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Abstract
Background Hepatectomy, living donor liver transplantations and other major hepatic interventions rely on precise calcula-
tion of the total, remnant and graft liver volume. However, liver volume might differ between the pre- and intraoperative 
situation. To model liver volume changes and develop and validate such pre- and intraoperative assistance systems, exact 
information about the influence of lung ventilation and intraoperative surgical state on liver volume is essential.
Methods This study assessed the effects of respiratory phase, pneumoperitoneum for laparoscopy, and laparotomy on liver 
volume in a live porcine model. Nine CT scans were conducted per pig (N = 10), each for all possible combinations of the 
three operative (native, pneumoperitoneum and laparotomy) and respiratory states (expiration, middle inspiration and deep 
inspiration). Manual segmentations of the liver were generated and converted to a mesh model, and the corresponding liver 
volumes were calculated.
Results With pneumoperitoneum the liver volume decreased on average by 13.2% (112.7 ml ± 63.8 ml, p < 0.0001) and 
after laparotomy by 7.3% (62.0 ml ± 65.7 ml, p = 0.0001) compared to native state. From expiration to middle inspiration 
the liver volume increased on average by 4.1% (31.1 ml ± 55.8 ml, p = 0.166) and from expiration to deep inspiration by 
7.2% (54.7 ml ± 51.8 ml, p = 0.007).
Conclusions Considerable changes in liver volume change were caused by pneumoperitoneum, laparotomy and respiration. 
These findings provide knowledge for the refinement of available preoperative simulation and operation planning and help 
to adjust preoperative imaging parameters to best suit the intraoperative situation.
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Abbreviations
LDLT  Living donor liver transplantation
CT  Computed tomography
DICOM  Digital Imaging and Communications in 

Medicine
MITK  Medical Imaging Interaction Toolkit

Safe performance of hepatectomy, living donor liver trans-
plantations (LDLT) and other major hepatic interventions 
rely on preoperative calculation and estimation of total and 
residual liver and graft volume. Liver resections are required 
to respect the anatomical segmentation of the liver, safety 
margins in oncological surgery, and resection lines guaran-
teeing that the residual liver volume and function is sufficient 
and oncological outcomes are adequate [1, 2]. Preoperative 
calculation and simulation of liver volume can assist the 
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surgeon in identifying safe operation strategies with respect 
to the individual vascular, segmental and oncological char-
acteristics [3]. Furthermore, intraoperative navigation may 
facilitate three-dimensional orientation of the surgeon and 
promises to help in the identification of at-risk structures 
and safe resection lines [4]. Navigation may be of particular 
benefit in minimally invasive surgery [5] where it may help 
compensate for the additional difficulties of the confined 
space of pneumoperitoneum, two-dimensional representa-
tion of the operating field and the unintuitive instrument 
handling. Intraoperative navigation requires a precise align-
ment of the preoperative imaging data to the intraoperative 
situation [5, 6]. In abdominal surgery, soft tissue movement 
and deformation causes the organs to change considerably 
in form, position and size [7]. These changes are the result 
of positioning [8], respiration [9], pneumoperitoneum [10], 
tissue dissection and iatrogenic manipulation [11, 12]. To 
compensate for this phenomenon there are two approaches: 
Intraoperative imaging and other methods of tissue locali-
zation [5, 6, 11, 13, 14], or biomechanical modeling, which 
tries to predict the tissue deformation based on calculations 
of the factors responsible for the deformation.

Here we report on a study with the following aims: 1. to 
analyze and quantify the influence of laparotomy and pneu-
moperitoneum for laparoscopy on liver volume; 2. to assess 
the effect of different inspiratory volumes on liver volume 
in the different operative states.

Materials and methods

Subjects

A total of ten pigs (German landrace, 20–34 kg) were ana-
lyzed. The study protocol was approved by the local Eth-
ics Committee in Heidelberg, Germany and by the regional 
committee in Karlsruhe, Germany. The care and veterinary 
handling were carried out by the staff of the Interfaculty 
Biomedical Research Facility at Heidelberg University and 
complied with the recommendations outlined in the “Guide 
for the Care and Use of Laboratory Animals” prepared by 
the National Academy of Sciences and published by the 
National Institutes of Health [15].

The animals were fasted 12 h before the intervention. 
A modified anesthesia protocol was used based on Clutton 
et al. [16]. After premedication with azaperone (0.1 mg/
kg), midazolam (0.1 mg/kg) and ketamine (15 mg/kg), the 
induction of anesthesia was carried out by intravenous mida-
zolam (0.1 mg/kg) and ketamine (20 mg/kg). Anesthesia 
was maintained with intravenous midazolam (0.05 mg/kg) 
and ketamine (10 mg/kg). Pancuronium was used as needed. 
The animals were machine ventilated (f = 12/min, ventilation 
volume = 250–320 ml). The animals were positioned in a 

0° supine position on a vacuum mattress which was firmly 
attached to a stretcher. This stretcher and vacuum mattress 
combination guaranteed full immobilization of the animal 
between scans [17]. The animals on the stretcher were left in 
place on a fixed position on the CT scan table for the entire 
duration of the experiments to rule out repositioning errors. 
The animals were under general anesthesia with machine 
ventilation during the entire experiments. At the end of the 
study the animals were euthanized using potassium chloride 
(150 mg/kg) as per protocol.

Study design

Each pig was examined by Computed Tomography (CT) in 
nine different states. The CT scans were obtained for three 
respiratory states (full expiration, middle inspiration and 
deep inspiration) in each of three operative states (native, 
pneumoperitoneum and laparotomy). The CT scans were 
taken with a slice thickness of 2 mm and a 1 mm overlay 
with the SOMATOM Sensation™ 64 Row Dual Energy CT 
device (Siemens Corp. Erlangen, Germany). Before imag-
ing 50 ml of the contrast agent Imeron®300 (Bracco Imag-
ing Deutschland GmbH, Konstanz, Germany) was intrave-
nously administered. CT scans were acquired 120 s after 
application of the contrast agent, which corresponded to the 
venous phase. For each respiratory state manually controlled 
breath-hold positions were realized. End-expiratory hold 
maneuver was performed to maintain full expiration. Our 
definitions for high tidal volume was 14 ml/kg (deep inspira-
tion, approximately 400 ml) and for middle tidal volume was 
7 ml/kg (normal inspiration, approximately 200 ml) based 
on previous studies [18–20]. Both inspiratory levels were 
maintained by occluding the respiratory port once the tidal 
volume was reached.

The pneumoperitoneum for laparoscopy was created 
using a Veress-needle (14-gauge) in the left lower quadrant 
of the abdomen. A standard pressure-controlled insuffla-
tion device was used to maintain an intra-abdominal pres-
sure of 15 mmHg with  CO2-insufflation. After imaging was 
completed with pneumoperitoneum the Veress-needle was 
removed and a standard midline laparotomy of 20 cm length 
was performed using a disposable scalpel. The data from the 
CT scans were transferred onto a mobile hard disk for the 
following evaluation. All pictures complied with the Digi-
tal Imaging and Communications in Medicine (DICOM) 
standard.

Image processing and segmentation

The imaging data were post-processed using the Medical 
Imaging Interaction Toolkit (MITK) which was developed 
by the Division of Medical and Biological Informatics at 
the German Cancer Research Center in Heidelberg [21]. 
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The segmentation process consisted of manually circum-
scribing the liver tissue in the transversal view for one 
slice in every eight slices. The slices between the manually 
segmented slices were interpolated by the MITK software 
(Fig. 1). Detailed information on the interpolation algorithm 
can be found in the MITK documentation [22]. The inter-
polated slices were checked manually and additional slices 
were manually segmented if the interpolation was not accu-
rate. The vena cava, the extrahepatic portal vein and the 
gall bladder were consistently excluded from the segmenta-
tions. The end result was checked for correctness in each 
slice and in all three views (transversal, sagittal and coronal). 
Image segmentation was performed and cross-checked by 

two independent and specially trained professionals. Three-
dimensional mesh models were generated from the segmen-
tations of the liver using the MITK software. For each mesh 
model the corresponding volume was calculated using the 
open-source software MeshLab which was developed by the 
Italian Institute of Information Science and Technology and 
the Italian National Research Council. We used MeshLabs 
“Compute Geometric Measures” function [23].

Statistical analysis

The data were evaluated using a hierarchical linear regres-
sion [24]. We examined the influence of the operative state 

Fig. 1  Manual segmentation of a computed tomography scan of the 
porcine liver with pneumoperitoneum in the Medical Imaging Inter-
action Toolkit (MITK). Axial view (top left), Sagittal view (top 

right), Coronal view (bottom left) and three-dimensional model based 
on the segmentations (bottom right)
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(native, laparotomy, pneumoperitoneum) and the respiratory 
state (continuous predicator with levels expiration, middle 
inspiration and full inspiration) on the measured liver vol-
umes. We analyzed liver volume changes depending on the 
operative state based on the interaction between operative 
state and respiratory state. Liver volumes of each animal 
were considered with a random factor. The data were indi-
cated as mean ± standard deviation, if not otherwise speci-
fied. Significance level was set to α = 5% two-sided, without 
correction for multiple testing. Graphs were created using 
the plotrix package for R (R Foundation for Statistical Com-
puting, Vienna, Austria).

Results

Total liver volume

The mean liver volume over all measurements was 
792.9 ± 96.1  ml (minimum: 644.3  ml; maximum: 
1034.6 ml).

Operative state

The mean volume in the native state was 851.0 ml ± 92.8 ml 
(minimum: 666.0 ml; maximum: 1034.6 ml), with pneu-
moperitoneum it was 738.4  ml ± 75.1  ml (minimum: 
651.7 ml; maximum: 895.4 ml) and after laparotomy it 
was 789.1 ml ± 86.5 ml (minimum: 644.3 ml and Maxi-
mum: 1002.3 ml). With pneumoperitoneum the liver vol-
ume decreased by 13.2% or 112.7 ml ± 63.9 ml (95%-CI 
88.9–136.6 ml, p < 0.0001) compared to the native state. 
After midline laparotomy the liver volume was still reduced 
by 7.3%, or 62.0  ml ± 65.7  ml (95%-CI 37.4–86.5  ml, 
p = 0.0001) compared to the native state but was not sig-
nificantly higher than with pneumoperitoneum (p = 0.18 
(Fig. 2).

Respiratory state

The mean volume with full expiration was 764.3 ml ± 95.1 ml 
(minimum: 644.3 ml; maximum: 1034.6 ml), with middle 
inspiration it was 795.4 ml ± 90.9 ml (minimum: 663.9 ml 
and Maximum: 971.5 ml) and with full inspiration it was 
818.9 ml ± 97.2 ml (minimum: 659.7 ml and Maximum: 
1019.2 ml). Inspiratory volumes had a significant influ-
ence on liver volume. With middle inspiration liver vol-
ume increased by 4.1% or 31.1  ml ± 55.8  ml (95%-CI 
10.3–51.9 ml, p = 0.166) and with full inspiration by 7.2% or 
54.7 ml ± 51.8 ml compared to expiration (95% CI 35.4–74.1 
ml, p = 0.007) (Fig. 2).

Discussion

Laparotomy, Pneumoperitoneum and respiratory states had 
a significant influence on liver volume. Compared to the 
native state the liver volume decreased most with pneumop-
eritoneum (13.2%) and less after midline laparotomy (7.3%). 
With full inspiration liver volume increased more (7.2%) 
than with middle inspiration (4.1%) compared to expiration. 
The highest change in liver volume was produced by pneu-
moperitoneum in the present study. Earlier studies showed 
that liver volume may vary up to 33% between perfused and 
non-perfused livers [25–27]. In the literature several car-
diovascular changes are reported with pneumoperitoneum: 
decreased cardiac output and stroke volume, decreased 
venous return, increase of systemic resistance and adverse 
splanchnic circulatory effects [28, 29]. Concerning the liver, 
decreased hepatic perfusion has been reported with pneumo-
peritoneum [30–32]. Decreased portal [33–35] and hepatic 
[36–39] blood flow was reported in several studies, although 
some studies did not find significant change of portal flow 
[30, 40]. The diameter of the portal vein and mean luminal 
area of the portal vein were also found decreased in other 
studies, which is consistent with a decrease of the portal vein 
flow with pneumoperitoneum [41, 42]. The pressure of the 
pneumoperitoneum was also shown to decrease the diameter 
of the Inferior vena cava [43–46] and to cause a decrease 
of the blood flow in the vena cava [42]. These factors are 
in line with a decreased blood volume in the liver during 
pneumoperitoneum which likely caused the decrease liver 
volume. One possible explanation is that the pressure created 

Fig. 2  Liver volume stratified by operative and respiratory state 
in milliliters (ml) (mean ± standard error)
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in the abdominal cavity lead to a decrease in hepatic perfu-
sion which finally caused the consistent decrease in liver 
volume. A study by Moyano-Cuevas et al. [41] described an 
increase of liver volume after insufflating the abdomen with 
14 mmHg of  CO2. This contradicts our findings; however, 
our results seem to be more in line with the cardiovascular 
and other abdominal changes occurring during pneumop-
eritoneum [46].

The reduction in liver size from native volume to lapa-
roscopy is most likely explained from the increase in intra-
abdominal pressure during laparoscopy. However, the reduc-
tion in volume between native state and laparotomy was 
an unexpected result. To better assess the change in intra-
abdominal pressure differences between the three modalities 
of native, laparoscopic and open, a follow-up experiment 
was conducted whereby the intra-abdominal pressure was 
measured via bladder catheter, at five measurements per 
operative state per subject (n per state = 25). The results are 
summarized in Table 1 and show a significant difference 
in intra-abdominal pressure between both native state and 
pneumoperitoneum, and laparotomy and pneumoperito-
neum. The change in liver volume in laparotomy could also 
be an effect of the physiological surgical stress response, as 
sympathetic activation could lead to decreased perfusion of 
the liver [47–49]. A further possible reason for a smaller vol-
ume during laparotomy is due to the sequence in which the 
measurements were conducted. As median laparotomy was 
performed after pneumoperitoneum, the liver volume had 
already been reduced through the increased intra-abdominal 
pressure. Whether this was the causative factor, however, 
was not assessed because no further CT scans were per-
formed after prolonged laparotomy to check for a possible 
later increase in liver volume. This is certainly a limitation 
of the current study, and should be taken into consideration 
when designing future experiments attempting to evaluate 
differences in surgical modalities. It nevertheless does not 
detract from the main argument of the current study that 
liver volume is decreased by increased intra-abdominal 
pressure, and is a further indication that the pneumoperito-
neum decreases perfusion, which would require more time 

to return to previous volume than simple tissue displacement 
or compression.

Liver volume change after laparotomy has been studied 
for discrepancies between preoperatively calculated and 
intraoperatively measured liver graft volumes in liver trans-
plantation. Lemke et al. found a conversion factor for cal-
culated graft weight and actual graft weight (0.75 of virtual 
measurement) of the non-perfused graft which improved 
measurement accuracy [50]. Karlo et al. found a conversion 
factor for CT (0.85 of virtual measurement) and MRI (0.78 
of virtual measurement) to adjust preoperatively calculated 
resection volumes to actual intraoperative resection volume 
[51]. This compares similar to our findings of 13.2% (pneu-
moperitoneum vs native expiration) and 7.3% (laparotomy 
vs native expiration) changes in liver volume. The volume 
decrease in the present study was expectedly less than in the 
aforementioned studies by Karlo and Lemke since the pre-
sent study was completed in situ in perfused organs versus 
the resected non-perfused organs in above mentioned stud-
ies. These findings should be discussed regarding clinical 
relevance. Primarily, liver volume as measured preopera-
tively is the metric used when deciding safe resection vol-
umes in partial hepatectomies, as well as determining ade-
quate volumes for transplantation surgery. Guidelines exist 
with cut-offs and recommendations for safe resection/trans-
plantation, but these are also dependent on surgeon experi-
ence and individual consideration. Changes in liver volume 
between native state, laparoscopy, and laparotomy will in 
the future be important with the introduction of intraopera-
tive imaging and assistance systems that aim for high reso-
lution estimates of postoperative outcomes, e.g., of future 
remnant liver volume. This accuracy will then also depend 
on the intraoperative change of liver volume depending on 
the mode of surgery. A change in liver volume of up to 13% 
in the current study would be important to consider when 
critical decisions have to be made regarding resectability 
or alternative treatment strategies. The clinical application 
hence lies in the influence on intraoperative decision-mak-
ing and the influence on surgical outcome, such as overes-
timating liver remnant volume in resection or misjudging 

Table 1  Comparison of intravesicular pressure of the measured operative states

Significant p-values in bold

Intravesicular pressure (n = 75) Native Pneumoperitoneum Laparotomy

Mean pressure [mmHg] 5.95 11.73 7.08
Standard deviation [mmHg] 1.68 1.80 2.68

Comparison p value

Native vs pneumoperitoneum < 0.001
Native vs Laparotomy 0.059
Pneumoperitoneum vs laparotomy < 0.001
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functional size of live donor liver segments in preoperative 
planning. On the other hand, the use of navigation systems 
with intraoperative tracking and segmentation of liver vol-
ume and position according to preoperative images would 
also be influenced by changes in liver volume, form, and 
position. In regards to preoperative planning, differences 
in preoperative measured volume and in situ volume have 
been recorded previously. In volumetric analysis of living 
donor transplant livers, Baskiran et al. described significant 
reductions between estimated and intraoperative volumes 
[52], and correctly stressed the need for surgical awareness 
to prevent small-for-size and large-for-size errors. The cur-
rent study should underline this finding, and further empha-
size that liver volume must be critically re-evaluated in the 
intraoperative setting, especially in laparoscopic procedures.

Liver volume increased with inspiration in the present 
study. A possible explanation of the increase in volume 
could be the decrease of central venous return and thus a 
decrease of venous return from the liver blood pool due to 
the positive pressure ventilation mandatory with general 
anesthesia in this experimental model [53]. However, other 
studies showed no significant effect of mechanical ventila-
tion and positive end-expiratory pressure on liver blood flow 
[54–56]. The reason for this discrepancy therefore warrants 
further investigation.

A further clinical aspect to be discussed would be a criti-
cal evaluation of preoperative liver CT scans in regards to 
resection planning. Currently, CTs are performed at maximal 
inspiration. This may result in the liver measurements being 
significantly larger than in situ intraoperatively, and could 
result in overestimation of either required resection area or 
of the volume of the remaining liver. A possible clinical rec-
ommendation could be to perform the CT at maximal expi-
ration for better preoperative assessment of liver volume; 
however, the small sample size and experimental nature of 
the current study limit a direct clinical translation. Further 
evaluation in a clinical setting would be warranted when 
intraoperative imaging modalities with volumetric assess-
ment become more widely available, such as intraoperative 
CT or MRI imaging. The current study however shows that 
such studies should be performed in humans to avoid a mis-
match between preoperative planning and intraoperative 
situations in such future scenarios.

Additionally, a significant change in volume and liver per-
fusion may also result in a significant shifting of structures 
in the liver, such as the exact location of vessels or tumor. 
While an exact measurement and segmentation of critical 
structures extends beyond the scope of the current study, 
the establishment of the large change in volume provides 
adequate basis for this question to be evaluated in future 
experiments.

The present study was performed using a live por-
cine model, because it shows highest similarity to human 

anatomy. Still the porcine liver shows some noteworthy 
differences to the human one: it has four lobes instead of 
two and these can be flatter than in humans. Moreover, the 
porcine liver exhibits a different segmental nature [57]. 
Organ size was comparable to humans but less than in most 
western adult human livers [58]. The porcine model is well 
established in studies regarding the evaluation of the effects 
of pneumoperitoneum and for liver volumetry [7], whereas 
specific effects of respiration, pneumoperitoneum and lapa-
rotomy on liver volume had not been studied in detail in this 
model [25, 26, 33–35, 41, 59]. The application of the results 
in this study must be evaluated critically before using them 
in a clinical environment. The experimental nature of this 
study in a porcine model unfortunately results in a small 
study population (n = 10), and the resulting large confidence 
intervals must be acknowledged as a weakness. Neverthe-
less, the study showed a statistically significant change 
between all three measurements, as well as a statistically sig-
nificant difference in liver volume between inspiratory and 
expiratory states. These results form the basis of the argu-
ments put forth in this discussion, and other studies assess-
ing preoperative planning and intraoperative volume show 
corroborating evidence [25, 51, 52, 58, 60–62]. Consistent 
with the recommendations to keep the number of animal 
experiments as low as possible, e.g., 3Rs (reduction, replace-
ment, refinement) and PREPARE guidelines we chose to not 
perform additional experiments since the current number 
of animals was sufficient for statistical evaluation with the 
current focus of the study.

The gold standard for volumetry is water displacement of 
Archimedes, but as this is only possible with an explanted 
liver, we could not use this method. We used CT scans to 
assess liver volume as it is used as gold standard to preop-
eratively determine liver volume [60, 63, 64]. Image-based 
volumetric techniques especially regarding the measurement 
of liver volume are considered reliable and accurate [26, 58, 
65–68]. Some studies however have shown that CT and MRI 
based methods seem to over- and underestimate in vivo liver 
volume from actual graft volume. These differences seem 
to be caused by measurements in different perfusion states 
and by inconsistencies in the method of image segmentation 
[61, 62, 69–74]. We used manual image segmentation of 
CT scans with semiautomated interpolation, as it provided 
accurate and consistent results and is used as the reference 
standard in many studies [26, 27, 57, 72, 75]. Nonetheless, 
intraobserver variability of up to 5% is reported, making 
the manual input a source of possible errors. The method 
of determining the inspiratory volumes was limited in that 
the respiration volume was defined by estimation and deter-
mined by visual control on the ventilation machine. A brief 
statement should be made here that the results of this study 
reflect respiratory states in mechanical ventilation, and not 
spontaneous respiration. However, for the purposes of the 
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clinical applicability, this should not be seen as a large weak-
ness of the study. The two main arguments of clinical rel-
evance of this study stem from intraoperative assessment of 
resection volumes and from preoperative planning with CT 
images. In the case of intraoperative assessment, mechani-
cal ventilation is an appropriate modality for the study. In 
preoperative CT scans, a breath hold will result in static 
intrathoracic pressure similar to the respiratory port occlu-
sion used in the current study, however it must be noted that 
this is an approximation of the measurement, and not an 
exact replication of the clinical setting.

In conclusion, our results show that liver volume is influ-
enced intraoperatively by pneumoperitoneum and laparot-
omy as well as by different inspiratory volumes. Changes 
of up to 13.2% in liver volume were found in the present 
experimental model between the pre- and intraoperative situ-
ation. Preoperative calculations and intraoperative naviga-
tion for major hepatic interventions should be done with 
consideration to these changes in volume. Furthermore, the 
results of this study can be used to help refine intraoperative 
navigation systems in hepatic surgery and interventions.
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