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Abstract
Introduction Indocyanine green (ICG) quantification and assessment by machine learning (ML) could discriminate tissue 
types through perfusion characterisation, including delineation of malignancy. Here, we detail the important challenges 
overcome before effective clinical validation of such capability in a prospective patient series of quantitative fluorescence 
angiograms regarding primary and secondary colorectal neoplasia.
Methods ICG perfusion videos from 50 patients (37 with benign (13) and malignant (24) rectal tumours and 13 with 
colorectal liver metastases) of between 2- and 15-min duration following intravenously administered ICG were formally 
studied (clinicaltrials.gov: NCT04220242). Video quality with respect to interpretative ML reliability was studied observ-
ing practical, technical and technological aspects of fluorescence signal acquisition. Investigated parameters included ICG 
dosing and administration, distance–intensity fluorescent signal variation, tissue and camera movement (including real-time 
camera tracking) as well as sampling issues with user-selected digital tissue biopsy. Attenuating strategies for the identified 
problems were developed, applied and evaluated. ML methods to classify extracted data, including datasets with interrupted 
time-series lengths with inference simulated data were also evaluated.
Results Definable, remediable challenges arose across both rectal and liver cohorts. Varying ICG dose by tissue type was 
identified as an important feature of real-time fluorescence quantification. Multi-region sampling within a lesion mitigated 
representation issues whilst distance–intensity relationships, as well as movement-instability issues, were demonstrated 
and ameliorated with post-processing techniques including normalisation and smoothing of extracted time–fluorescence 
curves. ML methods (automated feature extraction and classification) enabled ML algorithms glean excellent pathological 
categorisation results (AUC-ROC > 0.9, 37 rectal lesions) with imputation proving a robust method of compensation for 
interrupted time-series data with duration discrepancies.
Conclusion Purposeful clinical and data-processing protocols enable powerful pathological characterisation with existing 
clinical systems. Video analysis as shown can inform iterative and definitive clinical validation studies on how to close the 
translation gap between research applications and real-world, real-time clinical utility.
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Indocyanine green (ICG) fluorescence angiography can be 
used to assist in the delineation of surgical anatomy and 
assessment of tissue physiology as well as to identify malig-
nant pathology with varying levels of accuracy [1–4]. Mov-
ing beyond surgeon visual interpretation, computer vision 
and machine learning (ML) methods can extract real-time 
dynamic time–fluorescence profiles of ICG inflow and 
outflow in tissues enabling mathematical examination and 
extrapolation. Such profiles can, thereby, be compared and 
categorised into clinically relevant determinants providing 
artificial intelligence (AI)-based insights into tissue nature. 
These and other approaches for ICG signal interpretation 
and quantification have been described in research applica-
tions for the assessment of colonic perfusion [5–9] and even 
the characterisation of rectal cancer vs benign neoplastic 
tumours [10–13].

However, concerns have been raised regarding the trans-
lation of such computerised quantitative ability into current 
NIR systems as such systems have been primarily designed 
as clinical tools for image creation and display for human 
interpretation and not precise computational measurement 
methods [11, 14, 15]. Previous work has demonstrated dis-
crepancies in detected fluorescence intensities with ICG 
circulation (related to both dosing amount and methods as 
well as patient and anaesthesia-related variables) and further 
vary by on-screen tissue location (e.g. near vs far, centre vs 
periphery) [16–18]. Other potential pitfalls for interpreta-
tion by both humans and machines include the clinically 
observed phenomenon of ICG tissue diffusion vs true per-
fusion and the fact that rectal tumours can contain areas of 
admixed malignant and benign disease. [17, 19] Camera and 
tissue movement as well as any other impingement upon the 
field of view (e.g. by instrumentations) can also undermine 
accurate extrapolation of insights from dynamic imagery 
[17].

Given the growing interest and potential clinical utility of 
ML in the field of ICG fluorescence signal quantification, we 
sought to identify the relative importance of such considera-
tions in a clinical series of fluorescence angiograms from 
patients with neoplasia and determine potential mitigating 
strategies on how useful these might be. Pertinent findings 
can then inform further endeavours to clinically characterise 
tissues by their ICG perfusion profiles with and without ML.

Methods

Patients and methods

Multispectral (white light and NIR) videos from 50 patients 
(including 37 with rectal tumours, 13 of which were 
benign and 24 malignant, and 13 colorectal liver metasta-
ses (CRLM)) capturing ICG inflow and early outflow over 

between 2 and 15 min of direct observation immediately 
following intravenously administered ICG were studied. All 
patients were undergoing diagnostic and therapeutic surgi-
cal interventions and were specifically consented for inclu-
sion in prospective study (the ‘Future of Colorectal Cancer 
Surgery’ project, ClinicalTrials.gov NCT04220242, ethical 
approval ref: 1/378/2092). Videos were created and recorded 
using a commercial near-infrared (NIR) imager (Pinpoint 
Endoscopic Imaging System, Novadaq/Stryker Corp, Kala-
mazoo, MI, USA) with each patient receiving systemic ICG 
whilst the neoplastic area of interest was being observed 
continually as part of a defined protocol. Patients with rec-
tal pathology (whether benign or malignant) had all been 
referred for surgical consideration by a medical gastroenter-
ologist after initial colonoscopy and were examined endo-
scopically in lithotomy position under general anaesthesia 
as described previously [10]. All those with liver metastases 
were undergoing therapeutic resection either via a primary 
laparoscopic or open approach with the NIR camera again 
being deployed intraoperatively.

Video analysis

Video recordings from these patients, as well as time–fluo-
rescence curves previously generated using open-source 
fluorescence tracking software through tracking of expert 
annotated regions of interest (demarcating both healthy and 
unhealthy areas within the same screen view) within these 
videos [11, 20], were scrutinised to identify examples of 
potential discrepancies and pitfalls in their interpretation 
based on previous observations from the published literature 
in the field of fluorescence-guided surgery. These included 
examination for any impact of variation in ICG dosing on 
the detected fluorescence intensity values from all generated 
time–fluorescence curves. All studied rectal lesion interro-
gations had been performed using 0.25 mg/kg fixed dosing. 
The liver lesions included for study had been imaged with 
both 0.1 and 0.05 mg/kg of ICG with the lower dose being 
trialled due to signal saturation (pixel greyscale unit > 255) 
at the higher dose. Signal attenuation resulting from varying 
distance between camera and target as well as the impact of 
movement (both in the tissue and by the camera) were also 
assessed. Sampling bias, both in the post hoc user-selected 
region of interest (ROI) and in the observation period (video 
length), was also studied.

Once identified, methods to ameliorate such issues were 
developed and applied via clinical protocol standardisation 
(e.g. ICG dosing alteration and administration standardisa-
tion) and accepted ML mathematical methods (e.g. normali-
sation of time–intensity curves obtained by dividing every 
ROI intensity value by the curve’s peak intensity reading) 
and their mitigation impact studied. Computer generated 
curves, as well as clinically obtained curves, were created 
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to demonstrate both the underlying principle and the rela-
tive impact of any methodological attempt at correction as 
follows where not otherwise explained above.

Video acquisition challenges

Distance–intensity relationships and the degree of cam-
era movement occurring were demonstrated clinically in 
real time in a patient with rectal cancer (post-neoadjuvant 
treatment) undergoing tumour assessment under general 
anaesthesia. This patient was placed in the lithotomy posi-
tion with a tabletop electromagnetic (EM) tracking system 
(Aurora NDI, Canada) positioned under padding beneath 
their sacrum to include the anatomical ROI within the EM 
field. A motion sensor (measuring movement in the x, y 
and z axis along with rotation around the x and y axis) 
was secured to the tip of the camera and the camera itself 
used both freehand by the surgeon and in stabilised posi-
tions using a robotic laparoscopic controller (Freehand 
Laparoscopic Controller, Freehand, Surrey, UK) during 
ICG examination. Relative camera-to-target positions were 
calculated by moving the camera tip to recognisable loca-
tions in the rectum (e.g. distal and proximal healthy tissue 
regions as well as the tumour site as origin) after introduc-
tion through a standard transanal minimally invasive surgery 
(TAMIS) setup. Temporospatial data from the Aurora field 
generator, in combination with extracted time–fluorescence 
curves from three geographically distinct landmarks within 
the resulting NIR fluorescence video, were used to dem-
onstrate distance–intensity relationships as well as reflect 
camera movement. Indiscriminate, rapid movement of the 
camera and the impact such use has on fluorescence intensity 
appearances was demonstrated by comparing fluorescence 
intensity tracking at the tumour and camera movements 
recorded by the EM tracking system. Normalisation as a 
technique to negate distance–intensity difficulties was dem-
onstrated using this setup by comparing the time–intensity 
curve upslopes (i.e. ICG inflow) of two healthy regions of 
tissue with EM-calculated distance discrepancies. Potential 
mathematical solutions to movement issues were examined 
including smoothing of time–fluorescence curves using a 
Savitzky–Golay filter (to facilitate peak detection within 
fluorescence curves).

Image presentation challenges

One video of a rectal cancer was chosen as a demonstrator of 
the potential for sample error in user-dependent ROI selec-
tion, akin to that seen in traditional biopsy, by comparing 
fluorescence curve outflow milestones of multiple tracked 
ROIs within a malignant lesion to each other, as well as to 
healthy control tissue within the same patient video.

ML methods challenges

Factors pertinent to the data collection and analysis of 
ICG time–fluorescence curves utilising ML methods were 
assessed including optimal methods of automated data 
extraction from time–fluorescence curves as well as using 
methods to navigate missing data points whilst maintaining 
discriminatory classification performance (here, accurate 
healthy vs unhealthy tissue categorisation). For this, at least 
one healthy control and one lesion tracing (either benign or 
malignant) were generated for each video to permit subse-
quent fluorescence curve milestone extraction [8, 11]. ROIs 
with missing downslope milestones (e.g. shorter duration 
videos) were calculated by imputing missing data points. 
K-nearest neighbour was used to impute within training sets 
with missing computed values compared to other known 
values within the set. Fitting to an exponential curve was 
used to impute missing values in testing curves to simulate 
real clinical practice where only a single video will be tested 
at any one time and therefore cannot be compared to ‘neigh-
bours’. Following identification of a robust automated feature 
extraction methodology, AutoML (auto-sklearn) was used to 
identify an optimised classifier by searching over all possible 
hyper-parameters for a large range of known classifiers to 
choose the best candidate based on area under the receiver 
operating characteristic curve (AUC-ROC). Training–test-
ing was performed using fivefold cross-validation with all 
available ROIs with an 80:20 training: testing split without 
holdout. ‘Time to first peak’, ‘Time ratio’ and ‘Downslope 
10 s after peak’ were included in all classification combina-
tions. Increasing durations of downslopes were incremen-
tally added to ascertain the benefit of increased duration 
of tracking on performance. Classification was performed 
using two-way (cancer vs not cancer) as well as three-way 
(cancer vs benign tumour vs healthy control) splits. Finally, 
to investigate imputation as a method to replace missing 
values, all recorded results for downslope values beyond 
10 s were removed (i.e. simulating a scenario where only 
data 10 s from the peak of inflow were available for all 37 
patients) and replaced via imputation with the classification 
then re-run for comparison to the original results.

Results

Clinical, technical and technological challenges for appro-
priate application of ML (see Fig. 1) were commonly seen 
across the clinical series for both rectal and liver lesions and 
prompted evolutions in both acquisition protocols and post-
acquisition data processing.
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Video acquisition

Fixed dose ICG signal acquisition of rectal cancer utilised 
a wide range of the available greyscale spectrum on post-
acquisition fluorescence curve analysis (pixel intensity 
range: 0–254.38 greyscale units across all 37 videos) with-
out saturation. On the other hand, dosing issues related to 
signal saturation in healthy liver tissue, early in the series, 
were observed in two videos assessing CRLMs at 0.1 mg.
kg ICG concentration. Subsequent reduced dose (0.05 mg/
kg) imagery avoided such plateaus occurring (Fig. 2a). In the 
rectal tumour cohort, one “double peak” (Fig. 2b) occurred 
attributable to ICG dosing in two pulses.

Distance–intensity relationships and movement

Time–intensity curves created from a rectal polyp video 
with a visible discrepancy in NIR camera-lesion distance 
(near) and healthy control (far away) are shown in Fig. 2. 
The raw (non-normalised) curves in this case show large 
differences in peak intensity readings (209.42 greyscale 
units vs 82.82 greyscale units) addressable by curve nor-
malisation. The fallibility of comparing slope-based curve 
milestones between tissue fluorescence curves of raw/non-
normalised data is shown in Fig. 2f using two artificially 
generated, identically shaped curves with different abso-
lute intensity values (simulating the distance discrepancy 
seen in 2c and 2d).

Camera stability over a prolonged period (11 min of 
ICG inflow/outflow) is demonstrated with a maximum 
camera movement of 2.15 mm over this time (Fig. 3b). 
Time-fluorescence curves of two highlighted healthy 
ROIs are shown in Fig. 3 with the impact of normalisa-
tion to allow comparison between the regions highlighted. 
Indiscriminate camera movement resulted in smooth trac-
ing disruption previously seen with camera stabilisation 
(Fig. 3e) with a late tissue outflow increase in tracked 
fluorescence intensity being seen with camera movement 
toward the origin time–fluorescence curve oscillations 
(noise) successfully smoothed via a Savitzky–Golay fil-
ter (available from the open-source Scipy Python Pack-
age[21]) enabling peak detection (Fig. 4a).

Digital biopsy sampling effects

Selecting only two intralesional ROIs yielded comparable 
outflow slopes to a healthy area (− 0.0065 and − 0.0053 vs 
− 0.0065). Once intralesional ROI sampling was increased 
to four regions, curves delineated significant fluorescence 
outflow variations vs benign tissue (ROI 3/4 outflow 
slopes = − 0.0013/− 0.0008, respectively).

Machine learning data classification challenges

To develop and assess the tissue classifier and its fea-
tures, curve milestones extraction from 251 ROIs across 

Fig. 1  Diagrammatic representation of deterministic workflow process step components involved in ICG quantification, analysis and classifica-
tion including important points defined for address at each step
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37 rectal tumour videos was performed (see supplemen-
tary table 1 for patient demographics and lesion data). 
Fluorescence time-series data were populated and output 
in comma separated values (CSV) files and curve mile-
stones including upslope, time to peak and downslope 
were successfully extracted using open-source signal 
processing algorithms from the Scipy Python Package. 
All included ROIs had peak detection successfully per-
formed with complete datasets then obtained up to 100 s 

of downslope. Missing downslope values were imputed for 
11, 72 and 106 ROIs at downslopes of 200, 300 and 400 s, 
respectively. An ensemble composed of multiple K-nearest 
neighbours was identified as the best classifier based on 
AUC-ROC results (see Table 1). An excellent AUC-ROC 
score (0.92) was achieved on 2-way classification for all 
251 ROIs when all downslope values to 400 s obtained 
during tracking were included (with imputed values 
where videos were of insufficient length). This result was 

Fig. 2  Compound image demonstrating important encountered chal-
lenges with methodological corrective counters for ICG quantifica-
tion using extracted time–fluorescence curves from liver and rectal 
ICG fluorescence videos. (a) Time-fluorescence curve with signal 
saturation due to excessive dosing resulting in a persistent plateau 
in healthy liver tissue. (b) Time-fluorescence curve from a rectal 
lesion video with first peak at ≈ 15 s and second peak at ≈ 25 s due 
to ‘double bolus’ ICG push administration. (c) Image of a rectal can-
cer undergoing ICG assessment with transanal access platform in situ 

including supervised box annotations—ROI 1 represents rectal cancer 
tissue whilst ROI 2 represents distant control healthy tissue. (d) dem-
onstrates large differences in tracked tissue fluorescence intensities 
(ROI1 vs RO2) as a result of distance discrepancy with fluorescence 
intensity is tracked dynamically from c. (e) Normalised time–fluores-
cence curves from the raw signal shown in image d. (f) Artificially 
generated graphs of two time–fluorescence curves identical re curve 
shapes but differing re absolute intensity values. Outflow slopes are 
also shown
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improved further when three-way classification was per-
formed (AUC–ROC = 0.93). Inclusion of downslope at just 
200 s after peak resulted in an AUC-ROC > 0.9 for both 
two- and three-way classification. Analysis of the clas-
sification features showed ‘time to first peak’ as the most 

important feature followed by kurtosis and then downslope 
200, 100, 50 and 10 s, respectively. Higher AUC-ROC 
scores were obtained when values were imputed out to 
400 s.

Fig. 3  Distance, intensity and velocity data generated using an elec-
tromagnetic tracking system with its sensor probe attached to the tip 
of the camera and introduced into the patient with a rectal cancer 
following neoadjuvant therapy via a transanal access platform dur-
ing examination under anaesthesia (EUA). (a) White light view of 
the rectum with regions of interest and their calculated distance to 
the camera tip displayed. (b) Distance, movement and velocity data 
of camera movement during the EUA and subsequent ICG assess-

ment (note camera held with robotic camera holder until ≈720 s. (c) 
Raw time–fluorescence data achieved via tracking pixel intensity data 
of the regions indicated in the white light image with slope to peak 
intensities shown. (d) Appearance of these same regions after nor-
malisation of intensity and upslope re-analysis. (e) Impact of camera 
movement on tracked fluorescence intensity showing rapid increase 
in detected fluorescence with inward movement of the camera toward 
the target tissue
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Fig. 4  Compound image demonstrating smoothing (to mitigate signal 
oscillation) and intra-tumoural perfusion heterogeneity, (a) time–fluo-
rescence curve from a rectal cancer with smoothing performed using 

a Savitzky–Golay filter, (b) white light view of a rectal cancer with 
time–fluorescence curves extracted from the ROIs marked

Table 1  Results of two- and three-way classifications (including actual extracted features as well as imputed inference values) of all 37 included 
rectal tumour cases in this series. AUC-ROC values > 0.8 = good. > 0.9 = excellent

Two-way classification (cancer vs not cancer)

Feature added (downslope after peak) AUC-ROC (complete data) AUC-ROC 
(imputed 
values)

50 s 0.805 0.799
100 s 0.881 0.856
200 s 0.888 0.852
300 s 0.912 0.856
400 s 0.920 0.872

Three-way classification (cancer vs benign tumour vs healthy control)

Feature added (downslope after peak) AUC-ROC (complete data) AUC-ROC 
(Imputed 
values)

50 s 0.812 0.839
100 s 0.899 0.886
200 s 0.907 0.875
300 s 0.910 0.898
400 s 0.931 0.891
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Discussion

Given the fallibility in human interpretation of dynamic ICG 
perfusion angiograms [22], quantification and computer-
assisted interpretations, including ML, have been explored 
for the purpose of providing more objective, and potentially 
more detailed, fluorescence signal interpretation with deter-
mination of confidence levels. Application of such methods 
to real-world data and ideally, of course, in real-time, how-
ever, will require a variety of considerations to be addressed 
as shown in this work. Here, we have shown how such con-
cerns can be factored into a capable CV-ML method with 
consistent precision.

ICG dosing remains a topic of considerable discussion 
with wide variations in both weight-based and fixed dosages 
being reported for colorectal and hepatobiliary assessment. 
The 0.25 mg/kg rectal lesion dosing described in this paper 
utilised the entire available intensity scale without saturation 
(avoiding a false-intensity plateau and compromised data 
analysis). Conversely, a smaller dose (0.1 mg/kg) in the liver 
lesion cohort resulted in early saturation of pixel intensity 
due to liver hepatocyte concentration and excretion of ICG 
and highlights the importance of attention to dose and tissue 
type when quantifying ICG administered intraoperatively. 
Antecedent dosing hours-days preoperatively as described 
by others for CRLM localisation depends on complete wash-
out from healthy tissue and retention in/near malignant tis-
sue over the prolonged preoperative period of time providing 
high tumour-to-background ratio at the time of interrogation, 
meaning high ICG doses can be used successfully. Whilst 
intravenous ICG administration method (especially central 
vs peripheral line) is discussed in the literature, the need 
for rapid, single bolus administration when using quantita-
tive ICG fluorescence angiography is demonstrated here and 
needs to be clearly understood by the administrator. Devia-
tions may result in false flow peaks that possibly derail auto-
mated peak detection software and ML algorithms.

The incorporation of absolute intensity as a feature for 
analysis also needs address. Whilst normalisation of data 
to a maximum peak brightness across all ROIs results in 
the loss of absolute intensity values as a potential feature 
in any subsequent computation, this study demonstrates the 
impact of using raw data to compute slope-based param-
eters. Furthermore, this permits the comparison of tissue 
fluorescence curves without requiring both tissues to be in 
the centre of the screen and at similar distances which is 
not always clinically possible. Although it may be possible 
to adjust for such distance–intensity relationships automati-
cally within future NIR systems that incorporate distance 
data (like that we describe using EM tracking fields system 
for instance), normalisation of raw data currently provides a 
useful alternative yielding excellent and reproducible results.

Movement either at tissue (e.g. peristalsis, respiration, 
patient heaving, etc.) and/or at operator-held camera level 
can in theory be problematic. Use of a robotic camera holder 
as described here results in minimal camera movement 
although similar results can be achieved by a human opera-
tor steadying the view by careful attention to the video dis-
play especially for focussed time periods. Large amounts of 
movement (> 5 cm of movement over 5 s) can result in false 
signal detection (e.g. an apparent increase in intensity during 
outflow despite no further ICG administration); however; all 
videos utilised in the classifier described were obtained with 
a handheld camera approximately 3–8cms from the target 
(i.e. standard TAMIS working distance) with any resulting 
small deviations being adequately managed through curve 
smoothing.

Tissue biopsy sampling errors, due to tumour heterogene-
ity, is a significant clinical problem with high false-negative 
rates occurring in larger polyps [23, 24]. Digital biopsy in 
the fashion described may also suffer from the same phe-
nomenon; however, it more easily affords the opportunity to 
sample large areas of lesions as demonstrated. Care must be 
taken to analyse as large a tissue area as possible; however; 
limited user-selected ROI tracking remains prone to under-
representation. Next step evolution of this work includes 
real-time image stabilisation with synchronous white light 
surface feature tracking and whole screen equivalent pixel 
intensity extraction providing full screen characterisation 
with heat map display. Such an approach would also permit 
tumour margination via such automated classification.

Time-series feature extraction and analysis, includ-
ing imputation to deal with missing data as may arise due 
interruption of the continuous field of view observation by 
movement or indeed surgical instrumentation intrusion, is 
demonstrated to yield consistent, positive results across a 
relatively large cohort of patients. The methods of data man-
agement (e.g. curve milestone extraction, curve smoothing, 
etc.) detailed within this manuscript, whilst applied to ROI 
data extracted from the described open-source fluorescence 
intensity tracker, can be applied similarly to other software 
programmes (such as the Fluorescence Tracker App by 
MATLAB available at www. mathw orks. com) as well as to 
other curve milestones which may be more relevant in other 
applications (such as colonic intestinal perfusion assess-
ment) [20]. We chose AUC-ROC (rather than ‘straight’ 
accuracy) to report the results of the classifier as AUC-ROC 
is the probability that the model ranks a random positive 
example more highly than a random negative example [25]. 
The resulting performance figure is, therefore, an indication 
of how much better a classifier is at correctly classifying 
than misclassifying which is not so clear from just accuracy 
rate alone. High AUC-ROC scores are obtained at 200 s with 
only small improvements achieved with tracking beyond 
this timeframe. In the case of missing values, however, 

http://www.mathworks.com
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imputation of downslope values up to 400 s improved the 
AUC-ROC result and suggests that should imputation be 
required for missing data, it should be done for longer peri-
ods of time if possible. It should be noted that although the 
results of imputation, when performed on all ROIs, dropped 
below 0.9, these results were obtained by simulating a sce-
nario where tissues were tracked for only 10 s beyond their 
peak intensity. This was to simulate an extreme scenario 
(less than a minute of actual tracking per video) and was 
done to demonstrate feasibility of this approach in such cir-
cumstances. It is likely, however, that some data will be lost 
intermittently during surgery (camera movement, patient 
movement, etc.) and this method of imputation demonstrates 
a robust method for dealing with such occurrences. Whilst 
this technique is demonstrated here for cancer characteri-
sation, the methodology can be applied too to other time-
curve applications. Finally, the classifier’s ability to maintain 
“excellent” results during three-way classification “benign 
dysplasia vs healthy vs cancer”, which is inherently more 
difficult than two-way “cancer vs benign” discrimination, is 
encouraging for future further sub-classification work and 
suggests that with increasing datasets, discrimination by 
dysplasia type (low vs high grade) and T stage will likely 
be possible as well as in other important clinical scenarios 
such as rectal lesion interrogation post-neoadjuvant therapy.

Limitations in this study relate to the specific nature of 
the dataset although similar considerations likely also apply 
to tissue perfusion signal capture for other dynamic-based 
indications (e.g. intestinal or flap assessment). However, 
open assessments (whether extracorporealised viscera or 
plastic surgery operations) are most often done by stabi-
lised cameras and/or systems with bigger camera heads ena-
bling more intense illumination and signal sensing. Also, 
the study only involved one type of NIR system and other 
systems are known to differ in their signal capture and dis-
play. However, the work identifies the important considera-
tions to be considered and all systems will need specific user 
guidance in similar respect. Such study of alternative com-
mercial systems especially with regard to distance–intensity 
is already ongoing. The retrospective nature of the video 
analysis is also a potential limitation although consistently 
high results have been demonstrated with several diverse 
methods of time–fluorescence curve analysis both based on 
feature extraction and classification as well as profile fitting 
based on biophysical modelling and subsequent classifica-
tion [10, 11].

In conclusion, whilst ICG quantification is not readily 
available in most clinical NIR systems currently, time-
series quantification, and subsequent analysis, can be per-
formed with excellent results with adherence to important 
intraoperative physical and technical recommendations 
and purposeful post-processing of data. Best presentation 
of the dynamic imagery for interpretation by machines is 

as important from this perspective as image display is for 
human observer interpretation. Whilst some technological 
advancement is needed to enable this seamlessly in real time, 
the computational trajectory seen over the last few decades 
should give confidence that evolved processing capability 
can encompass all such aspects.
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