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Abstract
Introduction  Robot-assisted surgery is often performed by experienced laparoscopic surgeons. However, this technique 
requires a different set of technical skills and surgeons are expected to alternate between these approaches. The aim of this 
study is to investigate the crossover effects when switching between laparoscopic and robot-assisted surgery.
Methods  An international multicentre crossover study was conducted. Trainees with distinctly different levels of experience 
were divided into three groups (novice, intermediate, expert). Each trainee performed six trials of a standardized suturing 
task using a laparoscopic box trainer and six trials using the da Vinci surgical robot. Both systems were equipped with the 
ForceSense system, measuring five force-based parameters for objective assessment of tissue handling skills. Statistical 
comparison was done between the sixth and seventh trial to identify transition effects. Unexpected changes in parameter 
outcomes after the seventh trial were further investigated.
Results  A total of 720 trials, performed by 60 participants, were analysed. The expert group increased their tissue handling 
forces with 46% (maximum impulse 11.5 N/s to 16.8 N/s, p = 0.05), when switching from robot-assisted surgery to lapa-
roscopy. When switching from laparoscopy to robot-assisted surgery, intermediates and experts significantly decreased in 
motion efficiency (time (sec), resp. 68 vs. 100, p = 0.05, and 44 vs. 84, p = 0.05). Further investigation between the seventh 
and ninth trial showed that the intermediate group increased their force exertion with 78% (5.1 N vs. 9.1 N, p = 0.04), when 
switching to robot-assisted surgery.
Conclusion  The crossover effects in technical skills between laparoscopic and robot-assisted surgery are highly depended 
on the prior experience with laparoscopic surgery. Where experts can alternate between approaches without impairment of 
technical skills, novices and intermediates should be aware of decay in efficiency of movement and tissue handling skills that 
could impact patient safety. Therefore, additional simulation training is advised to prevent from undesired events.
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Robot-assisted surgery (RAS) is increasingly being per-
formed [1–3]. Consequently, surgeons are expected to master 
a different spectrum of technical skills. While laparoscopy 
surgery (LS) is still frequently being performed, it occurs 
that surgeons switch between approaches in the operating 
room (OR) with short periods of time in between. Utiliz-
ing a robotic system does impact the posture of the surgeon 
leading to different muscle stress locations and differences in 
fatigue progression [4, 5]. Moreover, RAS gives a different 

touch and feel of the instruments, the tissues and its environ-
ment due to the absence of tactile and haptic feedback [6–8].

Implementation of RAS depends on hospital resources 
and the opportunity to train in a simulated environment, 
without compromising patient safety [9–14]. Whether tech-
nical skills are mastered before entering the OR depends on 
training time and individual assessment and feedback during 
training [15, 16]. Currently, research seems to focus on iden-
tifying the ideal learning curve its plateau, and, moreover, 
on how to assess whether this stage is entered for different 
kind of technical skills [17, 18]. Previous studies showed 
that laparoscopic skills, such as efficient use of instruments 
and safe tissue handling, can be objectively assessed in 
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simulation training using performance parameters [19–22]. 
However, little is known about the transferability of these 
tissue handling skills when surgeons switch between LS and 
RAS [23, 24].

The aim of this study is to investigate the crossover effects 
when switching between approaches. It was hypothesized 
that intermediates, in the middle of the learning curve and 
subject to LS simulation training, tend to focus on efficiency 
of movement (i.e., speed and time), rather than tissue han-
dling parameters (i.e., force exertion), resulting in high 
force-parameter outcomes [22, 25–28]. Also, based on the 
intuitiveness attributed to RAS, it was hypothesized that 
switching from RAS to LS will result in increased tissue 
handling forces, especially in the less experienced groups.

Methods

Study design

This international, multicentre, prospective, crossover study 
was conducted at the Heidelberg University Hospital (Ger-
many, Heidelberg), the Amsterdam University Medical 
Centers (The Netherlands, Amsterdam) and the Amster-
dam Skills Centre for Health Sciences (Amsterdam, The 
Netherlands).

Participants

Participants were classified and divided into three groups 
based on their prior experience: novices consisting of junior 
residents (< 10 laparoscopic procedures, 0 robotic-assisted 
surgery procedures and no exposure to the system), inter-
mediates consisting of senior residents and young surgeons 
(< 200 laparoscopic procedures, 0 robotic-assisted surgery 
procedures, 25 robotic knots) and experts consisting of 
attendees/robot experts (> 200 laparoscopic procedures, > 15 
robotic-assisted surgery procedures as console surgeon, 
and > 50 robotic knots).

Systems and hardware

Both the da Vinci Xi Surgical System (Intuitive Surgical 
Inc., Sunnyvale, California USA) at the OR and a the Szabo-
Berci-Sackier laparoscopic box trainer (Karl Storz, Tuttlin-
gen, Germany) were equipped with the validated ForceSense 
measurement system (MediShield B.V., Delft, the Nether-
lands) [19, 22, 29, 30]. This system recorded raw time, 3D 
motion, and 3D force data from the two Trendo trocar sen-
sors and the ForceTRAP sensor, respectively, mounted in the 
lid of the box trainer and bottom plate. This system recorded 
performance parameters that have been proven to represent 
efficient instrument use and tissue handling skills [19, 22]. 
Implementing this system facilitated objective assessment 
of tool-tissue interaction and instrument handling skills 
[29, 30]. After implementation, this system recorded the 
following parameters each trial: total time required to fin-
ish the task, a set of maximum and mean interaction forces 
and the force volume during tissue manipulation (Table 1). 
After each trial, the data and a video log of the performed 
task were stored in an online database (ForceSense.NET, 
MediShield, Delft, The Netherlands). The participants used 
two needle drivers (BBraun Aesculap, Melsungen, Ger-
many) with a Novosyn HR26 needle and a 70 cm 3/0 thread 
for needle driving, suturing and knot tying. For each trial a 
separate surgical suture was used, equating to twelve surgi-
cal sutures for each participant.

Protocol

The participants were assigned in two groups, one group 
which started with the robotic trials (RL group novices, 
intermediates and experts) and one group which started with 
the laparoscopic trials (LR group novices, intermediates and 
experts). Group assignment was not fully randomized as it 
was influenced by the availability of the robotic and laparo-
scopic training systems and logistics. All trainees received 
a brief verbal instruction on the da Vinci Surgical System. 
After group assignment, each trainee performed twelve trials 

Table 1   Description of the objective performance metrics of the ForceSense

Parameter Description

Task time Total time needed to complete the task presented in seconds (s)
Maximum absolute force The highest absolute force applied on the training task during tissue manipulation (N)
Mean non zero force
Max impulse

The average force exerted on the training task during tissue manipulation (N) [19, 22, 
29]

The highest absolute force-over-time integral applied on the training task (N/s) [19, 22, 
29]

Force volume When viewing the forces in a 3d plane an ellipsoid is imagined. The force volume con-
sists of the multiplication of the forces (and standard deviation) in the height, length 
and width of the ellipsoid [19, 22, 29]
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of a standardized minimally invasive suturing task (three-
throw square knot). For the LR group, the first six trials 
were performed using the laparoscopic box trainer, followed 
by six trials using the da Vinci Surgical System (Intuitive 
Surgical Inc., Sunnyvale, California USA). Vice versa for 
the RL group (Fig. 1). Each trial of the task was measured 
and stored in the online database separately. The local eth-
ics committee at Heidelberg University approved the study 
protocol before inclusion of the trainees.

Statistical analyses

Data were analysed using IBM SPSS statistics 26 (SPSS 
Inc., Chicago, Illinois USA). Descriptive statistics and fre-
quency measurements were performed to determine the 
means, standard deviation and normal distribution of the 
data. The Shapiro–Wilk test was performed and the data 
were not normally distributed. GraphPad (Prism 9.0.0, San 
Diego, California USA) was used to visualize boxplots. 
Statistical comparison was done between the sixth and sev-
enth trial to identify transition effects when subjects move 
from laparoscopy to robotic surgery or vice versa. Post hoc 
power analysis (power (1−β) of 0.80, two sided and a test 

significance level (α) of 0.05) was performed. An outcome 
with a p ≤ 0.05 was considered as statistically significant.

Results

A total of 720 trials, performed by 60 participants, were 
included for analyses (20 novices, 20 intermediates, 20 
experts). One participant in the novice group was left 
dominant. There were 19 females included (6 novices, 10 
intermediates, 3 expert).

Training effect

In the RL group (N = 33), novices reduced their maximum 
force (7.4 N vs 4.5 N, p = 0.01), maximum impulse (25.6 
N/s vs 14.4 N/s, p = 0.01) and force volume (2.0 N vs 1.5 
N, p = 0.01) between the first and the sixth RAS trials. 
The experts reduced their total completion time (110 s vs 
76 s, p = 0.01) and maximum impulse (16 N/s vs 11 N/s, 
p = 0.05) in the RAS trials, and significantly improved 
all parameters in the LS trials (no. seven to twelve). A 
decrease in maximum forces (4.4 N to 3.1 N, p = 0.04), 

Fig. 1   Crossover study design 
flow chart



6018	 Surgical Endoscopy (2023) 37:6015–6024

1 3

and maximum impulse from (16.8 to 9.8 N, p = 0.02) was 
observed. The intermediates had a reduced total comple-
tion time (91 s vs 80 s, p = 0.02) after the LS trials. In the 
LR group (N = 27), the novices (205 s vs 134 s, p = 0.01) 
and experts (82 s vs 44 s, p = 0.03) improved their total 
completion time. A detailed overview is provided in the 
supplemental files.

Crossover effect

Table 2 shows, that when switching from RAS to LS (trial 
six and seven), there was no significant change in any of the 
parameter outcomes, except for maximum impulse (Figs. 2, 
3, 4). The expert group increased their maximum impulse 
with 46% (11.5 N/s to 16.8 N/s, p = 0.05) (Fig. 5). When 
switching from LS to RAS, the total time was increased for 
intermediates (68.7 s vs. 100.2 s, p = 0.05) and for experts 
(44.2 s vs. 84.5 s, p = 0.05). However, an significant decrease 
in MaxForce of 8.5% was observed in the expert group (3.9 
N vs. 3.6 N, p = 0.01). The comparison of the seventh and 
ninth laparoscopic and robotic suturing trials, provided in 
Table 3, shows that the max force levels of both the inter-
mediates and novice group start to increase after the sev-
enth trial (Fig. 6). A 78% increase inforce exertion is was 
observed between the 7th and 9th trial for the intermediates 
(5.1 N vs. 9.1 N, p = 0.04).

Table 2   Comparing the sixth 
and seventh laparoscopic and 
robotic suturing trials

Medians and Wilcoxon signed-rank test of the novices, intermediates and experts

RAS—LS LS—RAS

Trial 6 Trial 7 Z value p value Trial 6 Trial 7 Z value p value

Time (s)
 Novice 86.72 274.10 − 1.82 NS 134.28 182.92 − 1.33 NS
 Intermediate 87.31 90.82 − 1.68 NS 68.68 100.21 − 1.99 0.05
 Expert 75.59 80.15 − 0.71 NS 44.17 84.52 − 1.99 0.05

Max. force (N)
 Novice 4.46 4.09 − 0.98 NS 5.40 4.84 − 1.07 NS
 Intermediate 5.36 4.39 − 0.46 NS 6.21 5.07 − 0.05 NS
 Expert 4.42 4.39 − 0.24 NS 3.90 3.57 − 2.67 0.01

Mean NZ force (N)
 Novice 1.17 1.07 − 1.54 NS 1.14 1.46 − 1.69 NS
 Intermediate 1.22 1.14 − 0.05 NS 1.45 1.20 − 0.05 NS
 Expert 1.05 1.05 − 0.77 NS 1.15 0.95 − 1.10 NS

Max. impulse (N/s)
 Novice 14.43 35.63 − 1.1 NS 21.85 28.38 − 0.98 NS
 Intermediate 16.32 26.75 − 1.68 NS 24.39 25.11 − 0.87 NS
 Expert 11.49 16.77 − 1.96 0.05 11.37 11.58 − 1.88 NS

Fig. 2   Laparoscopic and robotic suturing time (in seconds)
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Discussion

This study shows the changes in technical skill and tissue 
handling behaviour when switching between RAS and LS, 
according to objective force-based parameters. An increase 
in applied forces, representing decay in tissue handling 
skills, is observed in the less experienced groups when 
switching from LS to RAS. Where an increase in maximum 
force-parameters (Figs. 3, 6) indicates force-interaction 
errors, the increase in mean non zero force-parameter indi-
cates a structural high load of the tissue during tasks that 
require constant traction [19, 22]. When switching from the 
RAS to LS, the max impulse outcomes increases (Fig. 5), 
indicating that the energy transmitted from the instrument 
to the tissue increases drastically [22]. If these parameter 
increases during suturing, cutting or dissecting, the risk 
on tissue damage or rupture also increases [31]. Moreover, 
excessive force application to the tissues can cause serious 
complications, even leading to bowel perforation and sepsis 
[32, 33]. An ex vivo experimental study using force meas-
urements showed that the average acceptable force varied 
between 1.25 and 11.43 N, depended on the type of tissue 
[31]. Also, grasping forces can cause unwanted serosal 
thickness and histopathological changes that lead to think 

about force-based safety thresholds [32, 34]. These results 
are in line with another crossover study by Omar Hassan 
et al. [33], were novices had similar learning curves for RAS 
and LS, with limited crossover effect between approaches. 
Besides, like our results, this study also reported increased 
excessive forces in the RAS trials, compared to LS trials.

The influence of laparoscopic experience on the robotic 
performance has been marginally reported in previous stud-
ies. In 2018, Pimentel et al. [35], conducted a study compar-
ing novices and experts performing tasks on a virtual reality 
simulator. There was no significant difference in any of the 
objective metrics between the differently experienced groups 
and there was no evidence regarding the transferability of 
laparoscopic skills to robotic-assisted surgery. Similarly, in 
2012, Kilic et al. [36, 37] compared two groups with differ-
ent experience in laparoscopy. The groups performed a knot 
tying task in a LS and RAS setting and the total completion 
time was the only objective metric. The more experienced 
trainees had a significant difference in the total completion 
time during the RAS trials. However, despite the difference 
in prior laparoscopic experience, this difference was not vis-
ible in the LS trials.

The present results show that intermediates and nov-
ices perform better at the end of their learning curve when 

Fig. 3   Laparoscopic and robotic suturing maximum absolute force (in 
N) Fig. 4   Laparoscopic and robotic suturing mean non zero force (in N)
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starting with RAS, compared to groups that started with LS. 
These changes in technical skills are likely related to the 
difference in controls of both systems and should be consid-
ered when training skills. From human–machine interaction 
studies, it is observed that a change in interface requires the 
operator to switch from a more automated modus, to a more 
complex neuro control part of the brain that require more 
active thinking, which may cause problems with execution 
of the tasks [36–38]. The novices and experts experienced 
less decay of tissue handling skills (MaxForce) when switch-
ing from LS to RS, compared to intermediates. The variation 
in task time in trial seven to nine (Table 3), compared to trial 
four to six (Fig. 2), indicates that more novices and inter-
mediates had difficulties with efficient suturing performance 
after changing from RAS to LS. However, when switching 
from LS to RAS, novices and intermediate outcomes are 
comparable between techniques, but expert data shows that 
task time increased for many surgeons. These outcomes can 
be explained by a lack of haptic feedback in RAS, compared 
to conventional LS.

Likewise LS, the adaptation of RAS and the implemen-
tation of it in hospitals is usually initiated by experienced 
surgeons. We know that even expert surgeons can apply 
significantly higher force during LS, compared to open sur-
gery [39]. This is caused by the loss of tactile and haptic 
feedback. Although RAS has the advantage in accuracy and 
more precise handling of instruments, the sensory feedback Fig. 5   Laparoscopic and robotic suturing maximum impulse (in N/s)

Table 3   Comparing the seventh 
and ninth laparoscopic and 
robotic suturing trials

Medians and Wilcoxon signed-rank test of the novices, intermediates and experts

RAS—LS LS—RAS

Trial 7 Trial 9 Z value p value Trial 7 Trial 9 Z value p value

Time (s)
 Novice 274.10 231.28 − 1.244 NS 182.92 141.88 − 1.245 NS
 Intermediate 90.82 114.86 − 1.580 NS 100.21 126.0 − 0.051 NS
 Expert 80.15 64.60 − 1.350 NS 84.52 49.83 − 2.201 0.028

Max. force (N)
 Novice 4.09 4.13 − 1.481 NS 4.84 4.63 − 0.356 NS
 Intermediate 4.39 4.25 − 0.357 NS 5.07 9.09 − 2.091 0.037
 Expert 4.39 4.58 − 0.471 NS 3.57 3.37 − 1.153 NS

Mean NZ force (N)
 Novice 1.07 0.84 − 0.474 NS 1.46 1.05 − 0.890 NS
 Intermediate 1.14 1.32 − 0.051 NS 1.20 1.88 − 0.764 NS
 Expert 1.05 1.06 − 0.345 NS 0.95 1.11 − 1.261 NS

Max. impulse (N/s)
 Novice 35.63 21.88 − 0.533 NS 28.38 18.38 − 0.889 NS
 Intermediate 26.75 32.50 − 0.255 NS 25.11 41.87 − 0.764 NS
 Expert 16.77 14.70 − 1.161 NS 11.58 16.44 − 1.153 NS

Force volume (N3)
 Novice 0.98 0.62 − 0.178 NS 3.25 1.25 − 0.044 NS
 Intermediate 0.92 0.96 − 0.866 NS 1.16 5.98 − 0.357 NS
 Expert 0.83 0.68 − 0.722 NS 0.74 0.97 − 0.943 NS
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mechanism are further diminished [6–8], which results in 
dangerously high force application on the tissues. Haptic 
force feedback during training has the potential to limit the 
applied intracorporeal forces, with a decrease up to 44% 
[8]. This could also potentially be explained by the fact that 
novices have not developed the neural network and spati-
otemporal abilities, such as dealing with long instruments 
and the fulcrum effect, needed for safe minimally invasive 
surgery. Intermediates (senior residents and young surgeons) 
are potentially disadvantaged by the acquired laparoscopic 
skills during residency, while transitioning to RAS. Similar 
to our results, a recent study on robotic bowel anastomosis, 
showed lower anastomosis quality and lower Global Evalu-
ative Assessment of Robotic Skills (GEARS) scores after 
laparoscopic experience, compared to only open surgery 
experience [40].

Shortly after the introduction of simulation training for 
LS, assessment forms like Objective Structured Assessment 
of Technical Skills (OSATS) haven been used to determine 
technical competency. These forms have been a reliable tool 
for the qualitative assessment of a procedural performance 
for over two decades, but are money and time consuming, 
as the trainees are usually assessed by senior surgeons. 
With rapid technological innovations, this type of proce-
dural assessment was then followed by systems that recorded 
motion analysis parameters. Unfortunately, these forms and 
measures of time and motion efficiency (i.e., instrument han-
dling), provide limited quantitative information on the effect 
that these instruments have on the tissue. GEARS might be 
suitable to detect improvement of basic skills over time in 
inexperience trainees [41, 42]. However, there is no associa-
tion between laparoscopic experience and robotic-assisted 
suturing performance, according to OSATS scores, and there 
is evidence that assessment forms are not be suitable for the 
assessment of robotic technical skills and to differentiate 
between levels of expertise [43, 44]. This was confirmed 

by other recent studies, were novices were assessed during 
RAS skills training [45, 46]. The GEARS increased self-
awareness, but did not influence the acquisition of technical 
skill among trainees, and no correlation was found between 
technical skill and operative performance. This shows that 
besides technical skills, also cognitive skills, intraoperative 
strategies and decision making should be trained before 
commencing RAS in the OR.

In contrast, during a study on robotic inguinal hernia repair, 
objective robot generated performance metrics have been 
shown to be accurate and more reliable than self-awareness 
or even faculty surgeons assessment [47]. This was also con-
cluded by our previous work regarding the use of objective 
force-based parameters to assess technical skills during lapa-
roscopic skills training [29, 30, 48]. Following force-based 
assessment tools for LS, validity evidence for objective assess-
ment tools for RAS in accumulating [15, 16, 49–52]. A recent 
construct validation study by our group confirmed the potential 
for force-based parameters in assessment of tissue handling 
skills in RAS training [51]. Those results, along with the pre-
sent results, underline the importance of quantitative objective 
force-based assessment of tissue-tool interaction and tissue 
manipulation skills. These parameters can now be utilized not 
only for personalized assessment and feedback during train-
ing, but also serve as benchmarks for group training and for 
proficiency-based training.

Strengths and limitations

In this multicenter study, conducted at renowned academic 
training centers for training in minimally invasive surgery, 
a large cohort with 60 participants of three different experi-
ence levels performed a standardized surgical knot tying task 
improving the scientific value of the results. Technical skill 
was assessed by the recently for RAS validated ForceSense 
system that, in constrast to time parameter and GEARS, 
can objectively assess the forces applied to the tissue [51]. 
Using a standardized suturing and knot tying as task adds 
validity to the experiments as this task is representative 
for the assessment and validation of laparoscopic and gen-
eral surgical skill [53, 54]. Furthermore, the use of a real 
DaVinci system, real instruments with haptic feedback, and 
a realistic suturing task, simulated a setting which increased 
the generalizability and suggest the transferability of these 
outcomes to the operating room. Although it added value 
to the generalisability of the results, this study is limited by 
variability and the heterogeneity of the subgroups. If inclu-
sion criteria were more strict, these data could also be used 
to identify learning curve effects between groups. As is clear 
from the results and from the literature review, during the 
interpretation of these data, one should consider in which 
context the data have been acquired. For example, the level 
of experience, the complexity of the tasks and de construct 

Fig. 6   Strong effects maximum exerted forces occur for the partici-
pants with less experience after switching systems from LS to RAS
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validity of the assessment tool that is used. Furthermore, no 
motion parameters that represent instrument handling skills 
were included in this study. As the DVR system of Davinci 
and ForceSense system use different assessment parameters. 
Therefore following studies should solve this issue or allow 
the use of robotic instruments inside the ForceSense system, 
by increasing its diameter.

Conclusion

The crossover effects in technical skills between laparo-
scopic and robot-assisted surgery are highly depended on 
the prior experience with laparoscopic surgery. Experts can 
alternate between approaches without impairment of tech-
nical skills. Less experienced surgeons showed decreased 
efficiency of motion when switching from robotic to lapa-
roscopic surgery, and high tissue handling forces when 
switching from laparoscopic to robotic surgery. Additional 
simulation training is advised for these trainees to prevent 
from undesired events.
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