Skip to main content
Log in

Behaviour at the peritoneal interface of next-generation prosthetic materials for hernia repair

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

When using a prosthetic material in hernia repair, the behaviour of the mesh at the peritoneal interface is especially important for implant success. Biomaterials developed for their intraperitoneal placement are known as composites and are made up of two different-structure materials, one is responsible for good integration within host tissue and the other is responsible to make contact with the viscera. This study examines the behaviour at the peritoneal level of two composites, the fully degradable Phasix-ST® and the partially degradable Symbotex®. A polypropylene mesh (Optilene®) served as control.

Methods

Sequential laparoscopy from 3 to 90 days, in a preclinical model in the New Zealand white rabbit, allowed monitoring adhesion formation. Morphological studies were performed to analyse the neoperitoneum formed in the repair process. Total macrophages were identified by immunohistochemical labelling. To identify the different macrophage phenotypes, complementary DNAs were amplified by qRT-PCR using specific primers for M1 (TNF-α/CXCL9) and M2 (MRC1/IL-10) macrophages.

Results

The percentage of firm and integrated adhesions remained very high in the control group over time. Both composites showed a significant decrease in adhesions at all study times and in qualitative terms were mainly loose. Significant differences were also observed from 7 days onwards between the two composites, increasing the values in Phasix over time. Neoperitoneum thickness for Phasix was significantly greater than those of the other meshes, showing mature and organized neoformed connective tissue.

Immunohistochemically, a significantly higher percentage of macrophages was observed in Symbotex. mRNA expression levels for the M2 repair-type macrophages were highest for Phasix but significant differences only emerged for IL-10.

Conclusions

Fewer adhesions formed to the Symbotex than Phasix implants. Ninety days after implant, total macrophage counts were significantly higher for Symbotex, yet Phasix showed the greater expression of M2 markers related to the tissue repair process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klinge U, Park JK, Klosterhalfen B (2013) The ideal mesh? Pathobiology 80:169–175

    PubMed  Google Scholar 

  2. Cassar K, Munro A (2002) Surgical treatment of incisional hernia. Br J Surg 89(5):534–545

    CAS  PubMed  Google Scholar 

  3. Pascual G, Rodriguez M, Gomez-Gil V, García-Honduvilla N, Buján J, Bellón JM (2008) Early tissue incorporation and collagen deposition in lightweight polypropylene meshes: bioassay in an experimental model of ventral hernia. Surgery 144(3):427–435

    PubMed  Google Scholar 

  4. Yilmaz I, Karakas DO, Sucullu I, Ozdemir Y, Yucel E (2013) A rare cause of mechanical bowel obstruction: mesh migration. Hernia 17(2):267–269

    CAS  PubMed  Google Scholar 

  5. Aziz F, Zaeem M (2014) Chronic abdominal pain secondary to mesh erosion into ceacum following incisional hernia repair: a case report and literature review. J Clin Med Res 6(2):153–155

    PubMed  PubMed Central  Google Scholar 

  6. Ott V, Groebli Y, Schneider R (2005) Late intestinal fistula formation after incisional hernia using intraperitoneal mesh. Hernia 9(1):103–104

    CAS  PubMed  Google Scholar 

  7. Moussi A, Daldoul S, Bourguiba B, Othmani D, Zaouche A (2012) Gas gangrene of the abdominal wall due to late-onset enteric fistula after polyester mesh repair of an incisional hernia. Hernia 16(2):215–217

    CAS  PubMed  Google Scholar 

  8. Arnold MR, Kao AM, Otero J, Marx JE, Augenstein VA, Sing RF, Colavita PD, Kercher K, Henniford BT (2020) Mesh fistula after ventral hernia repair: what is the optimal management? Surgery 167(3):590–597

    PubMed  Google Scholar 

  9. Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:5–8

    Google Scholar 

  10. Deeken CR, Faucher KM, Matthews BD (2012) A review of the composition, characteristics, and effectiveness of barrier mesh prostheses utilized for laparoscopic ventral hernia repair. Surg Endosc 26(2):566–575

    PubMed  Google Scholar 

  11. Bellón JM, García-Honduvilla N, López R, Corrales C, Jurado F, Buján J (2003) In vitro mesothelialization of prosthetic materials designed for the repair of abdominal wall defects. J Mater Sci Mater Med 14(4):359–364

    PubMed  Google Scholar 

  12. Klopfleisch R (2016) Macrophage reaction against biomaterials in the mouse model—phenotypes, functions and markers. Acta Biomater 43:3–13

    CAS  PubMed  Google Scholar 

  13. Cohen HB, Mosser DM (2013) Extrinsic and intrinsic control of macrophage inflammatory responses. J Leukoc Biol 94(5):913–919

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. https://doi.org/10.1155/2015/816460

    Article  PubMed  PubMed Central  Google Scholar 

  15. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodelling. Tissue Eng A 14(11):1835–1842

    CAS  Google Scholar 

  16. Brown BN, Sicari BM, Badylak SF (2014) Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol 5:510

    PubMed  PubMed Central  Google Scholar 

  17. Bellon JM, Contreras LA, Bujan J, Jurado F (1996) Effect of phosphatidylcholine on the process of peritoneal adhesion following implantation of a polypropylene mesh prosthesis. Biomaterials 17(14):1369–1372

    CAS  PubMed  Google Scholar 

  18. Walker AP, Henderson J, Condon RE (1993) Double-layer prostheses for repair of abdominal wall defects in a rabbit model. J Surg Res 55(1):32–37

    CAS  PubMed  Google Scholar 

  19. Amid PK, Shulman AG, Lichtenstein IL, Sostrin S, Young J, Hakakha M (1994) Experimental evaluation of a new composite mesh with the selective property of incorporation to the abdominal wall without adhering to the intestines. J Biomed Mater Res 28(3):373–375

    CAS  PubMed  Google Scholar 

  20. Baptista ML, Bonsack ME, Delaney JP (2000) Seprafilm reduces adhesions to polypropylene mesh. Surgery 128(1):86–92

    CAS  PubMed  Google Scholar 

  21. Szabo A, Haj M, Waxsman I, Eitan A (2000) Evaluation of seprafilm and amniotic membrane as adhesion prophylaxis in mesh repair of abdominal wall hernia in rats. Eur Surg Res 32(2):125–128

    CAS  PubMed  Google Scholar 

  22. Greenawalt KE, Butler TJ, Rowe EA, Finneral AC, Garlick DS, Burns JW (2000) Evaluation of sepramesh biosurgical composite in a rabbit hernia repair model. J Surg Res 94(2):92–98

    CAS  PubMed  Google Scholar 

  23. Shapiro L, Holste JL, Muench T, diZerega G (2015) Rapid reperitonealization and wound healing in a preclinical model of abdominal trauma repair with a composite mesh. Int J Surg 22:86–91

    CAS  PubMed  Google Scholar 

  24. Ar’Rajab A, Ahrén B, Rozga J, Bengmark S (1991) Phosphatidylcholine prevents postoperative peritoneal adhesions: an experimental study in the rat. J Surg Res 50(3):212–215

    CAS  PubMed  Google Scholar 

  25. Holmdahl L, Risberg B, Beck DE, Burns JW, Chegini N, Di Zerega GS, Ellis H (1997) Adhesions: pathogenesis and prevention. Eur J Surg Suppl 577:56–62

    Google Scholar 

  26. Felemovicius I, Bonsack ME, Hegerman G, Delaney JP (2004) Prevention of adhesions to polypropylene mesh. J Am Coll Surg 198(4):543–548

    PubMed  Google Scholar 

  27. Brochhausen C, Schmitt VH, Rajab TK, Planck CN, Krämer B, Tapprich C, Wallwiener M, Hierlemann H, Planck H, Kirkpatrick CJ (2012) Mesothelial morphology and organisation after peritoneal treatment with solid and liquid adhesion barriers—a scanning electron microscopical study. J Mater Sci Mater Med 23(8):1931–1939

    CAS  PubMed  Google Scholar 

  28. Arnaud JP, Hennekinne-Mucci S, Pessaux P, Tuech JJ, Aube C (2003) Ultrasound detection of visceral adhesions after intraperitoneal ventral hernia treatment: a comparative study of protected versus unprotected meshes. Hernia 7(2):85–88

    CAS  PubMed  Google Scholar 

  29. Balique JG, Benchetrit S, Bouillot JL, Flament JB, Gouillat C, Jarsaillon P, Lepère M, Mantion G, Arnaud JP, Magne E, Brunetti F (2005) Intraperitoneal treatment of incisional and umbilical hernias using an innovative composite mesh: four-year results of a prospective multicenter clinical trial. Hernia 9(1):68–74

    CAS  PubMed  Google Scholar 

  30. Moreno-Egea A, Bustos JAC, Girela E, Aguayo-Albasini JL (2010) Long-term results of laparoscopic repair of incisional hernias using an intraperitoneal composite mesh. Surg Endosc 24(2):359–365

    PubMed  Google Scholar 

  31. Chelala E, Debardemaeker Y, Elias B, Charara F, Dessily M, Alle JL (2010) Eighty-five redo surgeries after 733 laparoscopic treatments for ventral and incisional hernia: adhesion and recurrence analysis. Hernia 14(2):123–129

    CAS  PubMed  Google Scholar 

  32. Celdrán A, García-Ureña MA, Bazire P, Marijuan JL (1996) The use of omentum in mesh repair of ventral hernias. Am Surg 62(6):443–445

    PubMed  Google Scholar 

  33. Sorour MA (2014) Interposition of the omentum and/or the peritoneum in the emergency repair of large ventral hernias with polypropylene mesh. Int J Surg 12(6):578–586

    PubMed  Google Scholar 

  34. Hasbahceci M, Basak F (2014) Interposition of the hernia sac as a protective layer in repair of giant incisional hernia with polypropylene mesh. Surg Today 44(2):227–232

    PubMed  Google Scholar 

  35. D´Amore L, Ceci F, Mattia S, Fabbi M, Negro P, Gossetti F (2017) Adhesion prevention in ventral hernia repair: an experimental study comparing three lightweight porous meshes recommended for intraperitoneal use. Hernia 21(1):115–123

    Google Scholar 

  36. Boersema GS, Grotenhuis N, Bayon Y, Lange JF, Bastiaansen-Jenniskens YM (2016) The effect of biomaterials used for tissue regeneration purposes on polarization of macrophages. Biores Open Access 5(1):6–14

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown BN, Badylak SF (2013) Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater 9(2):4948–4955

    CAS  PubMed  Google Scholar 

  38. Sridharan R, Cavanagh B, Cameron AR, Kelly DJ, O’Brien FJ (2019) Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater 89:47–59

    CAS  PubMed  Google Scholar 

  39. Grotenhuis N, Vd Toom HF, Kops N, Bayon Y, Deerenberg EB, Mulder IM, van Osch GJ, Lange JF, Bastiaansen-Jenniskens YM (2014) In vitro model to study the biomaterial-dependent reaction of macrophages in an inflammatory environment. BJS 101(8):983–992

    CAS  Google Scholar 

  40. Deeken CR, Matthews BD (2013) Characterization of the mechanical strength, resorption properties, and histologic characteristics of a fully absorbable material (poly-4-hydroxybutyrate-PHASIX Mesh) in a Porcine Model of hernia repair. ISRN Surg. https://doi.org/10.1155/2013/238067

    Article  PubMed  PubMed Central  Google Scholar 

  41. Martin DP, Badhwar A, Shah DV, Rizk S, Eldridge SN, Gagne DH, Ganatra A, Darois RE, Williams SF, Tai HC, Scott JR (2013) Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications. J Surg Res 184(2):766–773

    CAS  PubMed  Google Scholar 

  42. Scott JR, Deeken CR, Martindale RG, Rosen MJ (2016) Evaluation of a fully absorbable poly-4-hydroxybutyrate/absorbable barrier composite mesh in a porcine model of ventral hernia repair. Surg Endosc 30(9):3691–3701

    PubMed  PubMed Central  Google Scholar 

  43. Wolf MT, Dearth CL, Ranallo CA, LoPresti ST, Carey LE, Daly KA, Brown BN, Badylak SF (2014) Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials 35(25):6838–6849

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hong GS, Schwandt T, Stein K, Schneiker B, Kummer MP, Heneka MT, Kitamura K, Kalff JC, Wehner S (2015) Effects of macrophage-dependent peroxisome proliferator-activated receptor γ signalling on adhesion formation after abdominal surgery in an experimental model. Br J Surg 102(12):1506–1516

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by Grant “SAF2017-89481-P” from the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Pascual.

Ethics declarations

Disclosures

Drs. Gemma Pascual, Selma Benito-Martínez, Marta Rodríguez, Bárbara Pérez-Köhler, Francisca García-Moreno and Juan M. Bellón have no conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascual, G., Benito-Martínez, S., Rodríguez, M. et al. Behaviour at the peritoneal interface of next-generation prosthetic materials for hernia repair. Surg Endosc 36, 579–590 (2022). https://doi.org/10.1007/s00464-021-08320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-021-08320-5

Keywords

Navigation