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Abstract
Background  Image-guidance promises to make complex situations in liver interventions safer. Clinical success is limited 
by intraoperative organ motion due to ventilation and surgical manipulation. The aim was to assess influence of different 
ventilatory and operative states on liver motion in an experimental model.
Methods  Liver motion due to ventilation (expiration, middle, and full inspiration) and operative state (native, laparotomy, 
and pneumoperitoneum) was assessed in a live porcine model (n = 10). Computed tomography (CT)-scans were taken for 
each pig for each possible combination of factors. Liver motion was measured by the vectors between predefined landmarks 
along the hepatic vein tree between CT scans after image segmentation.
Results  Liver position changed significantly with ventilation. Peripheral regions of the liver showed significantly higher 
motion (maximal Euclidean motion 17.9 ± 2.7 mm) than central regions (maximal Euclidean motion 12.6 ± 2.1 mm, p < 0.001) 
across all operative states. The total average motion measured 11.6 ± 0.7 mm (p < 0.001). Between the operative states, the 
position of the liver changed the most from native state to pneumoperitoneum (14.6 ± 0.9 mm, p < 0.001). From native state 
to laparotomy comparatively, the displacement averaged 9.8 ± 1.2 mm (p < 0.001). With pneumoperitoneum, the breath-
dependent liver motion was significantly reduced when compared to other modalities. Liver motion due to ventilation was 
7.7 ± 0.6 mm during pneumoperitoneum, 13.9 ± 1.1 mm with laparotomy, and 13.5 ± 1.4 mm in the native state (p < 0.001 
in all cases).
Conclusions  Ventilation and application of pneumoperitoneum caused significant changes in liver position. Liver motion 
was reduced but clearly measurable during pneumoperitoneum. Intraoperative guidance/navigation systems should therefore 
account for ventilation and intraoperative changes of liver position and peripheral deformation.
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Computer-based navigation tools are increasingly being 
developed and evaluated for liver procedures to support 
intraoperative real-time knowledge of liver anatomy, and 
control of pathological structures and structures at risk 
with high precision [1, 2, 3–6]. Especially minimally inva-
sive procedures, which have significant clinical advantages 
over open liver surgery but also increased complexity [1, 2, 
7–11], can benefit from accurate liver motion modeling and 
navigation [12–14]. The liver, like other abdominal organs, 
is subject to soft tissue deformation and positional change 
depending on whether the patient is lying or standing, during 
ventilation due to the movement of the diaphragm, and when 
there is a change in the intraabdominal pressure—such as 
in the case of pneumoperitoneum and laparotomy [13–25]. 
Hepatic motion is also an obstacle for many percutaneous 
treatment modalities, including but not limited to percutane-
ous biliary drainage, radiotherapy [15, 16], chemoemboliza-
tion [26], and percutaneous or transjugular needle biopsy, 
cryotherapy [13], and microwave ablation [27]. This creates 
considerable difficulties for surgical computer assistance 
systems—the most important one being the discrepancy 
between the preoperative computer model and the intra-
operative reality due to soft tissue deformation [28–30]. In 
order to compensate for the differences in liver position pre- 
and intraoperatively, an accurate model of the liver motion 
is needed [1, 2, 13, 15, 16, 26, 27]. Image-guided methods 
are being researched for intraoperative navigation and image 
acquisition, which must also take into account the motion 
and deformation of the liver [31–35].

To create such a model, it is indispensable to analyze 
the liver motion and deformation. The porcine liver is suit-
able to analyze such liver changes due to its similarity to 
that of humans [36]. Several methods for tracking the liver 
motion have been reported in the literature such as markers 
[37], contour tracking [17], center of gravity [16, 18], tumor 
center of mass [19], or vessel tracking [38]. In this study, 
tracking was performed using the positions of predefined 
branching points of the hepatic veins and their tributaries. 
This method is able to show different amounts of movement 
in different parts of the liver [38–42]. There are a number 
of studies on liver shift, most of them focusing on the effect 
of ventilation, however without taking into account differ-
ent breathing volumes [13–22]. Differences in liver motion 
according to the operative state have been assessed [24]; 
however, the current study appears to be the first which 

attempts to account for the combination of ventilatory vol-
ume and operative state.

The aim of the present study was therefore to assess 
effects of ventilatory volume, pneumoperitoneum, and 
laparotomy on liver motion in order to improve surgical 
navigation.

Materials and methods

Subjects

A porcine model was used (n = 10, German landrace, 
20–34 kg). The professional care and handling of animals 
were carried out by the staff of the Interfaculty Biomedi-
cal Research Facility at Heidelberg University. The study 
protocol was approved by the local Ethics Committee 
Heidelberg (A 19/08) [25]. The animals were fasted 12 h 
before the intervention. Premedication was done with azap-
erone [0.1 mg/kg], midazolam [0.1 mg/kg], and ketamine 
[15 mg/kg]. The induction of anesthesia was then carried 
out by intravenous midazolam [0.1 mg/kg] and ketamine 
[20 mg/kg]. Anesthesia was maintained with intravenous 
midazolam [0.05 mg/kg], ketamine [10 mg/kg], and pan-
curonium as needed. The animals were mechanically ven-
tilated (frequency = 12/min, ventilation volume = 8–10 ml/
kg). The animals were positioned in a 0° supine position on 
a vacuum mattress which was firmly attached to a stretcher. 
This guaranteed full immobilization of the animals during 
the procedure, so liver motion due to repositioning of the 
animal did not need to be accounted for [43]. The animals on 
the stretcher were stabilized and fixed on the CT scan table 
for the entire duration of the experiments to minimize repo-
sitioning errors. The animals were under general anesthesia 
with machine ventilation during the entirety of experiments 
and at the end of the procedures they were euthanized using 
intravenous potassium chloride [150 mg/kg].

Imaging

Each pig was examined by Computed Tomography as indi-
cated in Table 1. CT scans were taken with a slice thickness 
of 2 mm with 1 mm overlay (SOMATOM Sensation™, 64 
Row Dual Energy, Siemens Corp., Erlangen, Germany). In 
each animal, they were obtained for three ventilatory states 

Table 1   CT protocol indicating 
sequence of imaging acquisition 
with count of CT images per 
acquisition state

Native Pneumoperitoneum Laparotomy Total

Expiration 1 Native-Exp 10 4 Pneu-Exp 10 7 Lap-Exp 10 30
Inspiration 200 ml 2 Native-Insp 200 10 5 Pneu-Insp 200 10 8 Lap-Insp 200 10 30
Inspiration 400 ml 3 Native-Insp 400 10 6 Pneu-Insp 400 10 9 Lap-Insp 400 10 30

30 30 30 180
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(full expiration, middle inspiration, and deep inspiration) 
in each of the three operative states (native, pneumoperi-
toneum, and laparotomy), which add up to nine CT scans 
for each animal. CT scans were performed after creating 
and maintaining predetermined manually controlled breath-
hold positions for each ventilatory state. High tidal volume 
was defined as 14 ml/kg (deep inspiration, approximately 
400 ml) and middle tidal volume as 7 ml/kg (normal inspi-
ration, approximately 200 ml). These definitions of lung 
volumes were based on previous findings in [39, 44, 45]. 
Pneumoperitoneum was created and maintained at 15 mmHg 
of pressure using a standard Veress-needle in the left lower 
quadrant of the abdomen and a standard pressure-controlled 
insufflation device.

After imaging with pneumoperitoneum was complete, the 
Veress-needle was removed and a standard midline lapa-
rotomy was performed. The data from the CT scans were 
transferred onto a mobile hard disk using the Digital Imag-
ing and Communications in Medicine (DICOM) standard.

Liver segmentation

Obtained CT scans were post-processed using the Medi-
cal Imaging Interaction Toolbox (MITK) (www.​mitk.​org), 
developed by Division of Medical and Biological Informat-
ics at the German Cancer Research Center (DKFZ) in Hei-
delberg. For segmentation, the hepatic veins were identified 
in CT scans and seed points inside the lumens were manu-
ally selected for region growing. The minimum and maxi-
mum intensity thresholds were adjusted for the region grow-
ing algorithm. The thresholds that resulted in the best region 
growing were found out by trial-and-error for each scan. 
All segmentations and measurements were cross-checked by 
at least one experienced radiologist to minimize inter- and 
intra-user variability.

Three‑dimensional modeling and point mapping

The segmented hepatic veins were converted to 3D polygo-
nal models of the hepatic vein tree using the MITK soft-
ware. Bifurcation points were used for point mapping, rather 
than center of vessel lumens because of the potential for 

Fig. 1   Hepatic veins (red) and marked bifurcation points used for motion analysis (yellow) (Color figure online)

http://www.mitk.org
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achieving a greater consistency with the tools used. The 
first step was to determine the common bifurcation points 
within each pig separately, which adequately represented 
the central to peripheral range of the models. Points were 
mapped using the transverse, sagittal, and coronal views and 
were confirmed on the 3D models (Fig. 1). The amount of 
bifurcation points varied between pigs (7–16 points). Rare 
trifurcations were treated as bifurcations between the two 
largest of the three branches. The consistency of the points 
was then re-examined by an experienced radiologist. The use 
of branching points allowed reliable measurement of liver 
motion in different locations [42] (Fig. 2).

Statistical analysis

Statistical analysis was performed with the R programming 
language (R Foundation for Statistical Computing, Vienna, 
Austria). Standard packages and additionally the lme4 (Lin-
ear mixed-effects models using S4 classes), lmer (Tests for 
random and fixed effects for linear mixed effect models), and 
car (Companion to Applied Regression) packages were used. 
Liver motion was indicated as mean ± confidence interval 
along the lateral, craniocaudal, and ventrodorsal axes as well 
as Euclidian distance in millimeters, if not otherwise speci-
fied. Significance level was set to α = 5% two-sided.

Euclidean distance in surgical context

In the current study, Euclidean distance is utilized to quan-
tify liver movement, calculated as the vector sum of the liv-
er’s movement in three dimensions: craniocaudal (head-to-
tail), ventrodorsal (front-to-back), and lateral (side-to-side). 
The vector sum is the aggregate of movements along each 
of these anatomical axes, culminating in a single straight-
line distance that encapsulates the total displacement of the 
liver. This approach enables a precise and comprehensive 
assessment of liver movement in three-dimensional space.

Results

Operative states

An overview of the results is seen in Fig. 3. Liver motion 
between the operative states was analyzed as difference 
between the arithmetic means of the ventilatory states 
for each operative state. Liver motion when transitioning 
between operative states was significant for Euclidian dis-
tance in all cases, i.e., native state to pneumoperitoneum, 
native state to laparotomy, and laparotomy to pneumoperi-
toneum. The highest amount of motion could be observed 
along the ventrodorsal and craniocaudal axes. Motion along 

Fig. 2   Hepatic veins in full expiration (green), middle inspiration 
(blue), and full inspiration (yellow) (Color figure online)

Fig. 3   Liver motion between different operative states. Significant motion axes signified as follows: p < 0.05 marked with “*,” p < 0.01 marked 
with “**,” and p < 0.001 marked with “***”



1383Surgical Endoscopy (2024) 38:1379–1389	

1 3

the craniocaudal axis was significant when transitioning 
between native state and pneumoperitoneum, as well as 
between laparotomy and pneumoperitoneum. Motion along 
the ventrodorsal axis was significant between native state 
and pneumoperitoneum, as well as native state and lapa-
rotomy. No significant motion on the lateral axis could be 
observed in any transition between operative states.

Figure 4 shows the analysis of liver motion in the differ-
ent operative states as stratified by location of the measuring 
points. Both central and peripheral parts of the liver moved 
significantly with respect to Euclidian distance between all 
operative states.

Comparing the central and peripheral motion, peripheral 
parts of the liver moved significantly more than central parts 
on the ventrodorsal axis and over measured Euclidian dis-
tance. Difference in motion was not significant along the 
lateral axis except when transitioning between pneumoperi-
toneum and laparotomy, which showed significantly greater 
peripheral than central movement.

Ventilatory states

An overview of the motion stratified by ventilatory state is 
viewed in Fig. 5. Liver motion between the ventilatory states 
was analyzed as difference between the arithmetic means of 
the operative states for each ventilatory state. Motion when 

transitioning between ventilatory states was significant 
for the ventrodorsal and craniocaudal axis as well as the 
Euclidian distance in all operative states. Motion was not 
significant for the lateral axis. The greatest extent of motion 
could be observed on the craniocaudal axis. The full extent 
of motion from full expiration to full inspiration was almost 
equally distributed between expiration to middle inspira-
tion and from middle inspiration to full inspiration, with 
slightly more motion observed from middle inspiration to 
full inspiration.

Figure 6 shows the results of the motion stratified by 
ventilatory state and operative state. There was significant 
motion in all subgroups on the craniocaudal axis, ven-
trodorsal axis, and the Euclidian distance. Motion along 
the lateral axis was not significant for any subgroup. The 
greatest extent of motion was observed along the cranio-
caudal axis. In the native operative state, the full extent of 
motion from full expiration to full inspiration was equally 
distributed between full expiration to middle inspiration 
and middle inspiration to full inspiration. With pneumop-
eritoneum and laparotomy, there was greater motion from 
middle inspiration to full inspiration than from full expira-
tion to middle inspiration.

Total liver motion due to ventilation was significantly 
greater during native and laparotomy operative states com-
parative to pneumoperitoneum along the ventrodorsal and 

Fig. 4   Liver motion between different operative states, stratified by central vein motion vs peripheral vein motion. Significant differences 
between central and peripheral motion signified as follows: p < 0.05 marked with “*,” p < 0.01 marked with “**,” and p < 0.001 marked with 
“***”

Fig. 5   Liver motion between different ventilatory states. Significant motion axes signified as follows: p < 0.05 marked with “*,” p < 0.01 marked 
with “**,” and p < 0.001 marked with “***”
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craniocaudal axis as well as for Euclidian distance. There 
was no significant motion on the lateral axis when com-
paring the effect of ventilatory motion on the liver motion 
between the operative states. Laparotomy did not signifi-
cantly influence the ventilatory motion of the liver when 
compared to the native operative state.

Discussion

The present study demonstrates that ventilation, pneumop-
eritoneum, and laparotomy caused substantial and distinct 
liver deformation and liver motion, whereby the peripheral 
segments of the liver exhibited a greater degree of displace-
ment relative to the central segments. Furthermore, ventila-
tory volume significantly impacted liver motion across all 
surgical conditions, albeit to a lesser extent under pneu-
moperitoneum. Craniocaudal motion emerged as the most 

pronounced, followed by ventrodorsal motion, while the 
least motion was observed in the lateral plane.

These findings provide valuable insights into the dynamic 
behavior of the liver in response to surgical interventions 
and respiratory dynamics. The current study showed that 
the highest amount of liver motion as caused by ventilation 
was evident along the craniocaudal and ventrodorsal axis. 
These results are in line with studies from human respira-
tory liver motion. Table 2 gives an overview of publications 
analyzing ventilation and respiration-related liver motion. 
In the current study, no significant lateral motion could be 
observed for any ventilatory change or any operative state 
transition. Srimathveeravalli et al. also reported that lateral 
motion contributed least to overall liver motion [39]. The 
current study supports the argument that lateral motion is 
less relevant for overall liver motion and deformation.

There are direct clinical applications that could be consid-
ered from the results of this study as well as considerations 

Fig. 6   Liver motion between different operative and ventilatory states. Motion is significant on the ventrodorsal and craniocaudal axis as well as 
Euclidean distance across all subgroups. Motion on the lateral axis is not significant for any subgroup



1385Surgical Endoscopy (2024) 38:1379–1389	

1 3

for navigation and image-guided surgical assistance tools. 
Image-guided techniques could, for example, be combined 
with minimally invasive surgery visualization techniques, as 
well as intraoperative imaging. Combining preoperatively 
registered images with live feed data could provide informa-
tion to the surgeon on the displacement of different parts of 
the liver during various stages of the surgery, allowing for 
more accurate visualization or localization of, e.g., intrahe-
patic lesions requiring resection [29, 30]. Additionally, the 
surgeon may choose to adjust the positioning of the patient 
or instruments to minimize the displacement of a specific 
area of the liver that is particularly susceptible to motion, 
which could help prevent unintended damage to the liver 
or surrounding structures. Recently, Pelanis et al. investi-
gated the potential of a novel surgical navigation solution 
[29]. This approach integrated a robotic C-arm for preop-
erative image data registration and intraoperative updates 
with fluoroscopic images, achieving a median accuracy of 
approximately four mm in the published study. The rela-
tively low margin of error is in accordance with the cur-
rent findings that the least breath-dependent motion was 
observed during the pneumoperitoneum state. The similar 
findings also emphasize the dynamic nature of liver motion 
during surgery and the concomitant necessity of accommo-
dating this aspect within surgical navigation, as the aim of 
minimally invasive surgery is to minimize resection volume 
while also avoiding positive resection margins.

There was significant liver motion when switching venti-
latory states. This ventilatory-associated motion was observ-
able across all operative states. Earlier studies have shown 
that craniocaudal motion increased with deep inspiration 

when compared to normal inspiration [17, 21, 46]. Sri-
matheveeravalli et al. [39] argued for a linear correlation of 
tidal volume and liver displacement. Carrying out image-
guided procedures with low inspiratory volumes, where it 
is safe, might reduce liver motion but still causes the liver 
to move significantly.

In the current investigation, a pneumoperitoneum pres-
sure of 15 mmHg was chosen. This pressure is toward the 
upper level commonly employed in laparoscopic surgeries, 
allowing a relevant and realistic differentiation from the 
other operative states analyzed in the current study. Addi-
tionally, existing veterinary literature on pneumoperito-
neum shows 15 mmHg to be a commonly utilized pressure 
in the porcine model [47, 48]. However, acknowledging 
the potential benefits of understanding the effects of vary-
ing pressures on organ deformation and motion, future 
studies may delve into the impact of different pneumop-
eritoneal pressures, particularly considering the increasing 
interest in low pressure pneumoperitoneum. With pneumo-
peritoneum, liver motion was nearly halved in the current 
study compared to the native and laparotomy states. This 
could mean that with laparoscopic surgery, ventilatory 
motion (< 10 mm) could be reduced for liver navigation. 
However, by creating the pneumoperitoneum there is con-
siderable liver displacement per se, potentially rendering 
preoperatively acquired CT images inaccurate without 
adaption for intraoperative image guidance and naviga-
tion. The results of the current study may provide some 
guidance for minimizing the potential error, as the change 
from native state to pneumoperitoneum showed consist-
ent, predictable liver displacement. Further research would 

Table 2   Summary of liver 
motion secondary to ventilation 
as reported in the literature

Group Year Craniocaudal (mm), 
Normal Inspiration

Craniocaudal 
(mm), Deep Inspi-
ration

Ventrodorsal (mm) Lateral (mm)

Suramo et al. [46] 1984 25.0 55.0
Korin et al. [17] 1992 13.0 39.0
Davies et al. [21] 1994 10.0 ± 8.0 37.0 ± 8.0
Kubo et al. [56] 1996 15.0–20.0
Balter et al. [16] 1996 17.0
Herline et al. [53] 1999 10.3 ± 2.5
Shimizu et al. [19] 1999 21.0 8.0 9.0
Shimizu et al. [15] 2000 10.6 ± 7.0 4.6 ± 1.6 5.2 ± 1.8
Brock et al. [57] 2003 8.5 3.8 1.8
Bussels et al. [18] 2003 24.4 ± 16.4 9.0 ± 3.5 13.2 ± 6.9
Rohlfing et al. [22] 2004 12.0–26.0 1.0–12.0 1.0–3.0
Brandner et al. [20] 2006 13.0 5.2 2.1
Beddar et al. [58] 2007 7.5–17.5 1.2–8.7 1.1–5.0
Xi et al. [59] 2009 10.1 ± 3.9 1.2 ± 1.0 1.3 ± 0.5
Nguyen et al. [60] 2009 12.4 ± 1.8 8.4 ± 1.3 1.2 ± 1.0
Brix et al. [40] 2014 11.0 2.5 1.6
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be required to confirm this motion in human patients. 
Ventilator settings could then be set to low tidal volume 
to further reduce potential margin of error, as there was 
only significant motion along the craniocaudal axis with 
low tidal volume in the pneumoperitoneum state. Addi-
tional optimization could be achieved via intraoperative 
imaging techniques, such as ultrasound or cone-beam 
CT, with the patient already in pneumoperitoneum state, 
which could provide high-resolution images for naviga-
tion. Research of the relevant current literature found no 
other study examining ventilatory liver motion with pneu-
moperitoneum or laparotomy. The changes in lung and 
ventilation mechanics under pneumoperitoneum are well 
documented, including basal atelectasis, compression of 
the lung basis, and a raised diaphragmatic dome [49–52]. 
A potential explanation for this is that the physiological 
and mechanical changes during pneumoperitoneum cause 
this significant decrease in liver motion due to decreased 
diaphragmatic motion, which has been shown to be highly 
correlated to liver motion [53]. Earlier studies report on 
liver motion due to introduction of pneumoperitoneum. 
Zijlmans et al. [24] reported liver motion due to pneumo-
peritoneum with craniocaudal motion of 28.5 ± 1.9 mm, 
ventrodorsal motion of 20.6 ± 1.8 mm, and lateral motion 
of 2.5 ± 0.5 mm. Overall motion was 35.3 ± 1.3 mm. Her-
line et al. [54] reported liver motion due to pneumoperi-
toneum with craniocaudal motion of 0.1 ± 0.4 mm, ven-
trodorsal motion of 4.1 ± 6.4 mm, and lateral motion of 
1.8 ± 12.0 mm. Overall motion was 2.5 ± 1.4 mm. Vijayan 
et al. [55] reported of liver motion of up to 44.6 mm with 
pneumoperitoneum and ventilation. The results of the cur-
rent study support the findings of Zijlmans et al. with most 
of the motion along the craniocaudal and ventrodorsal axis 
and least motion laterally. These results differ from those 
of Herline et al. The difference to Herline et al. results 
could be due to different measuring techniques (laparot-
omy was performed for marker placement) and variations 
in anesthesia. Heizmann et al. [56] reported intraopera-
tive liver motion of up to 60 mm but did not carry out any 
measurement to exactly quantify the liver displacement.

There was significant liver motion when the subjects were 
converted from native state to laparotomy in the present 
study. This motion was mostly along the ventrodorsal axis 
and was more pronounced in the peripheral parts of the liver. 
This may be explained through the incision decreasing the 
compressive effect of the abdominal wall, thus resulting in 
increased liver motion. Peripheral parts of the liver moved 
more than central parts. The liver is partly fixed to the dia-
phragm by the coronary ligament, which may reduce the 
motion in the parts close to the inferior vena cava. Further-
more, the differences in the segmental nature of the porcine 
liver, which has five rather loosely attached lobes, might 
account for increased peripheral motion [36].

These findings may have clinical implications for image-
guided surgical procedures. Enhanced peripheral liver 
movement underscores the need for real-time adjustments 
in surgeries such as tumor resections or targeted biopsies, 
and development of image-guided systems must consider 
the necessity of accounting for this variance. In the interim, 
navigation for image-guided interventions might be more 
suitable for central lesions.

Limitations

The present study was conducted in an animal model. The 
porcine liver is similar but not identical to the human liver. 
The porcine liver has five rather loosely attached lobes, 
which leaves more room for motion than the two main 
lobes in the human [36]. Great care needs to be given 
when transferring the results of this study into a clinical 
environment. Srimathveeravalli et al. reported on lobe-
specific liver motion due to animal positioning and ventila-
tion [39]. Liver motion secondary to repositioning could 
be neglected, as the animals were immobilized. However, 
sometimes during an operation, especially with laparo-
scopic surgery, different positions of the operating table 
are needed (i.e., Trendelenburg, Anti-Trendelenburg, tilt, 
etc.). Liver motion due to such repositioning maneuvers 
would have to be considered. As stated above, the seg-
mental anatomy of the porcine liver is different to the 
human liver, so that the lobes may move more. Further 
research needs to be done to clarify if there is significant 
lobe-specific liver motion in the human liver. Addition-
ally, the porcine model cannot account for the falciform 
ligament present in humans. This anatomical difference 
could further influence liver deformation during surgery. 
Future human-focused studies should investigate the liga-
ment’s impact on liver mobility to better inform intraop-
erative guidance systems. Objectively identifying the lung 
volumes of each pig was not feasible within the current 
research framework, so that lung volume estimation was 
used as an approximation. Srimathveeravalli et al. [39] 
defined tidal volumes of 215, 440, and 650 ml as low, 
middle, and high, respectively. The pigs used were heavier 
than the ones used in the current study; therefore, lower 
values were defined in the current study. Physiological 
tidal volume for pigs is around 7 ml/kg. Lung protective 
ventilation is < 7 ml/kg and high tidal volume is > 12 ml/kg 
[39, 44, 45]. 7 and 14 ml/kg were defined as low and high 
tidal volume the present study, which approximated to 200 
and 400 ml, respectively. This falls short of an objective 
measurement of exact inspiratory volumes, and should be 
acknowledged as a weakness in this study.

In the current investigation, the effects of varying positive 
end-expiratory pressure (PEEP) levels on liver motion and 
deformation were not explicitly explored, as the stated aim of 
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the study was designed to assess liver motion under a range of 
ventilatory and operative conditions. However, it is important 
to note that the pressure ranges typically experienced during 
PEEP are likely to lie within the maximal inspiration and expi-
ration pressures analyzed in our study. Therefore, while not 
directly assessed, the impact of PEEP on liver motion may 
be inferred to some extent from our findings. Further detailed 
examination of PEEP’s specific effects on liver dynamics 
could offer valuable insights, potentially augmenting the cur-
rent understanding of liver motion in surgical contexts.

Vascular segmentations cannot be objectively validated as 
there is no gold standard to compare it to [57]. A widely used 
method to evaluate liver motion is to compare the mean dis-
tance between branching points/anatomical landmarks identi-
fied by experts [42]. This manual input should be acknowl-
edged as a potential source of error.

In summary, the current study observed significant vari-
ations in liver positioning and motion under various condi-
tions, notably identifying more pronounced movement in the 
peripheral regions compared to the central areas. Both ventila-
tion and surgical access (Pneumoperitoneum and laparotomy) 
showed significant influence on the motion and deformation 
of the liver. This motion was decreased with low ventilation 
volumes. There was less liver motion due to ventilation with 
pneumoperitoneum than in native and laparotomy states.

Moreover, the variability in liver motion across different 
ventilatory and operative states, as highlighted by the current 
study, emphasizes the necessity for adaptable surgical plan-
ning. Surgical imaging systems informed by these data could 
tailor their strategies based on the liver’s specific state, poten-
tially reducing risks associated with liver mobility and offering 
a more personalized approach to liver surgery.

The current study provides novel insights into three-
dimensional liver motion during ventilation, analyzing both 
ventilatory and operative states. This research aims to enhance 
understanding of liver and vessel dynamics, potentially dem-
onstrating initial feasibility and informing the development of 
more adaptable surgical navigation systems. These findings 
may aid in enhancing the precision of both intraoperative and 
endovascular guidance, with the aim of improving surgical 
accuracy and patient outcomes.
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