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Abstract
Background Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. 
The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal 
parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing 
the remaining video data.
Methods IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. 
The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations 
with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames 
per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent 
trocar. For algorithm testing, a stratified fivefold cross-validation was used.
Results The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, 
outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar 
excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 
and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively.
Conclusion IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside 
frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-
centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solu-
tions, IODA is made open source and can be improved by the scientific community.
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Objectives

To achieve this objective, we used computer vision to 
develop and validate an algorithm that discriminates 
between inside and outside positioning of the laparoscopic 
camera.

Background

In the era of big data and the ever-increasing use of arti-
ficial intelligence (AI) in surgical procedures [1], patient 
privacy protection is playing an increasingly important 
role. However, the general data protection regulation of 
the European Union currently represents a restriction for 
these possible uses [2]. Especially in the medical care sys-
tem, high demands are placed on data protection [3]. Thus, 
surgical procedure videos, for example in laparoscopy, 
can still not readily be used for AI development, because 
outside the abdomen people could be recognizable (e.g., 
skin of the patient with identifying tattoo, faces of person-
nel). On the contrary, perfectly anonymized videos could 
be used and shared without the consent of the patient, 
because the General Data Protection Regulation does not 
apply to anonymous information (GDPR art. 26). More 
specifically, even the processing of personal data in order 
to fully anonymize them does not require a consent (GDPR 
art. 29). Similarly, anonymized data is not regulated under 
The Health Insurance Portability and Accountability Act 
(HIPAA) in the USA. Anonymized videos of the surgical 
procedure can be analyzed and used to ensure a high qual-
ity management and for development of decision support 
systems in the OR [4, 5]. Current research results show 
that the developed algorithms in the surgical field lack 
adequate data quality and especially quantity [6]. Never-
theless, patient consent is important, not only to connect 
surgical video data with meta-data about patient and pro-
cedure (disease stadium, blood loss, surgeon experience), 
but also to avoid losing the public’s trust in the scientific 
process.

To overcome this video shortage, we have developed 
and validated an inside-outside-discrimination-algorithm 
(IODA) that discriminates the laparoscopic camera place-
ment inside and outside of the abdomen. As a result, IODA 
helps to ensure data privacy in video recordings of lapa-
roscopic surgery by censoring extraabdominal parts that 
may identify patients or personnel while also maximizing 
the remaining video data.

There has been previous work to anonymize videos in 
the operating room in general. For example, Flouty et al. 
created a R-CNN network that detects faces in videos and 

consequently blurs them with a recall of up to 93.45% [7]. 
Disadvantage of this method is that, beside the face of a 
person, there might be additional security compromising 
details in a video. This could be the skin color, tattoos, 
or other identifying body morphologies. Therefore, this 
method is not suitable to anonymize laparoscopic videos.

By anonymizing laparoscopic videos based on inside and 
outside scenes, they can be safely used for big data analysis, 
such as surgical AI, quality management or educational pur-
poses while immensely reducing the effort of data collection.

To realize this aim, the following research questions were 
investigated:

• Is it possible to reliably discriminate between inside and 
outside frames of laparoscopic videos using IODA based 
on deep neural networks?

• Does additional training information, such as classifica-
tion of trocars, translucent trocars or outside for cleaning, 
improve algorithm performance?

• Where does the algorithm fail and does this result in pri-
vacy impairment?

Materials and methods

Inside outside discrimination algorithm (IODA)

IODA has been developed to discriminate between the cam-
era view of the inside of the abdomen and the camera view 
of the outside parts. Two different computer vision algo-
rithms were developed. They share the same architecture 
and only differ in the number of classes they can discrimi-
nate against. One algorithm discriminates between a binary 
outcome (inside, outside), and the other one considers five 
classes (Fig. 1), two for inside (abdominal cavity, trocar) 
and three for outside (translucent trocar, outside, outside for 
cleaning).

Deep neural network architecture

The neural network architecture is based on the work of 
Bodenstedt et al. [8]. As a basis, we use the feature lay-
ers of an AlexNet and replace the classification layers by a 
simple dropout and linear layer with 4,096 neurons (FC6) 
[9], Fig. 2. The AlexNet is pretrained on the ImageNet data-
set [10]. Pretraining on a diverse image set ensures that the 
neural net already learns to discriminate basic features like 
Gabor filters and color blobs [11]. These basic features are 
represented in the weights of the lower level hidden feature 
layers. This way, we can employ a technique called transfer 
learning, which speeds up training of the neural net by only 
training the upper classification layers.
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Following the modified AlexNet is a stateless long-short-
term-memory (LSTM). The aim of using an LSTM is that 
usually in a laparoscopic video each class (e.g., inside and 
outside) appears for an extended time and usually not as 
an isolated frame. Indeed, at a frame rate of 25 frames/s, 
an individual frame is 0.04  s long. Going from inside 
the abdominal cavity to outside and back in such a short 
time frame is very unlikely. A stateless LSTM was chosen 
because it analysis a single sequence of frames for correla-
tions, but does not take into previously seen sequences. On 
the contrary, stateful LSTMs would memorize all sequences 
seen in training and are therefore more commonly used for 
phase recognition of laparoscopic videos, where this infor-
mation is of importance [12]. Lastly, classification is done 
by applying a dropout of 50% and a linear layer with 2 or 5 
nodes, depending on whether the binary or multiclass case 
was trained. The weights of this layer were adjusted during 
training in terms of transfer learning. As an optimization 
method, we opted for backpropagation using the Adam opti-
mizer [13] due to its fast convergence and good performance 
when the hyperparameters are carefully chosen compared to 
stochastic gradient descent used in the original work for the 
AlexNet [14]. The training process was repeated five times 
on the training set, equaling 5 epochs. Additionally, mixed 
precision training was used for faster training speeds [15].

Imbalanced data

Standard metrics that are commonly used work best on 
balanced class distributions. In the course of annotation, 
it became apparent that the two classes inside and outside 
are not balanced. Thus, the imbalanced class distribution 
made an introduction of a better fitting metric necessary. We 

opted for the Focal Loss, which adds a modulating term to 
the cross-entropy to focus learning on not only imbalanced 
classes but specifically hard to classify classes [16]. In par-
ticular, the scaling factor decays to zero as the confidence in 
correctly classified frames increases.

Experimental setup

Dataset

The data set contains a total of 100 laparoscopic surgery 
videos with 23 different operation types distributed over four 
categories: upper gastrointestinal, cholecystectomy, colo-
rectal, and miscellaneous. In total, this amounts to 207 h 
of video (median of 1 h 30 min, [1 h 0 min, 2 h 40 min] 
interquartile range). Consisting of 18.6 million frames, of 
which only 1 frame /second (743,810 frames) was used 
to validate the algorithm in order to reduce computation 
time. The video files cover a range from short procedures, 
e.g., diagnostic laparoscopies, to extended procedures like 
laparoscopic-thoracoscopic esophagectomies performed at 
Heidelberg University Hospital. Table 1 gives an overview 
of the data set. The operation videos were recorded with 
a laparoscopic 2D camera (Karl Storz SE & Co KG, Tut-
tlingen Germany) with 30° optics, a resolution of 960 × 540 
pixels and 25 frames per second. No distinction was made 
neither between different surgeons and their skill and expe-
rience level nor between patients and their individual case. 
Data analysis was approved by the local ethics committee 
(committee’s approval: S-248/2021).

Fig. 1  Definition of inside and outside. A frame is classified as 
”Abdominal cavity” when the abdominal cavity can be seen on more 
than 50% of the frame and ”Trocar” when at least 50% of the frame 
show parts of a trocar. A frame is classified as “Translucent trocar” 
when any outside parts (e.g., skin) is visible through a translucent tro-

car. When the outside is not visible through a trocar but through the 
camera view directly, the frame is classified as “Operation side.” A 
frame is classified as “Outside for cleaning” when outside parts are 
visible with the intention to clean the camera
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Data annotation

For the data annotation, the original procedure video was 
cut into ten minute sections and manually annotated by a 
medical expert using the annotation software Anvil [17]. 
Two main categories (inside and outside) as well as three 
additional sub-categories (one for inside, two for outside) 
were introduced (Fig. 1) While the camera view of the inside 
of a solid trocar can still be categorized as “Inside” (category 
trocar), the usage of a translucent trocar and therefore result-
ing in partial visibility of the patient’s skin has to be anno-
tated as outside (category (4) translucent trocar). Another 
outside category is introduced to identify phases of camera 

being outside for cleaning the camera lens to ensure stand-
ardization and reliability of annotation, explicit rules have 
been defined (Fig. 1).

Algorithm training & testing

For algorithm training, we used a five-fold stratified cross-
validation. Five equally sized sets of 20 videos were formed 
and alternated to form the training and test sets. To ensure 
that these sets are as homogeneous in total video length and 
operation types as possible, the original data set was manu-
ally stratified into the five sets (Table 2). Stratified splits 
ensure a better generalization of the neural network.

IODA was trained and validated on a Gigabyte G482-Z51 
gpu server (Gigabyte Technology Co. Ltd., Taipeh Taiwan) 
with 2 AMD 7352 CPUs (Advanced Micro Devices, Inc., 
Santa Clara USA) and 6 NVIDIA A40 GPUs (Nvidia Cor-
poration, Santa Clara USA). The algorithm was written in 
python 3.9 [18] using the packages nvidia-dali for data load-
ing and encoding [19], as well as, torch and torchvision for 
modeling the neural network [20]. There is no additional 
data preprocessing necessary, when running the code. This 
is fully integrated in the nvidia-dali pipeline which directly 
loads the videos and applies the necessary image transfor-
mations. The working code can be found on GitLab [https:// 
gitlab. com/ aicor/ ioda].

Statistical analysis of the results is done via F1-score, 
sensitivity, and specificity of the outside class. The F1-score 
is chosen as it is the harmonic mean of precision and recall 
(sensitivity in the binary case) and hence a good overall 
metric for classification model performance. Sensitivity of 
the outside class indicates whether all outside frames are 
detected as outside, and is therefore important in terms of 
privacy protection. Any outside frame not detected may pose 
a privacy risk. Specificity of the outside class on the other 
hand shows how much of the inside frames are misclassified 
as outside. Specificity should be high to reduce the loss of 
valuable frames which are falsely censored.

Results

We manually annotated 15,392,966 frames as inside and 
3,202,290 frames as outside. For our multiclass experi-
ment these frames were divided into inside abdominal 
cavity (15,134,978 frames, 81.39%) and trocar (257,988 
frames, 1.39%) as well as outside with outside no cleaning 
(2,988,220 frames, 16.07%), outside for cleaning (201,282 
frames, 1.08%), and translucent trocar (12,788 frames, 
0.07%), as depicted by Fig. 3.

When trained for binary classification, IODA matched 
the annotation in 611,061 out of 616,113 (99.18%) inside 
frames and 123,757 out of 128,079 (96.63%) outside frames 

Fig. 2  Architecture of the neural network. The neural network 
takes a sequence of 32 frames of resolution 960×540 as input 
(a). Each frame is resized to 224×224 and normalized with a 
mean of � = [0.485, 0.456, 0.456] and standard deviation of 
� = [0.229, 0.224, 0.225] (b), which is the expected format for the 
then following AlexNet (c), which is pretrained on the ImageNet data 
set. The AlexNet is followed by a stateless long-short-term-memory 
(d) and a linear layer for classification (e), which returns the pre-
dicted classes for the 32 frames in the sequence. During training of 
the proposed neural network, transfer learning is used so that only 
the weights of the last linear layer need to be adjusted. Conv convolu-
tional layer, Pool pooling layer, FC feature classifier, which is a linear 
layer, LSTM long-short-term-memory layer

https://gitlab.com/aicor/ioda
https://gitlab.com/aicor/ioda
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(Fig. 4). Figure 5 illustrates the resulting sensitivity, specific-
ity, and F1-score for the outside class. The sensitivity was 
96.6% for “Outside” predictions, the specificity was 99.2% 
and the F1-Score was 0.96. A total of 9,374 frames deviate 
from the initial annotation, 5,052 frames are annotated as 
“Inside” and predicted as “Outside,” 4,322 frames are anno-
tated as “Outside” and predicted as “Inside.”

In the multiclass experiment, the predictions for “abdomi-
nal cavity” match the annotation in 601,161 out of 605,771 
(99.24%) frames. For “trocar” 10,342 frames are annotated 
of which are almost in equal parts predicted as “trocar” 
(4,345 frames, 42.01%) and “abdominal cavity” (4,773 
frames, 46.15%). For “Outside for cleaning” 8,061 frames 
are annotated of which 1,036 (12.85%) frames are predicted 
as “Outside for cleaning,” while 6,242 (77.43%) frames are 
predicted as “Outside.” For “Outside” 119,541 frames are 
annotated of which 114,887 (96.10%) frames are predicted 
as “Outside.”

For “translucent trocar” 477 frames are annotated of 
which none are predicted as such, 206 (43.19%) frames are 
predicted as “trocar” and 196 (41.09%) frames as “abdomi-
nal cavity.”

Out of all misclassified frames by our algorithm, there 
were three sequences (once 2 min and twice 15–20 s). Other 

than that, misclassification happened mostly in single or a 
series of few frames. Fig. 6 gives some examples.

Discussion

Data set quality

In order to provide the algorithm with a sample of laparo-
scopic videos as representative as possible, 23 different sur-
gery types and a total of 100 surgeries were selected. Since 
the majority of a laparoscopy is situated intraabdominally, 
there is an inevitable class imbalance between the inside 
and outside classes. Regarding the outside classes, there is 
also high imbalance toward the class “Outside no cleaning,” 
which is caused by quite long sequences before and after 
the actual laparoscopy, where video recording was already 
running or was still running.

Algorithm limitations

A striking feature of the analysis of discrepancies between 
manual annotation and algorithm is that the transition frames 
between inside and outside are especially critical and prone 

Table 1  Operation types of the 
data set per category

In our data set, a wide variety of laparoscopic procedures ensured a better generalization of the neural net-
work

Category Operation type Video length 
(mean ± standard devia-
tion) [min]

Cholecystectomy (n = 19) Cholecystectomy (n = 19) 55.26 ± 22.45
Upper gastrointestinal (n = 16) Esophagectomy (n = 2) 515.00 ± 63.64

Partial gastrectomy (n = 3) 83.33 ± 30.55
Oncological total gastrectomy (n = 4) 345.00 ± 107.55
Fundoplication (n = 6) 134.17 ± 76.71
Sleeve gastrectomy (n = 1) 90.00

Colorectal (n = 26) Right hemicolectomy (n = 6) 160.00 ± 20.82
Left hemicolectomy (n = 1) 140.00
Colectomy (n = 2) 160.00 ± 127.28
Proctocolectomy (n = 8) 195.00 ± 46.29
Ileocaecal resection (n = 3) 93.33 ± 28.87
Sigmoid resection (n = 2) 140.00 ± 42.43
Rectal resection (n = 4) 208.86 ± 51.56

Miscellaneous (n = 39) Distal pancreatectomy (n = 4) 122.50 ± 29.86
(Partial) splenectomy (n = 3) 86.67 ± 11.55
Ileostomy (n = 2) 35.00 ± 7.07
Intraperitoneal onlay-mesh (IPOM, n = 5) 83.67 ± 55.24
Diagnostic laparoscopy (n = 7) 51.04 ± 36.20
Cyst deroofing (n = 5) 60.00 ± 23.45
Liver resection (n = 3) 125.75 ± 25.03
Adrenalectomy (n = 6) 50.00 ± 8.94
Living donor nephrectomy (n = 4) 212.50 ± 72.74
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to errors. After analyzing the misclassified frames, espe-
cially in the multiclass experiment, it becomes apparent that 
the algorithm struggles with transitional areas between the 
camera view of the abdominal cavity and the trocar: 46.2% 
of frames predicted as “abdominal cavity,” 40% as “trocar.” 
Most probably it is caused due to our set annotation rules. 
The camera view of the circle and, depending on the angle, 
elliptical shaped trocar makes it difficult to precisely deter-
mine when it transcends 50% of the screen. Despite that all 
frames have been annotated to the best of the annotator's 
abilities, it can’t be guaranteed that the view of a category 

in all frames is approximated correctly. Another hurdle of 
the multiclass experiment is the unbalanced sampling; while 
frames of “abdominal cavity” make up the most part, there 
are only 477 used frames of a translucent trocar. The “Out-
side for cleaning”-category was initially intended to be used 
in future research projects to analyze the quantity of “Out-
side for cleaning”-phases and allow drawing conclusions 
about the complexity of the operation, the surgeon’s skill 
level and adapt the assisting systems. Due to the fact that this 
category is based on an intention, it creates a massive hurdle 
for our algorithm. The long-short-term memory sequences 
were chosen to be 32 frames, equaling 32 s of consecutive 
videos, which might not be long enough such that an out-
side sequence contains the cleaning specific activities. This 
is reflected in the results, where 77.4% of frames that are 
annotated as “Outside for cleaning” are predicted as “Out-
side no cleaning.”

To ensure the goal of privacy protection, it is of most 
importance to correctly predict outside frames as “Outside,” 
which is reflected by a high specificity for “Outside.” To 
apply our results to a practical example in case of the binary 
experiment: for a specificity of 99.2%, in an 1-h laparoscopic 
video the time span of 21 s is at risk to be falsely predicted 
as “Inside” while the camera view shows an outside part, 

Table 2  Stratified fivefold cross-validation splits

Stratified splits ensure a better generalization of the neural network.
IPOM  intraperitoneal onlay-mesh

Set 1 Set 2 Set 3 Set 4 Set 5

Cholecystectomy Cholecystectomy Cholecystectomy Cholecystectomy Cholecystectomy
Cholecystectomy Cholecystectomy Cholecystectomy Cholecystectomy Cholecystectomy
Cholecystectomy Cholecystectomy Cholecystectomy Cholecystectomy Cholecystectomy
Cholecystectomy Fundoplication Cholecystectomy Cholecystectomy Cholecystectomy
Esophagectomy Fundoplication Esophagus resection Fundoplication Fundoplication
Fundoplication Gastric sleeve Fundoplication Oncologic total gastrec-

tomy
Oncologic total gastrectomy

Partial gastric resection Oncologic total gastrec-
tomy

Oncologic total gastrec-
tomy

Partial gastric resection Partial gastric resection

Right hemicolectomy Right hemicolectomy Right hemicolectomy Right hemicolectomy Right hemicolectomy
Left hemicolectomy Colectomy Proctocolectomy Colectomy Right hemicolectomy
Proctocolectomy Proctocolectomy Proctocolectomy Proctocolectomy Proctocolectomy
Rectum resection Rectum resection Rectum resection Sigma resection Rectum resection
Ileocoecal resection Ileocoecal resection Residual proctectomy Residual proctectomy Ileocoecal resection
Sigma resection Ileostoma Splenectomy Ileostomy Splenectomy
Distal pancreas resection Distal pancreas resection Distal pancreas resection Distal pancreas resection Partial splenectomy
IPOM IPOM IPOM IPOM IPOM
Diagnostic laparoscopy Diagnostic laparoscopy Diagnostic laparoscopy Diagnostic laparoscopy Diagnostic laparoscopy
Cyst deroofing Cyst deroofing Cyst deroofing Cyst deroofing Cyst deroofing
Liver resection Liver resection Liver resection Re-laparoscopy Lymph node resection
Adrenalectomy Living donor nephrectomy Living donor nephrectomy Living donor nephrectomy living donor nephrectomy
Adrenalectomy Adrenalectomy Adrenalectomy Adrenalectomy Adrenalectomy

Fig. 3  Distribution of classes. There is a class imbalance between the 
abdominal class (81.4%), the outside class (16.1%), and the remain-
ing three classes (2.5%). The ground truth classes were annotated by 
one annotator using sequential annotation
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while also taking into account that the video consists of 
17.2% outside frames. On the other hand, the sensitivity of 
96,6% results in 25 s of video data of a 1-h laparoscopic 
video are at risk to be lost, because it is classified as “Out-
side” and therefore anonymized while the camera view cor-
rectly shows the inside of the abdominal cavity. The results 
of the multiclass experiment show similar values as 17 s 
are at risk to be falsely predicted as “Inside” and 25 s are at 
risk to be lost.

While a human annotator can adapt to rare and special 
events, our algorithm had difficulties to classify these. Fig-
ure 7 depicts two misclassified examples for each reference 
annotation. As a basis, we used the multiclass experiment. 

For example, a misclassification occurred when a latex 
glove, which is almost exclusively seen outside, appeared 
inside the abdominal cavity during a hand-assisted living 
donor nephrectomy. Another common reason for failure 
were frames close to transitions. Frames which show approx-
imately 50% abdominal cavity and trocar were regularly 
misclassified as either of the wrong classes. Fortunately, 
these frames are not a security risk for anonymization. 
Also, a cause of some misclassifications might have been 
the subtle definition of classes. For example, “cleaning” was 
defined by the intention to clean, which is very difficult to 
determine and usually requires a long sequence of frames. 
Similarly, “translucent trocar” was defined by being inside 

Fig. 4  Confusion matrices for ground truth labels and predicted 
labels for the binary and multiclass experiment. Distribution of pre-
dicted classes for each annotated class for the binary, as well as the 
multiclass experiment. In the binary case, the majority class (inside) 
is better recognized as the minority class (outside). Similarly, for the 
multiclass experiment, the abdominal cavity is recognized the best by 

the algorithm, then outside no cleaning, which is mostly misclassi-
fied as cleaning or abdominal cavity. The trocar class is split between 
trocar and abdominal cavity. Frames annotated as cleaning are mostly 
predicted to be the operation site. The smallest class translucent tro-
car was never recognized by the algorithm, but instead either labeled 
as trocar or abdominal cavity with a similar split as the trocar class

Fig. 5  Performance of IODA. Discriminating only between inside 
and outside classes, the algorithm trained either on binary or multi-
class labels has similarly excellent results. The video fraction which 
is at a security risk, due to not being recognized as outside, is quite 
low in both cases, as computed from the sensitivity. Similarly low is 
the video fraction from inside which is not recognized as inside and 

is consequently lost due to anonymization, as computed by the speci-
ficity. The multiclass case is additionally broken down into the indi-
vidual classes. Notable is that “Cleaning,” “Translucent trocar,” and 
“Trocar” have a high specificity, but the algorithm is not very sensi-
tive for these classes
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a translucent trocar and skin being visible. These sequences 
are usually very short and are not easy to detect, even for a 
human annotator. Indeed, IODA wrongly classified translu-
cent trocars without skin being visible as the class “trans-
lucent trocar,” which by our definition belong to the “tro-
car” class. These examples were for the most part also not a 
security risk. However, some of the frames misclassified as 
inside contained potentially compromising information like 
the skin (color) of the patient.

Advantage of algorithm over human

On the other hand, reviewing the misclassified frames 
showed the value and consistency of our algorithm. After 
checking discrepancies between IODA and the human 
annotator, we found obvious wrong human annotations: 
once because of an annotation software problem, where 
the annotation of a short phase had been deleted and twice 
because the annotator simply overlooked a short outside 
section. Thus, in expectation of an ever-growing database, 

IODA can already be expected to have an advantage and to 
be superior in consistency to a human annotator.

Also, noteworthy is the time needed for annotating the 
video, when comparing the human annotator and the com-
puter algorithm. Figure 7 shows a comparison of the anno-
tation time for the complete data set. Even factoring in the 
training time of IODA, which only has to be done once, the 
algorithm is significantly faster than the human annotator, 
approximately by a factor of 26. If we do not include the 
training time, this even increases to a factor of approximately 
380. Obviously, the speed-up depends on the hardware, 
though even with less and slower graphics cards than in our 
setup, a real-time anonymization would be feasible.

Potential clinical applications

In the ever-increasing digitalization, it may be possible to 
utilize our developed algorithm to its full potential. Due to 
the massively increasing video data in the clinical work-
space, we would be able to build a wide and diversified 
database, while ensuring patients privacy protection. These 
anonymized videos can then be used for surgical AI devel-
opment, quality management, or for educational purposes, 
Fig. 8. Due to the possibility of real-time application, an 
automated pipeline for anonymized video data would ben-
efit other research projects in developing algorithms and 
in introducing AI to the broad field of surgical practice. 
In order to make this technology available for other surgi-
cal researchers, we made our source code, as well as the 
machine learning model, open source. Thus, anonymization 
of surgical video does not necessarily need expensive com-
mercial solutions, but is free for the scientific community 
and can be refined collaboratively.

Fig. 6  Examples of frames misclassified by IODA. The algorithm had 
especially problems classifying rare events and edge cases. For exam-
ple, a glove appearing inside the abdominal cavity during a hand-
assisted nephrectomy was classified as outside no cleaning. Misclas-
sification of the trocar class consisted mostly of the edge cases, where 
the trocar and the abdominal cavity appeared to the same degree in 
the frame. The same is true for the translucent trocar. Additionally, 

the frames classified by IODA as translucent trocar were mostly 
trocars, which are translucent but annotated as trocar by definition 
because there was no skin visible in the frame. This subtle definition 
of classes might explain the difficulty of IODA to correctly classify 
the translucent trocar. Similarly, the cleaning class was defined by the 
intention of cleaning the camera, which can only be determined when 
considering quite a long sequence of frames

Fig. 7  Annotation time of the human annotator and IODA. Anonymi-
zation of videos using IODA is significantly faster than a human 
annotator. Even when including the training time of the algorithm, 
using 6 NVIDIA A40, the speedup is about a factor of 26. Compar-
ing only the validation time of IODA with the human annotator, the 
speedup is about 380x
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As of now, IODA runs with 45 frames per second on a 
hardware setup with a single NVIDIA A40 graphics card. 
Even if image loading and video transfer may add additional 
delay, the algorithm is thus suitable for “real-time” applica-
tion within the operating room. This could be realized by 
using a medical pc with a video capture card that is con-
nected to the video output of the laparoscope. However, 
the software that captures the video stream, hands it over to 
IODA, and displays the final video stream and potentially a 
graphical user interface would still need to be implemented 
for intraoperative real-time application.

Future Research Directions

In future studies, the applicability of our algorithm on other 
operating centers with different color schemes of surgical 
drapes, skin and operating room surrounding, and more dif-
ferent operation types should be investigated. Larger data 
sets are essential to improve the performance of the algo-
rithms, ideally with addition of medical device sensor data 
to complement manual reference annotations. Also, to speed 
up annotation processes, the development of time and cost-
effective annotation tools should be realized. Another idea 
to explore that might improve the performance of IODA is a 
bidirectional training. Training IODA on forward and back-
ward playing videos could increase the available data and the 
variability of trained scenes. Also, as explained in the meth-
ods section, the LSTM architecture of the network was cho-
sen to take the temporal component into account, because 
usually each inside or outside scene is at least a couple of 
seconds long. In addition, a rule-based post-processing 

filter could be implemented that removes IODA outliers of 
a few frames by changing the class of very short sequences 
(e.g., < 2 s) to the surrounding class.

Conclusion

Our Inside-Outside-Discrimination-Algorithm IODA allows 
for privacy protection when recording laparoscopic video 
data. Implementing this kind of deep learning into surgical 
video data sets holds the potential to immensely improve the 
quality and especially the quantity of available video data 
for secondary use.

The next step will be a prospective evaluation within a 
real time setting in the operating room.
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