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Abstract
Introduction  Prediction of proficiency of laparoscopic skills is essential to establish personalized training programs. Objec-
tive assessment of laparoscopic skills has been validated in a laparoscopic box trainer with force, motion and time recogni-
tion. The aim of this study is to investigate whether acquiring proficiency of laparoscopic skills can be predicted based on 
performance in such a training box.
Methods  Surgical residents in their first year of training performed six different tasks in the Lapron box trainer. Force, motion 
and time data, three objective measures of tissue manipulation and instrument handling, were collected and analyzed for the 
six different tasks. Linear regression tests were used to predict the learning curve and the number of repetitions required to 
reach proficiency.
Results  A total of 6010 practice sessions performed by 42 trainees from 13 Dutch hospitals were assessed and included for 
analysis. Proficiency level was determined as a mean result of seven experts performing 42 trials. Learning curve graphs 
and prediction models for each task were calculated. A significant relationship between force, motion and time during six 
different tasks and prediction of proficiency was present in 17 out of 18 analyses.
Conclusion  The learning curve of proficiency of laparoscopic skills can accurately be predicted after three repetitions of 
six tasks in a training box with force, path length and time recognition. This will facilitate personalized training programs 
in laparoscopic surgery.

Keywords  Laparoscopy · Training · Prediction of skill · Simulation · Learning curve · Minimally invasive surgery

Surgeons require a specific set of advanced technical skills 
to safely perform minimally invasive surgery (MIS). These 
technical skills include hand–eye coordination, depth per-
ception and handling long instruments with reduced tactile 
feedback [1–4]. The surgical residency program has followed 

an apprenticeship model of ‘‘see one, do one, teach one’’ for 
more than a century [5]. However, after the introduction 
of the relatively complex MIS, this approach of training in 
the operating room resulted in increased patient injuries and 
associated health care costs [6–8]. During the last decades, 
reports on improvement of patient safety by simulation train-
ing have been published [9–11]. This has started a paradigm 
shift of the way surgeons are trained, following a new model 
of “see one, simulate many, do one’’ [5, 12].

Traditionally, laparoscopic skills have been assessed 
subjectively using forms such as OSATS, GOALS, and 
OPRS [13–15]. However, it is important to include objec-
tive assessment in skills training to provide supervisors 
with a consistent tool to assess the skills of surgical 
residents [1]. A combination of performance parameters 
has been classified, representing tissue manipulation 
and instrument handling skills, which enables objec-
tive assessment of laparoscopic skills [16]. Our research 
group reported earlier successful implementation of objec-
tive performance parameters in basic laparoscopic skills 
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training of first-year surgical residents, enabling objective 
assessment of learning curves [17].

Objective assessment of the learning curve is essential 
to determine when proficiency levels have been acquired 
[17–20]. It is demonstrated that baseline performances of 
psychomotor ability uniquely predict the learning curve 
during laparoscopic skills training with virtual reality 
simulators [21, 22]. Predicting learning curves at an early 
stage of training allow creating individually adjusted skills 
training programs in the near future [21, 23]. The aim of 
this study was to analyze and predict the learning curve of 
basic laparoscopic technical skills.

Methods

Participants

First-year surgical resident who completed a basic lapa-
roscopy course between April 2020 and June 2021 were 
included for prospective data-analysis. Surgical residents 
from multiple teaching hospitals in the Netherlands were 
included. The Basic Laparoscopy Course is part of the 
surgical residency program and participating in the study 
was voluntary (and without consequences). The study was 
exempt from Ethical Board review.

Protocol and the basic laparoscopy course

The basic laparoscopy course consisted of a 3-week at-
home laparoscopic box training course, followed by a 
hands-on training day at the Amsterdam Skills Centre, 
consisting of performing a laparoscopic appendectomy 
and cholecystectomy on fix for life cadaver models [17]. 
Trainees received a laparoscopic box trainer and were 
instructed to train a minimum of five sessions a week, 
performing six different validated laparoscopic tasks [13, 
24–26] (Supplemental File A). Measurements were com-
pared to predefined proficiency levels, which were equal to 
mean parameter outcomes of 7 surgeons [13]. The scoring 
system consists of a scale of 1–10 with 8 being the profi-
ciency level (pre-set competency based on experts). The 
score consists of the average of the force, motion and time 
which are each scored individually.

At the end of this course, the trainees performed the 
six tasks once again as a post-course assessment. Over-
all progression was measured by comparing baseline and 
post-course assessment. Objective force, motion and time 
parameters were measured, representing tissue manipula-
tion and instrument handling skills [16, 27].

System and materials

The Lapron box trainers (Amsterdam Skills Centre, 
Amsterdam, The Netherlands) [28] were utilized dur-
ing the basic laparoscopy course. The box trainers were 
equipped with the ForceSense objective measuring sys-
tem (MediShield B.V., Delft, the Netherlands) [29], which 
uploaded all measurements and recordings to an online 
database. Six previously validated laparoscopic tasks were 
included: Post and Sleeve, Loops and Wire, Flap task, 
Wire chaser, Pattern cut and Zigzag loop [17] (Supple-
mental File A). Furthermore, the Lapron box trainer was 
equipped with two curved Maryland grasping forceps, one 
laparoscopic scissor and a laparoscopic axial needle holder 
(Aesculap, B. Braun, Melsungen, Germany). All statis-
tical analyses were performed using the 26th version of 
IBM SPSS Statistics. Graphs were created using GraphPad 
(Prism 9.0.0, San Diego, California USA).

Statistical analyses

Learning curves that show maximum force (N), path 
length (mm) and time (s) were created for the six tasks, 
displaying the group mean and proficiency levels. The 
path length was defined as the total distance travelled by 
the laparoscopic instruments and the maximum force was 
defined as the maximum absolute force applied on the 
laparoscopic tasks [13].

Linear regression tests were performed to predict the 
learning curve at an early stage of training using IBM 
SPSS statistics 28 (SPSS Inc., Chicago, Illinois USA). 
Baseline performances of the parameters maximum 
force (N), path length (mm) and time (s), were included 
as independent variables. These baseline performances 
were defined as the average scores of the first three meas-
urements. The number of sessions that were needed to 
reach the proficiency level were included as dependent 
variables. Linear regression tests were performed sepa-
rately for each parameter of the six tasks. All sessions 
that were not successfully completed due to unforeseen 
circumstances and tasks that were performed less than 
three times were excluded from analysis. Trainees that did 
not reach the proficiency level for one of three parameters 
were excluded from analysis of this specific parameter. 
Post hoc power analyses were performed using GPower 
(Supplemental File A, Table A1).
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Fig. 1   Post and Sleeve learning 
curves
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Results

Learning curve analysis

A total of 6010 trials, performed by 42 trainees from 13 
Dutch hospitals were included for analysis. Figure 1 shows 
the proficiency graphs of the parameters: maximum force 
(N), path length (mm) and time (s) for the Post and Sleeve 
laparoscopic task. Proficiency level graphs of all six tasks 
are provided in Supplemental file B.

For the Post and Sleeve, the benchmark of maximum 
force was reached at the 4th session, while the benchmark 
of the path length was reached at the 32nd session and the 
benchmark of time at the 21st session of the training. Sup-
plementary Figures B2-B6 show an improvement of the 
mean and standard deviation over the initial training ses-
sions, after which it gradually levels out in the plateau phase.

Table 1 shows the proficiency level of each parameter and 
the number of trainees that reached the proficiency level. 
For all tasks, the proficiency level of the maximum force 
was the first to be acquired, except for the Wire chaser, in 
which the benchmark for the maximum force was reached 

at the 38th session. The benchmarks of the parameters time 
and path length were reached at the same time for the Flap 
task and the Pattern cut. While for the other tasks, the pro-
ficiency level for time reached before the proficiency level 
of the path length. Moreover, 19 out of 42 reached profi-
ciency for the path length of the Loops and wire, 21 out of 
42 trainees reached the proficiency level of the maximum 
force for the Wire chaser, and 31 out of 42 trainees reached 
the proficiency level of the path length for the Zigzag loop. 
These three parameters were reached by the lowest number 
of trainees. The remaining 15 parameters were reached by 
more than three quarters of the trainees.

Learning curve prediction

The results of the Linear regression analyses are provided in 
Table 2. For 17 of 18 parameters, the baseline performance 
had a statistically significant relationship with the number 
of sessions needed to reach the benchmark. Within the path 
length of the Loops and wire, this relation was insignifi-
cant. Fifteen out of 18 dependent variables were not nor-
mally distributed and therefore were either log-transformed 

Table 1   Mean session to 
proficiency and number of 
trainees that reached the 
proficiency level

Note Mean session at which trainees reach the proficiency level is determined by proficiency graphs (Fig. 1 
and Supplementary Fig. 2–6)

Task Benchmark Mean session to reach 
proficiency

Number of trainees 
that reach profi-
ciency

Post and sleeve
 Time (s) 98.4 s 21 38/42
 Path length (mm) 4810 mm 32 37/42
 Maximum force (N) 2.00 N 4 42/42

Loops and wire
 Time (s) 86.0 s 18 38/42
 Path length (mm) 3300 mm 35 19/42
 Maximum force (N) 3.01 N 2 42/42

Flap task
 Time (s) 42.8 s 36 36/42
 Path length (mm) 1993 mm 36 37/42
 Maximum force (N) 1.56 N 2 42/42

Wire chaser
 Time (s) 106.6 s 6 40/42
 Path length (mm) 4558 mm 19 37/42
 Maximum force (N) 1.22 N 38 21/42

Pattern cut
 Time (s) 150.1 s 3 42/42
 Path length (mm) 6000 mm 3 42/42
 Maximum force (N) 2.22 N 1 40/42

Zig-zag loop
 Time (s) 54.6 s 30 35/42
 Path length (mm) 3027 mm 44 31/42
 Maximum force (N) 2.70 N 7 41/42
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or square-root transformed, as shown in Table 2. The rela-
tion between the number of sessions needed to reach the 

benchmark and the baseline performance was quadratic for 
two out of 18 parameters. For these parameters, curvilinear 

Table 2   Results of linear 
regression analyses: baseline 
performances as a predictor of 
the number of sessions needed 
to reach the benchmark of the 
parameters time, path length 
and maximum force

Note Estimates are unstandardized coefficients. ns not significant; *p ≤ 0.05; **Log-transformed (Log10) 
dependent variable; ***Square-root-transformed dependent variable; ****Squared independent variable. p 
≤ 0.05 are given in bold

B SE t Sig. (p) 95% CI

Post and sleeve
 Time Constant − 9.19 3.238 − 2.39 0.007 * [− 15.756, − 2.621]

X 0.12 0.018 6.801 0.000 * [0.085, 0.156]
 Path length** Constant − 0.17 0.175 − 0.95 0.348 [− 0.521, 0.189]

X 1.29 E-4 0 5.823 0.000 * [0.000, 0.000]
 Maximum force** Constant 0 0.093 − 0.01 0.996 [− 0.190, 0.189]

X 0.188 0.04 4.646 0.000 * [0.106, 0.270]
Loops and wire
 Time *** Constant 0.602 0.63 0.955 0.346 [− 0.676, 1.881]

X 0.016 0.004 3.588 0.001 * [0.007, 0.025]
 Path length ** Constant 0.705 0.375 1.882 0.077 [− 0.085, 1.496]

X 5.38 E -5 0 0.86 0.402 n.s [0.000, 0.000]
 Maximum force ** Constant − 0.4 0.087 − 4.58 0 [− 0.571, − 0.22]

X 0.206 0.028 7.483 0.000 * [0.150, 0.261]
Flap task
 Time ** Constant − 0.11 0.318 − 0.34 0.74 [− 0.753, 0.541]

X 0.015 0.005 2.684 0.011 * [0.004, 0.026]
X2 **** − 4.21 E-5 0 − 2.03 0.050 * [0.000, 0.000]

 Path length ** Constant 0.230 0.12 1.915 0.064 [− 0.014, 0.474]
X 1.12 E-4 0 4.718 0.000 * [0.000, 0.000]

 Maximum force ** Constant − 0.31 0.07 − 4.47 0 [− 0.455, − 0.171]
X 0.36 0.048 7.565 0.000 * [0.263, 0456]

Wire chaser
 Time ** Constant − 0.34 0.162 − 2.08 0.044 [− 0.665, − 0.009]

X 0.006 0.001 5.334 0.000 * [0.004, 0.008]
 Path length ** Constant − 2.25 0.754 − 2.99 0.005 [− 3.789, − 0.719]

X 0.001 0 3.245 0.003 * [0.000, 0.001]
X2 **** − 3.94 E-8 0 − 2.51 0.017 * [0.000, 0.000]

 Maximum force ** Constant − 0.707 0.344 − 2.05 0.054 [− 1.428, 0.14]
X − 0.76 0.193 3.967 0.001 * [0.361, 1.167]

Pattern cut
 Time ** Constant − 0.51 0.111 − 4.57 0 [− 0.733, − 0.282]

X 0.005 0.001 7.231 0.000 * [0.004, 0.007]
 Path length ** Constant − 0.51 0.115 − 4.47 0 [− 0.747, − 0.280]

X 1.13 E-4 0 7.392 0.000 * [0.000, 0.000]
 Maximum force ** Constant − 0.29 0.071 − 4.08 0 [− 0.437, − 0.146]

X 0.206 0.039 5.348 0.000 * [0.128, 0.285]
Zig-zag loop
 Time Constant 4.656 4.345 1.072 0.292 [− 4.183, 13.495]

X 0.076 0.034 2.239 0.032 * [0.007, 0.145]
 Path length Constant 1.712 5.212 0.329 0.745 [− 8.964, 12.389]

X 0.002 0.001 2.76 0.010 * [0.001, 0.004]
 Maximum force ** Constant − 0.19 0.144 − 1.32 0.195 [− 0.480, 0.101]

X 0.155 0.041 3.809 0.000 * [0.073, 0.238]
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regression tests were performed in which squared independ-
ent variables were included for analysis.

Table 3 shows the linear regression equations for the esti-
mation of the number of sessions needed to reach the bench-
mark. Transformed models are either Log – Linear (Log10) 
or Square-root – Linear. Post hoc power-analysis revealed 
high power (> 0.8) for 16 out of 18 linear regression tests. 
The power of the path length within the Loops and wire was 
0.138, while the power of time within the Zig-zag loop was 
0.610. See Supplementary file A for results of the post hoc 
power-analyses (Supplementary Table A1).

Discussion

This study showed that it was possible to predict the learn-
ing curve of laparoscopic technical skill in a basic laparos-
copy course at an early stage of training. By performing a 
laparoscopic task three times, it is possible to calculate how 
many repetitions are needed to acquire the benchmark for 
force, motion and time parameters. For example, according 

to the calculations in Fig. 2, 19 repetitions for reaching the 

time benchmark, 31 repetitions for reaching the path length 
benchmark and two repetitions to not exceed maximum force 
are advised when a trainee completed the Post and Sleeve 

Table 3   Learning curve 
Prediction: linear regression 
equations. Y = Number of 
sessions needed to reach the 
benchmark; X = Baseline 
performances of the parameters 
time, path length and maximum 
force

Note Estimates are unstandardized coefficients. Transformed models are either Log – Linear (Log10) or 
Square-root – Linear. ns not significant

Task Untransformed data Transformed data

Post and sleeve
 Time Y = − 9.188 + 0.120 * X
 Path length Log10 (Y) = − 0.166 + 1.29 E-4 * X
 Maximum force Log10 (Y) = 0.000 + 0.118 * X

Loops and wire
 Time SQRT (Y) = 0.602 + 0.016 * X
 Path length n.s
 Maximum force Log10 (Y) = − 0.396 + 0.206 * X

Flap task
 Time Log10 (Y) = − 0.106 + 0.015 * X – (− 4.21 E-5) * X2
 Path length Log10 (Y) = 0.230 + 1.12 E-4 * X
 Maximum force Log10 (Y) = − 0.313 + 0.360 * X

Wire chaser
 Time Log10 (Y) = − 0.337 + 0.006 * X
 Path length Log10 (Y) = − 2.245 + 0.001 * X – (− 3.94 E-8) * X2
 Maximum force Log10 (Y) = − 0.707 + (− 0.764 * X)

Pattern Cut
 Time Log10 (Y) = − 0.508 + 0.005 * X
 Path length Log10 (Y) = -0.514 + 1.13 E-4 * X
 Maximum force Log10 (Y) = − 0.292 + 0.206 * X

Zig-zag loop
 Time Y = 4.656 + x * 0.076
 Path length Y = 1.712 + x * 0.002
 Maximum force Log10 (Y) = − 0.189 + 0.155 * X

Time X = 238 sec
Path Length X = 12836 mm
Maximum force X = 2.94 N

Time Y = -9.188 + 0.120 * 238
Time Y = 19

Path Length Log10 (Y) = -0.166 + 1.29 E-4 * 12836
Path Length Y = 31

Maximum force Log10 (Y) = 0.000 + 0.118 * 2.94
Maximum force Y = 2

Fig. 2   Example of prediction calculation
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task three times with the following average outcome: time 
238 s, path length 12,836 mm and maximum force 2.94 N.

This allows identifying trainees who require more time 
and feedback for their laparoscopic training. Furthermore, 
the possibility arises to find trainees require less training 
time for basic laparoscopic skills, and hence, can advance 
earlier to more complex laparoscopy. Lastly, using the cur-
rent methods it is possible to recreate this learning curve 
prediction model for other laparoscopic (and robotic) train-
ing tasks and curricula.

Proficiency graphs displaying the group learning curve 
made it possible to analyze the learning curve and determine 
if and when the proficiency level is reached for each param-
eter of the six tasks. For all except one tasks, the bench-
mark of maximum force was the first to be reached. The 
benchmarks of the parameters time and path length were 
either reached at once, or the benchmark of time was reached 
before the benchmark of the path length. This indicates that 
trainees need the most time to improve their path length. 
This is supported by the analysis of the number of trainees 
that reach the proficiency level, in which the benchmark of 
the path length was reached the least often. This is consistent 
with our prior conducted research [17]. At the start of the 
training, the majority of novices is focused on safe tissue 
manipulation and on completion of the task. Resulting in a 
longer completion time and more instrument movements. 
Furthermore, efficient handling of instruments is more 
inherent to experts and their proficiency levels in this metric 
are relatively high. Using the above mentioned prediction 
model, more feedback and guidance can now be given in an 
early phase for path length parameters.

Furthermore, differences between tasks and parameters 
can be examined. It is found that the proficiency levels for 
the Zig-zag loop are reached at a later stage of training, 
while the three benchmarks for the Pattern cut are reached 
within three sessions, suggesting that the Pattern cut is easier 
to perform, compared to other tasks.

The learning curve of all residents improved rapidly dur-
ing the first sessions, after which it gradually leveled out in 
the plateau phase, which is as expected [30]. This suggests 
that it is possible to predict the learning curve at an early 
stage of training. Stefanidis et al. (2017) stated that base-
line performances, which were defined as average scores 
of the first three measurements, might be of value in the 
prediction of skill acquisition in laparoscopic skills training 
with virtual reality simulators [31]. This was consistent with 
our analysis, the mean of the first three measurements were 
defined as baseline performances and included as predictor 
variables in the prediction of the learning curve in the basic 
laparoscopy course.

Improving a personalized curriculum could be achieved 
by showing the trainees performance level and the profi-
ciency levels during training. This enables comparing the 

trainees performance with the proficiency level, the group 
mean and quartiles 1 to 3. Displaying these proficiency 
graphs during training can enhance the individual feedback 
that is received directly by trainees. [32]. As an example of 
personalized training, the Amsterdam UMC and the 13 affili-
ated teaching hospitals have a Minimally Invasive Surgery 
Curriculum in which personalized training is implemented. 
Since 2018, the Basic Laparoscopy Course is mandatory for 
junior residents. The course participants receive box training 
with objective feedback and are examined on fix4life human 
cadavers in the Amsterdam Skills Centre. After obtaining the 
certificate, the residents perform laparoscopic procedures 
in the OR.

A limitation of this study is that trainees that did not reach 
the proficiency level were excluded from analysis within the 
learning curve prediction. This could have the effect that the 
prediction model is more optimistic in prediction. This was 
because for statistical reasons making a prediction model 
only the trainees that achieved proficiency could be reliably 
used for prediction. However, the prediction model is still 
able to distinguish between underperformers and overper-
formers in an early phase. This implies that overperformers 
would not need to use expensive training facilities for an 
extended period. And underperformers will be identified in 
an early phase for additional personalized training. A per-
sonalized prediction model can be applied universally for 
all trainees.

In conclusion, measurement of objective force, motion 
and time parameters can predict the time of reaching profi-
ciency allowing tailored and personalized training.
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