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Abstract
Use of machine learning to accurately detect aspirating swallowing sounds in children is an evolving field. Previously reported 
classifiers for the detection of aspirating swallowing sounds in children have reported sensitivities between 79 and 89%. This 
study aimed to investigate the accuracy of using an automatic speaker recognition approach to differentiate between normal 
and aspirating swallowing sounds recorded from digital cervical auscultation in children. We analysed 106 normal swallows 
from 23 healthy children (median 13 months; 52.1% male) and 18 aspirating swallows from 18 children (median 10.5 months; 
61.1% male) who underwent concurrent videofluoroscopic swallow studies with digital cervical auscultation. All swallow-
ing sounds were on thin fluids. A support vector machine classifier with a polynomial kernel was trained on feature vectors 
that comprised the mean and standard deviation of spectral subband centroids extracted from each swallowing sound in the 
training set. The trained support vector machine was then used to classify swallowing sounds in the test set. We found high 
accuracy in the differentiation of aspirating and normal swallowing sounds with 98% overall accuracy. Sensitivity for the 
detection of aspiration and normal swallowing sounds were 89% and 100%, respectively. There were consistent differences 
in time, power spectral density and spectral subband centroid features between aspirating and normal swallowing sounds in 
children. This study provides preliminary research evidence that aspirating and normal swallowing sounds in children can 
be differentiated accurately using machine learning techniques.
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Introduction

Up to one third of children with paediatric feeding disor-
ders have identified oropharyngeal aspiration (abbreviated 
to aspiration), where fluids, foods and/or saliva enter the 
trachea below the level of the true vocal cords pre-, during 
and/or post-swallowing [1]. Clinical signs and symptoms 
of aspiration can be overt (e.g. reflexive cough generated 
to expel aspirated material) or considered silent when 
there is an absence of cough within 20 s of the aspiration 
event [2]. The prevalence of silent aspiration in infants and 
children is between 80 and 89% in children with paediatric 
feeding disorders [3, 4]. The accurate detection of aspira-
tion, including silent aspiration, is important in infants 
and children because missed detection of aspiration can 
lead to acute and chronic lung sequelae [5–7], reduced 
nutritional growth and development [8] and decreased car-
egiver health-related quality of life [9].

In current clinical practice, a videofluoroscopic swal-
low study (VFSS) is the preferred instrumental assessment 
for aspiration in infants and children due to the ability to 
visualise all phases of the swallow, including direct visu-
alisation of aspiration events [10]. However, VFSS is not 
readily available, involves exposure to ionising radiation 
(although at safe levels) [11–13] and may not replicate 
typical mealtimes due to time constraints associated with 
minimisation of screening time [14], observations of eat-
ing and drinking in an unfamiliar environment and dif-
ficulties replicating typical infant formula or breastmilk 
with barium impregnated fluids [15, 16]. Paediatric VFSS 
is also limited by accessibility due to the high costs asso-
ciated with medical imaging equipment and the require-
ment of multiple health professionals specifically trained 
in conducting and interpreting paediatric VFSS [14]. As 
such, cervical auscultation has the potential to comple-
ment instrumental assessment and facilitate assessments 
which are more representative of typical mealtimes for 
infants and children.

Cervical auscultation (CA) is the most commonly used 
adjuvant to the clinical feeding evaluation across the 
United Kingdom, Ireland and Australia [17, 18]. CA is 
a repeatable, non-invasive technique that uses a stetho-
scope, digital accelerometer or digital microphone to cap-
ture swallow and breath sounds generated during the oral 
preparatory, oral and pharyngeal phases of swallowing 
[19, 20]. The use of CA has demonstrated high sensitiv-
ity 0.85 (95% CI 0.62–0.97) and negative predictor value 
0.92 (95% CI 0.78–0.98), as well as good to very good 
reliability (inter-rater kappa = 0.81; 95% CI 0.79–0.84, 
intra-rater kappa range 0.72–0.98) in detecting aspirating 
swallows [21, 22]. Recent studies have also shown that 
specific sound features of swallow [23] and post-swallow 

breath [19] sounds can accurately differentiate between 
aspirating and non-aspirating swallows in children based 
on digital cervical auscultation.In recent years, machine 
learning has gained popularity in health care for diagnos-
tics and outcome prediction. Machine learning involves 
using statistical algorithms to model underlying relation-
ships between variables (or features), to make predictions. 
For diagnostic applications, supervised machine learning 
approaches are most common because the algorithms are 
trained to classify the presences or absence of disease or 
dysfunction. Support Vector Machine (SVM) algorithms 
have gained popularity in the machine learning community 
as they can provide accurate predictions when the relation-
ship between the features and the outcome are non-linear. 
SVM classifiers are considered the most appropriate for 
use in sound classification, given its non-linear ability to 
differentiate binary classes (i.e. aspiration versus non-
aspiration) using feature selection techniques on smaller 
datasets [24–26]. To date, radial basis classifiers have been 
shown to accurately detect aspirating swallows in children 
with paediatric feeding disorders related to neurological 
conditions (sensitivity of 79.4% [27] and 92.2% [28]). 
These studies [27, 28] demonstrated that using machine 
learning can accurately classify aspiration in children but 
100% diagnostic test accuracy remains elusive.

Previous studies using machine learning are limited 
by several factors including their use of pre-processed 
sounds and/or pre-selected input features to classify aspi-
rating swallows. Pre-processed sounds refer to the process 
of removing contaminating signal components which are 
not related to swallowing sounds. This may include sig-
nal (e.g. cough, breath sounds) or disturbance noises (e.g. 
vasomotion of major arteries, head movement) [29]. Using 
pre-selected mathematical or physiological features to 
classify aspirating swallow sounds in adults likely resulted 
in unintentional bias and reduced accuracy of the classifier 
of previous CA studies [30]. Also, previous classifier accu-
racy results were based on swallowing sounds collected 
from children with large age ranges (2–11.6 years [27] 
and 2–9.9 years [28]) and on a variety of fluid viscosities. 
These are limitations as age and viscosity influences swal-
lowing kinematics and acoustic swallowing parameters of 
amplitude, frequency and duration for children [31–33]. 
To minimise confounding factors of age and viscosity on 
swallowing sounds, studying swallowing sounds in chil-
dren of a narrow age range and on single viscosities are 
necessary. Additionally, symptoms of paediatric swal-
lowing disorders can be heterogeneous and nonspecific 
to underlying medical aetiology; therefore, an approach 
which can accommodate such heterogeneity whilst detect-
ing key attributes of aspiration swallowing sound features 
has the potential to increase the accuracy in detecting aspi-
ration amongst infants and children.
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Automatic speaker recognition (ASR), an approach which 
aims to identify a human speaker from a digital recording 
of their voice, may provide increased accuracies to the 
detection of aspirating swallow sounds in children. In con-
ventional ASR, the speech signal is represented as tempo-
ral changes in the shape of the human vocal tract, which 
contains speaker-specific information that can be used to 
identify a person. Engineering models of the vocal tract 
shape mathematically represent the resonant frequencies 
as the spectral envelope of the power spectral density of 
the speech signal [34]. The frequency locations of strong 
spectral peaks or formants, which represent resonances in 
the vocal tract, convey information on the speech content as 
well as the speaker characteristics [35]. Based on a similar 
premise, aspirating swallow sounds are the result of fluid 
flow into the trachea, below the level of the vocal cords. It 
is therefore reasonable to hypothesise that formant-based 
speech features, such as LPCCs (or linear prediction cepstral 
coefficients) [36], MFCCs (or Mel-frequency warped ceps-
tral coefficients) [37] and PLPs (or perceptual linear predic-
tion) [38], could convey useful information for discriminat-
ing aspirating from non-aspirating swallowing sounds using 
machine learning techniques. To date, CA has differentiated 
between safe and unsafe swallows [39], swallow function 
[40] and correlated specific swallow kinematic events such 
as hyoid bone displacement [41–43] and laryngeal closure 
[44] in adults. Given that ASR collates signals based on the 
temporal changes in the shape of the human vocal tract and 
the promising correlates of CA to specific swallow kinemat-
ics in adults, the differentiation of aspirating from non-aspi-
rating swallowing sounds may be possible. This study aimed 
to investigate the accuracy of using an ASR approach to dif-
ferentiate between normal and aspirating swallowing sounds 
recorded from digital cervical auscultation in children.

Methods

This study was approved by a Human Research Ethics Com-
mittee. Data analyses were completed on two groups of chil-
dren where participants were prospectively recruited and 
informed consent obtained from the caregivers and assent 
from older children.

Participants

We had two groups of children: (i) typically developing and 
(ii) feeding disorders.

Group (i) was recruited from the generally community, 
median age 13 months (range 4–33 months, 52.1% males). 
Their inclusion criteria were as follows: aged 4–36 months 
and confirmation of normal oral feeding development via 
a Pre-Feeding Checklist [45] for infants aged 4–7 months 

or confirmation of normal oromotor functioning via the 
Schedule for Oral Motor Assessment (SOMA) [46] for 
children aged 8–36 months. Children were excluded if they 
had a medical history of any of the following: developmen-
tal delay, visual/hearing impairment, neurological impair-
ment, aerodigestive tract structural abnormalities, genetic 
syndromes, paediatric feeding disorder, neurodevelopmental 
disorder and/or prematurity (< 37 weeks of gestation) [31]. 
Children included in this study were chosen based on closest 
match in age (months) to Group (ii).

Children from group (ii) were aged 2–71 months (median 
age 10.5 months, 61.1% males). Diagnoses included congen-
ital syndromes (e.g. Beckwith-Wiedermann, Cru de Chat, 
Pierre Robin Sequence), neurological (e.g. cerebral palsy), 
respiratory (e.g. bronchiectasis, chronic cough) anatomical 
anomalies (e.g. oesophageal atresia, congenital myopathy, 
tracheoesophageal fistula) and other (e.g. developmental 
delays, failure to thrive).

Procedure

Normal Swallows from Typically Developing Children Group

This dataset consisted of 106 sound clips of thin fluid initial 
and subsequent swallows from 23 healthy infants/children. 
Depending on the children’s preferences and gross motor 
development, children were seated upright at a small chair 
and table, in a high chair or positioned on their caregiver’s 
lap. Children were fed by their caregiver, the researcher or 
allowed to independently feed themselves depending on their 
expressed preferences and/or fine motor skills development. 
Children were first offered three single bites or single sips 
of age-appropriate food/fluid consistencies in a standardised 
order of puree, lumpy mash, chewable solids and thin flu-
ids. Bolus sizes were not standardised to allow children to 
eat and drink bolus volumes which replicated their typical 
mealtime experiences. After this, children were allowed to 
free eat and drink the remainder of food/fluids for a period 
of 30 min.

Aspirating Swallows from Children with Paediatric Feeding 
Disorders Group

The second dataset consisted of 18 thin fluid swallows from 
18 patients with confirmed aspiration via VFSS with various 
underlying medical aetiologies. Depending on the children’s 
age and level of gross motor development, children were 
seated either semi-reclined or upright on a tumbleform chair, 
which was positioned on top of a Videofluroscopic Imag-
ing Chair. Children were viewed in the lateral position and 
offered a standard VFSS protocol of two presentations of 
puree, lumpy mash, chewable solid, extremely thick, mod-
erately thick, mildly thick, slightly thick and/or thin fluids by 
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either their caregiver or a speech pathologist. The order of 
the protocol was consistent for all children; however, adap-
tations to the type of foods presented were made based on 
individual medical status and feeding development of each 
participant. Conferral on the presence/absence of aspiration 
was jointly completed by a paediatric speech pathologist 
and radiologist; and objectively rated by a speech patholo-
gist post-VFSS, using the Penetration–Aspiration Scale [47]. 
Scores of 6, 7, or 8 were considered aspirating swallows due 
to the entry of material below the level of the vocal cords. 
Only one swallow on thin fluids per patient was used in this 
study. Aspirating swallows used were chosen based on the 
absence of extraneous noises as a result of a loss of flat 
contact of the microphone resulting in capture of ambient 
room noise.

Equipment

An omnidirectional condenser microphone (C417, AKG 
Acoustics, Vienna, Austria) (sensitivity at 1 kHz of 10 mV/
Pa, impedance 200, frequency range 20 to 20,000 Hz) was 
placed on the skin surface lateral (< 1 cm) to the cricoid 
cartilage aligned at the level of the  6th cervical posterior 
vertebrae (Fig. 1). Palpation of the cricoid cartilage was per-
formed prior to microphone attachment to help guide accu-
rate placement for all participants. To ensure the microphone 
was consistently placed, all were placed by the principal 
researcher only using a fitted circular O-ring and secured 
with microfoam tape. The use of a circular O-ring and 
microfoam tape maximises flat surface contact, reduces pick 
up of ambient room noise and allows the infants and children 
to move as they typically would during mealtimes without 
interfering on sound quality. All swallowing sounds were 
digitally recorded (Digital H4n Handy Recorder, Zoom Cor-
poration, Tokyo, Japan) and were continuously monitored 
prior to and throughout the recordings using headphones 

(Model ATH-M50, Audio-Technica, Taiwan). For quality 
control, adjustments to the microphone placement and tap-
ing were made for the detection of extraneous noises (e.g. 
loss of flat contact resulting in capture of ambient room 
noise) and/or loss of accurate microphone placement (e.g. 
children pulling off the microphone).

Visual images of children drinking thin fluids were cap-
tured via a digital video-recorder (Model DCR-DVD605E, 
Sony Corporation, Tokyo, Japan) for the normal group, 
whilst VFSS images were captured at 15 frames per second 
via a digital fluoroscopy unit (Toshiba KXO-80G, North 
Ryde, NSW, Australia) for the aspiration group. Visual 
images for both groups were all simultaneously recorded 
on the Digital Swallowing Workstation (KayPentax, Pen-
tax, New Jersey, USA). Where possible, nasal airflow direc-
tion was also simultaneously recorded via placement of an 
infant or paediatric sized nasal cannula, which was secured 
firmly behind the ears. A vocal signal was used at the begin-
ning of all assessments to enable accurate synchronisation 
of acoustic and visual data. Visual and audio recordings 
of children drinking thin fluids were downloaded from the 
Digital Swallowing Workstation (KayPentax, Pentax, New 
Jersey, USA) onto an external hard drive and synchronised 
on video-editing software (Sony Vegas Movie Studio 9, 
Madison, WI). Manual segmentation for time points of nor-
mal swallows were completed by a research assistant and cli-
nician researcher with speech pathology experience trained 
to identify the start and end points of the swallows. The start 
point of a swallow sound was defined as the commencement 
of a fluid flushing sound (audio data) and commencement of 
laryngeal motion associated with pharyngeal activity (visual 
data). The end point of a swallow was defined as the cessa-
tion of a fluid flushing sound (audio data), combined with 
no laryngeal motion (visual data). Inter-rater reliability for 
swallow segmentation was performed on a random selec-
tion of 25% of swallows and intra-class coefficients of > 0.99 
were obtained for both raters [31, 48].

Preprocessing and Feature Extraction 
from Swallowing Sounds

An overview of the processing that was performed is sum-
marised in Fig. 2. No downsampling was applied to the swal-
lowing sounds to record the entire dynamic range. In the 
feature extraction stage, the swallow sounds were passed 
through the following pre-emphasis high-pass filter.

The purpose of the pre-emphasis filter was to compen-
sate for any spectral tilt by flattening the power spectrum so 
that higher frequency formants were emphasised [36]. The 
filtered sounds were then segmented into 20 ms overlapping 

H(z) = 1 − 0.97z
−1

Fig. 1  Placement of microphone during a videofluoroscopic swallow 
study (VFSS)
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frames with a 10 ms update and a Hamming window was 
applied to each frame.

Feature vectors were then computed for each frame. 
There are several speech features that are commonly used 
in automatic speaker recognition, such as LPCCs, MFCCs 
and PLPs. The purpose of the feature extraction process is 
to derive useful parameters of the spectral envelope shape of 
the power spectrum, specifically, the frequency locations of 
the formants [35]. Whilst MFCCs are very popular features 
used in conventional ASR, they are also well known to be 
sensitive to additive noise. Early experiments as part of this 
study were performed using MFCCs to identify aspirating 
sounds; however, results showed relatively poor classifica-
tion performance. Rather than using cepstral-based features, 
which utilise both formant and non-formant regions of the 
power spectrum, it was discovered that features based on 
formant locations, specifically, spectral subband centroids 
(SSCs) [49], were better suited for this task.

To compute SSCs, the power spectrum is filtered by a 
Mel-frequency warped triangular filterbank (similar to that 
used in MFCCs), which results in M subbands, where M is 
the number of triangular filters used. In this study, M was 
set to 26. The spectral centroid frequency of each subband 
is computed and these centroid frequencies together form a 
M-dimensional SSC feature vector. Spectral subband cen-
troids tend to be more robust because they are more heavily 
influenced by the location of the formants, which can be less 
sensitive to broadband noise [49].

Based on features from a previous study on SVM clas-
sification of acoustic events [50], a feature vector for each 
patient is then formed by computing the mean and stand-
ard deviation of the SSC vectors and concatenating them 
together, giving the final feature dimension of 52.

SVM Classifier Design

There was a total of 124 swallows, of which 18 were aspi-
rating and 106 normal swallows. Training and test sets 

were formed using a 50/50% stratified random split, which 
ensured the same distribution of classes in both sets. The 
training and test set each comprised 53 normal and 9 aspirat-
ing swallows. Since SSCs are frequency locations that are 
required to be in ascending order, feature standardisation 
was not applied. The class labels for normal and aspirating 
swallows were set to 0 and 1, respectively.

The classifier used in this study was the support vector 
machine (or SVM) [51], which is well suited to situations 
where training data are limited. The SVM is a large margin 
classifier that has good generalisation properties and is rela-
tively robust to outliers, since the computed hyperplane that 
separates the two classes is determined only by a smaller 
subset of training vectors known as the support vectors. By 
using different SVM kernel functions, which effectively 
transform the feature vectors into a higher dimensional vec-
tor space in order to achieve better class separation, a non-
linear decision hyperplane can be efficiently computed [52].

The SVM classifier in the Python library scikit-learn [53] 
was utilised in the experiments for training and testing. In 
order to determine the optimal SVM parameters, such as the 
type of kernel (sigmoid, radial basis function or polynomial), 
kernel parameters (gamma and polynomial order) and regu-
larisation parameter C, a grid search was performed using 
a five-fold cross-validation on the training set. In this study, 
the best parameters found were C = 1 using a second order 
polynomial kernel. To handle the class imbalance problem, 
the regularisation parameter C for each class was weighted 
by a factor that was inversely proportional to the class fre-
quencies, as is implemented in the “balanced mode” of the 
SVC in scikit-learn.

Results

Confusion matrices summarises prediction results on a clas-
sification problem and often used in the field of machine 
learning. The confusion matrix of the normal (0) and 

Fig. 2  Flowchart of the pre-processing, feature extraction, and classification stages
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aspirating (1) classes for the SVM classifier are shown in 
Fig. 3. This matrix shows that of the true normal swallows, 
the classifier correctly identified 53 as normal swallows, and 
0 as aspirating. Of the true aspirating swallows (n = 9), the 
classifier labelled 1 as a normal swallow and 8 as aspirat-
ing swallows. The matrix demonstrates that the proposed 
method accurately identified all normal swallows with only 
one false negative, i.e. the classifier identified an aspirating 
swallow as normal. Table 1 lists the overall performance of 
the SVM classifier, where the total accuracy was found to 
be 98%.

Aspirating swallow sounds had different time domains 
and power spectral density (PSD) features compared to 

normal swallows. To demonstrate this difference, Fig. 4 
shows randomly selected time domain segments (each with 
labels for three points of interest A,B and C) of aspirating 
swallows (subplot 2(a)) and normal swallows (subplot 2(b)). 
The corresponding PSD for both aspirating and normal seg-
ments and each point of interest A, B and C are shown in 
Figs. 5, 6 and 7. In Figs. 5, 6 and 7, the dashed red vertical 
lines indicate the location of the individual SSCs. Since the 
SSCs are computed as the centroid of different frequency 
subbands, they will tend to be more concentrated around 
strong spectral peaks. This higher concentration of SSCs can 
be seen in the low frequencies where the spectral compo-
nents are strong. Therefore, the SSCs, which are highlighted 
in Figs. 5, 6 and 7, are able to capture the high-frequency 
spectral peak that is near the 20 kHz, which appears to be a 

T
ru

e 
L

ab
el

Normal  53 0 

Aspirating  1 8 

Normal Aspirating

Predicted Label

Fig. 3  Confusion matrix between normal and aspirating classes

Table 1  SVM classifier performance between patients with aspirating 
and normal swallows (total accuracy = 0.98)

The  F1 score, which is defined as the harmonic mean of the precision 
and recall, is another measure of accuracy that is more conservative, 
balances the contribution of false negatives and false positives to the 
final metric, and is better suited to cases where classes are unbalanced
PPV positive predictive value, NPV negative predictive value

PPV or 
preci-
sion

NPV Specificity Sensitiv-
ity or 
recall

F1 score

Normal swallow 
(0)

0.98 1.00 0.89 1.00 0.99

Aspirating swal-
low (1)

1.00 0.98 1.00 0.89 0.94

Fig. 4  Time domain representa-
tions of and regions of interest 
(A, B, C) in a an aspirating 
swallow; and b a normal swal-
low
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characteristic of the power spectral density of the aspirating 
swallow sound.

In order to determine whether these characteristic 
SSCs are a common feature that can be used for the 
discrimination between normal and aspirating swal-
low sounds, Fig. 8a and b shows all the SSCs from the 

entire aspirating and normal swallow sounds dataset. As 
shown in the highlighted region in Fig. 8a, there are high-
frequency SSCs that only appear in aspirating swallow 
sounds.

Fig. 5  Power spectral density 
after pre-emphasis (blue line) 
and SSC frequencies (dashed 
red lines) of region (A) from 
Fig. 4: a an aspirating swallow; 
and b a normal swallow

Fig. 6  Power spectral density 
after pre-emphasis (blue line) 
and SSC frequencies (dashed 
red lines) of region (B) from 
Fig. 4 in: a an aspirating swal-
low and b a normal swallow
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Discussion

To our knowledge, this is the first study to use an ASR 
approach to determine a classifier for the differentiation 
between normal swallows in healthy children and aspi-
rating swallows in a cohort of children with paediatric 
feeding disorders using digital CA. High accuracy for the 
detection of aspirating and normal swallows were found, 

with sensitivities of 89% and 100%, and NPVs of 1.00 and 
0.98, respectively. We demonstrated differences in time, 
power spectral density and SSC features between aspirat-
ing and normal swallows in children.

Previous studies investigating the use of a classifier to 
detect aspirating swallow sounds in children have docu-
mented lower overall accuracies of 79.8% [27] and 89.6% 
[28] when compared to the overall accuracy of 98% found in 
our study. It is possible that the lower accuracies previously 

Fig. 7  Power spectral density 
after pre-emphasis (blue line) 
and SSC frequencies (dashed 
red lines) of region (C) from 
Fig. 4 in: a an aspirating swal-
low and b a normal swallow

Fig. 8  Plot of mean SSCs for 
all a aspirating swallows (18) 
and b normal swallows (106). 
There are 26 “bands” that 
represent the 26 SSC features. 
Within each band, a vertical line 
represents the mean SSC for 
an individual swallow sound. 
The highlighted region in a 
shows SSCs that only appear in 
aspirating swallow sounds
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reported were at increased risk of type I errors due to multi-
ple swallow sound data points collected and used from each 
participant with a paediatric feeding disorder. The same 
studies also used swallow sounds recorded via an acceler-
ometer on a combined range of fluid viscosities and solid 
consistencies [27, 28]. Exclusively focussing on thin fluids 
is essential in the development of a swallowing sounds clas-
sifier because there are known differences in the acoustic 
properties (e.g. intensity, duration, frequency) between thin 
and puree bolus’ in children [32] and adults [54, 55]. Thus, 
our higher reported accuracy may have been facilitated by 
exclusively using thin fluid swallowing sounds across two 
independent groups of healthy children and children with 
paediatric feeding disorders, thereby minimising type I error 
and the heterogeneity of swallowing sounds.

Our reported sensitivity of 89% for the detection of aspi-
ration is higher than previously documented sensitivities 
of between 33 and 92% for routinely performed clinical 
feeding evaluations in children when compared with gold 
standard tests, such as the VFSS or fiberoptic endoscopic 
evaluation (FEES) [10, 56–63]. In comparison with cervical 
auscultation-specific diagnostic test accuracy data in chil-
dren, our overall sensitivity for the differentiation between 
aspirating and normal swallows is superior to subjective 
clinician judgement when cervical auscultation was used in 
conjunction with the clinical feeding evaluation 85% (95% 
CI 0.62–0.97) [21] or in isolation 93.9% (95% CI 91.8–95.6) 
[22]. The improvements in accuracy for the differentiation 
between aspirating and normal swallows found in our study 
are likely attributed to the ASR approach used. Given that 
the ASR approach is based on temporal changes to the shape 
of the vocal tract, it is plausible that the entry of fluids into 
the trachea and below the level of the vocal cords caused 
changes to features of the swallowing sound which would 
not be audible on normal swallows.

In our study, consistent differences in time, power spec-
tral density and SSC features were found between aspirating 
and normal swallows in children. For aspirating swallow 
sounds, the power spectral density at specific swallowing 
time points contained strong peaks in the high frequencies 
when compared to normal swallowing sounds. In addition, 
only a specific SSC feature appears in aspirating swallowing 
sounds and is absent from all normal swallowing sounds. 
We hypothesise that the SSC and power spectral density 
features on aspirating swallow sounds are one out of 21 
physiologic components in the oropharyngeal mechanics of 
feeding/swallowing in infants [64, 65]. Martin-Harris and 
colleagues [65] completed the largest known prospective 
study on 300 infants which investigated the quantification 
of swallowing function. Based on the gold standard VFSS 
and validity testing, Martin-Harris and colleagues [65] 
demonstrated that aspiration formed one of five domains 

of swallowing in infants. As such, the contributions of our 
preliminary work of SSC and power density features lay the 
foundation for future approaches to develop an aspiration 
classifier for swallowing sounds which correlate with quan-
tifiable physiological components of the paediatric feeding/
swallowing mechanism.

Whilst our study uniquely described the use of machine 
learning to accurately classify aspirating swallow sounds in 
children, there are limitations to our study. Firstly, VFSS was 
not used to objectively classify swallowing sounds obtained 
in the normal group of children. Our team acknowledge that 
obtaining ethical approval and caregiver consent for radia-
tion exposure with VFSS for healthy infants and children 
are unlikely. Instead, we used the results of the SOMA [46] 
and/or pre-feeding checklists [45] to objectively categorise 
normal feeding/swallowing skills. Secondly, our small sam-
ple of aspirating swallows (n = 18) was a limitation and there 
is the potential for overfitting based on this small specific 
dataset. To overcome any bias towards overfitting, we used 
stratification and class weightings in the SVM to preserve 
the class balance between aspirating and normal swallows. 
This ensured consistent proportions of the two swallow types 
used for machine learning. Future studies with larger sample 
sizes of aspirating swallows in children with paediatric feed-
ing disorders are required to further validate use of the ASR 
approach for the classification of aspiration. In addition, 
comparative studies of different classifiers are required to 
provide reliable interpretation of reported diagnostic accu-
racies which are performed on the same dataset to reduce 
known bias’ in machine learning within healthcare [66].

The potential benefits of an accurate classifier for the 
detection of aspiration based on swallowing sounds pro-
vide an important step towards cervical auscultation being 
a complementary diagnostic instrumental assessment to 
VFSS. Cervical auscultation has the potential capability of 
helping health professionals worldwide working in the field 
of paediatric feeding disorders to personalise feeding man-
agement plans which are patient and family centred [67] 
due to its non-invasive nature, low cost and repeatability in 
multiple environments. However, further studies are required 
which uses machine learning principles to systematically 
understand swallowing sound properties in a variety of 
clinical populations in infants and children. Speech patholo-
gists continue to have an important role in the assessment 
of aspiration risk and the complex richness of information 
(e.g. breath sounds, respiratory status, positioning) that is 
obtained in a clinical feeding evaluation whilst further work 
on refining current swallowing classifiers continues.
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Conclusion

This study provides preliminary evidence that the use of 
machine learning techniques could accurately classify aspi-
rating swallowing sounds collected from digital cervical aus-
cultation in children with a high degree of accuracy (98%), 
sensitivity (89%) and PPV (100%).
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