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Abstract. The paradox of Banach, Tarski, and Hausdorff shows that any two bounded sets
M, N C E3 with non-empty interior are equidecomposable. The result remains tMe if
andN are replaced by collections of sets. We present quantified versions of the paradox by
giving estimates for the minimal number of pieces in such decompositions. The emphasis is
on replications of setM, i.e., on the equidecomposability bf with k copies ofM, k > 2.

In particular, we discuss the problem of replicating the cube.

1. Introduction

The theory of equidecomposability of sets gives rise to new interpretations and so-
lutions of some classical geometric problems. The most popular example is the task
of squaring the circle, which has been solved by Laczkovich [8]. Another problem,
serving as a motivation for the present paper, is the duplication of the cube, whose
traditional form has essentially influenced the development of mathematics for thou-
sands of years (see [3]). The basis for an adequate reformulation and solution of the last
problem is given by the paradox of Banach, Tarski, and Hausdorff (see [1] and [6]). It
shows that any cub€ in Euclidean spac&2 can be decomposed into a finite number

k =1 + m of disjoint subset€,, C,, ..., Ck such that botlp; (Cy), ¢2(C2), ..., ¢ (C)
andy+1(Ci11), ¢142(Ci12), - - ., ek (Cy) form decompositions &, wherep;, 1 < i <K,

are suitable isometries @&?3. (Later we say thatC andC + C are equidecomposable
usingk pieces”.) However, the smallest possible nunmbar the above construction is
unknown. A very rough estimate from [5] giviks< 21, 556, 563 000. The goal of the
present paper is to find reasonable estimates for the minimal number of pieces, not only
for the duplication of the cube, but for paradoxical replications of arbitrary bounded sets

* This research is part of the author’s Ph.D. thesis [12].
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M C E3with non-empty interior. First we present an appropriate general version of the
theorem of Banach, Tarski, and Hausdorff.

2. The Theorem of Banach, Tarski, and Hausdorff

Let Z3 be the group of isometries d&2. For A, B € E2, we write A ~ B if A and
B are congruent, i.e A = ¢(B) for someyp € Zs. (2F%} is to denote the free Abelian
semigroup generated by the subsetE#&fThat is, the elements ©2E°) are finite formal
sumsa = A+ Ay + - - - + A, of subsetsh; of E3. Fork > 1 andA C E3, k- Ais meant
to be thek-fold sumA + A+ --- 4+ A. The set{0, 1, 2, .. .} of non-negative integers is
denoted byN. We write S, for the symmetric group of all permutationsmoglements.

Definition 1.

(@) Leta= A1+ As+ -+ A,b=B1+By+---+ B € (25°), andn € N. The
sumsa andb are calledequidecomposable using n pie((asg b) if there exist
representations =ri;+ro+---+r¢,rp e Nandn=s+S+---+5,5 €N,

decompositions
i+ Sp+-+§
A = U M, and Bj= U N,
U=ry+-+ri_1+1 v=s;+-+5-1+1
fori e {1,2,...,k}andj € {1,2,...,1}, and a permutation € S, such that
Nv ~ Mn(v)
holds true forv € {1, 2, ..., n}.

(b) Two sumsa, b € (2F%) are calledequidecomposabl@ < b) if a 2 bis valid
for somen € N.

Note that we use the word “decomposition” for disjoint decompositions in the sense
of set theory only. This is totally different from the concept of a decomposition in
elementary geometry, where for instance a closed triangle can be “decomposed” into
two closed subtriangles having boundary points in common.

Roughly speaking, the relatican < b means that there exists a “construction set”
consisting ofn pieces which, on the one hand, can be used to build up all the terms
of a simultaneously and, on the other hand, suffice for construttinghe same way.

The above definition shows in particular that, for any two #et8 < E3, the relations

1 2 n 1 0
A~A A+B>~A+B, AxAforn>1, A~ A+ @, andd ~k-@fork > 1are
fulfilled.

Clearly, one can define more general concepts of equidecomposability by considering
other groups instead df; possibly acting on other spaces th&a. In particular, the
following abstract Proposition 1 and Theorem 2 remain true in this much more general
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setting. We refer the reader to the comprehensive survey [14] for considerations of that

type.
The equidecomposability of sums from the semigr(ﬂfﬁ) generalizes the classical

equidecomposabilith ~ B of subsetsA, B € EZ. The following can easily be seen as
for the classical concept.

Proposition 1. The relation~ is an equivalence relation |(2E3). In particular:

(a) The relation ak§n aisvalidforalla= A+ Ay +---+ Ac € (ZE3> andn> 0.
(b) Leta b e (25 be sums fulfilling & b. Then b= a.
(c) Leta b,ce (2F%) be such that a b and b= ¢, Then a~ c.

We recall the well-known paradox due to Banach, Tarski, and Hausdorff (see [1], [5],
and p. 29 of [14]):

Theorem 1(Banach, Tarski, Hausdorff).Let M, N € E2 be bounded sets with non-
empty interiorThen M~ N.

The paradox will find a natural generalization concerning the equidecomposability
of sums from(2E°). However, the main task of the present paper is to quantify the result
by giving reasonable upper estimates for the optimal number of pieces realizing certain
equidecomposabilities.

Definition 2. Leta,b € (2F°) be equidecomposable. Tlkegree of equidecompos-
ability of a andb is meant to be

dega, b) = min{n: a < b}.

The main tool for finding estimates for dggb) is the Banach—Schder—Bernstein
theorem concerning the following relation (2€°).

Definition 3.

(&) The suma = A3 + A + -+ - + A andb from (2% fulfil the relationa 2 b,

n € N, if there exist subsetd; € A;, 1 <i <k, such that the relatioa’ b
holds true for the sura’ = A} + A, +--- + AL

(b) Thesums, b e (2F%) fulfil the relationa 2 b (aislarger than b by decomposi-
tion) if a £ b is valid for somen € N.

k
The relationg in (253) is reflexive and transitive. Indeed,> a trivially holds true
foranya = Aj+ Ag+- - -+ Ay € (2E°). Fora, b, ¢ e (25°) fulfilling a = bandb = c,

we havea “2‘ C.
The following statement is the adequate generalization of the Banacled®chr”
Bernstein theorem, which is usually formulated for sub#et8 e E2, but not for sums
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a,b e (2F%) (see p. 25 of [14]). However, the idea of its proof is exactly the same as in
[14]. (A proof including all technical details is given in [12].)

Theorem 2. Suppose the sumslae (2E%) fulfil the relations ag b and bg a. Then
a'<"b.In particular, s gives rise to a partial ordering of the-classes in2E%.

The considerations concerning the paradox of Banach, Tarski, and Hausdorff start
with the special case of replicating spheres and balls. WeB(ger) to denote the
closed Euclidean ball centredate E2 with radiusr > 0. The two-dimensional unit
sphere bdB(0, 1)) is denoted bys?. As usual,SO; denotes the group of all rotations
mapping the unit balB(0, 1) onto itself. We use the following statements, which follow
immediately from the proofs of Theorems 4.5 and 4.7 in [14].

Proposition 2. Letp, o € SO; be generators of a free non-Abelian subgroup of rank
two. Then the following are true

(@) There exist sets A, C, D such that the sphere?@dmits the decompositions
S =AUBUCUD=AUp(B)=CUc(D).

(b) There exist sets’AB’, C’, D’, E’ and a translationr such that RO, 1) can be
decomposed into

B(0,1)=AUBUCUD'UE' =AUpB)=C' Us(D)U(E").
Besides that, we need the following lemma (see [4]).

Lemmal. Letp,o € SG; be rotations with the same angleof rotation such that
their axes are perpendicular artdn(«/2) is transcendentalThenp ando generate a
free non-Abelian group of rank two

The above give rise to a theorem loffiold replications of spheres, balls, and pointed
balls, which includes a statement on the optimal number of pieces in the correspon-
ding decompositions. Thaointed ballcentred ai with radiusr is meant to be the set
BP(x,r) = B(x,r)\{x}.

Theorem3. Let x € E3, r > 0,and k € {2,3,4,...}). Then the sphere S=
bd(B(x,r)) as well as the balls B(x,r) and B(x,r) admit a k-fold replication in

the sense of & k - S, BP(x,r) Lk BP(x,r),and B(x,r) Lk B(x, r), respectively
Moreover

degS k- S) =degBP(x,r), k- BP(x,r)) = 2k
and

degB(x,r), k- B(x,r)) =3k — 1.
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Proof. We assume that = 0 andr = 1 without loss of generality, i.eS = S° and
B(x,r) = B(0,1). By Lemma 1, there exist rotations o0 € SO; generating a free
non-Abelian group of rank two.

We employ part (a) of Proposition 2 for provir&;]fz_vI< k-S. LetB ;= p @-1(B),
C = p D), andD; = p~ YD) fori = 1,2,3,.... Obviously, B, can be
decomposed int@, = p~* D (p(B)) = p~* V(B UCUD) = By1 UCk U Dy.
Now a simple induction with respect toshows thatS admits the following decompo-
sitions:

S=AUBUCLUCU---UC_UDyUDyU---UDg_1 (D)

as well as

S = AUpYBy and
S = p'HC) Uop ~HDy) for 1<i<k-—1 2)

This provesS E_lf k - Sand, in particular, dgg, k - S) < 2k. On the other hand,
deg S, k- S) > 2k, since each of thk copies ofS must consist of at least two pieces.
The treatment of the pointed baP(0, 1) is similar; one has to consider half-open
radii {Ax: 0 < A < 1} of the ball instead of points from the sphere.
We use Proposition 2(b) for replicating the solid bBlix, r) = B(0, 1). Putting
B, =p 17V(B), C/ = p D), D = p~ 17D, andE] = p~1~V(E) for
i =1,23,..., we obtain the decompositions

Bxx,r)=AUB, UC;U---UC, ;UDjU---UD;, ;UEjU---UE,_; (3
as well as

B(x,r) = AUp<Y(By) and
B(x,r) = p'"{CHUaop' XD Utp'"HE) for 1<i<k—1 (4

This givesB(x, r) SIE_:l k- B(x,r)and degB(x,r), k- B(x,r)) <3k — 1.
The inverse inequality d€8(x, r), k - B(x,r)) > 3k — 1 is based on an idea from
the paper by Robinson [13], who has originally shown that the smallest possible number

of pieces in the duplicatioB(x, r) X2. B(x, r) of solid balls is five. In fact, he has
proved the following (see also pp. 40-41 of [14]here do not exist any four disjoint
subsets A Ay, Az, A4 of B(0, 1) and isometriesry, oo, az, a4 € Z3z such that both

a1(A1) U az(Az) andas(As) U as(Ag) cover BO, 1). Consequently, in any realization

of the equidecomposabilitB(x, r) Zk. B(x,r) at most one term of the sui-
B(x, r) is decomposed into two pieces, whereas the others need at least three. Hence,
degB(x,r), k- B(x,r)) > 2+ 3(k — 1) = 3k — 1. This completes the proof. O

We remark that one can similarly show the equidecomposabilitEdf {x} and
k - (E3\ {x}) with deg E3\ {x},k - (E3\{x})) = 2k for all x € E® andk > 2. The

. . . . 3k-1
considerations of solid balls can be continue®&f ~ k - E3.
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All estimates to follow for the degree of equidecomposabiliaeg b make use of
the Banach—-Scbder-Bernstein theorem (Theorem 2). That is, we shall séuo&vb

andb 2 a in order to conclude that dég, b) < n+ m. Proposition 3 is a useful tool for
proofs of that type.

Proposition3. Leta= A+ Ay + -+ Aob = Bi+ By + --- + B e (2F°),
and ne N. Suppose that there exist pairwise disjoint subsetsNi, ..., M, of Aj, a
representation i=s,+ S+ --- + 9, 5 € N, and isometrieg, € 73, 1 < v < n, such
that the terms B 1 < j <1, of the sum b are covered by

S+t

Bc U e,

v=§+-+§_1+1
n
Then a> b.

Proof. Obviously, there exist suitable subséts < M, such that the setB; admit
decompositions
Si+ets

B= U am)

v=8+-+§_1+1

Thus we haveA; 2 b with Al = MfUM;U..-UM,|. Putting Al = @ for 2 <
i <kanda = A} + A, +--- + A we obtaina’ 2 b, By Definition 3, this shows
thata 2 b. O

The following quantified generalization of Theorem 1 rests on coverings of bounded
sets by balls. A quantity describing optimal coverings of that type is givefoiimogo-
roff’s entropy functior(see p. 4 of [7]). For bounded sets € ES and radiir > 0, the
functionN; (M) is defined by

N; (M) = min{m € N: M can be covered by closed balls of radius}.

Theorem4. Leta= A1+ A+ ---+ Acandb= B; + By, + - -- + B, be sums from
(2€%) such that all sets Aand B are bounded and that at least one term of the sum a

as well as one term of b has inner poirithen a~ b.
If r and s are the radii of closed balls contained in a term of a and,s€&bpectively
then

k |
dega,b) < 3 (ZM(A) - M(B,—)) -2
i=1 =1

J

Proof Without loss of generality, we assume thixo, r) € A;. By the definition
of M;(B)), the setsB;j, 1 < j < I, can be simultaneously covered by= AN} (B;) +
N (Bp) + - -- + N; (B) translates oB(Xg, r). On the other hand, by Theorem 3, there
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exist h — 1 disjoint subsetdl;, My, ..., May_1 € B(Xo, ') such that suitable isometric
images of them form decompositions of the above-mentidnienslates oB(xg, I).
Consequently, the images of thie 3 1 disjoint subset#l, C A; give rise to coverings

3h-1
of the termsB; of the sumb in the sense of Proposition 3. Thus we obtirn- b, i.e.,

|
azb with nzs(Z/\f,(Bj)>—1.
=1

Similar arguments yield
n k
b>a with m=3(Y AN (A))-1
i=1

Now Theorem 2 shows that'~ b and, in particular,

J

k |
deqa,b>sm+n=3<ZAfs<Ai)+ M(Bj))—z. O
i=1 =1

We finish this section with a corollary based on the following upper estimate of
Kolmogoroff’s entropy functionV; (M).

Proposition 4. Let M € E® be a bounded set whose circumball is of radius R and let
r > 0 be a real numbeiThen

Ni(M) < mini(ﬁ?R +1)3, g <?R +2)3}.

Proof. Let B(Xp, R) be the circumball oM. It is contained in a cub€ whose edges
are of length R. Clearly,C can be covered bg® subcubes whose edges have length
2R/ h, where the integeh is chosen such that3R/r < h < +/3R/r + 1. Any of these
subcubes has a circumscribed ball of radipsinces/3R/h < r. This shows thaM
admits a covering bi® balls of radiug . Thus

R 3
Ni(M) < h® < <~/§7+1> .

For proving the second estimate we use a covering by a lattice of cubes with
edges of length12/+/3. M is covered by those cubes whose intersection with the cir-
cumballB(Xg, R) is non-empty. Lef be the number of these cubes. Obviously, they all
are contained iB(xg, R + 2r). We can estimate their volume by

' (2—r)3 < vol(B(xo, R+ 2r)) = 4—”(R+2r)3
J /3 0 =3 .
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Any of the j cubes can be covered by a ball of radiughus we obtain

. \/§ ° 4 3 \/éy'[ R 3
Ne(M) < <<?) ~?(R+2r) :T<?+Z> .

This completes the proof of Proposition 4. O

It can easily be seen that the minimum considered in Proposition 4 is given by
(v3R/r + 12if R/r < 5.3 and by(+/3r/2) (R/r +2)%if R/r > 5.4,

Corollary 1. Leta= A;+ Ax+---+ Acandb= B; + B, + - - - + B, be sums from
(253) such that all sets fand B are bounded and that at least one term of the sum a as
well as one term of b has inner pointdoreoverlet r and s be the radii of closed balls
contained in a term of a and of, bespectively

@ fR, Ry, ...,Rcand 3, S, ..., § are the radii of the circumballs of the sets
A, Ay ..., Akand B, By, ..., B, respectivelythen

dega, b) < 3<2k: min { <*/§% " 1>3’ g (% " 2)3}

IJ:r imin[(«/i—%?— + 1)3, @ (?— + 2)3}) -2
=1

(b) If R and S are the largest radii of the circumballs of the k terms of the sum a and
of the | terms of prespectivelythen

3 3
dega, b) < 3(k-min{(\/§§+1) @(?Jrz) }

+1 -minl(ﬁ,FSJrl)g,g (§+2>3}) -2

We remark that in [5] the following very rough estimate for the degree of equide-
composability of set, N < E3 is given: if M and N contain a ball of radius in
their intersection and if their union is covered by a ball of radRishen degM, N) <
(1 + 242QR/r)®)2. The second part of Corollary 1 gives rise to the essentially better
estimate degVl, N) < 6- min{(+v/3(R/r) + 1)3, (+/37/2)(R/r + 2)3} — 2.

3. Replicating Sets

Therorem 4 shows that any boundediet ES with non-empty interior admitskafold

replication in the sense dfl ~ k- M for all k > 2. Moreover, ifM contains a closed
ball of radiusr, then

degM, k- M) <3(k+1)- N (M) — 2. (5)
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In this section we sharpen this estimate. First we present a statement resting on coverings
by balls as the claim of Theorem 4.

Theorem 5. Let M € E® be a bounded set with non-empty interior and let R be
an integer
(a) If M can be covered by m translates of a closed ball being a subset tidvi
degM,k-M) <3mk—-1) + 3.
(b) If M can be covered by m translates of a pointed ball being a subset, tiiév

degM, k- M) < 2m(k — 1) + 3.

Proof. Let the ballB(x, r) be a subset ol such thatM admits a covering

M C r(B(X, 1)) Ut2(B(X, 1) U---Utm(B(X, 1)) (6
. . . . 3m(k—1)+2
with suitable translationg € Z3. By Theorem 3, we have the relati®tx, r) ~
(mk — 1) +1) - B(x,r). The particular structure of this equidecomposability is de-
scribed by formuals (3) and (4) in the proof of Theorem 3. Accordingly, there exist a
decomposition

B(X,r)=AUM;UMzU---UMsani-1)+2 (N
and isometries, € Z3, 2 < u < 3m(k — 1) + 2, such that
B(x,r) = A'U ¢2(My) (8
and
3v+2
Box.1) = eu(Mu) ©)
u=3v

forl<v<mk-1).
We putM; = (M\ B(x,r)) U A'. By (7), we obtain the decomposition

M =M UMaU---UMank-1+2.
Moreover, the first ternM of the sumk - M has the representation
M = (M\B(X, 1)) UA Upa(M2) = M1 U ¢2(My)
by (8). Finally, by (6) and (9), thk — 1 remaining terms df - M admit the coverings

m  3((j—1)m+i)+2

Mc| U neuMy
i=1 u=3((j—Hm+i)

forl < j <k—1.Thusallterms ok- M are covered by isometric images of the disjoint

. . 3m(k—1)+2
setsMy, € M, 1 < u < 3m(k—1)+ 2. Now Proposition 3 yieldM > k-M. The

1 s - 3m(k-1)+3
counterpark-M > M istrivial. Applying Theorem 2we concludethslt ~  k-M.

Hence part (a) of Theorem 5 is proved.
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Part (b) can be shown in the same way by the aid of the statement from Theorem 3
on replications of pointed balls. O

Theorem 5 sharpens the estimate (5) obtained by the general Theorem 4 in so far as
we get

degM, k- M) < 3(k — 1) - \; (M) + 3.

Proposition 4 gives rise to the following.

Corollary 2. Let M € E2 be a bounded set with non-empty interior and let R be
an integerlf M contains a closed ball of radius r and if R is the radius of the circumball
of M, then

3 3
degM,k-M)fS(k—l)-min{(«@rBJrl) ,@Gﬁz) }+3.

As mentioned above, the present paper is motivated by the question for a paradoxical
duplication of a cube with a small number of pieces. We illustrate the result attainable by
Theorem 5. We have to find the smallest possiblehich can be used when applying
Theorem 5 to the case of replicating the cube.

Proposition 5. Any cube C< E2 can be covered by eight translates of a suitable
pointed ball which is contained in QA covering by seven translates of a solid closed
ball being a subset of C does not exist

Proof. We consider the cul® = [—1, 1]°. Of course( is covered by the eight pointed
ballsBP(x, 1), X = (+31, £3, £3).

Now letC be covered byn solid balls of radius 1. We have to show tinat- 8. Any
of them balls can contain at most two vertices@f Accordingly,m = mg + m; + my,
m; denoting the number of balls containing exacétiyertices. Fox e vert(C), leth;(x)
be the number of those balls which cowebut no other vertex, and lét;(x) be the
number of those containingand one additional vertex. Obviously,

m>m+my= > (hi(x)+ 3h2(x).

XxevertC

Next we observe that;(x) > 1 or hp(x) = 3 for anyx € vert(C). Indeed, if
h1(x) = 0, thenx together with some neighbourhoodoin C must be covered by balls
containing an additional vertex besidesEach of these balls must contain one of the
three edges starting imas a diameter. Clearly, all three balls of that kind are needed to
cover a neighbourhood of and thereford,(x) = 3.

Thus we obtairh,(x) + %hg(X) > 1 for all verticesx, and the estimate given above
can be continued to

m> Y 1=8,

xevertC
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which completes the proof. (Moreover it is shown that the optimal coveri@yaansists
of eight balls each containing exactly one vertex.) O

We can apply both parts of Theorem 5 with = 8. Obviously, part (b) gives the
better estimate: for any culie € E* and any integek > 2,

degC, k- C) < 16(k — 1) + 3, (10)

in particular, de¢C, C + C) < 19 for duplicating the cube.
The remainder of this section deals with a second theorem concerning the degree of

replicationsM Lk M.

Theorem 6. Let M C E2 be a bounded set such that its closakéM) can be covered
by m isometric images of its interiamt(M). Then

degM, k- M) < 2mk+ 1

for all integers k> 2.

Before giving the proof we demonstrate the power of Theorem 6 compared with that
of Theorem 5. The crucial numben in Theorem 6 is given by a covering of(&ll)
by images of intM), whereas in Theorem 5 the dét has to be covered by translates
of a ball B(x, r) contained inM. Obviously, this newm can be chosen smaller than
that from Theorem 5 for many reasonable ddtssince intM) is usually much larger
than B(x, r). The next section gives some interesting applications of Theorem 6. We
presenuniversalestimates of dggM, k - M) for setsM belonging to certain classes of
sets.

We give an example by applying Theorem 6 to the replication of cubes. In Section 5
we prove that any cub@ < E2 admits a covering by four isometric images of its interior
(see Proposition 7). Thus we obtain the estimate

degC,k-C) <8k +1 (11

for all k > 2, in particular, de¢C, C + C) < 17. This obviously improves the above
estimate (10) inferred from Theorem 5.

However, in some cases Theorem 5 gives the better result. Assume for instance that
M is the union of two closed balls. Then Theorem 5, part (a), applieswith 2, i.e.,
degM, k - M) < 6k — 3. On the other hand, the smallesin Theorem 6 is four. This
gives rise to a worse inequality d@d, k - M) < 8k + 1.

In preparation for the proof of Theorem 6, we show that anyMefulfilling the
assumptions of the theorem can be coveredntiynages of arinner parallel set The
inner parallel seM_, of M € E® to the distance > 0 is defined by

M, ={xe M: B(x,r) € M}L.

Proposition 6. Let M € E® be a bounded set whose closatéM) admits a covering
by m isometric images of its interiamt(M). Then there exists some> 0 such that M
can be covered by m isometric images of the inner parallel set M



76 C. Richter

Proof. There exist Euclidean motiors € 73, 1 < i < m, such that
cl(M) C @1(int(M)) U @2(int(M)) U - - - U g (int(M)).
We define a functiorf: cl(M) — R by

f(x)= fl}"i‘)éd(x’ (@i (iNt(M))©),

d denoting the Euclidean distanag; (int(M)))° the complement o§; (int(M)), and
d(x, (@i (int(M)))®) = inf{d(X, y): y € (¢ (int(M)))°}. Obviously, f is positive and
continuous on the compact set) and therefore attains its minimuén> 0 at some
pointxg € cl(M). Puttinge = §/2 we obtain the asserted covering

M - (pl(M—s) U §02(M—s) U---u (pm(M—s)-

Indeed, anyx € M fulfils the inequality f (x) > &. Thusd(X, (¢ (int(M)))®) > ¢
for somei € {1, 2,..., m}, which means thaB(x, &) € ¢;(int(M)). Accordingly,
X € (g (int(M)))_, = ¢ (int(M)_,) < ¢;j(M_,). This proves Proposition 6. O

Proof of Theoren6. By Proposition 6, there exigt > 0 and isometrieg; € Z3,
1<i <m,with

M C pi(M_)) Upo(M_p) U---Upm(M_). (12
Now we verify the existence of a decomposition
M=MiUMyU---UMonk
of M and of motiong), € 73, 1 < u < 2mk, such that the inclusions
M_¢ € ¥r2j-1(M2j_1) U ¥2j (Mg;) for 1<j=<mk 13

hold true. Without loss of generality, we assume thiats a subset of the pointed ball
BP(0, 1). Recall that the proof of Theorem 3 concerning the replication of spheres and
pointed balls has shown the following: for any two rotatigne € SGO; generating a

free non-Abelian subgroup of rank two, there are decompositions

BP0,1) = AUBhWwUCL{UCoU---UCmiet UD1UDoU -+ - U Dkt
as well as

BP(0,1) = AUp™ (B and
BP(0,1) = p! H(C))Uop!™X(Dj)  for 1<j<mk-1

of BP(0, 1) (see formulas (1) and (2)). By Lemma 1, we can chgos@do such that
all rotationsp’~*, 1 < j < mk, andop!~', 1 < j < mk— 1, have an angle of rotation
less thare. Thus we have shown: there exist decompositions

BP(0,1) = HiUHy U --- U Hamk (14
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and

BP(0, 1) = vpj_1(Haj—1) U ¥roj (Haj) for 1<j=<mk (15

wherey, € SG;, 1 < u < 2mk, are rotations whose angles of rotation are less than
This restriction for the angles makes sure ttat, v, 1(x)) < ¢ for all x € BP(0, 1)
and, in particular, for alk € M. Thus we obtairM_, = {x € E3: B(x,¢) € M} C
{x € E% y;1(x) € M} = yu(M), i.e.,

M_; € yy(M) for 1<u<?2mk (16)
We putM, = H, N M, 1 < u < 2mk By (14),M < BP(0, 1) is decomposed into
M=MUMyU---U Mamk.
By the help of (15) and (16), we obtain the coverings

M_, = BP0, 1)nM_,

(Y2j—1(H2j—1) U ¥r2j (Hzj)) N M_,

(Y2j—1(Hz2j—1) " M_¢) U (¥2j (Hzj) N M_)
(Yr2j—1(H2j—1) N r2j_1(M)) U (2 (Hz2j) N Y2 (M))
Y2j—1(M2j_1) U Y2 (M2j)

N

for 1 < j < mk This completes the verification of formula (13).
By (12) and (13), there exist coverings

m
M C U(‘Pi Ya—pmt2i—1(Math—pmt2i—1) U @i Yah—pme2 (Moh—1ym+2i))
i—1

for 1 < h < k. Thus thek terms of the sunk - M are covered by images of the pairwise
2mk
disjoint subsetaM, € M, 1 < u < 2mk By Proposition 3, we geM 2 k- M.

1
Applying Theorem 2 to this relation and the trivial countergartM > M, we obtain
k
M 2m2+1 k - M. This proves our claim. |

4. Applications of Theorem 6

If one wants to apply Theorem 6 to a bounded Bktwith non-empty interior one
immediately is lead to the following question: How many images aihtare needed
to cover c[M)? Although the smallest possible number is not easy to find in general,
there exist useful results from combinatorial geometry which give rise to reasonable
universal estimates for certain classes of 8éts

Most of the combinatorial statements are given for convex bodieRecall that a
boundary poini of K is calledregular if there exists only one supporting hyperplane
of K throughx.
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Lemma2. Let K € E3 be a compact convex set with non-empty interior and let m
denote the smallest integer such that K can be covered by m translate&<of. Then
the following estimates are valid

(& m< 16.

(b) m < 8if K is centrally symmetric

(c) m < 6if K is of constant width

(d) m = 4if K has at most four non-regular boundary points

Proof. On p. 262 of [2] it is shown that the following three problems are equivalent
for all setsK of the above type: What is the smallest numbesuch thatk can be
covered bym translates of intK) (Levi)? What is the smallesh € N such thatm
smaller homothetic copies df suffice to coverK (Gohberg, Markus, Hadwiger)?
What is the smallestn such that the whole boundary & can be illuminated byn
directions (Boltyanski)? (For historical details as well as for recent developements and
more general results concerning these problems we refer the reader to [2] and to the
references given there.) Thus parts (b) and (c) of the lemma are equivalent to Lassak’s
results on coverings by homothetic copies from his papers [9] and [10]. The remaining
statements rest on corresponding theorems on the illumination problem (see [11] and
p. 280 of [2]). O

Now Theorem 6 immediately leads to the following conclusions.

Theorem 7. Let K € E2 be a bounded convex set with non-empty interior and let
k > 2 be an integerThen the following estimates are valid

(a) dedK, k- K) <32+ 1.

(b) degK, k- K) < 16k + 1if K is centrally symmetric

(c) degK, k- K) <12k 4 1if K is of constant width

(d) degK, k- K) < 8k+ 1if K has at most four non-regular boundary points

A second lemma of combinatorial type can be shown for certain Minkowski sums
M = N @ K. We present this statement not only for the three-dimensional case, since
we did not find it in the literature and it could be of independent interest besides its
application in the present paper. Note that the Minkowski sums considered in Lemma 3
and Corollary 3 are not necessarily bounded, closed, or convex. However, the idea is
taken from a theorem on convex bodies (see Theorem 34.8 of [2]).

Lemma3. Let M C E" be a Minkowski sum M= N & K of two sets NK € E"
such that at least one of them is boundéthe closurecl(K) of K can be covered by m
translates of the interiomt(K), thencl(M) can be covered by m translatesiof(M),
too.

Proof. One can easily verify the inclusions

cl(M) Ccl(N)®cl(K) and cI(N) @ int(K) C int(M).
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According to the assumption there exisvectorsts, tz, . . ., tn € E" suchthat qK) C
UM, (int(K) + t). Thus we obtain

cl(M)

IN

cl(N) @ cl(K) S cl(N) & (U(int(K) +ti)>

i=1

U (clNy @ int(K) +t) < Jint(M) + ).
i=1

i=1
Hence c{M) is covered bym translates of intM). O
Animportant subclass of sets considered in Lemma 3 consists of the sopzaitdie|
sets M That is,M is a Minkowski sumM = N @ B of some seN C E" and a closed

ball B. Lemma 3 yields a universal estimate for all parallel sets, since anyballE"
can be covered by + 1 translates of its interior.

Corollary 3. The closure of any parallel set in"Eean be covered by # 1 translates
of its interior.

The three-dimensional cases of Lemma 3 and of Corollary 3 give rise to another
application of Theorem 6.

Theorem 8. Let M = N @& K be a Minkowski sum of two bounded setskNC E3
such that the closurel(K) can be covered by m translatesiof(K). Then

degM, k- M) <2mk+1

for all integers k> 2.
In particular, any bounded parallel set M= E3 fulfils the estimate

degM,k-M) <8k +1

forallk > 2.

5. Replicating the Cube

Now we come back to the problem of duplicating (or replicating) the cube. The best result
obtained by the general theorems given above has been presented in formula (11). In this
section we improve this estimate by proving a particular theorem concerning the cube.
We have to use the special geometric structure of the cube. The following proposition
prepares the forthcoming considerations.

Proposition 7. For any cube C< E® whose edges are of lengthtiere exists a real
numbers > 0 such that

(a) C can be covered by four isometric images of the inner parallel seted
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(b) C can be covered by two isometric images of @nd one rectangular parallelo-
tope of sizds — 2¢) x (s— 2¢) x S.

Proof. Without loss of generality, we consider the cube= [—1, 1] with s = 2. We
pute = $(1— (2v/2/3)). It can easily be seen that the four poit2s/2/3)(1, 1, —3),
2v2/3)(3, -1, 1), (2v2/3)(-1, -1, 3), and(2v/2/3)(— 1, 1, 1) are the vertices of
a squares whose edges are of length 2 and which is completely contained in the cube
[—2v/2/3, 24/2/3]° = C_s.. Consequently, the rectangular parallelotépeith baseS
and altitude 2 is a subset o€_,.

The proof of part (a) is based on the covering

C=[-11-2]PU(1-2¢1]x[-11
U(-1,1] x[1 =2, 1] x [-1, 1) U (-1, 1]? x [1 — 2¢, 1)).
The first set is a translate €_.. The additional three sets are congruent wittand

therefore contained in suitable image<f..
The second assertion (b) can be verified by

C=(-11-2)°x[-1,1DU (1l —2¢ 1] x [-1 1)
U(—-1,1] x[1—-2¢ 1] x[-1,1)]).

The first setin the covering is a rectangular parallelotope of(size2¢) x (s—2¢) x S,
whereas the two remaining parallelotopes again are subsets of imaQes of O

Theorem 9. Let C C E® be a cube and let k 2 be an integerThen

2k <degC,k-C) <8k -—3.

Proof. The left-hand inequality is trivial.

The proof of the upper estimate is similar to that of Theorem 6. Without loss of
generality, we restrict our considerations to the cGbe [%1, %]3, which is a subset of
the pointed balBP (0, 1) and whose edges are parallel to the coordinate axes (see Fig. 1).
We apply Proposition 7 to the culi2with s = %. Hence there exist some> 0 and
isometriesy; € 73,1 <i < 7, such that

C g 901(C—s) ) (pZ(C—a) ) 903((:—8) ) ¢4(C—a) (17)
and
C S os([0, 7 — 26]? x [0, 1) U 96(C_) U 7(C_,). (18)

The proof ofBP(0, 1) 8k£4 (4k—2)-BP(0, 1) in Theorem 3 has shown the following:
for any two rotationg, o € SO; generating a free non-Abelian subgroup of rank two
there exist decompositions

BP0,1) = AUBg 2UCLU---UCg_3UDiU---UDg_3 (19
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&3
A
1
2
1 > &
? axis of o
1
2
& axis of p
Fig. 1. Position ofC in ES.
as well as
BP(0,1) = AUp*3(Bg_2),  BP(0,1) =CiUc(Dy) (20)
and
BP(0,1) = p' X(C))Uap! X(D;)  for 2<j<4k—-3 (21)

of the pointed balBP(0, 1) (see formulas (1) and (2)). By Lemma 1, we can chqose
ando such that the axes gf ando coincide with the first and the second coordinate
axis, respectively, and such that all the angles of the rotapén’ 2 < j < 4k — 2,
andopi~t, 1< j < 4k — 3, are less than.

We putM; = ANC, My = B> NC, sz_;,_]_ = Cj NnC, anszHz = Dj N C for
1< j <4k - 3. By (19), we obtain a decomposition

C=MUMyU---U Mgc_4 (22)

of the cubeC. As in the proof of Theorem 6, (21) combined with the restriction of the
angles of rotation gives rise to the representations

Ce Cp MMy Uop) M (Mzjy2)  for 2<j<4k—3 (23

Next we show that a rectangular parallelotope of gize- 2¢) x (3 — 2¢) x 1 is
covered byM; U p*—3(M,):
(3, 3] x [5+¢& 3 —€]®) S M U p™3(My). (24

We have([1, 1] x [7 +¢, 5 —¢€]?) S p*~3(C), sincep*2is a rotation around the first
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coordinate axis whose angle of rotation is less thaBy (20), we can conclude that
(331 x[3+e3—¢€1» = BPO Y N5 3] x[5+e 3¢
= (AN([3. 3] x[3+&.53—€]?)
U (p*3Ba-2) N ([, 3] x [5+¢. 3 —l?)
S (ANC)U (p**(Ba-2) N p*3(C))

= MU p*3(My),

which proves the inclusion (24). Similar arguments show that the second equation of
(20) yields

(F+ei—elx[iIx[I+el—e)SMsUa(My). (25)

Now we use the pairwise disjoint subsdiy, € C, 1 < u < 8k — 4, from the
decomposition (22) to cover thetermsC of the sumk - C. Lety; € Z3 be a motion
mapping the parallelotope from fromula (24) onto the congruent one from (18). Then,
by (23),

C < ps¥1(M1) U gsr1p™ 3 (M2) U ¢6p (Ms) U gi600(Me) U 9707 (M7) U 970 p*(Mg).
Similarly, (18), (25), and (23) with a suitable isometfy € 73 give rise to the covering
C C ¢592(M3) U gsyr20 (Ma) U 960°(Mg) U 960 0°(M10) U 97p*(M11) U @70 0% (M12).
Finally, the remaining — 2 terms ofk - C admit the coverings
4 . .
C < [J@in™ (Mg 12 43) U 910 p™™ (Many2i 14))
i=1
for 1 < h < k — 2 according to (17) and (23). Thus we can apply Proposition 3 and
8k—4 1
obtainC > k- C. By Theorem 2, this and the trivial relatidn- C > C imply that
C 81(:_3 k - C. This proves the desired inequality d€gk - C) < 8k — 3. |
In particular, Theorem 9 states that
4<degC,C+C) <13 (26)

This is the sharpest estimate for the smallest possible number of pieces in a paradoxical
duplication of a cube which we were able to derive.

6. Concluding Remarks
We remark that some problems remain open. Although Theorems 6 and 9 use finer

arguments than simple coverings by balls as Theorem 5 does, they only give estimates
for the optimal numbers déiyl, k - M) and degC, k - C), respectively. Even in the
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“simple” particular case of duplicating the cube our methods have not led farther than
to the above result (26). Can this estimate be improved?

We did not consider paradoxical decompositions in higher dimensions. The third
dimension is the natural one for the Banach—Tarski paradox. However, many results
from the three-dimensional case could be generalized.

Considerations of equidecomposabilities with respect to other groups of transforma-
tions possibly acting on spaces different from the Euclidean one can be found in [14].
One canregard the present paper with its almost pure geometric methods as a counterpart
to the abstract algebraic extensions of the classical paradox.

The paradox of Banach, Tarski, and Hausdorff concerning equidecomposabilities
in dimension three and higher has found a modern two-dimensional counterpart in
Laczkovich’s positive solution of Tarski’s Circle-Squaring Problem (see [8]). We finish
this paper by posing the corresponding deep question: What is the minimal number of
pieces in an equidecomposability of a circle and a square in the sense of Laczkovich?
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