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Abstract
Background  Technical skill assessment in surgery relies on expert opinion. Therefore, it is time-consuming, costly, and often 
lacks objectivity. Analysis of intraoperative data by artificial intelligence (AI) has the potential for automated technical skill 
assessment. The aim of this systematic review was to analyze the performance, external validity, and generalizability of AI 
models for technical skill assessment in minimally invasive surgery.
Methods  A systematic search of Medline, Embase, Web of Science, and IEEE Xplore was performed to identify original 
articles reporting the use of AI in the assessment of technical skill in minimally invasive surgery. Risk of bias (RoB) and 
quality of the included studies were analyzed according to Quality Assessment of Diagnostic Accuracy Studies criteria and 
the modified Joanna Briggs Institute checklists, respectively. Findings were reported according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses statement.
Results  In total, 1958 articles were identified, 50 articles met eligibility criteria and were analyzed. Motion data extracted 
from surgical videos (n = 25) or kinematic data from robotic systems or sensors (n = 22) were the most frequent input data 
for AI. Most studies used deep learning (n = 34) and predicted technical skills using an ordinal assessment scale (n = 36) 
with good accuracies in simulated settings. However, all proposed models were in development stage, only 4 studies were 
externally validated and 8 showed a low RoB.
Conclusion  AI showed good performance in technical skill assessment in minimally invasive surgery. However, models 
often lacked external validity and generalizability. Therefore, models should be benchmarked using predefined performance 
metrics and tested in clinical implementation studies.

Keywords  Technical skill assessment · Surgical skill assessment · Artificial intelligence · Minimally invasive surgery · 
Surgical data science

The assessment of technical skill is of major importance in 
surgical education and quality improvement programs given 
the association of technical skills with clinical outcomes 
[1–4]. This correlation has been demonstrated among others 
in bariatric [1], upper gastrointestinal [2], and colorectal sur-
gery [3, 4]. In addition, data from the American Colleges of 
Surgeons National Surgical Quality Improvement Program 
revealed that surgeon’s technical skills as assessed by peers 
during right hemicolectomy are correlated with outcomes in 
colorectal as well as in non-colorectal surgeries performed 
by the same surgeon [3], showing the overarching impact of 
technical skills on surgical outcomes.

In surgical education, technical skills of trainees are 
often assessed by staff surgeons through direct observa-
tions in the operating room. These instantaneous assess-
ments by supervisors are frequently unstructured and 
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might only be snapshots of the actual technical perfor-
mance of a trainee. Furthermore, they often lack objec-
tivity due to peer review bias [5]. Aiming to improve the 
objectivity and construct validity of technical skill assess-
ment, video-based assessment has been introduced [6]. 
Video-based assessment allows for retrospective review of 
full-length procedures or critical phases of an intervention 
by one or multiple experts. Despite the improvement of 
technical skill assessment by video-based assessment, it is 
still limited by the need for manual review of procedures 
by experts. Therefore, technical skill assessment is time-
consuming, costly, and not scalable.

Automation of video-based assessment using artificial 
intelligence (AI) could lead to affordable, objective, and 
consistent technical skill assessment in real-time.

Despite the great potential of AI in technical skill 
assessment, it remains uncertain how accurate, valid, and 
generalizable AI models are to date. Therefore, the aim 
of this systematic review was to analyze the performance, 
external validity, and generalizability of AI models for 
technical skill assessment in minimally invasive surgery.

Methods

This systematic review is reported in accordance with 
the PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses) [7] guidelines and 
was prospectively registered at PROSPERO (2021 
CRD42021267714). The PRISMA checklist can be found 
in the Supplementary (Table S1).

Literature search

A systematic literature search of the databases Medline/
Ovid, Embase/Ovid, Web of Science, and IEEE Explore 
was conducted on August 25th, 2021. The first three data-
bases account for biomedical literature and IEEE Explore 
for technical literature. A librarian  at  the University 
Library, University of Bern performed the literature search 
combining the following terms using Boolean operators: 
(1) Minimally invasive surgery including laparoscopic, or 
robotic surgery, and box model trainer. (2) AI including 
machine learning (ML), supervised learning, unsupervised 
learning, computer vision, and convolutional neural net-
works. (3) Technical skill assessment including surgical 
skill assessment, surgical performance assessment, and 
task performance analysis. The full-text search terms are 
shown in the Supplementary (Table S2). The literature 
search was re-run prior to final analysis on February 25th, 
2022 and May 31st, 2023.

Eligibility criteria

Studies presenting original research on AI applications 
for technical skills assessment in minimally invasive sur-
gery including box model trainers published within the last 
5 years (08/2016-08/2021, updated 02/2022 & 05/2023) in 
English language were included. Review articles, conference 
abstracts, comments, and letters to the editor were excluded.

Any form of quantitative or qualitative evaluation of 
manual surgical performance was considered a technical 
skill assessment.

Study selection

Before screening, the identified records were automatically 
deduplicated using the reference manager program End-
note™ (Clarivate Analytics). After removal of the dupli-
cates, two authors (R.P. & J.L.L.) independently screened 
the titles and abstracts of the identified records for inclu-
sion using the web-tool Rayyan (https://​www.​rayyan.​ai) [8]. 
Disagreement of the two authors regarding study selection 
was settled in joint discussion. Of all included records the 
full-text articles were acquired. Articles not fulfilling the 
inclusion criteria after full-text screening were excluded.

Data extraction

Besides bibliographic data (title, author, publication year, 
journal name), the study population, the setting (laparo-
scopic/robotic simulation or surgery), the task assessed (e.g., 
peg transfer, cutting, knot-tying), the data input (motion 
data from video recordings, kinematic data from robotic 
systems or sensors), the dataset used (a dataset is a defined 
collection of data either especially collected for the aim of 
the study or reused from previous studies), the assessment 
scale (ordinal scale vs. interval scale), the AI models used 
[ML or deep learning (DL)], the performance and the matu-
rity level (development, validation, implementation) of AI 
models were extracted from the included studies. Missing 
or incomplete data was not imputed.

Performance metrics

The performance of AI models in technical skill assessment 
can be measured as accuracy, precision, recall, F1-score, 
and Area Under the Curve of Receiver Operator Character-
istic (AUC-ROC). This paragraph gives a short definition of 
the used performance metrics. Accuracy is the proportion 
of correct predictions among the total number of observa-
tions. Precision is the proportion of true positive predictions 
among all (true and false) positive predictions and referred 
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to as the positive predictive value. Recall is the proportion 
of true positive predictions among all relevant observations 
(true positives and false negatives) and referred to as sensi-
tivity. F1-score is the harmonic mean of precision and recall 
and is a measure of model performance. A ROC curve plots 
the true positive against the false positive predictions at 
various thresholds and the AUC describes performance of 
the model to distinguish true positive from false positive 
predictions.

Risk of bias and quality assessment

The risk of bias (RoB) of the included studies was assessed 
using the modified version of Quality Assessment of Diag-
nostic Accuracy Studies (QUADAS-2) criteria [9]. This tool 
is commonly used for RoB evaluation in quality assessment 
studies. The quality of studies was evaluated using the modi-
fied Joanna Briggs Institute critical appraisal checklist for 
cross-sectional research in ML as used in [10, 11].

Results

The literature search retrieved a total of 1958 studies. 
After removing all duplicates, the remaining 1714 studies 
were screened by title and abstract. Thereafter,  120 stud-
ies remained, of which 70 were excluded after full-text 
screening. In summary, 50 studies [12–61] met the eligi-
bility criteria and thus were included into this systematic 
review (Fig. 1). Two of the 50 studies [34, 61] included in 
this review were found to match the inclusion criteria dur-
ing the process of full-text screening and were thus included 
through cross-referencing. Six studies [21, 29, 37, 45, 55, 
58] were obtained during the re-run prior to final analysis six 
months after the initial literature search and 13 [13, 17, 34, 
36, 38, 42, 48, 50, 52–54, 56, 61] during the second update 
on May 31st, 2023. Table 1 gives an overview of the 50 stud-
ies included in this systematic review (for full information 
extracted see Supplementary Table S3).

Settings and tasks

Most often, motion data from surgical videos or kinematic 
data from robotic systems or sensors were collected from 
simulators rather than during actual surgical procedures. 
The most common simulators used were robotic box mod-
els (n = 27, 54%) [13, 14, 16–20, 22, 23, 25, 29, 32, 37, 43, 
45–48, 50, 53–56, 58–61]. Laparoscopic simulators were 
the second most common setting for data collection (n = 15, 
30%) [12, 21, 24, 26, 27, 30, 31, 35, 36, 40, 42, 49, 51, 54, 
57].

The most common tasks assessed were suturing (n = 31, 
62%) [13, 14, 16, 17, 19, 20, 22–25, 27, 29, 31, 32, 34, 
35, 37, 45–51, 55–61], knot-tying (n = 21, 42%) [13, 14, 
16, 17, 19, 20, 22, 23, 29, 32, 35, 37, 45, 47, 48, 54–56, 
59–61], and needle passing (n = 18, 36%) [13, 14, 16, 17, 
19, 22, 23, 29, 32, 37, 45, 47, 48, 55, 56, 59–61]. Other 
tasks assessed were peg transfers (n = 10, 20%) [18, 24, 
27, 30, 31, 36, 40, 42, 51, 54] and pattern cutting (n = 7) 
[12, 21, 24, 26, 27, 31, 51]. All these tasks are part of the 
Fundamentals of Laparoscopic Surgery program, a well-
established training curriculum for laparoscopic surgery 
with proven construct validity [62, 63].

Eleven studies (22%) [15, 28, 33, 34, 38, 39, 41, 43–45, 
52] used data of real surgical procedures. Eight [15, 28, 
33, 38, 39, 44, 45, 52] of them using videos of laparo-
scopic surgeries as for example laparoscopic cholecys-
tectomies [28, 39] or laparoscopic pelvic lymph node 
dissections [15]. Three studies [34, 41, 43] used video 
data obtained from robotic surgeries such as robotic pros-
tatectomy [41] or robotic thyroid surgery [43]. The tasks 
assessed in surgical procedures ranged from entire inter-
ventions to specific steps (e.g., lymph node dissection [15], 
clip application [39]).

Input data

Four different types of input data were used throughout the 
50 studies: video data (n = 25, 50%) [12, 13, 15, 21, 24, 
25, 27, 28, 31–34, 36, 38, 39, 41–45, 50–52, 55, 58], kine-
matic data (n = 22, 44%) [14, 16–20, 22, 23, 29, 35, 37, 40, 
46–49, 54, 56, 57, 59–61], eye tracking data (n = 2) [36, 
53], and functional near-infrared spectroscopy (fNIRS) 
data (n = 2) [26, 30]. Video recordings either from laparo-
scopic/robotic cameras or external cameras are used in 25 
studies (50%). Kinematic data was obtained from DaVinci 
robotic systems (Intuitive Surgical Inc., CA, USA) in 
17 studies (34%) [14, 16–20, 22, 23, 29, 37, 46–48, 56, 
59–61] and from external sensors in five studies [35, 40, 
49, 54, 57]. For example, electromyography sensors (Myo 
armband, Thalmic Labs, Ontario, CA) [35], optical sen-
sors (Apple Watch, Apple, CA, USA) [40] or magnetic 
sensors attached to the instruments [49, 57] were used 
as external sensors to collect kinematic data. Two stud-
ies [26, 30] recorded fNIRS data from participants while 
they performed laparoscopic tasks. For example, Keles 
et al. [30] collected fNIRS data using a wireless, high den-
sity NIRS device, measuring functional brain activation 
of the prefrontal cortex. The NIRS device was adjacent 
to the surgeons’ foreheads while they performed different 
laparoscopic tasks. Another approach was the tracking of 
eye gaze data. For example, Kuo et al. [36] used the Pro 
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Nano (Tobii Technology, Stockholm, Sweden) remote eye 
tracker to record gaze points during the tasks.

Datasets and external validation

Publicly available datasets were used in 22 studies (44%) 
[13, 14, 16, 17, 19, 20, 22, 23, 25, 28, 29, 32, 37, 45, 47, 

48, 50, 55, 56, 59–61]. Of those, the JIGSAWS (Johns Hop-
kins University and Intuitive Surgical, Inc. Gesture and Skill 
Assessment Working Set) [64] dataset was most frequently 
used (n = 21, 42%) [13, 14, 16, 17, 19, 20, 22, 23, 25, 29, 
32, 37, 45, 47, 48, 50, 55, 56, 59–61]. It contains video 
and kinematic data together with human annotated skill rat-
ings of eight surgeons performing three surgical tasks in 

Fig. 1   PRISMA flow diagram of the study selection process (from PRISMA Statement 2020) [7]
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five-fold repetition in a robotic box model trainer. Oğul et al. 
[48] used another, newly released publicly available dataset 
called Robotic Surgical Maneuvers (ROSMA) dataset [65]. 
This dataset recorded using the Da Vinci Research kit pro-
vides dynamic and kinematic data as well as a performance 
score calculated from time to completion and penalty points. 
One study [28] extended the publicly available m2cai16-tool 
dataset [66] with locations of surgical tools and published 
it as m2cai16-tools-localisation dataset. Though, most stud-
ies (n = 28, 56%) [12, 15, 18, 21, 24, 26, 27, 30, 31, 33–36, 
38–44, 46, 49, 51–54, 57, 58] created private datasets, that 
were not publicly released. Most datasets (n = 46, 92%) 
[12–23, 25–32, 35–40, 42–61] were monocentric. However, 
four studies used a multicentric dataset: French, et al. [24] 
used a multi-institutional dataset from three centers, Kita-
gutchi, et al. [33] drew a sample form a national Japan Soci-
ety of Endoscopic Surgeons database, Kiyasseh et al. [34] 
trained on data from one center and deployed the model to 
two other centers, and Law, et al. [41] used a part of a state-
wide national quality improvement database collected by the 
Michigan Urological Surgical Improvement Collaborative. 
Four of the 50 studies included [23, 34, 45, 47], reported 
external validation on a second independent dataset.

Assessment

Technical surgical skills can be assessed using expert levels 
(ordinal scale) or proficiency scores (interval scale) (Fig. 2). 
In 36 of the studies (72%) an ordinal scale was applied [12, 
14, 19–25, 29–32, 34, 35, 37–43, 46–48, 50–55, 57–61]. 
In 16 studies (32%) participants were categorized in two 
different skill levels [12, 20, 24, 29–31, 34, 37–39, 41, 46, 
48, 50, 51, 57] and in 20 studies (40%) into three differ-
ent expert levels (novice, intermediate, expert) [14, 19, 22, 
23, 25, 32, 35, 36, 40, 43, 47, 50, 52–55, 58–61]. Twelve 
studies (24%) applied different proficiency scores: Pelvic 
Lymphadenectomy Assessment and Completion Evaluation 

(PLACE [67]), Fundamentals of Laparoscopic Surgery 
(FLS [68]), Endoscopic Surgical Skill Qualification System 
(ESSQS [69]), Objective Structured Assessment of Techni-
cal Skills (OSATS [70]), and Global Evaluative Assessment 
of Robotic Skills (GEARS [71]) [15–18, 26, 27, 33, 44, 45, 
49, 58, 61].

AI models

All AI models in this review are either ML- or DL-based 
(Fig. 3). ML was applied in 19 studies (38%) [18, 20, 23, 
24, 29, 30, 34–36, 39, 41, 45, 46, 49, 51–54, 61] and DL in 
34 studies (68%) [12–14, 16, 17, 19, 21, 22, 25–28, 31–33, 
35–44, 47, 48, 50, 55–60]. Three studies used a combination 
of ML and DL models [36, 39, 41].

Performance

The most common performance metric reported in the stud-
ies included in this systematic review is accuracy (n = 35, 
70%) [12, 14, 15, 18–20, 22–26, 29–33, 35–37, 39, 41, 43, 
46–51, 53–55, 57–60]. Accuracies of the best performing 
models range between 0.58 and 1. Other performance met-
rics reported include F1-score (n = 9) [25, 29, 32, 40, 50, 51, 
53, 54, 60], recall also known as sensitivity (n = 11, 22%) 
[12, 18, 25, 26, 32, 35, 50, 51, 53, 54, 60], specificity (n = 4) 
[14, 26, 44, 45], and AUC-ROC (n = 4) [14, 29, 44, 45]. Six 
studies [16, 21, 27, 28, 42, 56] did not report a performance 
metric at all.

Risk of bias and quality assessment

Eight of the included studies [18, 31, 33–35, 39, 49, 53] 
had an overall low probability of bias in the RoB assess-
ment. The other studies had one (n = 15, 30%) [25, 26, 
30, 32, 36, 40, 41, 44, 45, 50–52, 56, 59, 61], two (n = 13, 
26%) [12, 13, 19, 22–24, 29, 42, 47, 48, 54, 55, 58], three 

Fig. 2   Human technical skill 
assessment in minimally inva-
sive surgery

ordinal scale interval scale

Novice

Intermediate

Expert

unstructured observation structured observation

3/4 points

Checklist
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(n = 9) [12, 13, 19, 22–24, 29, 42, 47, 48, 54, 55, 58], 
four (n = 4) [15, 17, 21, 46] or five criteria (n = 1) [16] at 
RoB. The full RoB assessment table is presented in the 
Supplementary (Table S4). The quality assessment of the 
included studies is displayed in Fig. 4. All proposed AI 
models were in a developmental preclinical stage of matu-
rity, none was implemented in routine clinical use.

Discussion

This systematic review of AI applications for technical 
skill assessment in minimally invasive surgery assessed 
the performance, external validity, and generalizability 

Machine learning Deep learning 
(Neural networks)

Level
(ordinal)

Score
(continuous) 

AI

Output

Kinematic data from

SensorsRobotsSurgical video

Input

Fig. 3   Automated technical skill assessment in minimally invasive surgery by artificial intelligence
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of 50 included studies. A large variety of task, settings, 
datasets, and AI models have been studied.

In general, technical skill assessment involves either 
classifying skill levels in ordinal scales (e.g., novice, inter-
mediate and expert) through unstructured observations or 
assessing performance intervals using structured checklists 
(e.g., Objective Structured Assessment of Technical Skills 
(OSATS) [70], Global Evaluative Assessment of Robotic 
Skills (GEARS) [71]) (Fig. 2). OSATS for example evalu-
ates technical skills in seven dimensions (respect for tis-
sue, time and motion, instrument handling, knowledge of 
instruments, use of assistants, flow of operation and forward 
planning, and knowledge of specific procedure) assigning 
a 5-point Likert scale from 1 (low skill) to 5 (high skill) to 
every dimension. Thus, 35 points is the maximum OSATS 
score reflecting highest technical skills. The ideal automated 
skill assessment model would not just output a skill level 
or overall score, but rather multiple dimensions of skill to 
provide actionable feedback to trainees.

Two subfields of AI are particularly used to extract and 
analyze motion data from surgical videos or robotic systems 
to assess technical skill: ML and DL. ML can be defined 
as computer algorithms that learn distinct features iterat-
ing over data without explicit programming. DL desig-
nates computer algorithms that analyze unstructured data 
using neural networks (NN). NN are computer algorithms 
designed in analogy to the synaptic network of the human 
brain. The input data is processed through multiple intercon-
nected layers of artificial neurons, each performing math-
ematical operations on the input data to predict an output. 

The predicted output is compared to the human labeled out-
put to optimize the operations of the NN, which makes it a 
self-learning system. From an AI perspective technical skill 
assessment is a classification (prediction of expert levels) or 
a regression task (prediction of a score). Figure 3 illustrates 
how different input data types are processed by AI models 
to predict technical skills.

The generalizability of the studies included in this sys-
tematic review is limited due to several fundamental dif-
ferences between them. Most studies (56%) used private 
datasets of different settings, tasks, and sizes. However, 
21 studies (42%) included in this systematic review used 
JIGSAWS, a robotic simulator dataset and the most fre-
quently used dataset in technical skill assessment. The use 
of simulators for technical skill assessment has advantages 
and disadvantages. On the one hand, simulators allow to 
control the experimental setting and enable reproducibility 
of studies. On the other hand, box model trainers simulate 
surgical tasks and have only a restricted degree of realism. 
In addition, simulators are well established in surgical train-
ing but have limited significance in the assessment of fully 
trained surgeons. The use of video recordings and motion 
data of actual surgeries as input data improves the construct 
validity of technical skill assessment models. However, in 
actual surgeries the experimental setting cannot be standard-
ized and therefore, lacks reproducibility. This brings up the 
potential of virtual reality (VR) simulation in technical skill 
assessment [72]. VR enables simulation and assessment of 
complex tasks, as faced in actual surgery, without exposing 
patients to any harm. Furthermore, the management of rare 

Fig. 4   Quality assessment of the included studies. The numbers within the bars represent the respective number of studies
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but far-reaching intraoperative adverse events like hemor-
rhage or vascular injury can be trained to proficiency in VR 
simulation.

The comparison of studies is impaired by the different 
scales and scores used to measure technical skill. Some stud-
ies use ordinal scales with different numbers of skill levels 
(good vs. bad, novice vs. intermediate vs. expert). Dichoto-
mous classification of technical skill in good or bad perfor-
mance seems obvious, however, remains highly subjective. 
Skill levels distinguishing novice, intermediate, and expert 
surgeons are often based on quantitative measures like oper-
ative volume or years in training but fail to reflect individual 
technical skill levels. Other studies used different interval 
scales (OSATS scores, GEARS scores, or Likert scales). In 
contrast to expert annotated or quantitatively derived skill 
levels, OSATS and GEARS are scores, that have proven reli-
ability and construct validity for direct observation or video-
based assessment [70, 71]. However, for the purpose of AI 
model training there is no standardization of skill annotation. 
Which part of the task, using which ontology, and in which 
interval technical skill should be annotated by experts to 
reflect the overall skill level of study participants remains 
to be defined.

Most of the studies included in this systematic review 
have methodologic limitations. Overall, 84% of studies 
included in this review are at RoB. The quality assessment 
of the included studies revealed that only 36% of the stud-
ies discussed the findings and implications in detail. Fur-
thermore, only four studies included in this review have a 
multicentric dataset. Only four of the AI models studied are 
validated on an independent external dataset. Therefore, it is 
questionable whether the AI models included in this review 
would generalize to other settings, tasks, and institutions. 
Out of 50 included studies, 35 (70%) report on accuracy. 
However, there is a large variation of reported performance 
metrics among the studies included in this systematic review. 
Due to the novelty of AI application in the healthcare domain 
and in surgery in particular, the literature lacks standards in 
the evaluation of AI methods and their performance. There 
is an urgent need for the application of guidelines to assess 
AI models and for studies comparing them head-to-head. 
Guidelines for early-stage clinical evaluation of AI [73] 
and clinical trials involving AI [74] have been published 
recently. However, the studies included in this review are all 
at a preclinical stage where these guidelines do not apply. A 
multi-stakeholder initiative recently introduced guidelines 
and flowcharts on the choice of AI evaluation metrics in the 
medical image domain [75]. For surgical video analysis this 
effort still needs to be taken [76].

This systematic review is limited by the lack of gener-
alizability and methodologic limitations of the included 
studies. Therefore, the direct comparison of AI models 
and a meta-analysis summarizing the evidence of included 

studies is not meaningful. To overcome these limitations 
valid and representative datasets, the use of predefined 
performance metrics, and external validation in clinical 
implementation studies will be essential to develop robust 
and generalizable AI models for technical skill assessment. 
In conclusion, AI has great potential to automate technical 
skill assessment in minimally invasive surgery. AI mod-
els showed moderate to high accuracy in technical skill 
assessment. However, the studies included in this review 
lack standardization of datasets, performance metrics and 
external validation. Therefore, we advocate for bench-
marking of AI models on valid and representative data-
sets using predefined performance metrics and testing in 
clinical implementation studies.
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