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Abstract
Background With Surgomics, we aim for personalized prediction of the patient's surgical outcome using machine-learning 
(ML) on multimodal intraoperative data to extract surgomic features as surgical process characteristics. As high-quality 
annotations by medical experts are crucial, but still a bottleneck, we prospectively investigate active learning (AL) to reduce 
annotation effort and present automatic recognition of surgomic features.
Methods To establish a process for development of surgomic features, ten video-based features related to bleeding, as 
highly relevant intraoperative complication, were chosen. They comprise the amount of blood and smoke in the surgical 
field, six instruments, and two anatomic structures. Annotation of selected frames from robot-assisted minimally invasive 
esophagectomies was performed by at least three independent medical experts. To test whether AL reduces annotation effort, 
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we performed a prospective annotation study comparing AL with equidistant sampling (EQS) for frame selection. Multiple 
Bayesian ResNet18 architectures were trained on a multicentric dataset, consisting of 22 videos from two centers.
Results In total, 14,004 frames were tag annotated. A mean F1-score of 0.75 ± 0.16 was achieved for all features. The high-
est F1-score was achieved for the instruments (mean 0.80 ± 0.17). This result is also reflected in the inter-rater-agreement 
(1-rater-kappa > 0.82). Compared to EQS, AL showed better recognition results for the instruments with a significant dif-
ference in the McNemar test comparing correctness of predictions. Moreover, in contrast to EQS, AL selected more frames 
of the four less common instruments (1512 vs. 607 frames) and achieved higher F1-scores for common instruments while 
requiring less training frames.
Conclusion We presented ten surgomic features relevant for bleeding events in esophageal surgery automatically extracted 
from surgical video using ML. AL showed the potential to reduce annotation effort while keeping ML performance high for 
selected features. The source code and the trained models are published open source.

Graphical abstract

Keywords Artificial intelligence · Minimally invasive surgery · Precision medicine · Machine learning · Surgical data 
science · Surgomics

Operating rooms are high stake environments that still lack 
comprehensive and real-time monitoring and evaluation [1] 
with intraoperative adverse events being associated with 
higher postoperative morbidity and mortality [2]. In the 
intraoperative adverse event classification by Francis et al. 
[3], different types of bleeding are important examples of 
the five grades of intraoperative adverse events, including 
the highest grades 4 and 5. Furthermore, the occurrence of 
bleeding was identified as the most frequent type of adverse 
events by the SEVERE score developed by Jung et al. [4]. 
However, currently these events of a surgical procedure must 
be evaluated manually by experts, which does not allow for 
a standardized, objective, and scalable analysis of surgical 
videos.

Surgical Data Science aims to address this kind of 
problems using machine-learning (ML) methods as a 

sub-discipline of artificial intelligence (AI) to extract knowl-
edge from data [5]. Certainly, ML has shown tremendous 
success, also in the field of surgery [6] by applying methods 
like computer vision, e.g., for automatic instrument recog-
nition [7] or surgical phase detection [8] to surgical video 
data. However, relevance for guiding treatment decisions 
for example in surgical oncology remains limited up until 
now [9].

The concept of Surgomics uses methods of Surgical 
Data Science [5] that focus especially on the intraoperative 
setting with the aim to enable a personalized prediction 
of the surgical patient's outcome [10]. Surgomic features 
are characteristics of a surgical procedure which are auto-
matically derived from multimodal intraoperative data to 
quantify processes in the operating room. Based on the 
conceptual work of Wagner et al. [10], we now aimed to 
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develop surgomic features that are automatically derived 
from surgical videos by means of ML. The overarching 
aim of our work is thus to improve surgical therapy by 
extracting quantitative information from surgical data that 
may help to predict postoperative complications. Given the 
relevance of intraoperative events, we decided to address 
an automatic analysis of occurrence and surgical manage-
ment of bleeding events in the surgical field. However, 
training ML algorithms for automatic analysis of surgical 
procedures still requires high quantity and quality expert 
labeled data, and this remains a major bottleneck [11]. 
Methods like active learning (AL) [12] can be used to 
reduce the total annotation effort but have so far only been 
investigated retrospectively, but not prospectively in sur-
gery [13]. Furthermore, to our knowledge, in this field AL 
has not yet been systematically compared to conventional 
approaches for frame selection such as equidistant sam-
pling (EQS). While AL selects frames in a variable inter-
val using machine intelligence, EQS selects frames within 
a fixed interval, for example one frame every second or 
every one or two minutes from a surgical video.

With the aim of automatically extracting ten surgomic 
features and investigating the potential of AL in this pro-
cess, we addressed three major research questions in this 
study:

1. How well does ML automatically extract the selected ten 
surgomic features from frames of robot-assisted mini-
mally invasive esophagectomies (RAMIE) videos?

2. Does AL reduce the annotation effort and show better 
results in comparison to EQS for frame selection in a 
prospective setting?

3. How can the resulting surgomic features be visualized 
after surgery for a comprehensive quantitative descrip-
tion?

Materials and methods

Surgomic feature selection

In this study we chose to focus on the extraction of sur-
gomic features concerning intraoperative bleeding, which 
may result either from surgical error and/or from challenging 
patient characteristics. Based on this focus, we selected ten 
surgomic features for this study (Figs. 1 and 2) that are of 
particular importance for the recognition and surgical han-
dling of bleeding. According to the work of Wagner et al. 
[10], the ten surgomic features were selected from two dif-
ferent feature categories, namely “surgical field” and “instru-
ment”. These two categories showed the highest technical 
feasibility based on the judgment of (computer) scientists 
in previous investigations [10] and can mainly be derived 
from surgical videos. From the “surgical field'' category four 

Fig. 1  Visual abstract of the annotation study. The development pro-
cess of the surgomic features with required data and selected features, 
experimental setup with feature annotation investigating equidistant 

sampling (EQS) vs. active learning (AL) for frame selection, and 
results are depicted
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features were selected: “blood” and “smoke” in the surgi-
cal field as well as the presence of the anatomic structures 
“gastric tube” and “azygos vein”. Regarding the surgomic 
feature blood, the Forrest classification has already been 
introduced for gastrointestinal hemorrhages distinguishing 
between active bleeding, recent bleeding, and no bleeding 
[14]. In analogy to this classification, we developed a scale 
applicable to all locations and kinds of bleeding occur-
ring during surgery. Our blood scale reaches from zero “no 
blood” to four “blood amount requiring immediate interven-
tion” (Fig. 2, supplement 1) allowing for a differentiated 
gradation. Regarding visibility in the surgical field, smoke 
is together with blood an important factor to analyze. In 

the present article we also developed a scale for the sur-
gomic feature “smoke” allowing a distinction of the differ-
ent amounts of smoke potentially impairing the surgery. 
The four-level scale ranges from zero “no smoke” to three 
“smoke amount leading to no visibility” (Fig. 2, supplement 
1).

The two scales were developed together with surgical 
experts and computer scientists. The final decision on the 
scales was made by a board-certified surgeon. The aim 
was to find the best possible balance between clinically 
important levels (blood levels 3 and 4 need expeditious 
surgical intervention, smoke level 3 indicates to pause 
the procedure) and an assumed feasible problem solution 

Fig. 2  Annotation of surgomic features. Example frames for all ordinal and binary surgomic features. For the ordinal features, blood and smoke, 
example frames for every scale level are presented. Supplement 1 includes a detailed annotation protocol for all features
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for the neural networks. Thresholds were defined based 
on surgical expertise (e.g., immediate bleeding control 
by clip becomes necessary for blood level 4) as well as 
morphological image criteria (e.g., a spurting hemorrhage 
at blood level 4 or blurred organ margins at smoke level 
2) (see supplement 1 for more details).

With RAMIE videos as a data source, the two ana-
tomic structures gastric tube and azygos vein were cho-
sen as surgomic features because of their visibility and 
importance in this intervention, as well as the risk they 
bear as sites of relevant bleeding. From the “instrument” 
category, the presence of the instruments “vessel sealer”, 
“permanent cautery hook”, “suction”, “scissors'', “large 
clip applier”, and “metal clip applier” were selected as 
six surgomic features. All these instruments are used 
during RAMIE, are relevant for the appearance of blood 
and smoke in the surgical field and often interact directly 
with the two chosen anatomic structures. For all selected 
frames the ten surgomic features were annotated by tag-
annotation using a self-hosted version of CVAT [15], an 
open-source annotation tool. An annotation protocol with 
the ten features and their different scale levels was cre-
ated for the study (supplement 1). The protocol contains 
a description and example frames for each feature and 
feature scale level.

Active learning for efficient annotation

To automatically extract the ten surgomic features from 
surgical videos, we used ML. However, modern ML 
algorithms usually require large amounts of training data 
annotated by (medical) experts. With the aim to achieve 
similar or better ML performance with less annotations, 
we here investigated AL as a method for intelligent anno-
tation. Comparative approaches have been successfully 
used for instrument presence and surgical phase detec-
tion [13] within surgery, however up until now only 
retrospectively.

We set up a prospective AL framework for the annota-
tion of surgomic features (Fig. 1). This means, the trained 
ML model iteratively chose new frames to be annotated 
based on the hypothesis that intelligent selection of frames 
would result in improved performance of the ML algo-
rithms with less annotated training data.

From a technical perspective, following the approach of 
[13], an architecture capable of calculating a confidence 
for its predictions was trained on previously labeled data 
(see “Training” section). Subsequently, the model’s con-
fidence was calculated on all available unlabeled data 
points. After handing the most uncertain samples to the 
annotators and extending the labeled pool, the cycle was 
repeated (Fig. 1).

Study design of prospective comparative study

To establish a dynamic feature development process and 
to investigate the potential role and applicability of AL in 
it, a prospective comparative study was designed. Here, 
we compared AL for intelligent selection of frames to be 
annotated to state-of-the-art EQS of frames from the video 
footage (Fig. 1). Over ten prospective annotation and train-
ing cycles, the comparison of the two methods enabled 
investigating whether AL improves annotation efficiency, 
i.e., resulting in similar or better algorithm performance 
with fewer annotations.

The following paragraph describes selection of ML 
algorithm, the surgical data set that we used, the creation 
of a start dataset for initial training, the ten annotation and 
training cycles of our comparative study and the creation 
of the test dataset to measure algorithm performance.

ML algorithm selection

In this work, we opted for a ResNet architecture [16] pre-
trained on ImageNet, as this state-of-the-art architecture 
also was used by almost all participants for the instrument 
classification task in the 2019 EndoVis Surgical Skill and 
Workflow Challenge [17]. Due to the limited size of our 
dataset, arising from the nature of the investigated problem 
of annotation effort, we used the smaller ResNet18 instead 
of a ResNet50.

Following the approach of [18] suggesting using a 
smaller proxy model, improving speed, and reducing com-
putational cost while keeping the expected performance 
of AL, we performed the AL cycle with a smaller image 
resolution of 180 by 240 pixels and a larger one of 480 
by 640 for evaluation. For the larger evaluation models 
additional augmentation in form of random scaling, rota-
tion, and brightness and color shift was applied to the 
frames. All models were trained for 100 epochs using an 
SGD optimizer [19] with a OneCycle learn rate scheduler 
[20]. The maximum learn rate was 3e–3, the batch size of 
16 was determined by available GPU size. To obtain the 
model’s prediction certainty, which is required for AL, the 
model was transformed into a Bayesian model by adding 
Monte–Carlo dropouts as proposed in [21]. The uncer-
tainty was calculated using the standard deviation over 
multiple inferences over the same sample, as described in 
[13]. We split the features according to their feature group, 
resulting in 3 models: one BayesianResNet classifying the 
levels of the features blood and smoke, one detecting the 
presence of the features of anatomic structure presence, 
and one detecting the presence of the features of instru-
ment presence. As we were comparing EQS to AL, in total 
6 models were trained per annotation cycle.
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The code and trained models are publicly available at 
https:// gitlab. com/ nct_ tso_ public/ active- learn ing- for- surgo 
mic- featu res.

Data set

As surgical data, we used 26 RAMIE videos from two dif-
ferent centers (13 from the Department of General, Visceral 
and Transplantation Surgery at the Heidelberg University 
Hospital and 13 from the Department of Visceral, Thoracic 
and Vascular Surgery at the University Hospital Carl Gustav 
Carus Dresden). Ethics approval was granted by the ethics 
committees at Heidelberg University (S-248/2021) and at 
the Technical University Dresden (BO-EK-177032021). For 
prospectively collected data, all patients provided written 
informed consent into use of their data. Here, 22 videos were 
used for training, 4 videos for testing, with each center pro-
viding half of the videos. The recorded surgical videos were 
either collected prospectively (n = 13) or were taken retro-
spectively from a prospectively collected database (n = 13). 
In any case, the chronological order was kept during the 
experiments to replicate a prospective study design. Video 
sequences with the laparoscopic camera filming outside the 
patient body were manually annotated and then before frame 
selection automatically replaced with completely white 
frames. This way, the total duration of the video remained 
unchanged. Respective white frames were not taken into 
account in the annotation process.

Two data sets were created which will be referred to in 
the following: a start data set used as an equal starting point 
for algorithm training (both AL and EQS approaches) and a 
test data set for performance evaluation.

The start data set was created because AL needs a pre-
trained model in the beginning. We created the initial start 
data set by equidistantly selecting frames every two minutes 
from the first videos of each of the two centers. This start 
set from those two videos resulted in 343 frames, 145 from 
Dresden and 198 from Heidelberg. As equidistant sampling 
was not able to represent rare features, one missing frame of 
the highest blood level had to be filled in by manual selec-
tion, was confirmed by three independent annotators, and 
was added to the start set for blood and smoke (n = 344). 
Every feature and feature level were then represented in the 
start set.

An independent test data set was created to evaluate the 
performance of the trained ML algorithms for final evalua-
tion. In total, 604 frames for this data set were selected from 
additional four videos of the two centers (two from Heidel-
berg, two from Dresden). Of the 604 frames, 588 frames 
were selected equidistantly, 16 frames were selected manu-
ally to have at least three examples of each surgomic feature 
and each feature level in the test dataset.

Training

Training was performed on frames of 22 videos (11 from 
each center). The comparative study included ten subsequent 
annotation cycles each for EQS and AL, simulating ML 
algorithms that learn in the clinic when new procedures are 
performed, and new videos are added. For EQS the ResNets 
were trained using frames selected every two minutes from 
the newly added video for every cycle. Frames were selected 
every two minutes to result with an amount of frames that 
can still be annotated in reasonable time due to the long 
duration and the high number of RAMIE videos. This way 
it was possible to include more videos which potentially 
showed variation in the procedure. For AL, frame selection 
was based on the uncertainty of the networks and frames 
were chosen from the whole available video pool growing 
by one video every cycle. The number of frames selected 
with AL was determined by how many frames were sam-
pled equidistantly in this cycle to ensure the same amount 
of training data for EQS and AL. Reflecting the prospective 
nature of the study, nothing was changed in the setup dur-
ing training, and the performance of the networks was not 
evaluated between cycles.

Annotation

The group of annotators consisted of six medical experts 
(five medical students and one surgical resident) specifically 
trained with the annotation protocol. To guarantee coher-
ence and quality of annotation for the selected frames, every 
training frame (including the frames of the start data set) was 
annotated independently by three different annotators from 
the group. If the three annotators did not agree, the annota-
tion was determined using majority vote. For the ordinal 
features, if no majority vote was possible due to all three 
raters voting for different levels, the frame was discussed in 
a group of at least three annotators from the annotator group 
until agreement. During each annotation cycle a chronologi-
cal order of the frames was maintained to ease especially the 
annotation of gastric tube and azygos vein.

The 604 frames of the test set were annotated by all six 
independent annotators of the annotation group to enable a 
more detailed evaluation of the inter-rater-reliability.

Validation

After the ten cycles were finished, the performance was 
evaluated in a post hoc manner. A model with larger frames 
resolution was trained on the different growing data sets 
available after each cycle of EQS and AL and evaluated 
on the test set. The uncertainty was determined over 100 
inferences per sample and averaged over the samples of the 
test set.

https://gitlab.com/nct_tso_public/active-learning-for-surgomic-features
https://gitlab.com/nct_tso_public/active-learning-for-surgomic-features
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The test set was built of 4 videos which were held back. 
During the cycles the models never saw the test set. Evalu-
ation on the test set was done by a separate script than 
training and frame selection.

Finally, all available annotated data combined from 
EQS and AL was used to train the best possible mod-
els, resulting in an upper baseline. For evaluation, the 
F1-score, precision and recall for every feature was calcu-
lated. The different levels of blood and smoke were aggre-
gated hierarchically, by firstly averaging over the images 
and secondly averaging over the levels, resulting in the 
macro F1-score for those two features.

Experimental setup

All experiments were done using Python 3.8, the mod-
els were trained and evaluated using PyTorch [22] v1.12. 
The metrics F1-score, precision and recall were calculated 
using scikit-learn [23]. Model training and inference dur-
ing the AL cycles was performed on an Nvidia GTX1080 
(NVIDIA Corporation, Santa Clara, California, USA).

The final model using all available data was trained 
on an Nvidia RTX A5000 NVIDIA Corporation, (Santa 
Clara, California, USA).

Statistical analysis

To check for statistically significant differences between 
the trained classifiers using the AL and EQS method a 
McNemar test with Edwards correction [24] was per-
formed for every feature and cycle on the test set compar-
ing the correctness of the classifiers. Differences with a 
p-value below 0.05 are seen as significant. Additionally, 
the test was performed over all cycles for the feature cat-
egories: blood and smoke, instruments, and anatomy, as 
well as all features together, by combining the contingency 
tables of the respective features. The inter-rater-agreement 
was calculated on the test set (annotated by all six anno-
tators) using the Kappa-Fleiss-score [25]. To evaluate 
different aspects three combinations were evaluated: To 
check for outliers within the rater group, a 1-rater-score 
was calculated with the kappa-score of the raw annotations 
of all six raters. To evaluate how many raters are needed 
to achieve consistent annotations, a 3-rater-score and a 
5-rater-score were calculated with the kappa-score of all 
possible combinations to merge three/five raters. Addition-
ally, the kappa-scores were calculated on the training sets 
comparing the datasets of AL and EQS after all ten cycles 
were finished, to check for differences in rater agreement 
indicating different levels of difficulty.

Surgomic report

Finally, we created a surgomic report comprehensively 
presenting all features. The report was generated using 
matplotlib [26] in python 3.7.9 and set up in a pipeline to 
be automatically generated on new videos. The surgomic 
report contains a videogram to give a temporal overview of 
the video and a barcode-like plot for each feature showing 
the predicted presence/level for each feature over time. The 
videogram was generated by concatenating the middle col-
umns of one frame per minute of the video. The surgomic 
features were compressed to display a total of 800 values 
per barcode, thus the number of predictions for one value 
and the duration compressed into one value differ depend-
ing on the video length. One value was calculated with the 
mean of the available feature predictions. The barcode was 
then visualized with a color-gradient representing the fea-
ture frequency. Thus, a darker line in the barcode represents 
more positive predictions in an interval, while a lighter color 
represents fewer positive predictions. Additionally, the mean 
certainty of the predictions for each interval is overlayed 
over each feature barcode. The information for each feature 
summarizing the whole duration of the recorded procedure 
can be seen in a separate box on the right. Here, the total 
duration of detected instruments and anatomy features in the 
video is displayed. For blood and smoke the total duration 
of high levels (levels > 2 for blood, > 1 for smoke) is shown. 
In addition, the mean, maximum and minimum certainty 
are calculated for each feature. The surgomic report with 
the videogram and feature barcodes can be generated after 
a live detection of the surgomic features in the operating 
room, allowing surgeons and surgical data scientists to get 
a direct overview of the procedure. However, the prediction 
certainty can only be calculated after post-processing the 
video offline.

Live evaluation of surgomic features 
in the operating room

To test the surgomic feature prediction live in the operat-
ing room a mobile “surgomic feature tower” consisting of a 
medical PC, a DataLogger for recording videos, and a touch 
screen was installed. The used medical PC is a PANA.ceia4 
(MCD Medical Computers Deutschland GmbH, Möncheng-
ladbach, Germany, article number: 2000074 M) equipped 
with a Quadro RTX4000 from NVIDIA Corporation (Santa 
Clara, California, USA), 16 GB RAM and an Intel Core 
i7-8700 K processor (Intel Corporation, Santa Clara, Cali-
fornia, USA). The DataLogger (KARL STORZ SE & Co. 
KG, Tuttlingen, Germany) serves as a technical platform 
for recording endoscopic videos of the surgery [17]. The 
24.5ʺ touch screen (KARL STORZ SE & Co. KG, Tuttlin-
gen, Germany, article number: 200905 24) allows the user to 
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manually start and stop the feature prediction. During feature 
prediction, it displays features live in parallel with the endo-
scopic video. For the feature prediction, a set of ResNet50s 
without Monte–Carlo dropouts was trained on all annotated 
data to allow for faster inference while keeping comparable 
performance. The detected features such as blood and smoke 
are represented via a colored scale, and remaining features 
are highlighted via a schematic representation next to the 
original video. After stopping the feature prediction, the sur-
gomic report containing the consolidated feature predictions 
is generated automatically.

Results

Frame selection

Over the ten cycles of EQS and AL for frame selection, a 
total number of 14,004 frames were annotated by a mini-
mum of three independent raters each. Specifically, 343 
frames with all features and one additional only for blood 
and smoke were annotated for the shared start set (Fig. 3). 
604 frames were annotated for all features for the test set. For 
EQS 3264 frames were annotated with all features. For AL, 

9792 frames (equals 3 times 3264) were annotated but not 
each frame with all features, because the AL algorithm was 
allowed to select different frames for blood/smoke, anatomy, 
and instruments. Overall, in the end there were three sets of 
frames for each feature group annotated: blood and smoke 
(n = 7476), anatomy (n = 7475) and instruments (n = 7475). 
Each consists of the start set, the sampled frames by EQS, 
the test set and for each group the respective sampled frames 
by AL. Figure 3 gives an overview of the number of selected 
and annotated frames. The affiliation of the frames to the 
two centers here was the following for AL: blood and smoke 
2419 frames from Heidelberg, 845 from Dresden; instru-
ments 2530 from Heidelberg, 734 from Dresden, anatomy 
1995 from Heidelberg, 1269 from Dresden. For the start set 
and EQS, 1993 were selected from Heidelberg videos and 
1615 from Dresden.

Inter‑rater‑agreement

The inter-rater-agreement on the different features was 
evaluated using the kappa-score on the test data set that was 
annotated by six different annotators for each frame.

Instrument features had the highest inter-rater-
agreement with 1-rater-kappa-scores of vessel sealer, 

Fig. 3  Flow diagram of the frame selection and annotation process
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permanent cautery hook and metal clip applier above 
0.98. Slightly lower one-rater kappa-scores had the large 
clip applier, scissors, and suction, still above 0.82. A 
slightly worse range showed the anatomy features with 
one-rater kappa-scores above 0.77 for gastric tube and 
azygos vein.

Lowest inter-rater-agreement was observed on blood 
and smoke features with kappa-scores indicating that at 
least a 3-rater-majority or even better a 5-rater-majority 
vote is necessary to achieve an acceptable inter-rater-
agreement (1-rater-score of 0.33 to 0.71 for blood and 
0.46 to 0.65 for smoke, 3-rater-score of 0.65 to 0.84 for 
blood and 0.69 to 0.87 for smoke, 5-rater-score of 0.81 to 
0.92 for blood and 0.87 to 0.93 for smoke). Overall, raters 
agreed more on binary features (instrument and anatomy 
presence) with a mean 1-rater score of 0.91 than on ordinal 
features (blood and smoke) with a mean 1-rater score of 
0.52.

To further evaluate the rater agreement, the amount 
of complete agreement versus the need for a majority 
decision was evaluated on the training data set. For both 
anatomy features all three raters agreed in 90% of all anno-
tated frames for EQS and 84% for AL, indicating that the 
annotation difficulty for the anatomic structures was higher 
with AL. This hypothesis was also subjectively confirmed 
by the raters themselves, who had mentioned even before 
evaluation that AL selected frames were more difficult to 
annotate. However, for blood and smoke as well as for 
instruments no difference between AL and EQS regarding 
the amount of complete agreement vs. majority decision 
could be found.

Feature performance

When training with all available annotated data from EQS 
and AL, recognition results were achieved with an overall 
hierarchically aggregated F1-score of 0.75 ± 0.16 for all 
10 surgomic features (Table 1). The highest recognition 
results were achieved for the feature permanent cautery 
hook with an F1-score of 0.95, the lowest for the feature 
blood with an F1-score of 0.47. Among the feature groups 
(blood and smoke, anatomy, instruments), the instruments 
achieved the highest F1-score of 0.80 ± 0.17. Furthermore, 
the algorithms for instrument recognition showed a higher 
certainty in their predictions compared to anatomy, as well 
as blood and smoke (Fig. 4). Overall, all features achieved 
better results when training with both, annotated frames 
selected with EQS plus AL, except of the features vessel 
sealer and metal clip applier. For those two features AL 
alone achieved better results without the annotated frames 
of EQS. A detailed overview of the algorithms’ perfor-
mances for surgomic features is shown in Table 1.

Equidistant sampling vs. active learning

An overall superiority of AL regarding classification per-
formance could be shown with a mean total F1-score for 
all ten features after ten cycles of 0.69 ± 0.21 for AL versus 
0.57 ± 0.27 for EQS (Table 1). However, this overall supe-
riority was mainly because of the superior performance for 
the instrument features. Here, AL showed better results with 
a mean F1-score after ten cycles of 0.75 ± 0.22 (AL) vs. 
0.52 ± 0.33 (EQS), precision of 0.82 (AL) vs. 0.66 (EQS) 
and recall of 0.73 (AL) vs. 0.47 (EQS) (Table  1). The 
large clip applier is to be highlighted in this regard with 
an F1-score of 0.73 (AL) vs. 0 (EQS) as well as the metal 
clip applier with an F1-score of 0.92 (AL) vs. 0.36 (EQS). 
However, for blood and smoke as well as for the two ana-
tomic structures, the results for AL in comparison to EQS 
were similar or slightly worse. Particularly smoke was worse 
detected using AL with an F1-score of 0.51 (AL) vs. 0.70 
(EQS). The highest smoke level had the greatest impact with 
an F1-score of 0.0 (AL) vs. 0.83 (EQS). For the features 
blood and smoke AL was not able to select specific frames 
of the rare feature levels like blood level 3 and 4, or smoke 
level 3. Here, EQS had in the end more training frames for 
these rare levels. The number of selected frames available 
for training of AL vs. EQS is shown in Fig. 4. In contrast 
to EQS, AL selected more frames of the four less common 
instruments (suction, metal clip applier, large clip applier, 
scissors) and the two anatomic structures. For the metal clip 
applier AL continuously improved performance over the 
cycles while EQS stagnated after cycle 4. For scissors AL 
stagnated after 3 cycles, but EQS took 7 cycles to reach the 
same performance. For the large clip applier AL was able to 
select samples after 7 cycles and improve the F1-score while 
EQS field to learn the feature.

When evaluating the F1 score in correlation with the 
available positive samples during training, as shown in 
Fig. 5, two behaviors of AL were observed: For the instru-
ments with high number of samples in EQS, vessel sealer 
and permanent cautery hook, AL was able to achieve higher 
F1-scores with fewer frames. For the remaining binary fea-
tures AL was able to achieve better (azygos vein, metal clip 
applier, large clip applier & suction) or similar (gastric tube 
& scissors) F1-scores than EQS by selecting more samples 
of the feature. The correlations of the features blood and 
smoke are not evaluated in this way, because AL was not 
able to select frames of rare blood and smoke levels.

The results of the McNemar test comparing the correct-
ness of the AL and EQS classifiers are shown in Table 2. The 
classifiers are compared for every feature and every cycle. 
No significant difference was found in any cycle for the fea-
tures large clip applier, scissors, suction, or the anatomy fea-
tures. The features vessel sealer, hook and metal clip applier 
showed significant differences mainly in the early and last 
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cycles. Taking the performance metrics from Table 1 into 
account, a significant improvement of AL over EQS can 
be concluded for the instrument features, especially for the 
features vessel sealer and hook. The remaining blood and 

smoke levels differed significantly over almost all cycles. 
Cycle 6 showed an obvious cut as it was not significant 
in blood or any instrument feature. Although mostly not 
strongly reflected in the F1-scores, significant differences 

Fig. 4  F1-scores of surgomic 
features for the ten cycles (line-
plots) and total number of avail-
able training frames (bar plots). 
Equidistant sampling (EQS) for 
frame selection is depicted in 
blue and active learning (AL) in 
orange, the performance of the 
model trained on all available 
frames after ten cycles is shown 
as a reference line (AL + EQS). 
An error bar visualizes the 
uncertainty of the model, as 
given by the std between predic-
tions in Bayesian models, dur-
ing inference. These error bars 
should not be confused with 
confidence intervals
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were found between the correctness of the classifiers for 
blood and smoke.

An overall statistically significant difference in correct-
ness of all classifiers (AL vs. EQS) could be shown with 
a superiority of AL taking the performance metrics from 
Table 1 into account.

Surgomic report

The algorithms trained on all available annotated data 
were exemplarily applied on one video depicting the fea-
tures in a surgomic report (Fig. 6).

Fig. 5  F1-scores of anatomy and instrument features in relation to the 
number of available positive samples. The single samples of F1-score 
and number of samples are plotted for all ten cycles with equidis-

tant sampling (EQS) in blue and active learning (AL) in orange. A 
regression line of order 1 is shown with the same colors (Color figure 
online)

Table 2  McNemar test comparing the correctness of the classifiers using active learning (AL) or equidistant sampling (EQS) for frame selection 
[24]

The correctness of the AL and EQS classifications are compared over the 10 cycles using the McNemar test with Edwards correction. Significant 
differences (p-value < 0.05) are bold. Cycles with the exact same classification of both methods are left blank

Cycle 1 2 3 4 5 6 7 8 9 10

Blood 0.010 0.045 < 0.001 < 0.001 < 0.001 0.369 < 0.001 < 0.001 < 0.001 0.109
Smoke < 0.001 0.003 0.770 < 0.001 < 0.001 0.001 < 0.001 0.516 < 0.001 < 0.001
Azygos vein 0.110 0.903 0.657 0.261 1.000 0.099 0.147 0.620 0.057 0.596
Gastric tube 0.488 0.770 1.000 0.677 0.532 0.775 0.643 0.560 1.000 0.868
Vessel sealer 0.253 < 0.001 0.061 0.123 0.404 0.134 0.230 0.012 0.037 < 0.001
Hook 0.810 0.787 < 0.001 0.871 0.307 0.453 0.081 0.201 0.110 0.029
Clip applier metal 0.043 1.000 0.006 0.022 0.628 0.149 0.789 0.077 0.046 0.077
Large clip applier 0.480 0.480 1.000 0.480 1.000 0.450
Scissors 0.480 0.248 0.683 1.000 1.000 0.683 1.000 0.617 0.617
Suction 0.109 0.296 0.584 1.000 0.860 0.169 0.814 1.000 0.332 0.663
Blood and smoke 0.009 0.669 < 0.001 < 0.001 0.226 0.005 < 0.001 < 0.001 0.012 0.003
Instruments 0.021 0.075 < 0.001 0.786 1.000 0.008 0.030 0.004 < 0.001 < 0.001
Anatomy 0.447 1.000 0.661 0.227 0.651 0.129 0.389 0.925 0.176 0.836
All features 0.234 0.262 0.028 < 0.001 0.387 0.006 < 0.001 < 0.001 < 0.001 < 0.001



8589Surgical Endoscopy (2023) 37:8577–8593 

1 3

Fig. 6  Surgomic report. The surgomic report is presented containing 
the automatically assessed feature information along the whole sur-
gery (a). The report on the right (b) contains in addition the mean 
certainty of each prediction (red dots). A videogram is depicted on 
top. For the instrument/organ features the total duration of the fea-

tures and the amount of tool usage/organ presence (in ‰) are shown. 
For the features “blood” and “smoke” the amount as well as the dura-
tion of a relevant amount of blood/smoke (levels > 2 for blood, > 1 for 
smoke) is shown (Color figure online)

Fig. 7  Live evaluation of Surgomics in the operating room. The surgomic feature tower was brought into the operating room (a) depicting the 
live detection of the surgomic features (b)
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Live evaluation of surgomic features 
in the operating room

First test runs of surgomic feature predictions have been 
successfully performed live in the operating room at Hei-
delberg university hospital (Fig. 7). Neither during nor after 
the procedure were the results shown to the operating sur-
geon to not influence the treatment process. The preliminary 
recordings can be used for further model training and result 
replication. It was shown that the system provided a stable 
interface detecting features with 12 FPS. Basic live use in 
the operating room was demonstrated, further improvements 
for even more FPS and feature performance are possible and 
will be targeted in the future.

Discussion

Annotation and recognition of surgomic features

Based on the concept of Surgomics [10], in this study, we 
established an initial development process for surgomic fea-
tures that explores AL as a method for frame selection and 
improvement of ML performance. Ten surgomic features 
from feature categories with high technical feasibility as well 
as clinical relevance according to Wagner et al. [10] were 
selected. Ordinal features (blood, smoke) were distinguished 
from binary features (anatomy and instruments). Automatic 
smoke evacuation using an industrial smoke-detection 
device has been reported by Takahashi et al. [27]. Further-
more, a binary classification of smoke/non-smoke images 
has been presented [28]. In our study, a four-level smoke 
classification was introduced which allows discrimination 
between the amount of smoke impairing the surgery or not. 
In addition, a five-level blood classification leaning on the 
work of Forrest et al. [14] was developed. As expected, the 
binary features were detected better than the more complex 
ordinal features. The comparatively low F1-scores of the 
ordinal features were also reflected in the greater disagree-
ment among raters. Already during the design of the annota-
tion protocol, feedback was received that a clear discrimina-
tion of the different levels was often difficult. Furthermore, 
subjectively it was also challenging to correctly annotate 
other features when there was a lot of smoke or blood in the 
image. As shown in our evaluation of inter-rater-agreement, 
for ordinal features three or even five raters were needed 
to reach acceptable inter-rater-agreement. Since low levels 
of blood and smoke are thought to have less surgical rel-
evance, for further investigations the importance of inter-
rater-agreement for low levels should be weighted lower. 
Instead, it should be considered not to annotate single frames 
regarding their level of blood and smoke, but sequences of 
clinically relevant bleeding that cause additional coagulation 

or sometimes even conversion to open surgery. Annotation 
rules of these sequences, which are highly reproducible 
across surgical centers, should increasingly be agreed upon. 
In this regard, annotation validation with board-certified sur-
geons should be addressed.

On the contrary, for binary features one-rater is likely to 
be sufficient for the annotation due to high inter-rater-agree-
ment. To still realize annotation quality, two raters could be 
chosen in future studies and only in case of disagreement a 
third rater would be necessary.

Active learning of surgomic features

Using AL in a prospective setting was able to prove an 
overall superiority over EQS and showed the most prom-
ising results for specific groups of features, especially the 
instrument group. AL chose specifically frames with rare 
instruments and needed less training frames while achieving 
higher F1-scores for the more frequent features vessel sealer 
and permanent cautery hook (Figs. 4 and 5). This data indi-
cates that AL might achieve a certain saturation level when 
enough training frames are available enabling it to then bet-
ter focus annotation efforts on other features.

Interestingly, although selecting more frames for the suc-
tion and the scissors compared to EQS (suction: 1065 frames 
with AL vs. 481 with EQS, scissors: 220 frames with AL 
vs. 68 with EQS), recognition results for EQS are slightly 
better than for AL. This counterintuitive result is probably 
explained by center-specific differences. For example, the 
suction is silver in Heidelberg videos, but black in Dres-
den videos. Also, AL selected way more frames from the 
Heidelberg dataset (1028 frames Heidelberg vs. 37 frames 
Dresden) in comparison to EQS (426 frames Heidelberg vs. 
55 frames Dresden) what might explain the worse perfor-
mance from AL on the more balanced test set (31 Heidelberg 
vs. 11 Dresden).

Overall, using AL it was possible to achieve very good 
results for some features with binary tag-annotation. How-
ever, the composition of the start data set proved to be an 
essential factor for AL. The start data set needs to contain 
a sufficient representation especially for rarely occurring 
features like high blood or smoke levels. This presented us 
with a great challenge. On the one hand, we wanted to try 
to reduce the annotation effort with AL as major objective 
of our study. The ability of selecting a diverse set of frames 
for desired labels would further replace AL of the ML algo-
rithm by active selection via human experts that selects the 
difficult tasks. This would then increase the need for expert 
annotation resources that we aim to reduce and would thus 
counteract that very aim.

On the other hand, we needed sample frames for each 
feature and feature level for the start data set, while at the 
same time achieving a high diversity of frames. Further, 
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the prospective setup of the experiment limited the amount 
of available videos during start set creation. We therefore 
decided to use an EQS method for creating the start data set 
and manually added missing feature levels so that at least 
every feature and feature level was represented. However, 
this proved to be insufficient for the AL algorithm in our 
experiment for high levels of blood and smoke. The num-
ber of frames in a start data set that AL requires to detect 
even more complex features, should be further investigated 
in future studies. The complexity of the features to be recog-
nized as well as center-specific differences must be assessed 
before training starts and additional data for the start data set 
must be provided if necessary.

The minimum performance requirements to a model used 
for frames sampling via AL needs to be investigated to deter-
mine the minimum requirements to a start set.

Overall, in comparison to EQS, AL holds the potential 
to reduce the annotation effort for less complex features and 
to improve performance at the same time. Whether AL also 
provides an advantage for more complex features needs to be 
evaluated with further experiments where enough samples 
of rare classes can be found. Furthermore, the comparatively 
bad performance on blood and smoke indicates that new 
ML architectures should be investigated for ordinal-based 
features. The results achieved from the comparison study of 
AL vs. EQS for frame selection is also limited by the fact 
that the uncertainties of the models were not calibrated. The 
possible effects of calibrating the uncertainties needs to be 
investigated in future studies. In the context of the start set 
quality, the possibility of model bias needs to be mentioned. 
The used AL selection method is prone to bias as an exist-
ing bias is affecting the frame selection which then further 
enforces the bias. If a model is certain but wrong about the 
classification of a frame, the frame will not be selected, and 
the error not corrected. The possibility to tackle this issue 
with the use of modified selection methods should be inves-
tigated in future works.

Next steps towards clinical application

A correlation of the surgomic features investigated in this 
study with clinical outcome has not yet been derived. There-
fore, in the next step, validation in a prospective diagnostic 
trial should investigate correlation with clinically meaning-
ful endpoints. Furthermore, the ordinal features should be 
further developed to improve recognition results of high lev-
els. In this context it would be appropriate to take the ordinal 
nature of blood and smoke into account by applying methods 
specific for this data type, e.g., ordinal regression [29]. Since 
there is not enough data available from larger bleeding or 
smoking events, it should be considered to manually pick 
out and annotate certain video sequences. In this context, 
the potential role of AL should be further investigated. In the 

future, also the temporal context should be included into the 
evaluation to allow for a stronger focus on feature interac-
tions. An example here could be that the permanent cautery 
hook causes heavy bleeding when cutting in the azygos vein 
during preparation. Consequently, the suction comes into 
the video and the hook is replaced by the clip applier. Con-
secutively, the bleeding can be controlled, the hook comes 
back into the video and surgery continues. It is these feature 
interactions and sequences that could be particularly rel-
evant to predict postoperative complications [30]. For this 
purpose, the addition of the surgical phases and steps, in 
our case for RAMIE as further features is essential [31]. For 
example, a massive bleeding during the gastric mobilization 
phase could indicate an accidental injury of an abdominal 
artery whereas during the step of suturing the esophageal 
and gastric tube anastomosis bleeding is even desired, as 
this indicates good perfusion. Ideally, with the automatic 
detection of feature combinations, we will be able to derive 
a risk score or a specific recommendation for the surgeon. 
Especially regarding surgical skill assessment [32] and com-
parison between different centers, surgomic feature detection 
will be interesting. In this context, the features developed so 
far can serve as a basis for further investigations.

The surgomic report contains all features and can auto-
matically be generated on a respective video, even directly 
after surgery. It presents the features in a comprehensible 
and clear manner and can quantitatively describe the proce-
dure to make surgical progress measurable. If more features 
are developed in the future, the report will continuously be 
supplemented. A user evaluation with surgeons should be 
planned to assess potential benefits of the report in terms of 
surgical documentation and feedback.

Conclusion

We presented ten different surgomic features automatically 
extracted from surgical video using machine-learning meth-
ods, even live in the operating room. Using the surgomic 
features, a surgomic report can automatically be generated 
summarizing information about the whole procedure. To 
speed up the development of new surgomic features, active 
learning can reduce annotation effort and improve algorithm 
performance compared to equidistant sampling for frame 
selection.
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