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Abstract
Background  Early introduction and distributed learning have been shown to improve student comfort with basic requisite 
suturing skills. The need for more frequent and directed feedback, however, remains an enduring concern for both remote 
and in-person training. A previous in-person curriculum for our second-year medical students transitioning to clerkships was 
adapted to an at-home video-based assessment model due to the social distancing implications of COVID-19. We aimed to 
develop an Artificial Intelligence (AI) model to perform video-based assessment.
Methods  Second-year medical students were asked to submit a video of a simple interrupted knot on a penrose drain with 
instrument tying technique after self-training to proficiency. Proficiency was defined as performing the task under two minutes 
with no critical errors. All the videos were first manually rated with a pass-fail rating and then subsequently underwent task 
segmentation. We developed and trained two AI models based on convolutional neural networks to identify errors (instru-
ment holding and knot-tying) and provide automated ratings.
Results  A total of 229 medical student videos were reviewed (150 pass, 79 fail). Of those who failed, the critical error 
distribution was 15 knot-tying, 47 instrument-holding, and 17 multiple. A total of 216 videos were used to train the models 
after excluding the low-quality videos. A k-fold cross-validation (k = 10) was used. The accuracy of the instrument holding 
model was 89% with an F-1 score of 74%. For the knot-tying model, the accuracy was 91% with an F-1 score of 54%.
Conclusions  Medical students require assessment and directed feedback to better acquire surgical skill, but this is often 
time-consuming and inadequately done. AI techniques can instead be employed to perform automated surgical video analy-
sis. Future work will optimize the current model to identify discrete errors in order to supplement video-based rating with 
specific feedback.

Keywords  Artificial intelligence · Video-based review · Convolutional neural network · Skills assessment · Suturing and 
knot-tying simulation

The introduction of surgical skills to pre-clinical medical 
students has long been supported for a variety of reasons 
including early exposure, early skill acquisition in a simu-
lation environment, and evidence of the resulting positive 

attitude towards surgery [1–3]. More specifically, a large 
proportion of students are given the opportunity to suture 
while on clerkship and engagement in operations has been 
significantly associated with positive student perceptions on 
their clerkship [4].

Feedback and distributed practice have both been identi-
fied as critical needs for deliberate practice and skill acquisi-
tion [5]. Previous medical student suturing curricula, even 
those using video-based assessment, have utilized human 
resources for assessment and feedback [6, 7]. However, the 
large time investments required for surgical faculty to gain 
or teach skills with directed feedback have been a longstand-
ing concern [7, 8]. A key component of deliberate practice 
is however “detailed immediate feedback” [5]. Video-based 
training has demonstrated many benefits, including relieving 
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some of the personnel burden and scheduling issues, and 
allowing for retrospective review while maintaining equiv-
alent learning outcomes [9–11]. There remains, however, 
limitations in the ability to provide directed, immediate 
feedback [10]. There has been some work with variable 
results demonstrating the accuracy in learner self-assess-
ment of skill acquisition [12, 13]. Furthermore, there has 
been limited previous work examining the use of artificial 
intelligence in assessing and providing feedback for medical 
student skills training [14].

Compared with manual video-based assessment, machine 
learning and AI-based methods are faster, require less 
instructor-hours, more reproducible, and potentially less 
subjective. The flexibility and accessibility of these meth-
ods have thus resulted in numerous successful applications 
in surgical education [15–18]. Nevertheless, the majority of 
existing work has focused on minimally invasive techniques; 
within this area, AI work has been developed for instrument 
tracking, work-flow analysis, the identification of critical 
anatomy, and basic surgical skills such as robotic suturing 
and knot-tying [19–23].

We previous reported positive learner outcomes associ-
ated with an open suturing and knot-tying curriculum for 
our second-year medical students which we adapted to an 
at-home video-based assessment format due to the social 
distancing requirements of COVID-19 [11]. Students rec-
ognized the at-home training environment as a low-stress 

and convenient practice environment. Additionally, exami-
nation of that curriculum demonstrated reduced personnel 
needs associated with the virtual platform [11]. However, 
the need for more frequent and directed feedback was also 
reported. Based on these data, we aimed to use artificial 
intelligence to develop a Deep Learning (DL) model that 
would (1) distinguish pass-fail performances to develop an 
automatic assessment tool, as well as (2) identify the reason 
for task failure.

Materials and methods

Task details and materials

The task and assessment criteria for this curriculum had 
been predetermined from previous curriculum content [11]. 
The medical students were to perform a simple-interrupted 
knot on a penrose drain model using an instrument tying 
technique (Fig. 1). All students were provided with the same 
take-home suturing kits that contained instruments (surgical 
needle driver, forceps, and scissors), suture material (2–0 
silk suture, SH needle), penrose drain models with pre-
marked targets and velcro for model fixation. An instruc-
tional 25-min video was provided that explained the task 
with demonstrations of passing performance, errors, and 
pitfalls. Students were instructed to self-train to proficiency 

Fig. 1   Snapshots of the task segmentation
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and then provide a video of their performance for assess-
ment. The instructional video also included demonstrations 
of the desired video capture using a laptop webcam or cell-
phone camera on a tripod with the intended opposite facing 
45-degree downward angle view.

Metrics and errors

Students were assigned a task rating using a pass/fail scale 
that was developed in the previous curriculum [11]. Criti-
cal errors, which consisted of a safety or technical error, 
resulted in a rating of “fail.” Safety errors included touching 
the needle with one’s hands. Technical errors were classified 
as knot-tying errors, instrument holding errors, or combined 
errors. To develop a more robust error detection for the AI 
model, the errors were classified in a more granular fashion 
based on step-wise delineation of the task (Table 1). This 
study was reviewed and deemed exempt by the University 
of Texas Southwestern Institutional Review Board.

Video collection

At the completion of their self-training period, students 
submitted their video for evaluation to an online learning 
platform D2L (desire to learn). These videos were then 
downloaded and deidentified. Subsequently, all videos were 
manually annotated to mark the nine steps of open suturing 
task (Table 1, Fig. 1).

There existed large variation in the quality of videos 
with regards to file size, aspect ratio, camera angle, camera 
motion, field of view, lighting, and the background color. 
Though a large variation in input data can improve an AI 
model’s robustness, it introduces additional challenges for 
designing a computer vision-based algorithm such as low 
lighting, poor contrast between suture and background, and 
other distractions (clutter/moving objects).

Deep‑learning models

Advanced deep-learning techniques and in particular Con-
volutional Neural Networks (CNNs) have proven effective 
in capturing high-level representations in images and videos 
and have been successfully used in many computer vision 
tasks such as image and video classification and activity 
recognition [24, 25]. Inspired by the human visual cortex 
and neural system, a deep CNN consists of several trainable 
convolutional layers, which sequentially update the input 
representation through extracting important discriminating 
patterns. The weights of all the layers are iteratively adjusted 
by minimizing an error function (also called loss function) 
during training in an end-to-end fashion using the so-called 
back-propagation algorithm. Once trained with a large set of 
image/video instances, the model can perform the desired 
input–output mapping (such as classification) in new and 
unseen data points.

To identify an error using deep learning, a training data-
set is needed that has a large number of instances of the 
specific error. Since there are only a few videos for some 
of the errors (Table 3), we combined multiple error types 
and categorized the errors as either instrument holding or 
knot-tying errors. Two deep learning models were trained to 
detect these errors in the corresponding steps. The rationale 
for developing separate models was that each error required 
distinct automated detection methods; while still images 
could be sufficient for identifying instrument holding errors, 
detecting the knot-tying errors required tracking and captur-
ing hand movements to assess performance. The description 
of the models are as follows:

(1)	 Instrument Holding Error Detection: In the instrument 
holding error detection model, three types of errors 
were annotated: incorrect forcep hold, incorrect nee-
dle driver hold, and incorrect needle load. Images of 
correct and incorrect forcep and needle driver holding 
are shown in Fig. 2. The input frames for this model 

Table 1   Error classification 
system Curriculum error AI model error

Knot-tying error Surgeon’s knot: incorrect direction of wrap
Surgeon’s knot: incorrect number of wraps
Surgeon’s knot: incomplete crossing of hands when laying the knot
Square Knot #1: incorrect direction of wrap
Square Knot #1: incomplete crossing of hands when laying the knot
Square Knot #2: incorrect direction of wrap
Square Knot #2: incomplete crossing of hands when laying the knot

Instrument holding error Forceps: incorrect hold
Needle Driver: incorrect hold
Needle: incorrect load

Combination error Combination error
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were randomly taken from the first two steps of the task 
(needle loading and insertion through needle and suture 
withdrawal).

	   The instrument holding model consisted of a CNN to 
extract spatial features for each input frame, an atten-
tion block to aggregate the extracted features, and a 
classifier layer to output the probability of pass/fail. 
The block diagram of the model is shown in Fig. 3. 
The role of the attention block was to calculate the 
importance of the input frames in making the pass/fail 
probability estimation. Using the attention mechanism 
(Luong et al. 2015), the output vectors of the CNN that 
are taken from a sequence of frames are given impor-
tance weights and the weighted sum of these extracted 
visual features is used to classify the videos based on 
the presence of an error. The classifier layer is a fully 
connected networks that generates the probability of 
pass or fail. The length of the input sequence was 16 
frames. The architecture of the CNN was based on the 
Efficient-net model that was pre-trained on a large data-
set of real-world images named “Imagenet” [26, 27].

(2)	 Knot-Tying Error Detection: In the knot-tying error 
detection model, seven types of errors were recognized 
and annotated (Table 1). As tracking the hand move-
ment is essential in identifying incorrect knot-tying, we 
developed a model that considers temporal and motion-
based features. Therefore, we computed optical flow 
for all the frames of the videos and used them as the 
input to the deep learning model. Optical flow meth-
ods approximate the motion for each individual pixel 

in consecutive images and can be used as a measure 
for objects’ velocity in a 2D direction [28, 29]. The 
advantage of using optical flow input as opposed to 
the original colored images is that the movements of 
the objects are considered directly and irrespective of 
the color, texture or pose of the hand or background. 
A sequence of 64 optical flow images from consecu-
tive frames (approximately 1 frame per second) were 
chosen from the next seven knot-tying steps (surgeon’s 
knot wrap to second knot lay). For shorter videos, the 
sequence was padded with blank (white) images.

	   The block diagram of the knot-tying error detection 
model is shown in Fig. 4. As Three-Dimensional (3D) 
CNNs are powerful models for learning representation 
from 3D volumetric data and sequence of 2D images 
such as in videos, a 3D CNN was adopted to capture 
the temporal features of the sequential input. The archi-
tecture of the 3D CNN was based on the X3D model 
that was pre-trained on a large video dataset [30]. The 
loss function used for training both models was sigmoid 
cross-entropy, which is suitable for binary classification 
(0 for pass, 1 for fail).

Data augmentation

Data augmentation is a commonly utilized and referenced 
technique for improving the performance and generalizabil-
ity of deep learning models [31]. In our study, the origi-
nal dataset used was imbalanced as it contained far more 
instances of “pass” than “fail” videos. This was especially 

Fig. 2   Examples of instrument holding errors. a Correct forceps hold, b incorrect forceps hold, c correct needle driver hold, and d incorrect nee-
dle driver hold
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true for the knot-tying error detection model. This imbalance 
can affect the model performance negatively; to mitigate 
this issue, one investigator (MBN) deliberately committed a 
variety of errors while performing the task. These 45 “fail” 
videos were used to supplement the dataset and reduce the 
imbalance ratio during model training. We utilized other 
well-known data augmentation methods in the develop-
ment of these models; these included random image crop, 

translation, rotation, temporal speed change, and color and 
brightness adjustment.

Deep‑learning training and evaluation

The models were implemented using the Keras library, a 
popular deep learning library [32]. The batch size for train-
ing the instrument holding error detection model and the 
knot-tying error detection model were 16 and 8 respectively. 

Fig. 3   The block diagram of our instrument holding error detection 
model. The model’s inputs were several randomly chosen images 
from steps 1–2. The visual features of all the input frames were 
extracted using a CNN and aggregated in the attention block. Using 

the attention mechanism, the features were weighted by the trainable 
parameter w and summed before the fully connected (FC) classfica-
tion layer. The output as the probability of the presence/absence of an 
error (pass/fail)

Fig. 4   The block diagram of our knot-tying error detection model. 
The model’s inputs were optical flow images, which represented the 
movement of the objects/hand (the colored images are shown for 

visualization only). A 3D CNN extracted the spatial and temporal 
pattern and generated the probability of presence/absence of an error 
(pass/fail)
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Both of the models were trained using the A100 Graphic 
Processing Unit (GPU) with 40 GB of memory. An SGD 
optimizer was used for both models with the learning rate 
of 0.001 and decay rate of 0.7 after 10 epochs (https://​portal.​
biohpc.​swmed.​edu/​conte​nt/).

To evaluate the performance of the trained models, we 
used a tenfold cross-validation method. The extra videos 
of fail instances were used in all the 10 folds training sets. 
For overall results, a video was labeled as fail if at least one 
type of error occurred. We defined True Positive (TP), True 
Negative (TN), False Positive (FP) and False Negative (FN) 
as correctly predicted as fail, correctly predicted as pass, 
pass incorrectly predicted as fail, and fail incorrectly pre-
dicted as pass, respectively. Based on these definitions, the 
metrics used for validation (accuracy, precision, sensitivity 
and F1-score) were calculated for both models as well as the 
overall pass/fail grade:

To further analyze and optimize the prediction probabili-
ties, Receiver Operating Characteristic (ROC) and Preci-
sion-Recall (PR) curves were plotted. The ROC curve sum-
marizes the trade-off between the true positive rate 
(precision) and false-positive rate (  FP

FP+TN
 ), whereas the PR 

curve summarizes the trade-off between precision and sen-
sitivity. Both plots are used for analyzing the probability 
threshold for classification models.

Results

Video‑based ratings and characteristics

As previously reported, a total of 229 medical students 
participated in the curriculum and provided video per-
formances for manual assessment [11]. Of these, 65.5% 
(150/229) resulted in a passing rating. A rating of fail was 
given to 34.5% (79/229) of which the most common, 59.5% 
(47/79), were instrument holding errors (Tables 2 and 3). 
The majority of trainees performed the task with their right-
hand, 97.4% (223/229), as compared to the left-hand 2.6% 
(6/229). It is unclear how many are left-hand dominant and 

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

F1-score =
2 × Precision × Sensitivity

Precision + Sensitivity performed the task with right non-dominant hand. Videos 
were shot opposite to the learner for a front angle in 87.3% 
(200/229) of the videos, while over-the-shoulder angles 
made up the remaining 12.7% (29/229).

Certain characteristics made for poor video quality. These 
included a moving/non-stationary camera (usually held man-
ually by another individual), low lighting, poor contrast with 
a dark or patterned background, and distractions (clutter or 
other moving objects). After deliberation, 7.0% (16/229) of 
the videos were excluded from use for model training due 
to poor quality. The remaining videos were cropped and 
resized to 480*480 to better focus on the moving objects 
while maintaining the aspect ratio. All videos were saved at 
30 frames per second.

Task performance time in median [interquartile 
range] was significantly shorter for passing group at 53 s 
[43.25–64.75] as compared to the failing group at 62  s 
[51–76.5] (p-value < 0.01). The descriptive statistics of the 
performance times of each steps is reported with a mean 
time for instrument holding at 24.13 + 7.52 s and knot-tying 
at 35.66 + 6.44 seconds (Table 4).

Table 2   Student performance ratings by pass/fail and error type

Student perfor-
mance rating

Error classification Number of videos (n)

Pass grade 150
Fail grade 79

Knot-tying errors 15
Instrument-holding error 47
Combined error 17

Total = 229

Table 3   Total number of videos for each error type

Error Number of 
videos (n)

Incorrect forcep hold 53
Incorrect needle driver hold 1
Incorrect needle load 2
Surgeons knot direction 5
Surgeons knot wrap # 2
Surgeons knot lay 7
Knot #1 wrap 16
Knot #1 lay 6
Knot #2 wrap 4
Knot #2 lay 12

https://portal.biohpc.swmed.edu/content/
https://portal.biohpc.swmed.edu/content/
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Deep learning model results

The cross-validation results demonstrate 0.83 overall 
pass/fail accuracy with an F1-score of 0.69 (Table 5). The 
accuracy of the instrument holding error model was 0.89 
and the F1-score 0.74. The accuracy of the knot-tying 
error detection model was 0.91 and the F1-score 0.54. 
The area under the ROC curve for the instrument hold-
ing error detector and knot-tying error detector was 0.84 
(95% CI 0.76–0.91) and 0.67 (95% CI 0.55–0.79) respec-
tively; additionally, the average precision was 0.66 (95% 
CI 0.54–0.82) and 0.49 (95% CI 0.30–0.67) respectively 

(Fig. 5). Confusion matrices for the two models are shown 
in Fig. 6.

Discussion

Optimizing learner assessment and feedback remains a large 
focus of ongoing medical education given the proven ben-
efits despite high person-hour requirements. This was an 
innovative study which aimed to develop a DL model for 
automatic rating development (assessment) and error detec-
tion (feedback) of a medical student knot-tying task. Our 
work demonstrated some interesting findings including the 
high accuracy and low sensitivity of our preliminary model, 
the impact of imbalanced video distributions in CNN train-
ing, and the need for video standardization. Because of the 
limited number of videos for some error types, training and 
evaluating DL models independently for all types of errors 
was not possible. Therefore, we grouped the errors into two 
categories of instrument holding and knot-tying errors and 
separate models were developed for each of these categories.

For a DL model to be useful in assessment and feed-
back, it requires high accuracy and precision. Fortunately, 
our models had high accuracy scores (89% and 91%), 
which demonstrate the potential to both (1) identify the 
presence/absence of the two types of errors and (2) to pro-
vide the pass/fail score. The relatively lower F1-score and 

Table 4   Performance times (seconds) for each step

Task segmentation Mean STD Min Max

1. Needle loading and insertion 15.02 6.4 5 37
2. Needle and suture withdrawal 9.11 3.95 3 28
3. Surgeons knot wrap 7.95 3.77 2 26
4. Surgeons knot lay 5.81 2.45 2 16
5. Single throw 1 4.85 2.85 1 22
6. Knot 1 lay 4.33 2.08 1 17
7. Single throw 2 4.02 2.08 2 14
8. Knot 2 lay 4.37 2.13 1 14
9. Cutting tails 8.93 3.49 1 30

Table 5    Results of the deep 
learning models*

*Data reported as mean and standard deviations where appropriate

Accuracy Precision Sensitivity F1-score

Instrument holding error detection 0.89 ± 0.05 0.85 ± 0.28 0.65 ± 0.29 0.74 ± 0.27
Knot-tying error detection 0.91 ± 0.03 0.92 ± 0.44 0.38 ± 0.31 0.54 ± 0.32
Overall pass/fail 0.83 0.86 0.58 0.69

Fig. 5   Precision-Recall (a) and Received Operating Characteristic (b) curves for the instrument holding and knot-tying error detection models
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the large gap between accuracy and F1, however, indicated 
worse performance on fail videos. This was likely due to 
a high imbalance of pass versus fail videos in our dataset 
for both models.

As compared to the instrument holding error detection 
model (three errors), the knot-tying error detection model 
(seven errors) performed worse overall. This was further 
evident when observing the difference between precision 
and sensitivity. The knot-tying model had a higher preci-
sion (0.92), while having a lower sensitivity. We suspect 
that this was likely due to the exaggeration of the imbal-
ance problem again across multiple different error types, 
which was more severe in knot-tying errors (Table 5).

The high precision of the two models indicated a low 
FP rate; however, the low sensitivity indicated a higher FN 
rate (Fig. 6). In practice, this is an important limitation. 
While FPs would likely get a human review or second-
ary evaluation, FNs may allow false trainee certification 
without further assessment. Incorrectly predicting a fail as 
a pass rating could undermine a robust proficiency-based 
curriculum.

The person-hours required for someone to evaluate and 
provide feedback for all TP and FP videos would likely be 
dramatically reduced from having to manually grade the 
entire cohort of student videos. Indeed, in previous pub-
lished data regarding the same curriculum, it was estimated 
that 10 person-hours were required to manually grade all 
videos and a subsequent 24 person-hours to perform reme-
diation for groups ranging 2–9 students [11]. However, iden-
tifying and subsequently minimizing FNs would be difficult. 
It is thus essential to analyze the trade-off between precision 
and sensitivity to minimize the FNs. Indeed, the ROC and 

PR curves are powerful tools in identifying the right thresh-
old in our binary classifiers’ prediction (pass/fail).

Another finding was the lack of standardization in the 
videos that impacted the quality and quantity of model train-
ing. Indeed, 7.0% (16/229) of the originally submitted vid-
eos were excluded from model training for various reasons. 
This was despite discrete instructions being given to learners 
regarding how to arrange their workspace and record their 
performance. Problems included moving/non-stationary 
cameras (often held by another individual), low lighting, 
minimal contrast of the materials from the background with 
the use of dark or marble patterned counter spaces, and dis-
tractions (other moving objects or clutter in the background). 
While the video quality of these submissions may have been 
sufficient for human assessment, these conditions provided 
inadequate quality for AI assessment models. Thus, these 
findings demonstrated the importance of standardization in 
video-based and AI assessment.

The strengths of this study were primarily in the seminal 
use of and the potential for AI-based assessment and feed-
back in simulation-based education. Previous studies largely 
focused on using AI based models to evaluate expert versus 
novice performance. However, our work provided a novel 
use of AI models in developing trainee (medical student) 
evaluation and feedback tools to augment the video-based 
education learner’s experience for open skills. Constructive 
student feedback on the original curriculum raised a con-
cern in learning a task incorrectly and then subsequently 
cementing incorrect technique into habits with repetitive 
practice without feedback or until final assessment [11]. The 
benefits of AI models included their speed and automatic-
ity, which may allow for not only summative feedback but 

Fig. 6   Confusion matrices for the (a) instrument holding and (b) knot-tying error detection models
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also the potential for formative feedback in the setting of 
limited instructor person-hours. Future efforts will include 
developing task deconstruction and error analysis to not only 
provide “pass”/”fail” metrics, but rather more discrete error 
detail such as “incorrect forceps hold (step 1)” or “incorrect 
direction of surgeon’s knot wrap (step 3).” This automated 
form of formative assessment could allow for the early rec-
ognition and correction of incorrect technique while also 
optimizing the use of directed feedback for all learners. 
Additional work will include performing data augmentation 
for balanced distribution of “fails” using methods such as 
obtaining pre-training performance videos, recruiting more 
novice learners, and standardizing video capture (tripod, 
white paper background, measured setup distances, camera 
quality) to limit the number of videos that are removed from 
analysis.

The authors recognize several limitations. First, the poor 
video quality and the removal of 16 videos from analysis 
could have skewed the data, but in which manner remains 
unclear. Next the imbalance of videos across both pass/fail 
and early/late practice performance leads to underdeveloped 
model training. Future efforts to mitigate such imbalance 
issues include training the model with more “fail” videos as 
a method of intentional data augmentation beyond what was 
attempted to further reduce the accuracy-F1 gap and improve 
the overall performance. Finally, our analysis generated an 
overall accuracy of 83%, which fell short of the generally 
accepted threshold of 90% or greater.

Conclusions

We aimed to create an AI model that would provide an auto-
matic assessment tool for our previously reported suturing 
and knot-tying curriculum. Our preliminary data showed 
positive progress in accuracy of error detection by perfor-
mance improvement methods including designing a multi-
stream architecture and training it in end-to-end fashion. 
Identified needs include having additional videos with more 
errors for training, standardization of video capture, and bal-
anced rating distribution for improved model training. We 
hope that this work will guide further efforts in automated 
assessment for summative as well as eventually formative 
training feedback. We anticipate that such innovations will 
help reduce the burden of relying on instructor support, 
while improving efforts in simulation-based education.
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