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Abstract
Background  Intraoperative cholangiography (IOC) is a contrast-enhanced X-ray acquired during laparoscopic cholecys-
tectomy. IOC images the biliary tree whereby filling defects, anatomical anomalies and duct injuries can be identified. In 
Australia, IOC are performed in over 81% of cholecystectomies compared with 20 to 30% internationally (Welfare AIoHa in 
Australian Atlas of Healthcare Variation, 2017). In this study, we aim to train artificial intelligence (AI) algorithms to interpret 
anatomy and recognise abnormalities in IOC images. This has potential utility in (a) intraoperative safety mechanisms to 
limit the risk of missed ductal injury or stone, (b) surgical training and coaching, and (c) auditing of cholangiogram quality.
Methodology  Semantic segmentation masks were applied to a dataset of 1000 cholangiograms with 10 classes. Classes 
corresponded to anatomy, filling defects and the cholangiogram catheter instrument. Segmentation masks were applied by 
a surgical trainee and reviewed by a radiologist. Two convolutional neural networks (CNNs), DeeplabV3+ and U-Net, were 
trained and validated using 900 (90%) labelled frames. Testing was conducted on 100 (10%) hold-out frames. CNN gener-
ated segmentation class masks were compared with ground truth segmentation masks to evaluate performance according 
to a pixel-wise comparison.
Results  The trained CNNs recognised all classes.. U-Net and DeeplabV3+ achieved a mean F1 of 0.64 and 0.70 respectively 
in class segmentation, excluding the background class. The presence of individual classes was correctly recognised in over 
80% of cases. Given the limited local dataset, these results provide proof of concept in the development of an accurate and 
clinically useful tool to aid in the interpretation and quality control of intraoperative cholangiograms.
Conclusion  Our results demonstrate that a CNN can be trained to identify anatomical structures in IOC images. Future 
performance can be improved with the use of larger, more diverse training datasets. Implementation of this technology may 
provide cholangiogram quality control and improve intraoperative detection of ductal injuries or ductal injuries.
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Intraoperative cholangiography (IOC) is a contrast-enhanced 
X-ray study taken during laparoscopic cholecystectomy to 
display the biliary tree. IOC provides a dynamic method to 
image the biliary tree through radiographic visualisation of 
contrast flow through the biliary tree. IOC is used to detect 
the presence of stones in the common bile duct, define anat-
omy, and look for the presence of bile leak from a biliary 
tree injury. The use in Australia is comparatively high, being 
performed in over 80% of cholecystectomies, compared with 
rates internationally ranging from 20 to 30% [1–4]. Although 
IOC have not been demonstrated to reduce the rate of bile 
duct injury (BDI), they has clinical utility in being able to 
identify both filling defects and injuries to the biliary tree 
[5, 6].

An IOC is performed by injecting radio opaque contrast 
into the cystic duct while taking X-ray images using a port-
able X-ray machine (Fig. 1). Once the cystic duct is clearly 
identified and adequately dissected, a lateral incision is 
made, and the duct is cannulated. The cannula is used to 
infuse contrast into the duct under pressure to visualise the 
biliary tree. Interpretation of the cholangiogram involves 
recognition of five key features: (1) contrast flow into the 
duodenum; (2) distal filling of the common bile duct; (3) 
proximal filling of the three main hepatic ducts, i.e. the left 
hepatic duct (LHD), the right anterior hepatic duct (RAHD) 
and right posterior hepatic duct (RPHD); (4) the absence 

of filling defects in any ducts and (5) spiral valves visible 
within the cystic duct [7]. Recognition of filling defects 
intraoperatively provides an opportunity for early interven-
tion or intervention at index operation. This can be achieved 
using a specialised camera and stone retrieval equipment 
via the cystic duct, or directly via choledochotomy (an inci-
sion into the bile duct). If surgical removal at index opera-
tion is not possible, early referral for endoscopic retrograde 
cholangiopancreatography (ERCP) is another option. Stents 
can also be placed at the time of operation to maintain duct 
patency. The immediate recognition of bile leak or BDI 
using IOC obviates the risk of delayed diagnosis, allowing 
for intervention at index operation or prompt transfer to a 
specialist centre for early intervention. Early recognition 
and management of bile leaks and BDI is key to improving 
outcomes [8]. Failure to achieve the five components of a 
cholangiogram should arouse suspicion for ductal injury or a 
retained stone or stricture. Furthermore, any technical issues 
should be rectified to ensure adequacy of the cholangiogram.

Artificial intelligence (AI) is the use of computers or 
machines to to perform tasks that typically require human 
intelligence. Investment of AI in medical and surgical appli-
cations has surged in recent years, in part owing to access to 
improved computing power and data collection [9]. AI-based 
visual tasks and applications have been developed across a 
wide array of medical fields including radiology, surgery, 
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endoscopy and pathology. Convolutional neural networks 
(CNNs) are a specific type of machine learning algorithm 
modelled on the structure and function of the biological neu-
ral system [10]. CNNs are effective in computer vision tasks 
such as classification, detection, or segmentation of struc-
tures in medical images. This technology has broad poten-
tial; in the context of IOCs, it can be used to generate an 
AI-powered checklist to ensure that the key cholangiogram 

features have been adequately demonstrated and no abnor-
malities are overlooked, serving as a safety checkpoint to 
avoid a missed injury or retained stone. A segmented visual 
image can also be used as an improved form of documenta-
tion detailing a satisfactorily completed cholangiogram. Fur-
thermore, this technology could serve as a training adjunct 
to surgical trainees and help from the basis for augmented 
reality environments were AI-defined anatomical maps can 

Fig. 1   Examples of human applied segmentation masks applied to 
intraoperative cholangiograms (IOC). Masks correspond to labels 
listed in Table  1: CBD common bile duct, CHD common hepatic 

duct, CD cystic duct, LHD left hepatic duct, RAHD right anterior 
hepatic duct, RHD right hepatic duct, RPHD right posterior hepatic 
duct
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help guide surgeons intraoperatively or provide opportuni-
ties for preoperative modelling and simulation.

In this project, we aim to train CNNs to accurately recog-
nise and segment key anatomical structures in IOC. This is 
the first published work outlining the use of AI and computer 
vision in IOC.

Methods

Ethics approval for this study was obtained from the St Vin-
cent’s Hospital, Melbourne Human Research Ethics Com-
mittee (St Vincent’s HREC reference HREC/67934/SVHM-
2020-235987, protocol amendment V2 January 2022) with 
governance approval obtained for peripheral contributing 
sites.

Data collection

IOC was retrospectively obtained from three tertiary hos-
pitals through the imaging archiving system with cases 
matched through the hospital coding systems. After retrieval 
of cholangiograms, images were manually selected based on 
the following criteria: (a) minimum of one and maximum 
of two frames per patient; (b) best quality frame(s) selected 
per patient; and (c) if the entire biliary tree is not visual-
ised in a single frame, two included frames in combination 
should demonstrate the entire biliary tree. A maximum of 
two images per patient was implemented to limit imbalance 
within the dataset. The best quality frame(s) were selected 
for each patient based on visual assessment. Frames were 
assessed based on clear representation of all structures 
with minimal movement artefact. Frames with a presence 
of other obstructing structures such as instruments, cables, 
bony structures or leaked contrast were excluded. Metadata 

were stripped from all files and images were converted and 
stored securely as png files.

Dataset preparation

The dataset in its entirety was reviewed by a surgical trainee 
to ensure consistency. A purpose-written script was used to 
automatically deidentify images including removal of patient 
information visible on the Xray. A labelling protocol was 
written to encapsulate the key anatomical structures, filling 
defects and the cholangiogram catheter (Table 1). A total 
of 10 classes were included plus a background class for 
unlabelled pixels. Segmentation masks were applied by a 
general surgery trainee with previous labelling experience 
using Darwin V7 platform (V7 Labs, 2020) [11]. 1,000 
frames taken from 586 patients were ultimately labelled 
and included in the dataset (Table 2). Codes were assigned 
to each cholangiogram, including patient-specific codes so 
that cholangiograms obtained from the same patient for the 
same procedure could be identified. Patients in the testing 
dataset were kept distinct from the training dataset to prevent 
data bleeding between the different sets. 

The testing dataset of 100 frames (10%) was reviewed by 
an experienced abdominal radiologist to ensure that all ana-
tomical labels were accurate. Minor adjustments were made 
where necessary. The test set masks were compared pre- and 
post- review adjustments, yielding a mean F1 score of 0.99 
across the testing dataset. The remaining 900 frames (90%) 

Table 1   Intraoperative cholangiogram (IOC) segmentation labels with corresponding colours as applied by Darwin V7

Cholangiogram catheter (forceps and catheter)

Common Bile Duct (CBD)

Common Hepatic Duct (CHD)

Cystic Duct (CD)

Duodenum (with contrast)

Filling defect

Left Hepatic Duct (LHD)

Right Anterior Hepatic Duct (RAHD)

Right Hepatic Duct (RHD)

Right Posterior Hepatic Duct (RPHD)

Table 2   Dataset summary Dataset Frames Patients

Training 720 420
Validation 180 107
Testing 100 59
Total 1000 586
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were then split into a training dataset of 720 frames (80%) 
and a validation dataset of 180 frames (20%).

Dataset augmentation and network selection 
training

Our dataset underwent augmentation to increase data vol-
ume. Augmentation techniques included horizontal flipping 
and random colour jittering within a specified range (bright-
ness 0.25, contrast 0.25, saturation 0.25 and hue 0.0). In 
addition, random rotation was applied between -30 degrees 
and 30 degrees. Rotation was confined to this range as this 
reflects the real-world variability in cholangiogram X-ray 
orientation. For computational efficiency, frame resolution 
was downsized to 300 × 300 pixels. To mitigate the prob-
lem of dataset class and pixel imbalance, specific weightings 
were applied during training to each class. These weightings 
were inversely proportional to class prevalence. Two CNNs, 
namely DeeplabV3 +  [12] with a ResNet101 [13] backbone 
(Supplementary Fig. 1) and U-Net [14] (Supplementary 
Fig. 2), were selected and trained separately using the same 
labelled and augmented dataset. Comparative analysis of 
the two networks was performed following training. Deep-
labV3 + is a powerful CNN that performs well in computer 
vision tasks [12]. It was chosen after preliminary success in 
early experiments using a pilot dataset of 70 labelled chol-
angiogram frames. The second network trained was U-Net, 
a CNN that was specifically designed for biomedical image 
segmentation [14]. Deeplabv3 + was run with a ResNet101 
backbone while U-Net was run without a backbone. Deep-
labV3 + with ResNet101 backbone had almost 9 times the 
parameters of the U-Net architecture and conducted five 
times more multiply-accumulate computations for each 
feed-forward training iteration [13]. Training experiments 
were conducted on four NVIDIA A100 graphics processing 
units (NVIDIA, Santa Clara, California, USA) with PyTorch 
implementation on the Spartan high-powered computer 
housed at the University of Melbourne. Hyperparameters 
were optimised using the validation dataset. Both models 
were trained using AdamW as the optimizer for 100 epochs, 
with 10 warm up epochs [15, 16]. The batch size was set to 
64, the initial learning rate 0.005, and weight decay 0.01. 

Given the relatively small testing dataset size, K-fold cross-
validation was conducted (K = 5).

Evaluation metrics

After training, network accuracy was evaluated by compar-
ing the network prediction with the ground truth of human 
annotations, as demonstrated using common evaluation met-
rics. These metrics included intersection over union (IoU), 
F1 coefficient, recall and precision as well as true positive 
(TP), false positive (FP), true negative (TN) and false nega-
tive [17] (FN) (Fig. 2). TP, FP, TN and FN refer to each pixel 
prediction and its concordance with the ground truth pixel-
wise label. In addition to the described evaluation metrics, 
correct recognition of the presence of an object was also 
determined where the network generated segmentation mask 
overlapped with the ground truth segmentation mask. This 
was calculated by determining any degree of accurate over-
lap between ground truth and the prediction segmentation 
mask, without consideration of the pixel-wise segmentation 
accuracy.

IoU, otherwise known as the Jaccard similarity coeffi-
cient, is one of the most commonly used metrics for com-
puter vision evaluation [18]. It is the area of common over-
lap between the ground truth and the network prediction, 
ranging from 0 to 1 (0% to 100%) with 0 being no overlap 
and 100 being perfect concordance [19]. In object detection 
applications, IoU > 0.5 is considered a good score and rep-
resents adequate localisation, though the required precision 
varies depending upon network application [20, 21].

The F1 coefficient, otherwise known as the Dice simi-
larity coefficient or the Sorensen-Dice index, is similar to 
IoU in that it measures overlap between ground truth and 
prediction. It differs in that it represents the harmonic mean 
between sensitivity and precision. IoU penalises over and 
under-segmentation more than the F1 coefficient [19, 21]. 
Similar to IoU, the F1 range is from 0 (no concordance) to 1 
(perfect concordance) with a value greater than 0.5 consid-
ered good, depending upon the application [21].

Recall, otherwise known as the sensitivity or true positive 
rate, demonstrates the rate of correctly attributed pixels by 
calculating the ratio between the network prediction attribu-
tion of positive pixels and all pixels attributed to that class. 

Fig. 2   Equation and diagram for evaluation metrics. a Intersection-over-Union (IoU); b F1/Dice Coefficient; c Recall; d Precision
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Recall is particularly useful in medical diagnosis applica-
tions where false-negative rate is penalised and correct attri-
bution of pixels is rewarded [17].

Class precision is calculated as the ratio between correct 
class pixel predictions and all pixels assigned to the relevant 
class. False-positive predictions are penalised in precision 
metrics [17].

Results

Both the DeeplabV3 + and U-Net networks performed well, 
achieving a mean F1 coefficient of 0.70 and 0.64, respec-
tively, excluding the background class (Table 3). There 
was a degree of imbalance in classes in terms of incidence 
of structure representation as well as proportion of pixels 

Table 3   Results of trained Deeplab V3+ convolutional neural network (CNN) (above) and U-Net (below) networks segmenting image frames 
using an unseen, hold-out test dataset

Class
DeepLabV3+

IoU TP FP FN Precision Recall F1
Mean 56.69 69.94 27.40 23.79 0.73 0.76 0.73

Mean (excl BG) 56.69 69.94 30.06 25.93 0.70 0.74 0.70

BG 96.89 99.21 0.79 2.36 0.99 0.98 0.98

Catheter 82.7 84.16 15.84 2.06 0.84 0.98 0.91

CBD 76.64 81.88 18.12 7.71 0.82 0.92 0.87

CHD 68.62 75.03 24.97 11.06 0.75 0.89 0.81

CD 58.26 69.23 30.77 21.39 0.69 0.79 0.74

Duodenum 80.65 85.31 14.69 6.33 0.85 0.94 0.89

Filling defect 20.59 76.77 23.23 78.04 0.77 0.22 0.34

LHD 62.23 71.37 28.63 17.06 0.71 0.83 0.77

RAHD 39.34 52.63 47.37 39.09 0.53 0.61 0.56

RHD 39.77 50.19 49.81 34.31 0.5 0.66 0.57

RPHD 38.08 52.79 47.21 42.25 0.53 0.58 0.55

Unet
Class IoU TP FP FN Precision Recall F1
Mean 54.34 63.14 36.86 24.85 0.63 0.75 0.67

Mean (excl BG) 50.21 59.51 40.50 26.95 0.60 0.73 0.64

BG 95.62 99.44 0.56 3.86 0.99 0.96 0.98

Catheter 79.14 80.15 19.85 1.57 0.80 0.98 0.88

CBD 70.54 76.62 23.38 10.11 0.77 0.90 0.83

CHD 65.18 72.00 28.00 12.69 0.72 0.87 0.79

CD 50.44 62.21 37.79 27.28 0.62 0.73 0.67

Duodenum 73.15 76.11 23.89 5.04 0.76 0.95 0.84

Filling defect 13.80 46.95 53.05 83.66 0.47 0.16 0.24

LHD 48.53 54.33 45.67 18.02 0.54 0.82 0.65

RAHD 32.61 40.98 59.02 38.52 0.41 0.61 0.49

RHD 33.85 43.70 56.30 39.96 0.44 0.60 0.51

RPHD 34.90 42.00 58.00 32.63 0.42 0.67 0.52

IoU, TP 0 50 100

Prec, Recall, F1 0 0.5 1

FP, FN 100 50 0

IoU intersection over union, TP true positive, FP false positive, FN false negative, BG Background
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attributable to each structure in the dataset. Larger and more 
distal structures (e.g. CBD, duodenum, CHD) had greater 
representation than the finer and more proximal higher order 
ductal structures (e.g., hepatic ducts) (Table 3). The chol-
angiogram catheter, CBD, CHD, CD, duodenum, LHD and 
RAHD were correctly identified without perfect segmenta-
tion in over 80% of the testing dataset. Filling defects were 
present in 21% of frames in the testing dataset (21/100). 
While the pixel-wise accuracy of filling defect segmentation 
was poor in both networks (DeeplabV3 + F1 0.34, UNet F1 
0.24), the presence or absence of filling defects was cor-
rectly characterised in 89% of cases for the whole testing 
dataset (89/100) and in 66% of cases (14/25) in cholangio-
grams where a filling defect was present. Of the filling defect 
errors, 37% (4/11) represented a network detection where a 
filling defect was not present, and 63% represented failure 
to recognise a filling defect where one was present. This is 
reflected by a high false negative rate (78% in DeeplabV3 +). 
K-fold cross validation performed on DeeplabV3 + demon-
strated a mean IoU of 0.61, (SD = 0.0045), while the UNet 
mean IoU was 0.52 (SD = 0.017), suggesting superior per-
formance and greater stability of DeeplabV3 + when trained 
and tested across different dataset subsets.

Class-specific performance was strong on most structures. 
Both networks achieved an IoU of over 0.5 on all anatomical 
structures, except for the filling defects and the right hepatic 
duct group (RHD, RAHD and RPHD) (Fig. 3). F1 generated 
by DeeplabV3 + for CBD, CHD, CD and LHD were > 0.7 

whereas F1 scores for the right ducts were between 0.5 and 
0.6. F1 scores were higher than IoU scores in all classes. The 
networks generally performed better on classes with a higher 
pixel representation (eg. Duodenum, CBD, catheter, CHD). 
Higher order structures or structures with a lower pixel rep-
resentation, such as the hepatic duct branches and filling 
defects were less accurately segmented. DeepLabV3 + out-
performed U-Net on nearly all classes and evaluation metrics 
with the exception being the recall for the RPHD.

Direct visual comparison between network prediction on 
the 100frame testing dataset reveal superior performance 
by DeeplabV3 + . This is demonstrated on the colour coded 
segmentation masks (Fig. 4) as well as composite images 
of segmentation masks superimpose upon original images. 
(Fig. 5). DeepLabV3 + appears to make fewer mistakes glob-
ally (Fig. 5). In some instances, peripheral minor hepatic 
duct branches that were left unlabelled in the ground truth 
dataset were accurately labelled by the predictive networks 
(Fig. 5). 

Discussion

In this feasibility study, we have demonstrated a novel appli-
cation of computer vision in laparoscopic cholecystectomy 
surgery. We have outlined our dataset of cholangiogram 
comprehensively segmented into ten classes. Using this 
locally acquired pilot dataset of labelled cholangiograms, 

Fig. 3   Class frequency: 
The pixel class distribution 
expressed as a percentage of all 
pixels attributable to each class 
after exclusion of background
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we have achieved a high degree of accuracy in anatomi-
cal segmentation using two CNN models with anatomical 
structures correctly recognised in over 80% of cases and 
filling defects correctly characterised in 73% of cases. These 
results provide proof of concept in the development of an 
accurate and clinically useful tool to aid in the interpretation 
and quality control of intraoperative cholangiograms.

To our knowledge, this is the only existing dataset of 
semantic segmentation labelled cholangiograms. The use 
of CNNs to autonomously segment intraoperative chol-
angiograms is novel and has many potential applications. 
Despite the modest dataset size, we have trained two net-
works capable of identifying key structures. In its current 
state, the network can be implemented in an autonomous 
surgical checklist that identifies key cholangiogram features, 
including contrast flow to the duodenum, the presence of 

all three hepatic ducts and the visualisation of cystic duct 
draining to CBD with proximal filling.

One major strength of our trained networks is the capac-
ity to recognise anatomy despite inconsistencies in cholan-
giogram acquisition and projection. Unlike other imaging 
modalities, such as frontal X-ray or axial CT that utilise 
consistent and protocolised projections, cholangiograms 
are taken with random oblique projections, depending upon 
patient and operating table position. This adds an additional 
layer of complexity in autonomous structure recognition 
using neural networks. Despite the inconsistency in projec-
tion, our trained networks were still able to achieve a good 
result. In addition to projection variability, different X-ray 
machines were used across multiple health services lead-
ing to heterogeneity in cholangiogram appearance. Despite 
the cholangiogram variability stemming from the use of 

Fig. 4   Examples of convolutional neural network (CNN) generated 
masks compared with ground truth labels with accompanying col-
our legend from hold-out test dataset. Figure depicts original chol-
angiogram image and human labelled ground truth segmentation 
masks with DeepLabV3 + and U-Net prediction segmentation masks 

for side-by-side comparison. Colour legend altered from Fig.  1 and 
Table 1 for visual clarity. CHD common hepatic duct, CBD common 
bile duct, CD cystic duct, FD filling defect, LHD left hepatic duct, 
RHD right hepatic duct, RAHD right anterior hepatic duct, RPHD 
right posterior hepatic duct
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different machines, our trained networks performed well, 
highlighting the robustness of the algorithms.

The detection of fillings defects and stones is an impor-
tant function of cholangiogram. Accurate detection by a net-
work is therefore an important capability to justify clinical 
implementation. While we achieved correct characterisa-
tion of filling defects in most cases, the network failed in 
several instances. The failure to consistently recognise the 
presence of filling defects likely stems from several factors. 
Stones are detected in a small minority of cholangiograms 
with reported rates ranging from 5 to 20% [22–25]. In our 
dataset, there were 227 frames containing fillings defects 
and a total of 363 instances representing just over a quarter 
of total frames. This rate of filling defects is higher than 
the general population cholangiogram rate for stones. It is 
also important to note that cholangiogram filling defects are 
small and make up a disproportionately low fraction of the 
segmented area. Furthermore, the appearance of stones and 
fillings defects on cholangiogram is not consistent. Stones 
can appear as an absence of downstream contrast flow or a 
single or multiple rounded filling defects. Another issue with 

filling defect detection is their similarity in appearance to the 
background given that they represent a radiolucent absence 
of contrast. It can be difficult to distinguish filling defects 
from other cholangiogram features on single static images. 
The operating surgeon obtains important information from 
the dynamic images as the cholangiogram is being taken. 
The subtle signs suggestive of a stone are better appreci-
ated on these dynamic images. These include the pattern 
of movement of a filling defect distinguishing it from an air 
bubble and the dynamic response of a filling defect to con-
trast flow. Improved recognition of stones could be achieved 
in several ways. The addition of more cholangiogram images 
positive for stones may improve results. Another method 
might be to explicitly classify features that are predictive of 
stone presence. These features might include an absence of 
downstream flow and dilatation of the cystic or common bile 
duct. Incorporation of these features in the training pipeline 
might improve downstream detection of stones.

Within individual cholangiograms there is a degree of 
ambiguity. Cholangiograms are 2-dimensional represen-
tations of 3-dimensional structures. The true anatomy, 

Fig. 5   Comparison of ground truth composite mask overlay with DeeplabV3 + and U-Net composite mask overlay
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particularly in the hepatic ducts, can be misinterpreted due 
to X-ray projection and superimposition of ductal structure, 
bony structures, or instruments. Our network utilised exclu-
sive classes, whereby each pixel could only be attributed to 
a single class. The use of non-exclusive classes, whereby 
a pixel could be attributed to multiple classes may further 
improve the accuracy and representation of the biliary tree 
by allowing for and identifying overlapping structures.

The assessment and evaluation of network performance 
warrants interrogation. All evaluation metrics employed in 
this study are a comparison of the network prediction with 
the ground truth, as determined by surgical trainee label-
lers. There are limitations in this approach. The ground 
truth labels contain a degree of subjectivity. The objectivity 
and truth of the training and testing datasets, therefore, are 
imperfect. The specific evaluation metric chosen to reflect 
performance must take into consideration the intended func-
tion or application of the network. In our trained networks, 
smaller higher order ducts tend to be less well segmented 
than larger calibre distal ducts. The segmentation predic-
tion may not comprehensively detect all higher order hepatic 
duct branches however does succeed in recognising that the 
three main hepatic duct branches (LHD, RPHD, RAHD) 
have been adequately demonstrated. Failure to accurately 
segment all higher order branches will be penalised by the 
mathematical evaluation metrics but does not limit the clini-
cal utility. This important point is demonstrated in Fig. 5. In 
the ground truth labels, higher order branches of the RPSD 
were not labelled however these were accurately segmented 
by U-Net and DeeplabV3 + . The mathematical evaluation 
metrics will categorise the predicted segmentation of these 
higher order branches as false positives given the discord-
ance with the ground truth. While the accurate recognition 
of these higher order branches does not alter the clinical util-
ity of the network, the performance is penalised. Similarly, 
accurate segmentation of all duodenal contrast by a network 
is not necessary where the function is the binary detection of 
the presence or absence of contrast flow into the duodenum. 
In such applications, a lower IoU can be tolerated provided 
the false positive rate is also low. Conversely, applications 
demanding a higher degree of accuracy such as measure-
ment of the CBD diameter or cystic duct length demand 
more accurate segmentation ability of these structures. The 
intended output or clinical application of a network therefore 
must be considered when choosing appropriate evaluation 
metrics and interpretating prediction results.

Visual inspection of the prediction masks demonstrates 
superior performance by DeeplabV3 + as also reflected in 
the calculated evaluation metrics. Important structures, on 
visual assessment, are more accurately and consistently seg-
mented. There is also comparatively less misrecognition. 
The modestly superior global performance of the Deep-
LabV3 + may be attributed to both the model size and its 

use of atrous separable convolutions that improve computa-
tional efficiency and reduce complexity [12]. Using a large 
backbone allows preservation of the understanding of the 
relative relationship and location of the structures and their 
adjacent objects. In Addition, atrous convolution allows the 
model decoder to receive larger contextual information from 
the previous feature maps while retaining spatial resolution. 
This can help the model to attain precise localization ability 
for the structures’ location. However, we argue that a larger 
model is not necessary to achieve better performance. We 
observe that although the model architecture and size are 
very different, the performance between the two networks is 
competitive. In some individual classes DeepLabV3 + per-
forms worse than U-Net. U-Net identifies the subtle structure 
boundaries more precisely and has fewer FN, which suggest 
that the model is less likely to misattribute one structure to 
another. It is also superior at identifying small and underrep-
resented structures like filling defects. Using a heavy back-
bone like ResNet101 in DeeplabV3 + may also require more 
data to converge the larger model. In the biomedical and 
surgical context, adopting a large model on small datasets 
may lead to poorer performance, especially in identifying 
the under-represented classes with overfitting more likely 
to become a problem [26].

There were several limitations in our methodology. All 
cholangiograms in the dataset were labelled or finalised by 
one surgical trainee. The gold standard for semantic seg-
mentation would be to have multiple trained experienced 
labellers segment each image and then use a concordance 
map or heatmap to determine the final semantic segmenta-
tion masks. The testing dataset was reviewed by a consultant 
radiologist and then adjusted accordingly by the surgical 
registrar to ensure ground truth was as accurate as possible. 
A more robust labelling and validation pathway would be 
justified in future projects. Another limitation was the local 
source of the cholangiograms. Our dataset was collected 
from three hospitals with cholangiograms conducted by a 
small group of surgeons. The CNN trained from a local data-
set may not be as effective or applicable to cholangiograms 
performed internationally where local protocol and equip-
ment may differ. Our network was trained on still images. 
However, intraoperative cholangiograms are dynamic inves-
tigations where information can be gained through tactile 
feedback from the pressure in the contrast syringe, obser-
vation of the rate of contrast flow through ducts and the 
movement of fillings defects to help distinguish stones from 
air bubbles. In some cases, static images are obtained to 
the satisfaction of the surgeon, but the corresponding stills 
are not captured for storage which may impact the apparent 
accuracy of the networks when considering the retrospec-
tive training datasets. Training from still images is therefore 
limiting. Future work should include dynamic or prospec-
tive real-time cholangiogram videos that can provide more 
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information. An additional limitation relates to the chosen 
class list (Table 1). The labels defined for the hepatic ducts 
only took into account those demonstrated in the most com-
mon anatomical configurations. Accessory hepatic ducts 
that are seen in rare anatomically aberrant cases were not 
explicitly labelled. Furthermore, other structures commonly 
seen such as the pancreatic duct, or the gallbladder in the 
case of retrograde contrast flow, were not explicitly labelled. 
Therefore, in cholangiograms where these structures are 
demonstrated, our network will not be able to segment and 
label them accurately. Given these structures are uncommon, 
a substantially larger training dataset would be required to 
accurately incorporate these labels into a network.

There is great potential for the future direction of this 
work. With a local pilot dataset, we have achieved strong 
results while identifying clear strategies where these results 
can be improved. As discussed, larger more balanced data-
sets are needed to improve the performance of this CNN. 
Prospective evaluation of the network will demonstrate and 
better elucidate the clinical potential. The development of 
software aimed at autonomously checking that all five chol-
angiogram features have been satisfied is an important future 
aim that has real translational potential. Furthermore, inter-
national, or multi-site dataset collaborations will improve the 
performance and generalisability of this network.

Conclusion

In this feasibility study, we have demonstrated the use of 
CNN based methods to detect and segment key anatomical 
structures on intraoperative cholangiogram. This work pro-
vides a platform for the development of ML based software 
for use in intraoperative cholangiograms. This software can 
serve as an autonomous safety checklist as well as a train-
ing and education tool. This may have utility in (a) surgical 
training and coaching, (b) auditing of cholangiogram quality, 
and (c) intraoperative safety mechanisms minimising the risk 
of missed ductal injury or stone. While the ability to detect 
and segment filling defects was average, we have discussed 
and identified methods of improving this performance that 
can be implemented in future work.
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