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Abstract
Background Dividing a surgical procedure into a sequence of identifiable and meaningful steps facilitates intraoperative 
video data acquisition and storage. These efforts are especially valuable for technically challenging procedures that require 
intraoperative video analysis, such as transanal total mesorectal excision (TaTME); however, manual video indexing is time-
consuming. Thus, in this study, we constructed an annotated video dataset for TaTME with surgical step information and 
evaluated the performance of a deep learning model in recognizing the surgical steps in TaTME.
Methods This was a single-institutional retrospective feasibility study. All TaTME intraoperative videos were divided into 
frames. Each frame was manually annotated as one of the following major steps: (1) purse-string closure; (2) full thickness 
transection of the rectal wall; (3) down-to-up dissection; (4) dissection after rendezvous; and (5) purse-string suture for sta-
pled anastomosis. Steps 3 and 4 were each further classified into four sub-steps, specifically, for dissection of the anterior, 
posterior, right, and left planes. A convolutional neural network-based deep learning model, Xception, was utilized for the 
surgical step classification task.
Results Our dataset containing 50 TaTME videos was randomly divided into two subsets for training and testing with 40 
and 10 videos, respectively. The overall accuracy obtained for all classification steps was 93.2%. By contrast, when sub-
step classification was included in the performance analysis, a mean accuracy (± standard deviation) of 78% (± 5%), with 
a maximum accuracy of 85%, was obtained.
Conclusions To the best of our knowledge, this is the first study based on automatic surgical step classification for TaTME. 
Our deep learning model self-learned and recognized the classification steps in TaTME videos with high accuracy after 
training. Thus, our model can be applied to a system for intraoperative guidance or for postoperative video indexing and 
analysis in TaTME procedures.
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Transanal total mesorectal excision (TaTME) was intro-
duced in 2010 to address the limitations of conventional 
transabdominal total mesorectal excision (TME) [1]. To 
overcome technical difficulties, a transanal endoscopic sur-
gical approach comprising laparoscopic “rendezvous” above 
the prostate was advocated, especially for obese men [2]. 
In particular, the transanal approach is aimed at increasing 
visibility and providing better access to dissection planes 
during excision, thereby improving the quality of a resected 
specimen. In addition, TaTME offers a safer anastomotic 
technique with the use of a distal purse-string suture, thus 
allowing low anastomosis in patients who might otherwise 
need a permanent stoma [3–5].
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However, during TaTME, surgeons have experienced 
intraoperative technical difficulties in approximately 40% 
of the cases; these technical difficulties include inaccurate 
plane dissection, pelvic bleeding, and visceral injuries [6]. 
Expert surgeons and early adopters of the TaTME proce-
dure have acknowledged that these technical difficulties are 
partly due to unfamiliar views and difficulty interpreting the 
anatomy from below, which could make it hard to recognize 
correctly the appropriate tissue planes. This is likely to have 
been the cause of early reports of urethral injuries reported 
in the TaTME international registry data [7], which are com-
plications rarely observed in the case of conventional TME 
surgery.

Video-based learning for minimally invasive surgery is 
considered a useful teaching aid [8, 9], and it is especially 
valuable in the case of TaTME with the risk of unexpected 
complications in patients. Consistent review of intraopera-
tive laparoscopic videos could facilitate understanding of 
common errors during surgery and increase the awareness of 
potential injury mechanisms by acknowledging error-event 
patterns [10, 11]. In addition, several studies showed that 
video-based learning contributed to reducing surgical error 
and improving surgical skill [12, 13]; however, manual video 
review by humans is a time-consuming task.

Convolutional neural networks (CNNs) [14] are a type of 
artificial intelligence (AI) tool that can be utilized in the field 
of computer vision for deep learning-based image analysis 
[15]. Notably, CNNs could be used to review surgery videos 
in order to identify specific segments of a surgery [16–19]. 
This would make video-based learning for TaTME consider-
ably more efficient by reducing the effort required in manual 
video indexing.

Thus, in this study, we constructed an annotated video 
dataset for segments of the TaTME surgical procedure using 
a deep learning model to promote video-based learning for 
TaTME. Moreover, we evaluated the performance of the 
proposed deep learning model for analyzing intraoperative 
videos to identify different surgical steps during TaTME.

Materials and methods

Study design and patient cohort

This was a single-institutional retrospective feasibility study. 
Intraoperative video data for 50 patients who underwent 
TaTME at the Department of Colorectal Surgery at National 
Cancer Center Hospital East (Kashiwa, Japan) between May 
2018 and July 2019 were randomly extracted for the study. 
However, intraoperative video data for cases wherein the 
perineal procedure was not properly recorded were excluded 
from this study.

Video dataset

In the video dataset, all perineal procedures of TaTME 
were performed laparoscopically, instead of robotically, 
and five attending colorectal surgeons performed the 
procedures. Among the five surgeons, one was a TaTME 
expert, three had performed 10–30 TaTME surgeries, and 
the remaining surgeon had performed less than 10 TaTME 
surgeries.

During preprocessing, the intraoperative TaTME videos 
were converted to MP4 video format with a display resolu-
tion of 1280 × 720 pixels and a frame rate of 30 frames per 
second (fps). After preprocessing, the video dataset was 
divided into training and testing sets with 80% and 20% 
of the data, respectively (i.e., 40 videos were utilized to 
train models, while 10 videos were utilized to test them). 
The data were split on a per-video rather than a per-frame 
basis; thus, frames from a video that were included in the 
training set were not present in the test set.

Annotation of surgical steps

The surgical steps of TaTME for annotation in intraopera-
tive videos were determined based on a previous study by 
Lacy et al. wherein the stepwise procedure for TaTME is 
described [3, 20]. Given the nature of supervised deep learn-
ing, it is considered reasonable to define the surgical steps 
for the automatic classification task based on the stylized 
stepwise procedure. Each intraoperative video was manually 
annotated at 30 fps and parts of the video were manually 
classified into the following major steps: (1) purse-string 
closure; (2) full thickness transection of rectal wall; (3) 
down-to-up dissection; (4) dissection after rendezvous; and 
(5) purse-string suture for single stapling technique (SST). 
Steps 3 and 4 were each further classified into four sub-
steps; specifically, dissection for anterior, posterior, and 
both bilateral planes. In this study, the areas of neurovas-
cular bundle and pelvic splanchnic nerves were considered 
to be a part of the bilateral planes. Every annotation label 
was manually assigned by two colorectal surgeons (DK and 
TI) independently, and both surgeons underwent sufficient 
annotation training and had sufficient knowledge of TaTME. 
Every discrepancy about the annotation label was solved via 
discussion. Details on each step including the definitions of 
the start and end of a step are summarized in Table 1.

CNN model

In this study, a CNN model, Xception [21], was used for 
the TaTME surgical step classification task. The model 
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was pre-trained using the ImageNet dataset, which consists 
of 14 million images of general objects, such as animals, 
scenes (e.g., beaches, mountains), and food [22]. Data aug-
mentation was not performed.

Computer specifications

All modeling procedures were performed using a script writ-
ten in Python 3.6. Furthermore, a computer equipped with 
an NVIDIA Quadro GP 100 GPU with 16 GB of VRAM 
(NVIDIA, Santa Clara, CA) and an Intel® Xeon® CPU 
E5-1620 v4 @ 3.50 GHz with 32 GB of RAM were utilized 
for model training and testing.

Evaluation metrics

To evaluate the performance of the CNN model in the surgi-
cal step classification task, precision, recall, F1 score, and 
overall accuracy were measured. The following calculation 
formulas were used for these metrics.

where TP, FP, FN, and TN denote true-positive, false-pos-
itive, false-negative, and true-negative cases, respectively. 
Notably, precision, recall, and F1 scores were utilized as 
performance metrics for each surgical step, whereas over-
all accuracy was utilized as the performance metric for the 
entire model. Descriptions of the evaluation metrics are pro-
vided in Table 2. Cross-validation was not performed.

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

F1 score = 2 ×
Precision × Recall

Precision + Recall

Overall accuracy =
(TP + TN)

(TP + FP + FN + TN)

Table 1  Intraoperative surgical 
steps and sub-steps during a 
TaTME

TaTME transanal total mesorectal excision, SST single stapling technique

Surgical step/Sub-step during TaTME Definitions of start and end of step

1 Purse-string closure Start: Appearance of suture on screen
End: Disappearance of suture from screen

2 Full thickness transection of rectal wall Start: Approach to rectal wall for cutting
End: Completion of transection

3 Down-to-up dissection
 3-1 Anterior plane Start: Approach to each plane for dissection

End: Withdrawal from each plane 3-2 Posterior plane
 3-3 Right plane
 3-4 Left plane

4 Dissection after rendezvous
 4-1 Anterior plane Start: Approach to each plane for dissection

End: Withdrawal from each plane 4-2 Posterior plane
 4-3 Right plane
 4-4 Left plane

5 Purse-string suture for SST Start: appearance of suture on screen
End: disappearance of suture from screen

Table 2  Descriptions of evaluation metrics

Evaluation metrics Description

True-positive Number of frames whose predicted step is Step X when the true step is also Step X. (Correct)
False-positive Number of frames whose predicted step is Step X when the true step is not Step X. (Misclassification)
False-negative Number of frames whose predicted step is not Step X when the true step is Step X. (Misclassification)
True-negative Number of frames whose predicted step is not Step X when the true step is also not Step X. (Correct)
Precision Proportion of correct predictions in all frames predicted as Step X. (Positive predictive value)
Recall Proportion of correct predictions in each surgical step. (Sensitivity)
F1 score Harmonic mean of the precision and recall in each surgical step when the concept of true-negative is excluded.
Overall accuracy Proportion of correct predictions in all frames.



1146 Surgical Endoscopy (2022) 36:1143–1151

1 3

Institutional approval

The protocol for this study was reviewed and approved by 
the Ethics Committee of the National Cancer Center Hospi-
tal East (Registration No.: 2018–100). This study conforms 
to the provisions of the Declaration of Helsinki 1964 (as 
revised in Brazil in 2013).

Results

Video dataset

Fifty patients were included in the study cohort, of which 
30 were men. The median age was 64 years (range 33–83 
years), and the median body mass index was 22 kg/m2 
(range 15–30 kg/m2). In terms of preoperative diagnosis, 
rectal adenocarcinoma was observed in 42 cases, neuroen-
docrine tumors in five cases, and gastrointestinal stromal 
tumors in three cases. The most common clinical stage was 
I (31 out of 42). Furthermore, anastomosis was performed 
via SST in 43 cases with the median anastomotic height 
from the anal verge being 5 cm with a range of 1–8 cm. 
The overall procedure operative time of TaTME was 188 
min (with a standard deviation of 60 min), and the average 
total time for the five major steps in a TaTME was 71.5 
min (with a standard deviation of 20.5 min); however, the 
duration of the individual surgical steps varied for different 
cases (Fig. 1). Step 5 (i.e., purse-string suture for SST) was 
not annotated in six cases, because hand-sewn anastomo-
sis was performed in those cases. In the dissection steps 

(i.e., Steps 3 and 4), sub-step transitions (i.e., transitions 
between each dissection plane during TaTME) occurred 
27 ± 8 times. Rendezvous occurred 29 and 16 times out 
of 50 on the anterior and posterior sides, respectively. A 
trace of the surgical steps during two representative cases 
is shown in Fig. 2. In the figure, case A has a duration of 
80 min with 22 surgical step transitions wherein rendez-
vous occurs on the anterior side at approximately 52 min.

The characteristics of patients whose intraoperative vid-
eos formed the training and test sets of the video dataset 
used in this work are summarized in Table 3. As can be 
observed in the table, there were no statistically significant 
differences in patients’ characteristics between the data 
subsets.

Surgical step classification

Precision, recall, and F1 score for each surgical step and 
overall accuracy metrics for the entire model are listed 
in Table 4. The overall accuracy for classification of all 
the five major steps was 93.2%. However, when sub-step 
classification was included in the calculation of the perfor-
mance metrics, the overall accuracy deteriorated to 76.7%, 
and the mean accuracy of the model for classification of 
the 11 steps including sub-steps for 10 cases in the test 
dataset was 78 ± 5% with a maximum accuracy of 85% 
(Table 5). The results for surgical step classification in a 
representative case are shown in Figure 3, and the confu-
sion matrix of the results for surgical step classification is 
shown in Supplementary Appendix A.

Fig. 1  A Duration of each surgi-
cal step and variation between 
different cases. B Duration of 
each dissection sub-step and 
variation between different 
cases. The duration for sub-step 
3-2 (down-to-up dissection on 
the posterior plane) was the 
longest on average (16 ± 6.5 
min), whereas that for sub-step 
4-2 (posterior dissection after 
rendezvous) was the shortest 
(2.5 ± 2 min). (green: surgi-
cal step related to purse-string 
suture; yellow: rectotomy step; 
blue: dissection step before 
rendezvous; red: dissection step 
after rendezvous) (Color figure 
online)
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Discussion

In this study, we demonstrated that our deep learning model 
could recognize the surgical steps of TaTME with a high 
degree of accuracy (93.2%). This result suggests that an 
AI-based model can self-learn, analyze, and index TaTME 
videos on behalf of humans.

In recent years, the use of AI in surgery has attracted 
significant attention from researchers. Although the use of 
AI-based methods has its challenges, these methods can 
improve surgical procedures in the operating room via dif-
ferent approaches [23], including preoperative planning [24, 
25], intraoperative guidance [26], and their integrated use in 
surgical robotics [27, 28]. Annotated datasets are the founda-
tion for several AI-based approaches; however, the complex-
ity of surgery renders the interpretation and management of 
large amounts of intraoperative video data difficult. Thus, 
dividing a surgical procedure into a sequence of identifiable 

and meaningful steps can aid in data acquisition, storage, 
and analysis, among others.

Thus far, most studies related to surgical step recognition 
modeling have focused on laparoscopic cholecystectomy 
because of its standard and frequent execution [16, 29–31]. 
However, recently, to improve step recognition systems and 
extend their range of applications, increasingly diverse and 
complex procedures have been subjected to step recognition 
modeling, including laparoscopic total hysterectomy [32], 
robot-assisted partial nephrectomy [17], laparoscopic sleeve 
gastrectomy [18], and laparoscopic colorectal surgery [19]. 
Nevertheless, to the best of our knowledge, this is the first 
study based on the automatic surgical step classification task 
for TaTME.

Because TaTME is a complex procedure and requires spe-
cialized knowledge of pelvic anatomy, which is an unfamil-
iar topic for many surgeons, safe implementation of TaTME 
requires surgeons to undergo systematic and structured 

Fig. 2  Trace of surgical steps 
for two representative TaTME 
cases (green: surgical step 
related to purse-string suture; 
yellow: rectotomy step; blue: 
dissection step before rendez-
vous; red: dissection step after 
rendezvous; gray: extracorpor-
eal step) (Color figure online)
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training [33]; therefore, surgical trainers consider video-
based learning to be a useful teaching aid to maximize learn-
ing. The automatic surgical step classification for TaTME 
using a CNN-based approach is a challenging task for the 
following reasons. First, the quality of intraoperative images 
is often poor because of an unstable pneumopelvis due to 
excessive smoking. Second, because the intraoperative 
field and instruments are seldom changed during TaTME 
compared with those during other laparoscopic abdomi-
nal surgeries, it is difficult to distinguish between different 

steps, especially sub-steps during dissection. However, this 
challenging task to classify the plane of dissection (ante-
rior, posterior, or lateral plane) during TaTME should be 

Table 3  Characteristics of 
patients in the study cohort

BMI body mass index, NET neuroendocrine tumor, GIST gastrointestinal stromal tumor, UICC Union for 
International Cancer Control, AV anal verge, SST single stapling technique
a Median [range]

Characteristics Training set (N = 40) Test set (N = 10) P-value

Sex (male) 23 (58%) 7 (70%) 0.720
Age (years) 66 [41–83]a 68 [33–78]a 0.913
BMI (kg/m2) 22 [15–30]a 20 [15–27]a 0.0787
Preoperative diagnosis 1.00
 Rectal adenocarcinoma 33 (83%) 9 (90%)
 Rectal NET 4 (10%) 1 (10%)
 Rectal GIST 3 (8%) 0

Clinical stage of carcinoma cases 
(UICC 8th edition)

0.308

 I 25 (76%) 6 (67%)
 II 4 (12%) 3 (33%)
 III 4 (12%) 0
 IV 0 0

Tumor lower edge from AV (cm) 7 [3–10]a 8 [5–10]a 0.0952
Abdominal approach
 Laparoscopy 40 (100%) 10 (100%) -
 Robot 0 0
 Open 0 0

Anastomotic type 0.319
 SST 33 (88%) 10 (100%)
 Hand-sewn 7 (12%) 0

Anastomotic height
 From AV (cm) 5 [1–8]a 6 [3–7]a 0.0767
 From anorectal ring (cm) 1 [−3 to  4]a 2 [0–3]a 0.0909

Table 4  Precision, recall, and F1 score of each surgical step and over-
all accuracy of the entire model

Surgical step Precision Recall F1 score

Step 1 0.99 0.82 0.90
Step 2 0.83 0.62 0.71
Step 3 0.91 0.99 0.95
Step 4 1.00 0.88 0.94
Step 5 0.99 1.00 0.99
Overall accuracy: 93.2%

Table 5  Precision, recall, and F1 score of 11 surgical steps, includ-
ing sub-steps, and overall accuracy of the entire model when sub-step 
classification was included in the calculation of the performance met-
rics

Surgical step Precision Recall F1 score

Step 1 0.99 0.84 0.91
Step 2 0.85 0.75 0.80
Sub-step 3-1 0.86 0.80 0.83
Sub-step 3-2 0.77 0.68 0.72
Sub-step 3-3 0.76 0.84 0.80
Sub-step 3-4 0.54 0.64 0.58
Sub-step 4-1 0.53 0.75 0.62
Sub-step 4-2 0.63 0.80 0.70
Sub-step 4-3 0.71 0.49 0.58
Sub-step 4-4 0.64 0.75 0.69
Step 5 0.98 1.00 0.99
Overall accuracy: 76.7%
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tackled to develop a quick video dataset indexing system to 
make video-based learning for TaTME considerably more 
efficient.

In this study, we constructed the first annotated video 
dataset for TaTME. The initial purpose of this dataset 
construction was training and testing of our deep learning 
model. However, we observed significant differences among 
different intraoperative videos in terms of step duration, 
order of sub-steps, and frequency of sub-step transitions by 
analyzing the annotated dataset. As an example, progres-
sions of surgical steps during two representative TaTME 
procedures are shown in Fig. 2. In the figure, although 
the total surgical times in both cases A and B were almost 
equivalent (80 and 82.5 min, respectively), the duration of 
each step, order of sub-steps, and frequency of sub-step tran-
sitions (17 and 38, respectively) were significantly differ-
ent. In a future study, we will attempt to obtain correlations 
between novel parameters, skills, or intraoperative compli-
cations, using detailed analyses on a larger dataset, which 
could then be applied for skill assessment or complication 
prediction.

This study has several limitations. First, cross-vali-
dation was omitted in this study because there were no 
statistically significant statistical differences in patients’ 
characteristics between the training and test sets (Table 3) 
and because we considered the number of frames in the 
dataset to be sufficiently large (> 650,000 frames); how-
ever, the number of analyzed procedures (n = 50) and sur-
geons performing them (n = 5) was limited. Therefore, 
considering the impact of a possible imbalance between 
the training and test sets (procedure techniques, anatomy, 
surgeon skill, and learning curve), cross-validation might 

have been more appropriate. With regard to validation 
methods, the most appropriate one for each situation 
should always be considered. Second, the videos that form 
our dataset were obtained from one institution; thus, the 
complexity of the data is limited to case variability. Train-
ing a deep learning model with such a dataset can lead 
to over-fitting, which could subsequently reduce the gen-
eralizability of the network. To obtain more generalized 
networks, videos from other medical institutions should be 
included to ensure higher variability in the dataset. Third, 
although the accuracy for classification of the five defined 
major steps was high, there was still room for improve-
ment in the accuracy of classification when sub-steps were 
included in performance analysis. The difference between 
the two results could be attributed to the following: first, 
the fewer the steps to classify, the easier the task would be, 
and second, although the image features differed signifi-
cantly between each major step (e.g., purse-string closure 
vs down-to-up dissection), the differences in image fea-
tures between each sub-step (e.g., anterior vs right plane 
dissection) were too slight to classify accurately. In the 
future, verification using saliency mapping is required to 
determine whether the insufficient accuracy in sub-step 
classification task was actually due to the similarity of 
image features between each sub-step.

In conclusion, the results of this study demonstrated 
that our deep learning model could be utilized to auto-
matically identify steps of TaTME from an intraoperative 
video with a high degree of accuracy. However, our clas-
sification model needs to be trained with a larger dataset of 
intraoperative videos before it can be applied in practice.

Fig. 3  Result of a surgical step 
classification in a representative 
TaTME case (blue: predicted 
step transitions; red: true step 
transitions) (Color figure online)
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