormalised through the Gramm-
Schmidt algorithm, giving a new set ū0 · · · ū4

3. These new
3 The relevant property of the orthonormalisation is that ū0 =

ū0(u0), ū1 = ū1(ū0, u1), ū2 = ū2(ū0, ū1, u2), etc.
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vectors are linearly independent, and because they are linear
combinations of u0, . . . , u4, they satisfy Eq. (22). Thus

ūT
i ūi = 1, i = 0, . . . , 4 (24a)

ūT
i ūj = 0, i, j = 0, . . . , 4, i �= j (24b)

ūT
i Kūj = 0, i, j = 0, . . . , 4. (24c)

u0 is the unique null vector of K, u0 = [ 1 0 0 · · · 0 ], and
given the orthonormalisation algorithm, the first vector ū0 is
the same as the original u0 (scaled to a unit vector, if neces-
sary), so that

ū0 = [ 1 0 0 · · · 0 ]. (25)

The vectors ūi are now broken into partitions of length ζK =
1, πK and νK , written as

ūi =

 ūζ

i

ūπ
i

ūν
i


 . (26)

From Eqs. (24b) and (25),

ūζ

i = 0, i = 1, . . . , 4, (27)

and with this, Eqs. (24) give

ūπT
i ūπ

i + ūνT
i ūν

i = 1, i = 1, . . . , 4 (28a)

ūπT
i ūπ

j + ūνT
i ūν

j = 0, i, j = 1, . . . , 4, i �= j (28b)

ūπT
i ūπ

j − ūνT
i ūν

j = 0, i, j = 1, . . . , 4. (28c)

From these

ūπT
i ūπ

i = 1/2, i = 1, . . . , 4 (29a)

ūπT
i ūπ

j = 0, i, j = 1, . . . , 4, i �= j (29b)

and

ūνT
i ūν

i = 1/2, i = 1, . . . , 4 (30a)

ūνT
i ūν

j = 0, i, j = 1, . . . , 4, i �= j. (30b)

The partitions ūπ
j , j = 1, . . . , 4 are orthogonal, as are the

partitions ūν
j . Each partition has four independent vectors, so

πK ≥ 4 and νK ≥ 4. The number of freedoms in the problem
must be at least 9. Further, the buckling surface must be at
least the 5th.

This completes the necessity proof.
The preceding arguments were demonstrated with u(P )

as a combination of five independent vectors, but nothing in
the argument is specific to this size. In general, if u(P ) is a
combination of n independent vectors then it is (essentially)
a polynomial of order n − 1, the buckling surface must be at
least the nth, and the number of freedoms is at least 2n − 1.

b. Existence, or sufficiency: Eq. (5) has solutions with vary-
ing u(P ), with the properties given above.

Consider

K = [0] ; S = − [0] ; u1 = [−1] . (31)

Equation (5) is satisfied with u(P ) = u1 = constant, and
since the size of the formulation is 1, the interaction curve is
both the first and the last.

Next consider

K =



0
1

−1


 ; S = −




0 1 1
1 1 1
1 1 1


 (32a)

and the vectors

u1 =



−1
0
0


 and u2 =




0
1

−1


 . (32b)

K has ζ = 1, and clearly, u1 is the single null vector. Equally
clearly, u2 is a null vector of S. The eigenmode is

u(P ) = u1 + P u2 (33)

which is confirmed by





0
1

−1


 + P




0 1 1
1 1 1
1 1 1













−1
0
0


 + P




0
1

−1





 (34)

= 0 + P




0
−1
−1


 + P




0
1
1


 + P 20 = 0.

A system with N = 3, ζ = 1, π = 1 and ν = 1 can pro-
duce a straight line interaction curve with a linearly changing
eigenvector. Since K has a negative inertia of 1, the interac-
tion curve is c2, and because it has a positive inertia of 1, it
is cN−1.

In the same way that Eq. (31) produces Eqs. (32), Eqs.
(32) are augmented to

K =




0
1

−1
1
−1


 ;

S = −




0 1 1 0 0
1 1 1 0 0
1 1 1 1 1
0 0 1 1 1
0 0 1 1 1




(35a)

and

u1 =




−1
0
0
0
0


 , u2 =




0
1

−1
0
0


 and u3 =




0
0
0
1

−1


 . (35b)

As before, u1 is the unique null vector of K, and u3 is a null
vector of S. The eigenmode is
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u(P ) = u1 + P u2 + P 2u3 (36)

which is readily confirmed by forming (K − P S)u(P ).
A system with N = 5, ζ = 1, π = 2 and ν = 2 can

produce a straight line interaction curve with a quadratically
changing eigenvector. From the inertias of K, the interaction
curve is both c3 and cN−2

The step from Eq. (31) to Eqs. (32), or Eqs. (32) to Eqs.
(35) does not depend on the size of the equations. It is a gen-
eral step from size 2n − 1 to 2n + 1, providing a proof that
a system with N = 2n + 1, ζ = 1, π = n and ν = n can
produce a straight line interaction curve with an eigenvector
changing as an nth order polynomial in P .

c. The inertias of S.

A diagonalised K was used in Step 3 of the necessity proof
above, but the displacements u could have been chosen so
that S is diagonal. One difference between diagonalising K
and S is that K has a nullity of ζK = 1, but the nullity of S
could be higher.

A diagonalised S has the form

S =



0ζ

Iπ

−Iν


 . (37)

For demonstration, assume that S has a nullity of ζS = 3, and
therefore has 3 independent null vectors.

Only one of these null vectors is in the subspace spanned
by u0 . . . u4. Otherwise, if another null vector of S were a lin-
ear combination of u0 . . . u4, it could be included in the basis
of Eq. (7). Let it be u3. With Su3 = 0, the last two columns
of the matrix A in Eq. (10) would be constant, and the vector
v in Eq. (11) would be cubic at most. Equation (13) would
also be cubic at most, and could not have five independent
vectors.

The two null vectors outside u0 . . . u4 are added to u0 . . . u4
to form a set u0 . . . u6. As in the previous step 3, u0 . . . u6 is
orthonormalised to ū0 . . . ū6 by the same algorithm as before,
but in the order u6 to u0. Following the arguments of that sec-
tion, the ūi satisfy Eqs. (24), except that S replaces K in Eq.
(24c), and with ūi written

ūi =

 ūζ

i

ūπ
i

ūν
i


 , (38)

ūT
i = [ ūζT

i 0 0 ], i = 6, . . . , 4 and ūT
i = [0 ūπT

i ūνT
i ], i =

3, . . . , 0, with the same conclusion that πS ≥ 4 and νS ≥ 4.
The only difference between here and Step 3 is that the total
number of freedoms is now increased to N ≥ ζS +πS +νS, ≥
11 in this example.

Result 2:

If n + 2 solutions to Eq. (4) are different points lying in a
straight line of the P1, P2 plane, and the eigenvectors at these
points can be described by an nth order polynomial in dis-
tance along this line, then the connecting line is an eigenvalue
interaction, with the eigenvector described by the same nth
order polynomial.

The following proof uses a 2nd order polynomial for sim-
plicity, but the argument applies to any order n.

Consider four different points A, B, C and D which lie in
a straight line in a P1, P2 plane. All are solutions to Eq. (4)
(but no assumption is made about any connections by inter-
action curves). Further, the eigenvectors uA . . . uD at these
points are related by the quadratic

u(α) = u0 + αu1 + α2

2!
u2 (39)

where α is a measure of distance along the lineAD.As before,
the origin is moved to some point on the line, and the axes
are transformed so that P is directed along this line, making
P a suitable distance measure. Thus for α ≡ P = P A

0 = (K − P AS)

(
u0 + P Au1 + (P A)2

2!
u2

)

= Ku0 + P A(Ku1 − Su0)

+(P A)2(Ku2 − 2Su1)/2! + (P A)3(−3Su2/3!).

(40)

When written at all 4 points, Eq. (40) gives



1 P A (P A)2 (P A)3

1 P B (P B)2 (P B)3

1 P C (P C)2 (P C)3

1 P D (P D)2 (P D)3







(Ku0)
T

(Ku1 − Su0)
T

(Ku2 − 2Su1)
T/2!

(−3Su2)
T/3!


 = 0 (41)

and since the points A,. . . ,D are different,



(Ku0)
T

(Ku1 − Su0)
T

(Ku2 − 2Su1)
T/2!

(−3Su2)
T/3!


 = 0. (42)

Thus, ∀P ,

Ku0 + P(Ku1 − Su0)

+P 2(Ku2 − 2Su1)/2! − P 33Su2/3!

= (K − P S)(u0 + P u1 + P 2

2!
u2) = 0,

(43)

showing that the line through A, B, C and D is an eigen-
value interaction, with the eigenvector given by Eq. 39 for
all values of P , not just P A, . . . , P D.

It follows immediately that the polynomial u(P ) cannot
change along a straight line - if, for example, u(P ) is constant
for part of a straight line interaction curve, it is constant for
the entire line, extending to ±∞.

4 Examples

1. The eigenvalue equation






1
2

3


 − P1




1
1

1


 − P2




0 1 −1
1 −1 −1

−1 −1 0





 u = 0

(44)

has interaction curves as seen in Fig. 4.
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Fig. 4 Interaction curves for the eigenvalue problem of Eq. (44)

The second interaction curve is straight, and in the direc-
tion P1 = P2. The mode u(P ) varies along this line as a
linear function of distance (uA, uB and uC are different, but
can be scaled so that uB = uA + uC), and this is the maximum
complexity possible, contingent on ζ = 1, π = 1 and ν = 1
for both K and S, when K is set up at any point on the line,
and S is in the direction of the line.

These inertias are now checked. K has these values, fairly
clearly, but those of S are less obvious. Since the direction
of the line is P1 = P2, S in this direction is S1 + S2 (or some
multiple of this);

S =



1 1 −1
1 0 −1

−1 −1 1


 . (45)

Inertias of this are ζ = 1, π = 1 and ν = 1, as anticipated.

2. The eigenvalue equation







1
2

3


−P1




1
1

1


−P2




0 0 −1
0 −1 0

−1 0 0





 u=0

(46)

has interaction curves as seen in Fig. 5.
As in the previous example, the second interaction curve

is straight, in the direction P1 = P2. The S matrix in this
direction is

S =



1 0 −1
0 0 0

−1 0 1


 . (47)

Inertias of this matrix are ζ = 2, π = 1 and ν = 0. Mode
variation along a straight interaction curve is limited to a
polynomial, of order no higher than the least positive or neg-
ative inertia of either K or S (where K is the complete matrix
of Eq. (46), evaluated at some point (P1, P2) on c2, and S
is the matrix of Eq. (47)), and since νS = 0, the mode along
c2 must be constant. This mode is u = [0 1 0]T. Further,

Fig. 5 Interaction curves for the eigenvalue problem of Eq. (46)

u along c2 must be capable of expressing null vectors of both
K and S, and since it is constant, is a null vector of both.
Checking this, u is clearly a null vector of S. To show that it
is a null vector of K, this matrix is first formed at a generic
point on c2, where P1 = 2 + P2,

K(P2) =



−1 − P2 0 P2
0 0 0
P2 0 1 − P2


 , (48)

when it is now seen that K(P2)u = 0 ∀ P2, and since ζK = 1,
this is the sole null vector.

5 Closure

Solutions to eigenvalue problems are in two parts, the eigen-
value and eigenvector. With multiparameter problems, the
eigenvalue part of the solution is described by interaction
curves in an eigenvalue space, and every such eigenvalue
solution has an associated eigenvector. If all points on a curve
have the same eigenvector then the curve is necessarily a
straight line, but the converse is far more complex. If an
interaction curve is straight, then the eigenvector is restricted
to polynomial variation with distance along this line, and the
order of this polynomial is limited by both the curve number
and the size of the eigenvalue formulation. There is a further
restriction: the direction of the line implies a matrix S, and
the order of the polynomial is also limited by the inertias of
this matrix.
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