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Abstract
Background Surgical phase recognition using computer vision presents an essential requirement for artificial intelligence-
assisted analysis of surgical workflow. Its performance is heavily dependent on large amounts of annotated video data, which 
remain a limited resource, especially concerning highly specialized procedures. Knowledge transfer from common to more 
complex procedures can promote data efficiency. Phase recognition models trained on large, readily available datasets may 
be extrapolated and transferred to smaller datasets of different procedures to improve generalizability. The conditions under 
which transfer learning is appropriate and feasible remain to be established.
Methods We defined ten operative phases for the laparoscopic part of Ivor-Lewis Esophagectomy through expert consensus. 
A dataset of 40 videos was annotated accordingly. The knowledge transfer capability of an established model architecture 
for phase recognition (CNN + LSTM) was adapted to generate a “Transferal Esophagectomy Network” (TEsoNet) for co-
training and transfer learning from laparoscopic Sleeve Gastrectomy to the laparoscopic part of Ivor-Lewis Esophagectomy, 
exploring different training set compositions and training weights.
Results The explored model architecture is capable of accurate phase detection in complex procedures, such as Esophagec-
tomy, even with low quantities of training data. Knowledge transfer between two upper gastrointestinal procedures is feasible 
and achieves reasonable accuracy with respect to operative phases with high procedural overlap.
Conclusion Robust phase recognition models can achieve reasonable yet phase-specific accuracy through transfer learning 
and co-training between two related procedures, even when exposed to small amounts of training data of the target procedure. 
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Further exploration is required to determine appropriate data amounts, key characteristics of the training procedure and tem-
poral annotation methods required for successful transferal phase recognition. Transfer learning across different procedures 
addressing small datasets may increase data efficiency. Finally, to enable the surgical application of AI for intraoperative 
risk mitigation, coverage of rare, specialized procedures needs to be explored.

Graphical abstract

Keywords Artificial intelligence · Ivor–Lewis esophagectomy · Phase recognition · Upper gastrointestinal surgery · 
Transfer learning · Computer vision

Through comprehension of spatial, temporal as well as 
conceptual aspects of surgical workflow, artificial intelli-
gence (AI) holds the potential to change minimally invasive 
surgery. The merits of computer vision (CV) and machine 
learning (ML), subfields of AI, range from intraoperative 
decision support, and improvement of surgical teaching to 
prediction of operative complications and reduction of sur-
gical risk. Current applications include temporal analysis, 
such as phase detection and prediction [1–4] and spatial 
analysis, including instrument segmentation [5–7] and the 
detection of ideal dissection areas [8]. In parallel more con-
ceptual approaches, such as the comprehension of surgical 
notions like the Critical View of Safety and Action Triplets, 
aim to understand and mimic surgical thinking [9, 10]. Par-
ticularly the temporal comprehension of surgical workflow 
serves as translational knowledge in the field of surgical AI 
[11]. Surgical phase detection and prediction promises the 
potential to detect deviations from a regular operative course 
and foresee complications before they arise [12]. Currently, 
laparoscopic cholecystectomy serves as the benchmark 
for surgical AI due to its high prevalence, stable view, and 
standardized procedural sequence. Successful recognition 

of operative phases has also been demonstrated in Sleeve 
Gastrectomy [4], Perioral Endoscopic Myotomy (POEM) [3] 
and Sigmoidectomy [13]. However, in order to have a sig-
nificant impact on patient safety, AI should be applicable to 
high-stake surgical procedures associated with notable risk.

Traditional ML models undergo training on labeled or 
“annotated” imaging data, learn to extract target features, 
and subsequently detect these features in test data. Their per-
formance is measured in concordance with the ground truth 
labels of expert annotators. To achieve good model perfor-
mance large quantities of data, and adequate annotations are 
required to train the models. Furthermore, diversity within 
the data and coverage of rare events ensures generalizability 
of the model and applicability to a wide range of cases. This 
stands in contrast to the lack of annotated surgical video data 
capturing high-stake, rare procedures of immense clinical 
significance, such as Ivor-Lewis Esophagectomy for Esoph-
ageal cancer. With less than 2000 cases performed in the 
US annually [14], a major complication rate of 59% [15] 
and mortality rates around 3.1% [16], Esophagectomy is 
one of the most difficult oncological operations worldwide. 
However, the attempt to leverage AI for risk mitigation in 
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Esophagectomy is met by major obstacles. Due to its highly 
complex workflow, both during the abdominal and thoracic 
part of the operation, Esophagectomy does not lend itself to 
exploration through AI algorithms tailored to highly stand-
ardized procedures. The relative paucity of imaging data of 
Esophagectomy cases, compared to previously investigated 
procedures, force the community to look creatively at related 
procedures and investigate similar target features to address. 
Moreover, the definition of target features and appropriate 
annotation guidelines for such procedures require careful 
consideration to be simultaneously clinically relevant as well 
as applicable to ML algorithms [17].

Surgical residents learn to transfer acquired practical 
skills to novel situations, as they gradually move from per-
forming individual steps of a procedure, to completing entire 
procedures as the primary operating surgeon. Analogous to 
this cognitive phenomenon, transfer learning (TL) refers to 
ML models leveraging information from source datasets, to 
optimize their performance on new target datasets with simi-
lar characteristics. This enables algorithms to make infer-
ences about new datasets with small data quantities for train-
ing [18]. As AI aims to mimic human intelligence, it appears 
plausible to exploit such adaptive learning techniques to 
augment algorithmic performance by exposing the models 
to operations with procedural overlap and common visual 
features. TL between related procedures may present a solu-
tion to the problem of limited surgical video data availability 
and move AI closer to real-time deployment the operating 
room. Prior work using TL for surgical step recognition has 
demonstrated accurate recognition of general surgical tasks, 
such as adhesiolysis, dissection and inspection in four dif-
ferent procedures [13]. However, the specific, contextual 
workflow and interdependencies between individual phases 
of an operation offers more information. Much like chapters 
in a book the individual phases, further divided into steps, 
actions and tasks, offer an overall narrative of the specific 
goal of a surgical procedure. In order for ML models to fully 
comprehend surgical thinking, they should be able to con-
ceptualize this semantic information and relations between 
phases and be tailored to extrapolate knowledge, similar to 
surgical trainees.

In this study we explore TL for phase recognition on 
laparoscopic part of Ivor-Lewis (IL) Esophagectomy. With 
our “Transfer Esophagectomy Network” (“TEsoNet”), we 
explore the capability of an established model architecture 
for phase recognition (a Convolutional Neural Network 
(CNN) and a Long Short Term Memory (LSTM) Network) 
to transfer knowledge between two related upper gastroin-
testinal procedures. We aim to overcome data shortage and 
promote data efficiency by training a model on an exist-
ing dataset of laparoscopic Sleeve Gastrectomy (source 
data) and evaluate its performance on the laparoscopic part 
of IL-Esophagectomy (target data). To determine ideal 

prerequisites for successful TL between the two procedures, 
we investigate different proportions of target and source data 
in model training and look into the effect of co-training on 
both procedures. Moving beyond recognition of general sur-
gical actions, we will explore the conditions under which 
knowledge transfer is feasible with regard to specific, seman-
tically dependent, clinically relevant phases. For this pur-
pose we divided the laparoscopic part of IL-Esophagectomy 
into three distinct steps with clinically meaningful goals: 
(1) the lymphadenectomy, (2) the preparation of the Gastric 
Conduit, and (3) the preparation of the diaphragmatic Hia-
tus. More specifically, we are the first to define and map out 
concise procedural phases within these steps, in concord-
ance with the steps described by Fuchs et al. [19]. This clear 
definition of annotations of surgical phases is paramount to 
the development of ML capable of mimicking surgical intel-
ligence. Overall our objective is to evaluate the feasibility 
of knowledge transfer between two different laparoscopic 
upper gastrointestinal procedures, analogous to the learning 
process of surgical residents. Beyond that, we investigate 
the data requirements and conditions required for transfer 
learning. The overall methodology includes (1) the granular 
phase definition and annotation of the laparoscopic part of 
IL-Esophagectomy through expert consensus, (2) the vali-
dation of a CNN-LSTM Network for phase recognition on 
Sleeve Gastrectomy and Esophagectomy and (3) exploration 
of the impact of training data quantity and quality on phase 
recognition accuracy in transfer learning and co-training.

Materials and methods

Video data

The video data of 80 laparoscopic Sleeve Gastrectomy 
cases were recorded at the Department of Surgery at Mas-
sachusetts General Hospital, Boston, between October 2015 
and September 2018 (Institutional Review Board Protocol 
No. 2015P001161/PHS). The video data of 40 cases of the 
laparoscopic part of IL-Esophagectomy was collected at 
the University Hospital Cologne, Germany, between June 
2021 and April 2022 (Ethics Commission Review no. 
21–1132). The video data was recorded in high definition 
with a resolution of 1920 × 1080 pixels (Esophagectomy) 
and 1280 × 720 pixels (Sleeve Gastrectomy), with an aspect 
ratio of 16:9. Both institutions used the MediCapture USB 
200 and MediCapture MVR Pro HD (MediCapture Plym-
outh, PA, USA) to record the video data. Inclusion criteria 
for subjects were (1) undergoing laparoscopic sleeve gastrec-
tomy for bariatric weight loss surgery or the laparoscopic 
part of IL-Esophagectomy for esophageal cancer, (2) mini-
mum age > 18 years, (3) sufficient video quality (minimum 
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resolution of 720p, sufficient camera cleanliness without 
obscuration of the camera), (4) sufficient video complete-
ness (recording of the majority of defined operative phases, 
excluding port placement and liver retraction).

Phase definition

The phase definitions for laparoscopic Sleeve Gastrec-
tomy were used as established by Hashimoto et al. [4]. To 
define the procedural phases of the laparoscopic part of IL- 
Esophagectomy, an expert panel of three board-certified 
upper-GI surgeons from Massachusetts General Hospital, 
Boston, USA, and University Hospital Cologne, Germany 
were consulted. In order to achieve clinically meaningful, 
yet CV-compatible phase definitions, the SAGES annotation 
framework [17] served as a guideline. The resulting phase 
definitions were: (1) Port Placement (2) Liver Retraction (3) 
Dissection of the Gastrohepatic Ligament (4) Clipping and 
Division of the Left Gastric Artery (5) Hiatal Dissection (6) 
Dissection of the Gastrocolic Ligament (7) ICG perfusion 
check (8) Stapling of the Gastric Conduit (9) Mediastinal 
Dissection and (10) Inspection. A detailed description of 
the individual phase definitions is given in Table 1. Figure 1 
shows the procedural workflow during the laparoscopic part 
of IL-Esophagectomy, as captured in our phase definitions. 
The two procedures were compared in terms of: (i) proce-
dural similarities and differences, (ii) the temporal evolve-
ment and phase transitions, and (iii) the visual characteristics 
specific to individual phases.

Pre‑processing and annotation of surgical video 
data

To comply with data privacy regulations, the data was first 
deidentified, including removal of all metadata. Metadata 
included all patient data, the date, time and location of the 
operation as well as information about operating staff. Pre-
processing was performed using a self-coded python script 
with ffmpeg package 4.1 (www. ffmpeg. org). The annota-
tion of operative videos was performed by surgical residents 
(PGY 3 and above). The software Anvil Video Annotation 
Research Tool by Michael Kipp (http:// www. anvil- softw are. 
org) was used for annotation of all of the Sleeve Gastrectomy 
videos. The Esophagectomy videos (n = 20) were annotated 
in.csv spreadsheet files. All annotations were converted to 
protobuff format to facilitate the model data loading.

Model architecture

The proposed TEsoNet model aims at transfer learning 
from the source procedure (Sleeve Gastrectomy) to the 
target procedure (the laparoscopic part of IL-Esophagec-
tomy) [3]. The backbone of the utilized ML model was 

built by an established Convolutional Neural Network 
(CNN) for visual feature recognition, augmented by and 
a Long Short Term Memory (LSTM) model for tempo-
ral feature recognition. To account for the different fea-
ture distributions across the two procedures the last fully 
connected layer of the CNN was altered (see Fig. 2). The 
subsequent LSTM adds contextual information from past 
video frames to current frames. The final fully connected 
layer serves as a classification layer, providing probabili-
ties for each of the 10 phases of the target procedure. In 
order to integrate the datasets from two procedures with 
different temporal structures, the phases were mapped into 
a single set of phases and fused for suitability to one clas-
sification task (surgical phase recognition). The data load-
ing was performed in a 1:1 ratio (equal video segments of 
Sleeve Gastrectomy to Esophagectomy but derived from 
different quantities of videos). A combined data loader 
is used to load the video data from both procedures into 
the model. The consecutive video was broken down into 
short video segments of 8 s at a framerate of 1 frame per 
second (fps). We used the focal loss[20] for training with a 
learning rate of  10–4. The model was trained for 30 epochs 
(See Table 2).

Model training and experimental setup

Five experiments were conducted to determine the ideal 
amount of data from the target procedure and the optimal 
ratio between target and source procedure within the train-
ing data for reliable phase recognition through TEsoNet. 
All experiments were performed in 3 randomly composed 
training splits. In experiment 1, TEsoNet was trained 
and tested on sleeve gastrectomy videos (train n = 60/test 
n = 20) in order to validate our previous results [4]. In 
experiment 2 TEsoNet’s performance of a Esophagectomy 
was evaluated (train n = 5, 10, 20, 30 consecutively/test 
n = 10). Experiment 3 was conducted training entirely on 
Sleeve Gastrectomy (n = 60) and testing on Esophagec-
tomy (n = 10) to investigate pure TL. Experiments 4 and 
5 investigated co-training on different quantities of target 
and source procedures in the training data. The detailed 
training data composition can be found in Table 3.

Results

Model performance was assessed by phase recognition 
accuracy in percent (%). Accuracy was defined as the 
sum of true negatives and true positives divided by all 
obtained values [(TN + TP) / (TN + TP + FN + FP)]. In a 

http://www.ffmpeg.org
http://www.anvil-software.org
http://www.anvil-software.org
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classification task, this represents the number of correct 
predictions estimated by the model out of the total number 
of samples.

Temporal annotations and feature comparison

There was a significant heterogeneity between the two pro-
cedures with respect to duration of the individual phases 
and temporal progression of the procedure. Figure 3 and 
4 compares the temporal structure of Sleeve Gastrectomy 
and Esophagectomy. The total duration of the laparoscopic 
Sleeve Gastrectomy cases was 123.49 ± 20.00 min, whereas 
for Esophagectomy cases it was 136.54 ± 17.14  min. 
In Esophagectomy the phase duration ranged from a 
mean ± STD of 0.1 ± 0.3  min to 46.52 ± 38.34  min. In 
contrast, the longest phase in Sleeve Gastrectomy was 
19.56 ± 9.21  min. The Esophagectomy cases show sig-
nificantly more transitions between phases (23.98 ± 5.92) 
and overall a less linear workflow. In Sleeve Gastrectomy 

there are fewer transitions between the phases (5.55 ± 1.04). 
The procedural overlap, visual similarities, and differences 
between the phases of the two procedures are summarized in 
Table 2. The individual phase durations in Sleeve Gastrec-
tomy and Esophagectomy are summarized in Tables 4 and 5.

Experimental results: single‑procedure datasets 
and transfer learning (Experiment 1–3)

In experiment 1, TEsoNet demonstrated good overall 
accuracy of 87.7 ± 7% on phase recognition in Sleeve 
Gastrectomy. This shows that the previous phase recogni-
tion results of SleeveNet [4] are reproducible within the 
expected dataset variability. By training and validating 
the model on Esophagectomy in experiment 2, the model 
proved applicable to new, complex procedures. When 
training on as little as five videos the overall accuracy 
was 36.3 ± 30.7% and could be increased to 49.7 ± 29.8% 

Fig. 1  Overview of the surgical workflow and definition of phases in the laparoscopic part of Ivor–Lewis esophagectomy
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by training on 30 videos. Notably, phases with low preva-
lence in the dataset, such as “Port Placement” and “Liver 
Retraction” resulted in significantly lower accuracy (maxi-
mum accuracy of 6.8 ± 2.9% and 7.3 ± 3.6%, respectively). 
In contrast, long and omnipresent phases, like the “Dis-
section of the Gastrocolic Ligament” achieved very high 
accuracy (91.8 ± 4.7%). In experiment 3 we evaluated TL 
between the two procedures by training the model entirely 
on Sleeve Gastrectomy and evaluating its performance on 
Esophagectomy. The results show that TEsoNet achieves a 
high model accuracy on phases with high procedural over-
lap between the procedures (“Dissection of the Gastrocolic 
Ligament” 60.7 ± 11.3%, “Port Placement” 68.2 ± 13.5% 
and “Liver Retraction” 37 ± 40%). Despite visual differ-
ences in the “Stapling” phase, resulting from stapling on 
different curvatures of the gastric conduit, the model per-
formance of recognizing the phase is 68.5 ± 7%. This can 
be explained by spatial recognition of the stapler by the 
CNN or correct categorization of the temporal occurrence 
of the phase after the “Dissection of the Gastrocolic Liga-
ment” by the LSTM. Due to the complete absence of other 
phases within the Sleeve Gastrectomy training data, such 

as “Dissection of Gastrohepatic Ligament”, knowledge 
transfer did not occur for these phases. Furthermore, the 
low accuracy in absent phases contributes to a low over-
all model accuracy of 23.4 ± 31.4%, whereas the accuracy 
across the four overlapping phases is 58.6 ± 14.8%. The 
results of experiments 1, 2, and 3 are given in Table 6.

Experimental results: co‑training on target 
and source procedure (Experiment 4–5)

The effect on phase recognition accuracy when co-training 
on both procedures, using different quantities of source 
and target data, were explored in experiments 4 and 5. 
The complete results are given in Table 7. In experiment 
4 co-training was performed using 60 Sleeve Gastrec-
tomy videos and varying numbers of Esophagectomy. 
The results show that model performance depends heavily 
on the quantities of the target procedure within the train-
ing data. The overall accuracy of the model ranged from 
24.5 ± 21%, when trained on five Esophagectomy videos, 
and increased up to 36.1 ± 30% accuracy when training 
was conducted using 30 Esophagectomy videos. It is nota-
ble that adding Sleeve Gastrectomy to the training data 

Fig. 2  Overview of the model architecture of the Transfer Esophagec-
tomy Network (TEsoNet): The individual video frames from laparo-
scopic Sleeve Gastrectomy and the laparoscopic part of Ivor-Lewis 
Esophagectomy are loaded in to a convolutional neural network 
(CNN). A following fully connected layer transforms the output for 

loading into a long short term memory (LSTM) model. Additional 
transformation through a second fully connected layer reduces the 
output to 10 classes before undergoing a rectified linear activation 
function (ReLU). The output is a probability for each individual class 
(phase)
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significantly improves accuracy on phases with procedural 
overlap (“Port placement”, “Liver Retraction”, “Dissection 
of Gastrocolic Ligament” and “Stapling”), compared to 
merely training the model on Esophagectomy. In experi-
ment 5, the effect of different quantities of source proce-
dure in the training data becomes apparent. In particular, 
the addition of Sleeve Gastrectomy in model training led to 
an increase in accuracy for phases with low prevalence in 
the Esophagectomy data (“Port Placement” vs. and “Liver 
Retraction”). The heatmap in Fig. 5 illustrates the confu-
sion matrix of experiments 4.D and 5.A, representing the 
performance of TEsoNet on the classification task when 
training on different quantities of the source procedure. 
Higher contrast represents the overlap between model pre-
diction and annotated ground truth, hence higher phase 
recognition accuracy. Overall co-training on both proce-
dures shows that training on moderate amounts of related 
procedures yields the highest overall model accuracy 
(Experiment 5B: model accuracy of 40.8 ± 32.6%). It is 
important to balance augmentation of training with related 

procedures for improved model supervision and limiting 
the corruption of model performance due to `noise’ from 
unrelated phases.

Discussion

TEsoNet achieves reasonable phase recognition accuracy in 
most phases of the laparoscopic part of IL-Esophagectomy. 
Particularly good phase recognition was achieved with 
respect to phases with high procedural overlap between tar-
get and source procedure. This shows that TL for surgical 
phase recognition may be applied analogously to human 
learning experiences. Whilst low data abundance and 
diversity remain a significant challenge for surgical AI, TL 
and co-training have the potential to augment ML model 
performance selectively [18]. Furthermore TL may facili-
tate leveraging surgical AI for risk mitigation in high-stake 
operations with a direct impact on patient safety. Particu-
larly complex surgical procedures, like Esophagectomy, are 

Table 3  Training/Testing split 
and experimental setup

Experiment Training dataset Validation dataset

1. Validation on sleeve gastrectomy (Source) Sleeve (n = 60) Sleeve (n = 20)
2. Validation on the laparoscopic part of IL-

Esophagectomy (Target)
A. Eso (n = 5)
B. Eso (n = 10)
C. Eso (n = 20)
D. Eso (n = 30)

Eso (n = 10)

3. Transfer learning Sleeve (n = 60) Eso (n = 10)
4. Co-training dependency on target procedure A. Eso (n = 5) + Sleeve (n = 60)

B. Eso (n = 10) + Sleeve (n = 60)
C. Eso (n = 20) + Sleeve (n = 60)
D. Eso (n = 30) + Sleeve (n = 60)

Eso (n = 10)

5. Co-training dependency on source procedure A. Eso (n = 20) + Sleeve (n = 15)
B. Eso (n = 20) + Sleeve (n = 30)
C. Eso (n = 20) + Sleeve (n = 45)
D. See experiment 4.C

Eso (n = 10)

Fig. 3  An example of the overlap in phase transitions between the laparoscopic part of Ivor-Lewis Esophagectomy (orange) and laparoscopic 
Sleeve Gastrectomy (blue) (Color figure online)
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highly underrepresented as few attempts have been made to 
investigate these procedures using CV. This may be linked 
to data characteristics, which are unfavorable for ML-based 
analysis. ML algorithms are largely based on probabilistic 
identification of patterns within the data [21, 22]. Therefore, 
the disrupted temporal structures, rather than linear work-
flows, as well as short phase durations and frequent transi-
tions, present a challenging endeavor for phase recognition. 

We show that TL demonstrates limitations with regard to 
recognition of phases with particularly low resemblance 
of visual features or low procedural overlap. The heatmaps 
(Fig. 5) clearly illustrate that TEsoNet shows tendencies of 
confusing dissection phases (“Dissection Gastrocolic Liga-
ment” and “Dissection Gastrohepatic Ligament”), which 
may be due to indistinct visual features, such as the anatomy 
of the ligaments or use of identical tools. And accuracy in 

Fig. 4  An illustration of the phases and transitions in a the laparo-
scopic part of Ivor–Lewis Esophagectomy and b laparoscopic Sleeve 
Gastrectomy. Note the linear progression in the Sleeve Gastrectomy 

workflow, observed by the diagonal pattern in plot (b). Ivor–Lewis 
Esophagectomy displays shorter phases and more frequent transitions

Table 4  Duration of operative 
phases in the laparoscopic part 
of IL-Esophagectomy

Phase Duration mean Duration STD Duration min Duration max

Port placement 0:00:10 0:00:30 0:00:00 0:02:45
Liver retraction 0:00:15 0:00:45 0:00:00 0:04:04
Dissection Of gastrohepatic ligament 0:19:58 0:18:13 0:02:08 1:08:30
Clipping + division of left gastric artery 0:01:05 0:00:44 0:00:00 0:04:20
Hiatal dissection 0:05:19 0:04:46 0:00:00 0:18:48
Dissection of gastrocolic ligament 0:46:52 0:38:34 0:01:30 2:33:05
Stapling 0:04:48 0:02:20 0:00:00 0:13:10
Mediastinal dissection 0:01:53 0:02:00 0:00:00 0:10:51
ICG 0:01:42 0:01:41 0:00:02 0:08:17
Inspection 0:08:32 0:08:34 0:00:56 0:49:03
Overall duration of the video 1:16:54 0:17:14 0:49:08 2:00:55
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Table 5  Duration of operative 
phases in laparoscopic sleeve 
gastrectomy

Phase Duration mean Duration STD Duration min Duration max

Port placement 0:04:09 0:03:55 0:00:00 0:33:54
Liver retraction 0:00:39 0:00:33 0:00:00 0:03:58
Liver biopsy 0:01:10 0:00:37 0:00:00 0:04:34
Dissection Of gastrocolic ligament 0:19:56 0:09:21 0:00:00 0:49:32
Stapling 0:14:41 0:06:21 0:00:00 0:39:59
Bagging 0:03:17 0:02:00 0:00:00 0:10:35
Inspection 0:01:47 0:01:52 0:00:00 0:09:07
Overall duration of the video 1:03:49 0:20:17 0:27:14 2:08:24

Table 6  Model accuracy per 
phase for experiments 1, 2 and 3

Experiment 1 2A 2B 2C 2D 3

Training 60 Sleeve 5 Eso 10 Eso 20 Eso 30 Eso 60 Sleeve
Testing 20 Sleeve 10 Eso 10 Eso 10 Eso 10 Eso 10 Eso
Port placement 0.9147 0.0037 0.0093 0.0395 0.0684 0.6824
Liver retraction 0.8078 0.0000 0.0000 0.0042 0.0737 0.3711
Gastrocolic ligament dissection 0.9127 0.8100 0.8857 0.8954 0.9185 0.6076
Stapling 0.9660 0.6230 0.6715 0.6972 0.7276 0.6854
Inspection 0.7620 0.3224 0.4333 0.4663 0.5034 0.0015
ICG x 0.7766 0.7431 0.7306 0.8149 0.0000
Gastrohepatic ligament dissection x 0.4861 0.6601 0.7774 0.7892 0.0000
Clipping + division of left gastric artery x 0.1318 0.1726 0.2597 0.2743 0.0000
Hiatal dissection x 0.2187 0.2822 0.2884 0.3910 0.0000
Mediastinal dissection x 0.2616 0.2818 0.3460 0.4137 0.0000
Liver biopsy 0.8979 x x x x x
Bagging 0.8832 x x x x x
Overall 0.8777 0.3634 0.4140 0.4505 0.4975 0.2348
Standard deviation 0.0696 0.2983 0.3138 0.3138 0.3070 0.3146

Table 7  Model accuracy per phase for experiments 4 and 5

Experiment 4A 4B 4C 4D 5A 5B 5C

Training 5 Eso. + 60 Sleeve 10 
Eso. + 60 
Sleeve

20 
Eso. + 60 
Sleeve

30 
Eso. + 60 
Sleeve

20 
Eso. + 15 
Sleeve

20 
Eso. + 30 
Sleeve

20 
Eso. + 45 
Sleeve

Testing 10 Eso 10 Eso 10 Eso 10 Eso 10 Eso 10 Eso 10 Eso
Port placement 0.5628 0.5627 0.7204 0.3558 0.7090 0.7673 0.5229
Liver retraction 0.3976 0.2262 0.2324 0.2204 0.4047 0.4493 0.3529
Gastrocolic ligament dissection 0.1349 0.8950 0.8722 0.9595 0.8273 0.8998 0.8797
Stapling 0.4917 0.7612 0.5275 0.7605 0.8214 0.8270 0.8081
Inspection 0.0422 0.1209 0.1598 0.1347 0.1020 0.1674 0.2541
ICG 0.3147 0.3131 0.5853 0.5695 0.2364 0.4899 0.5790
Gastrohepatic ligament dissection 0.2449 0.1406 0.1941 0.1360 0.1020 0.2090 0.1502
Clipping + division of left gastric artery 0.0000 0.0943 0.0945 0.1148 0.0199 0.0562 0.1016
Hiatal dissection 0.0422 0.0708 0.2167 0.0133 0.0573 0.0624
Mediastinal dissection 0.0159 0.0366 0.0776 0.1503 0.0090 0.1596 0.1714
Liver biopsy x x x x x x x
Bagging x x x x x x x
Overall 0.2450 0.3193 0.3535 0.3618 0.3245 0.4083 0.3882
Standard deviation 0.2109 0.3115 0.2960 0.2998 0.3416 0.3268 0.2951
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recognition of shorter phases with low procedural over-
lap between the two operations appears to be negatively 
impacted by introduction of an unrelated procedure due to 
relative underrepresentation in the training data.

Whilst these fundamental differences between the two 
procedures will be hard to overcome, homogenous data 
attributes will facilitate TL. Differences in data acquisition 
and preprocessing may account for different perception of 
the data by ML algorithms. In our case, the two datasets 
were acquired in two different high-volume centers, and 
exhibited vastly different surgical traits (bariatric vs. onco-
logical surgery, operating surgeons and teams, camera view, 
port placement and instruments, etc.). Moreover, divergent 
approaches to temporal annotation of surgical video data, 
due to the lack of standardized protocols [23, 24], impacts 
knowledge transfer. A more complex surgical workflow 
requires more granular annotation, which in turn results in 
higher clinical relevance [25]. Unified definitions for start 
and endpoints of surgical phases are necessary for congruent 
temporal annotations across procedures. Annotation guide-
lines have to account for more granular steps and actions 
within the phases to be applicable to complex procedures. 
In Esophagectomy for example, the “Hiatal Dissection” 
may be further divided into the dissection of the left and 
right Crus of the Diaphragm, and during “Dissection of the 
Gastrocolic Ligament” the individual quadrants along the 
greater curvature and the retro gastric space could be sepa-
rately annotated.

TL for phase recognition was first performed by Neimark 
et al. [13]. The group demonstrated high accuracy when pre-
training different model architectures on laparoscopic chol-
ecystectomy and then evaluating performances on sleeve 
gastrectomy, right hemicolectomy, and appendectomy. 
This first attempt emphasized the need to explore different 
conditions under which TL can succeed. Besides low data 
quantities for training, other ML parameters such as train-
ing weights, pretraining methodology, and network architec-
ture should be explored. In contrast to our work, Neimark’s 
focus was on overlap between the procedures with respect 
to broad surgical actions, like “adhesiolysis”, “preparation”, 
and “inspection”. However, this approach to annotating sur-
gical phases lacks information about semantic content and 
temporal dependencies. Additionally, the used datasets were 
significantly larger in size, which raises the question of how 
much data is needed to transfer existing methodology to new 
procedures. Our goal was to investigate the performance of 
TL on clinically relevant, hard-to-obtain procedures such as 
IL-Esophagectomy, in low data conditions. Furthermore, we 
considered the relative contribution of source and target pro-
cedure on phase recognition accuracy. Expectedly, the linear 
workflow of Sleeve Gastrectomy was more detrimental to 
transferal model performance than the spatial characteristics 
of different anatomic landmarks in Esophagectomy.

Overall our work clearly supports selective TL for phases 
with high procedural overlap. Analogous to Hu et  al.’s 
Frankenstein approach [26] to face recognition, who puzzled 

Fig. 5  The heatmap illustrates the confusion matrix of experi-
ment 4.D and 5.A. This represents the performance of the Transfer 
Esophagectomy Network (TEsoNet) on the classification task when 
training on different quantities of the source procedure (laparoscpic 

Sleeve Gastrectomy). Higher contrast demonstrates the overlap 
between model prediction and annotated ground truth and shows 
higher phase recognition accuracy
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different subcomponents of faces together to generate new 
samples, we propose to leverage multiple operations for 
phase-specific TL. In the laparoscopic part of IL-Esophagec-
tomy, information about dissection phases could be extracted 
from Nissen Fundoplicatio or Gastric Bypass to boost model 
performance on recognition of “Hiatal Dissection”. Simi-
larly, phases covering clipping of tubular structures, such 
as “Clipping and Division of Left Gastric Artery” may be 
extrapolated from procedures like Laparoscopic Cholecys-
tectomy. Leveraging overlapping temporal and visual fea-
tures from a pool of multiple related procedures may lead 
to the generation of a diverse data catalog. Furthermore 
training on a wide array of surgical procedures, exhibiting 
various data characteristics may significantly benefit surgi-
cal AI by increasing data availability and diversity, hence 
promoting data efficiency.

Conclusion

We demonstrate that phase recognition in less standardized, 
highly complex surgical procedures with a disruptive tem-
poral workflow, such as Esophagectomy, is feasible using an 
established model structure. Our concise and clinically rel-
evant annotations of the surgical phases in the laparoscopic 
part of IL-Esophagectomy can serve as a starting point for 
more granular definitions of surgical steps and actions in 
the future. Furthermore, we show that Transfer Learning 
between two visually different upper gastrointestinal proce-
dures achieves good phase recognition accuracy in phases 
with high procedural overlap, despite low data quantities. 
Additionally, co-training on both procedures can further 
augment the phase-specific recognition accuracy selectively 
for said phases. To conclude, knowledge transfer between 
related procedures can help to overcome the shortage of 
meaningful, annotated surgical video data of rare, high-stake 
procedures and promote data efficiency. Further exploration 
of ideal training parameters and prerequisites for TL is nec-
essary. In order to exploit the true risk mitigation potential 
of surgical AI, coverage of highly complex procedures is 
essential.
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