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Abstract
Background Although radical gastrectomy with lymph node dissection is the standard treatment for gastric cancer, the 
complication rate remains high. Thus, estimation of surgical complexity is required for safety. We aim to investigate the 
association between the surgical process and complexity, such as a risk of complications in robotic distal gastrectomy (RDG), 
to establish an artificial intelligence (AI)-based automated surgical phase recognition by analyzing robotic surgical videos, 
and to investigate the predictability of surgical complexity by AI.
Method This study assessed clinical data and robotic surgical videos for 56 patients who underwent RDG for gastric cancer. 
We investigated (1) the relationship between surgical complexity and perioperative factors (patient characteristics, surgical 
process); (2) AI training for automated phase recognition and model performance was assessed by comparing predictions 
to the surgeon-annotated reference; (3) AI model predictability for surgical complexity was calculated by the area under 
the curve.
Result Surgical complexity score comprised extended total surgical duration, bleeding, and complications and was strongly 
associated with the intraoperative surgical process, especially in the beginning phases (area under the curve 0.913). We 
established an AI model that can recognize surgical phases from video with 87% accuracy; AI can determine intraoperative 
surgical complexity by calculating the duration of beginning phases from phases 1–3 (area under the curve 0.859).
Conclusion Surgical complexity, as a surrogate of short-term outcomes, can be predicted by the surgical process, especially 
in the extended duration of beginning phases. Surgical complexity can also be evaluated with automation using our artificial 
intelligence-based model.

Gastric cancer is the most common solid malignancy and a 
leading cause of mortality worldwide [1, 2]. Although radi-
cal gastrectomy with lymph node dissection (LND) is the 
standard treatment for gastric cancer, the complication rate 
remains high. Among gastrectomy cases in Japan, postop-
erative data show a complication rate of 6.8% and mortality 
of 1.2% [3]. Therefore, to safely perform surgery, the ability 
to estimate surgical complexity and determine the risk for 
complications is important. To date, there are several fac-
tors associated with surgical complexity for gastrectomy, 
including body mass index, visceral fat area, and tumor 
characteristics [4–6]. Another important factor for evalu-
ating surgical complexity and predicting complications is 

the surgeon’s skill and experience because outcomes after 
gastrectomy have varied between certified and non-certified 
institutions or surgeons [7, 8]. Straightforward cases for sur-
geons experienced with gastrectomy are often complicated 
for inexperienced surgeons. Surgeons may discover intra-
operative complexity because of easy bleeding, complex 
anatomic landmarks, degree of adhesions, tissue fragility, 
and abdominal cavity narrowing—all of which are difficult 
to evaluate preoperatively with precision [9, 10]. Stulberg 
et al. noted most efforts to date to improve outcomes have 
focused on systems of care that surround the surgical epi-
sode rather than actual processes for the surgery itself. In 
fact, as an intraoperative factor, the surgeon’s technical per-
formance is strongly associated with outcomes [11]. This 
finding suggests surgical outcomes can be attributed to 
intraoperative factors versus preoperative findings. Thus, it 
may be necessary to use intraoperative factors to objectively 
and accurately evaluate surgical complexity and predict 
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complications for each patient. However, some intraopera-
tive factors, such as easy bleeding or anatomic landmark 
complexity, are difficult to evaluate because these are not 
objective. Therefore, this study focuses on the intraoperative 
surgical process.

Artificial intelligence (AI), particularly computer vision 
(CV), has significantly impacted imaging and video analysis. 
CV enables computers to understand meaningful information 
from images or videos. It has a considerable ability to support 
clinical decision-making in various medical fields, including 
automatic diagnosis of intestinal tumors during endoscopy 
and automated detection of pulmonary lesion on computed 
tomography (CT) [12, 13]. We previously reported that using 
deep learning AI could detect esophageal cancer on CT images 
with substantial accuracy, better than that of radiologists [14]. 
This technology is beginning to be used in surgical fields, 
particularly laparoscopic cholecystectomy. Several studies 
suggested possible automated recognition of surgical phases 
on laparoscopic cholecystectomy, showing surgical progress 
with an accuracy of 74.5%–97.3% [15, 16]. This tool informs 
us about what surgeons do during surgery in real-time, result-
ing in the actual sharing of surgical processes among surgical 
teams. Automated recognition of laparoscopic cholecystec-
tomy phases can also help create a video summary for use as 
a postoperative educational tool. In addition to laparoscopic 
cholecystectomy, a similar tool for laparoscopic sleeve gas-
trectomy and colorectal cancer surgery has been established 
with considerable accuracy. An automated surgical process 
using phase recognition can intraoperatively evaluate surgical 
complexity. However, no AI-based surgical phase recognition 
systems have been reported for robotic procedures. Moreover, 
the clinical relevance of automatic surgical phase recognition 
has not yet been indicated.

We hypothesized that the surgical process reflects the surgi-
cal complexity during robotic distal gastrectomy (RDG). The 
aims of the current study were, therefore: 1) to investigate the 
association between surgical process and surgical complex-
ity, such as the risk of complications in RDG; 2) to establish 
an AI-based automated surgical phase recognition for RDG 
by analyzing robotic surgical videos, and 3) to investigate 
the predictability of surgical complexity for RDG by AI. We 
believe that AI automation can help surgeons perform optimal 
decision-making during surgery, such as changing the opera-
tor to the expert or predicting complications. This research 
also could help create educational tools for understanding and 
using robotics, especially for young surgeons.

Methods

Data sets

This study retrospectively assessed consecutive 56 patients 
who underwent RDG with D1 + (10 cases) or D2 LND 
(46 cases) for gastric cancer at Keio University Hospital, 
Tokyo, Japan, between 2018 and 2021. Exclusion criteria 
were conversion to total gastrectomy or undergoing com-
bined cholecystectomy during the same surgery. Although 
all datasets from 56 patients were used to establish the AI 
model, data for 46 patients who underwent D2 LND were 
investigated to evaluate surgical complexity. Patient clini-
cal characteristics, including age, sex, clinical findings, 
and short-term outcomes, were retrospectively extracted 
from hospital electric records. Institutional Review Board 
(IRB) approval was obtained prior to the start of the study 
and we obtained patients’ informed Consent.

Surgical procedure

Surgical indications and extent of the LND were deter-
mined by Japanese Gastric Cancer Treatment Guidelines 
[17]. With the patient in the supine position, RDG was 
performed using the da Vinci Xi system (Intuitive Surgi-
cal, Sunnyvale, California, USA). Three board-certified 
experts performed the surgeries. Accordingly, 4 ports for 
the da Vinci Xi and 1 port for the assistant were inserted.

After abdominal cavity entry, the omentum was incised 
3 cm from the stomach wall toward the spleen. The inci-
sion continued until the left gastroepiploic vessels, which 
were then divided. Omentum dissection was continued 
to the right and down to the transverse colon. The right 
gastroepiploic vein was divided just above bifurcation of 
the anterior superior pancreaticoduodenal vein and right 
gastroepiploic vein. After right gastroepiploic artery divi-
sion, pre-pancreatic soft tissues were removed.

After supraduodenal LND, the duodenum was tran-
sected using a 60-mm stapler. Suprapancreatic LND was 
performed with common hepatic LND, celiac LND, and 
left gastric LND. For cases in which D1 + LND was per-
formed, proximal splenic and hepatoduodenal LND were 
omitted. After completely removing the lymph node of the 
lesser curvature side of the gastric wall, the stomach was 
transected using two or three 60-mm staplers. Although 
Billroth-I or Roux-en-Y reconstruction was performed by 
the surgeon’s preference, Roux-en-Y tended to be chosen 
if the remnant stomach was small. For study analysis of the 
surgeon’s learning curve, 46 patients were divided into 2 
groups based on the timing of the surgeries at the institu-
tion during the study period: the early period group, when 
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the first 20 RDG surgeries were performed in our institu-
tion (before February 2020), and the late-period group, 
when the most recent surgeries were performed (after 
March 2020) [18].

Surgical complexity

To evaluate surgical complexity, the surgeon examined 
the association between 3 factors that are surrogates of 
surgical level—estimated total operative time, bleeding, 
and complications [4, 10, 19, 20]—and perioperative fac-
tors, such as age, sex, clinical stage, surgical process. In 
addition, a surgical complexity score based on these three 
factors was established, and we investigated the factors 
related to this score (Table 1). A score less than 2 was 
defined as low complexity; a score of 2 or more represented 
high complexity. In this analysis, we used the estimated 
total surgical time, which excludes the duration of recon-
struction from total surgical time because we wanted to 

use all data for patients who underwent Roux-en-Y or Bill-
roth-I reconstruction. We divided the estimated total surgi-
cal time into two groups on the 25th percentile. According 
to the anesthesiologist’s chart, bleeding was defined as the 
presence of blood loss during surgery, whereas no bleed-
ing was defined as absence of blood loss. Any grade 1 or 
higher complication in the Clavien-Dindo classification 
was considered a postoperative complication.

Annotation for surgical phase recognition

The RDG phases were divided into 10 surgical phases 
(phases 1–10): (1) preparation, (2) left gastroepiploic 
LND, (3) infrapyloric LND, (4) supraduodenal LND, 
(5) duodenal resection, (6) suprapancreatic LND, (7) 
lesser curvature LND, (8) gastric resection, (9-a) Roux-
en-Y reconstruction, (9-b) Billroth-I reconstruction, and 
(10) after dissection to completion of surgery (Fig. 1). 
We determined each phase’s starting and ending points 
based on the surgical procedure and anatomic character-
istics (Table 2). The phase for the suprapancreatic LND 
included common hepatic LND, celiac LND, left gastric 
LND, and proximal splenic and hepatoduodenal LND. The 
“no-step phase” indicated video sequences during camera 
removal from the abdominal cavity was also defined to 
clarify the time for cleaning the camera, port insertion, or 
instrument exchange. Two board-certified gastrointestinal 
surgeons performed video annotations manually and inde-
pendently (MT and YM). Discrepancies in the annotation 
were addressed by discussion between these two surgeons.

Table 1  Definition of surgical complexity score

Total score less than 2 low complexity; total score 2 or more high 
complexity

Variable Value Score

Extended total surgical 
time

Extended 1
No-extended 0

Bleeding Presence 1
Absence 0

Complications Presence 1
Absence 0
Total difficulty score 0–3

Fig. 1  Representative image for each of the ten surgical phases 
(phases 1–10); (1) preparation, (2) left gastroepiploic LND, (3) 
infrapyloric LND, (4) supraduodenal LND, (5) duodenal resection, 

(6) suprapancreatic LND, (7) lesser curvature LND (8) gastric resec-
tion, (9-a) Roux-en-Y reconstruction, (9-b) Billroth-I reconstruction, 
and (10) after dissection to completion of surgery
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AI models for computer vision

We used TeCNO [21], which uses a multi-stage temporal 
convolutional network for the hierarchical prediction of sur-
gical phases. This approach can model the temporal context 
of phases over relatively long periods during the procedure. 
We applied these parameters to train the models: 12 output 
features, input image height of 256 and width of 256, and 
a sampling rate of 1. We used four-hold cross validation 
to train and assess the AI model; a random set compris-
ing 75% of the videos (42 videos) was used as the training 
set, and the remaining 25% (14 videos) was used as the test 
set. This process was repeated 4 times to use all datasets 
for the testing. The model was implemented in Python 3.6. 
Frames were extracted from each video at a rate of one frame 
per second (fps), with an average of 14,590 ± 5135 frames 
per video. The AI models’ performance was assessed by 
comparing predictions to the reference annotated by the sur-
geon. We assessed the performance by normalized confusion 
matrices (NCM), precision, recall, F-value, and accuracy. 
Rows in the NCM corresponded to the annotated phases 
(ground truth), whereas columns corresponded to the pre-
dicted phases. Values in the diagonal elements of the NCM 
represented, for each phase, the proportion of time points 
where the prediction was correct (true positive rate). These 
measurements were investigated as follows: accuracy [(true 
positive + true negative)/(true positive + false positive + false 
negative + true negative)]; precision [true positive/(true 
positive + false positive)]; recall [true positive/(true posi-
tive + false negative)]; and F-value [2 × (recall × precision)/
(recall + precision)].

Statistical analysis

All statistical analyses were calculated using Stata/IC 16 for 
Mac (StataCorp, Texas, USA), with a p-value of < 0.05 indi-
cating statistical significance. We calculated between-group 
differences using the chi-square test for categorical vari-
ables and the Mann–Whitney U test for continuous variables. 
Finally, accuracy for the prediction of surgical complexity was 
confirmed using the area under the curve (AUC), determined 
by analysis of the receiver operator characteristics curve.

Results

Patient characteristics

Of all 56 videos, 46 patients (35 male, 11 female) underwent 
RDG with D2 LND and were used for analysis to evaluate 
the relationship between surgical process and surgical com-
plexity; the other 10 patients underwent D1 + LND. Clini-
cal staging was stage I for 38 patients (83%) and stage II or 
higher for 8 patients. In 1 patient each, 5 complications were 
observed: (1) postoperative bleeding, (2) pancreatic fistula, 
(3) anastomotic leakage, (4) pulmonary embolism, and (5) 
delayed gastric emptying.

Relationship between surgical complexity 
and perioperative factors

The relationship between surgical complexity and several 
perioperative factors were investigated (Supplemental 
Table 1). We determined the cutoff value of the estimated 

Table 2  Definition of each phase of robotic gastrectomy

LND lymph node dissection

No Step start end

1 Preparation Camera is inserted into abdominal cavity Start next phase
2 Left gastroepiploic LND Start omental incision 3 cm from stomach wall toward spleen End dissection of left gastroepiploic LND
3 Infrapyloric LND Start omental incision 3 cm from stomach wall toward right gastro-

epiploic vein
End dissection of infrapyloric LND

4 Supraduodenal LND Start lesser omentum incision between supraduodenal vessel and 
right gastric vessel

End dissection of supraduodenal LND

5 Duodenal resection Start using stapler to divide duodenum Finish dividing duodenum
6 Suprapancreatic LND Start lesser omentum incision toward cardia, or start dissection for 

suprapancreatic LND
End dissection of suprapancreatic LND

7 Lesser curvature LND Start dissection for soft tissue attached to lesser curvature side of 
gastric wall

End dissection of lesser curvature LND

8 Gastric resection Start using stapler to divide stomach Finish dividing stomach
9-a Roux-en-Y reconstruction Start treating small bowel or stomach for reconstruction Finish reconstruction
9-b Billroth-I reconstruction Start treating duodenum or stomach for reconstruction Finish reconstruction
10 After dissection to com-

pletion of surgery
End of all dissection Finish all procedures

11 No step Camera removed from abdominal cavity Camera is inserted into abdominal cavity
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total surgical time as 18,315 s, the point of 25% percentile. 
For the estimated total operation duration, higher clinical 
stage (p = 0.005); higher clinical T stage (p = 0.045); early 
surgical period at the institution (p = 0.003); and surgical 
duration for all phases, except phase 10 (after dissection 
to surgery completion); and the no-step phase were sig-
nificant-associated factors for the extended total surgical 
duration. For bleeding, significant-associated factors were 
extended total surgical duration (p < 0.001); Roux-en-Y 
reconstruction (p = 0.027); and extended duration of these 
phases: preparation (p = 0.004), left gastroepiploic LND 
(p = 0.024), infrapyloric LND (p < 0.001), duodenal resec-
tion (p = 0.024), suprapancreatic LND (p < 0.001), and the 
no-step phase (p = 0.002). For complications, significant-
associated factors were extended total surgical duration 
(p = 0.039), Roux-en-Y reconstruction (p = 0.047), and 
extended duration of infrapyloric LND (p < 0.001), and of 
suprapancreatic LND (p = 0.023).

We also focused on the duration of early phases, which 
showed a similar tendency: preparation to left gastroepip-
loic LND (phases 1–2) and preparation to infrapyloric LND 
(phases 1–3), in which significant differences in bleeding 
and estimated surgical duration were observed.

We compared surgical complexity scores between 
high (score 2 or more) and low (score 1 or less) complex-
ity. Significantly associated factors of high complexity 
were: clinical stage II or more (p = 0.001); reconstruction 
method (Roux-en-Y, p = 0.044); extended duration for these 
phases: preparation (p = 0.002), left gastroepiploic LND 
(p < 0.001), infrapyloric LND (p < 0.001), supraduodenal 
LND (p = 0.003), duodenal resection (p = 0.003), suprapan-
creatic LND (p < 0.001), lesser curvature LND (p = 0.002), 
and gastric resection (p = 0.009); duration from phase 1 to 
phase 2 (p < 0.001); and duration from phase 1 to phase 3 
(p < 0.001). Furthermore, the early stage, which shows the 
first 20 cases in our institution, was also a significant factor 
(p < 0.001). These AUC values were compared (Supplemen-
tal Fig. 1) to evaluate the predictability for high complex-
ity. Duration from phase 1 to phase 3 had the highest AUC 
values; 0.913.

Establishment of automated surgical phase 
recognition

We established the AI model to recognize the surgical pro-
cesses using 56 videos with an overall accuracy of 87%. 
Supplemental Fig. 2 shows the NCM phases, which indi-
cate true positive rates (diagonal items) ranging from 62% 
(Billroth-I reconstruction phase) to 96% (no-step and duo-
denal resection phases). Supplemental Table 2 shows other 
accuracy statistics (F-value, precision, and recall).

To visualize the predictive accuracy of our model, Fig. 2 
shows timelines for two representative cases. The upper and 

lower timelines show the annotated and predicted phases, 
respectively. These cases achieved nearly complete agree-
ment between ground truth and predicted phases.

Relationship between surgical complexity 
and surgical processes predicted by AI

Several AUC values for phase duration were compared 
(Fig. 3) to evaluate the AI model’s predictability of high 
complexity. The AUC value of predicted duration from 
phase 1 to phase 2 and duration from phase 1 to phase 3 
were 0.865 and 0.860, respectively, which is a higher value 
than preoperative factors.

Discussion

This study showed that surgical complexity as a surrogate 
of short-term outcomes could be predicted by surgical pro-
cess, especially with extended duration of the beginning 
phases, based on extended total surgical duration, intraop-
erative bleeding, and postoperative complications. We estab-
lished the AI-based system to recognize the surgical phase 
automatedly with high accuracy. Surgical complexity can 
also be evaluated automatedly by our present system. This 
approach enables intraoperative decision-making, such as 
optimal timing of changing the surgeon to expert, to predict 
intraoperative bleeding and complications. To the best of 
our knowledge, this report is the first to use AI to determine 
surgical complexity.

Evaluating surgical complexity is important to avoid 
complications and propose optimal decision-making. To 
date, many factors such as obesity, tumor size, and advanced 
stage were reported as risk factors for surgical complexity 
in gastrointestinal surgery [4, 6]. We can preoperatively use 
these patient factors to determine surgical complexity; how-
ever, short-term outcomes are associated with patient factors 
evaluated preoperatively and intraoperative factors such as 
surgeon proficiency. Therefore, the importance of evaluat-
ing surgical skills is increasing [8]. Indeed, the preoperative 
prediction of surgical complexity has several advantages, 
such as additional preparation before surgery. However, 
intraoperative findings can provide more information than 
preoperative ones. The connection of pre- and intraoperative 
findings can help predict surgical skill as a next step.

To assess surgical skill, objective indications are needed. 
Stulberg et al. showed that higher technical skill scores 
for colectomy may be associated with lower complication 
rates; however, surgeons scored skills based on performance 
such as instrumental handling or operative flow [11]. Han 
et al. showed the Kappa value among surgeons was low for 
assessing surgical skills, suggesting consistent assessment 
for surgical skill is challenging [7]. Thus, the intraoperative 
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process may be a good objective indicator for evaluating 
surgical skills. Moreover, it may reflect the patient factors, 
such as anatomic complexity and obesity, because of related 
intraoperative delays. This system would be useful for pre-
dicting complications with high accuracy and to support 
decision-making, such as changing the operator to expert 
during surgery and modifying surgical procedures.

In our study, the beginning phases, from the start to end 
of left gastroepiploic LND or infrapyloric LND, had high 

predictability for surgical complexity. These phases included 
many technical procedures (e.g., adhesiotomy, instrument 
handling, retraction, mobilization, vessel resection), and thus 
durations were strongly associated with surgical skill and 
complexity.

In addition to evaluating surgical complexity, auto-
mated phase recognition can be useful in clinical prac-
tice settings, such as surgical summaries, operating room 
assistance, and education. Several web-based educational 

Fig. 2  Example of timeline visualization of the phases from the videos for TeCNO prediction. Upper row, ground truth; lower row, TeCNO pre-
dictions

Fig. 3  Receiver operating 
characteristic curve analysis 
for the beginning of surgical 
process predicted by artificial 
intelligence
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platforms are widely used for minimally invasive surgery 
[22, 23]. Video platforms now have a major role in surgical 
education due to the coronavirus disease 2019 pandemic. 
We can easily and automatically index actual surgical steps 
in RDG on these platforms. Furthermore, this approach 
may also improve operating room efficiency by helping 
surgical staff prepare the next equipment or patients by 
showing the remaining duration and phase transition tim-
ing. To date, laparoscopic cholecystectomy has been most 
common surgical procedure in which automated phase rec-
ognition was attempted, given its lower complexity and 
robust standardization in general surgery. This study is the 
first to apply automated phase duration to RDG, the most 
common upper gastrointestinal surgery, which reinforces 
the importance of our research.

Our NCM results showed that AI had relatively low accu-
racy for recognizing reconstruction compared with other 
phases. First, we conducted two types of reconstructions 
based on the surgeon’s preference—Roux-en-Y and Billroth-
I reconstruction. A sufficient number of datasets may result 
in better outcomes; more datasets for each reconstruction are 
needed to increase accuracy for these phases in the future.

This study has several limitations, primarily its single-
center design and inclusion of patients who underwent RDG 
by only several surgeons in one department, which have led 
to overfitting. Second, phase duration may not consistently 
directly show surgical skill because processes may be often 
delayed unpredictably for reasons such as machine failure. 
Ideally, automated recognition of processes would be an 
essential task, such as recognizing whether an organ was 
injured. However, procedures cannot be evaluated con-
sistently for gastrectomy [7], which challenges automated 
recognition by AI [24]. Thus, it is reasonable to first focus 
on objective indicators such as phase duration. In addition 
to phase recognition, automated procedure recognition is 
needed in the future. Third, although the AUC value for sur-
gical processes was higher than that for the surgical period, 
the learning curve of our procedure for RDG may also be 
associated with extended total duration and bleeding, as 
indicated by the surgical complexity score. To determine 
the actual cutoff value for the duration of beginning phases, 
only cases for which the surgeon has reached the learning 
curve should be used. Fourth, we had adopted three factors; 
extended total surgical time, bleeding and complication; 
as binary variables to establish a simple scoring system, 
which can enable easy interpretation. However, diminish-
ing the resolution of data are a limitation of our surgical 
complexity scoring system. More detailed subdivision of 
each variable is necessary to reflect surgical complexities 
precisely. However, a detailed scoring system could not be 
established because of the small amount of data. The collec-
tion of more video data may enable us to establish a detailed 
scoring system.

In conclusion, our study shows that surgical complexity 
as a surrogate of short-term outcomes can be predicted by 
surgical processed, especially in the extended duration of 
beginning phases. Surgical complexity can also be evaluated 
automatedly by our present AI-based model, and it enables 
intraoperative decision-making and prediction of intraopera-
tive bleeding and complications.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00464- 023- 09924-9.
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