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Abstract. The paradox of Banach, Tarski, and Hausdorff shows that any two bounded sets
M, N ⊆ E3 with non-empty interior are equidecomposable. The result remains true ifM
andN are replaced by collections of sets. We present quantified versions of the paradox by
giving estimates for the minimal number of pieces in such decompositions. The emphasis is
on replications of setsM , i.e., on the equidecomposability ofM with k copies ofM , k ≥ 2.
In particular, we discuss the problem of replicating the cube.

1. Introduction

The theory of equidecomposability of sets gives rise to new interpretations and so-
lutions of some classical geometric problems. The most popular example is the task
of squaring the circle, which has been solved by Laczkovich [8]. Another problem,
serving as a motivation for the present paper, is the duplication of the cube, whose
traditional form has essentially influenced the development of mathematics for thou-
sands of years (see [3]). The basis for an adequate reformulation and solution of the last
problem is given by the paradox of Banach, Tarski, and Hausdorff (see [1] and [6]). It
shows that any cubeC in Euclidean spaceE3 can be decomposed into a finite number
k = l +m of disjoint subsetsC1,C2, . . . ,Ck such that bothϕ1(C1), ϕ2(C2), . . . , ϕl (Cl )

andϕl+1(Cl+1), ϕl+2(Cl+2), . . . , ϕk(Ck) form decompositions ofC, whereϕi , 1≤ i ≤ k,
are suitable isometries ofE3. (Later we say that “C andC + C are equidecomposable
usingk pieces”.) However, the smallest possible numberk in the above construction is
unknown. A very rough estimate from [5] givesk < 21,556,563,000. The goal of the
present paper is to find reasonable estimates for the minimal number of pieces, not only
for the duplication of the cube, but for paradoxical replications of arbitrary bounded sets

∗ This research is part of the author’s Ph.D. thesis [12].
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M ⊆ E3 with non-empty interior. First we present an appropriate general version of the
theorem of Banach, Tarski, and Hausdorff.

2. The Theorem of Banach, Tarski, and Hausdorff

Let I3 be the group of isometries ofE3. For A, B ⊆ E3, we write A ' B if A and
B are congruent, i.e.,A = ϕ(B) for someϕ ∈ I3. 〈2E3〉 is to denote the free Abelian
semigroup generated by the subsets ofE3. That is, the elements of〈2E3〉 are finite formal
sumsa = A1+ A2+· · ·+ Ak of subsetsAi of E3. Fork ≥ 1 andA ⊆ E3, k · A is meant
to be thek-fold sumA+ A+ · · · + A. The set{0,1,2, . . .} of non-negative integers is
denoted byN. We writeSn for the symmetric group of all permutations ofn elements.

Definition 1.

(a) Leta = A1+ A2+ · · · + Ak,b = B1+ B2+ · · · + Bl ∈ 〈2E3〉, andn ∈ N. The

sumsa andb are calledequidecomposable using n pieces(a
n' b) if there exist

representationsn = r1+ r2+· · ·+ rk, ri ∈ N, andn = s1+s2+· · ·+sl , sj ∈ N,
decompositions

Ai =
r1+···+ri⋃

u=r1+···+ri−1+1

Mu and Bj =
s1+···+sj⋃

v=s1+···+sj−1+1

Nv

for i ∈ {1,2, . . . , k} and j ∈ {1,2, . . . , l }, and a permutationπ ∈ Sn such that

Nv ' Mπ(v)

holds true forv ∈ {1,2, . . . ,n}.
(b) Two sumsa,b ∈ 〈2E3〉 are calledequidecomposable(a

∗' b) if a
n' b is valid

for somen ∈ N.

Note that we use the word “decomposition” for disjoint decompositions in the sense
of set theory only. This is totally different from the concept of a decomposition in
elementary geometry, where for instance a closed triangle can be “decomposed” into
two closed subtriangles having boundary points in common.

Roughly speaking, the relationa
n' b means that there exists a “construction set”

consisting ofn pieces which, on the one hand, can be used to build up all the terms
of a simultaneously and, on the other hand, suffice for constructingb in the same way.
The above definition shows in particular that, for any two setsA, B ⊆ E3, the relations

A
1' A, A+ B

2' A+ B, A
n' A for n ≥ 1, A

1' A+ ∅, and∅ 0' k · ∅ for k ≥ 1 are
fulfilled.

Clearly, one can define more general concepts of equidecomposability by considering
other groups instead ofI3 possibly acting on other spaces thanE3. In particular, the
following abstract Proposition 1 and Theorem 2 remain true in this much more general



Simple Paradoxical Replications of Sets 67

setting. We refer the reader to the comprehensive survey [14] for considerations of that
type.

The equidecomposability of sums from the semigroup〈2E3〉 generalizes the classical

equidecomposabilityA
∗' B of subsetsA, B ⊆ E3. The following can easily be seen as

for the classical concept.

Proposition 1. The relation
∗' is an equivalence relation in〈2E3〉. In particular:

(a) The relation a
k+n' a is valid for all a= A1+ A2+ · · · + Ak ∈ 〈2E3〉 and n≥ 0.

(b) Let a,b ∈ 〈2E3〉 be sums fulfilling a
n' b. Then b

n' a.

(c) Let a,b, c ∈ 〈2E3〉 be such that a
n' b and b

m' c. Then a
nm' c.

We recall the well-known paradox due to Banach, Tarski, and Hausdorff (see [1], [5],
and p. 29 of [14]):

Theorem 1(Banach, Tarski, Hausdorff).Let M, N ⊆ E3 be bounded sets with non-

empty interior. Then M
∗' N.

The paradox will find a natural generalization concerning the equidecomposability
of sums from〈2E3〉. However, the main task of the present paper is to quantify the result
by giving reasonable upper estimates for the optimal number of pieces realizing certain
equidecomposabilities.

Definition 2. Let a,b ∈ 〈2E3〉 be equidecomposable. Thedegree of equidecompos-
ability of a andb is meant to be

deg(a,b) = min{n: a
n' b}.

The main tool for finding estimates for deg(a,b) is the Banach–Schr¨oder–Bernstein
theorem concerning the following relation in〈2E3〉.

Definition 3.

(a) The sumsa = A1 + A2 + · · · + Ak andb from 〈2E3〉 fulfil the relationa
nº b,

n ∈ N, if there exist subsetsA′i ⊆ Ai , 1 ≤ i ≤ k, such that the relationa′
n' b

holds true for the suma′ = A′1+ A′2+ · · · + A′k.

(b) The sumsa,b ∈ 〈2E3〉 fulfil the relationa
∗º b (a is larger than b by decomposi-

tion) if a
nº b is valid for somen ∈ N.

The relation
∗º in 〈2E3〉 is reflexive and transitive. Indeed,a

kº a trivially holds true

for anya = A1+ A2+ · · ·+ Ak ∈ 〈2E3〉. Fora,b, c ∈ 〈2E3〉 fulfilling a
nº b andb

mº c,

we havea
nmº c.

The following statement is the adequate generalization of the Banach–Schr¨oder–
Bernstein theorem, which is usually formulated for subsetsA, B ∈ E3, but not for sums
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a,b ∈ 〈2E3〉 (see p. 25 of [14]). However, the idea of its proof is exactly the same as in
[14]. (A proof including all technical details is given in [12].)

Theorem 2. Suppose the sums a,b ∈ 〈2E3〉 fulfil the relations a
nº b and b

mº a. Then

a
n+m' b. In particular,

∗º gives rise to a partial ordering of the
∗'-classes in〈2E3〉.

The considerations concerning the paradox of Banach, Tarski, and Hausdorff start
with the special case of replicating spheres and balls. We useB(x, r ) to denote the
closed Euclidean ball centred atx ∈ E3 with radiusr > 0. The two-dimensional unit
sphere bd(B(0,1)) is denoted byS2. As usual,SO3 denotes the group of all rotations
mapping the unit ballB(0,1) onto itself. We use the following statements, which follow
immediately from the proofs of Theorems 4.5 and 4.7 in [14].

Proposition 2. Letρ, σ ∈ SO3 be generators of a free non-Abelian subgroup of rank
two. Then the following are true:

(a) There exist sets A, B,C, D such that the sphere S2 admits the decompositions

S2 = A∪ B ∪ C ∪ D = A∪ ρ(B) = C ∪ σ(D).

(b) There exist sets A′, B′,C′, D′, E′ and a translationτ such that B(0,1) can be
decomposed into

B(0,1) = A′ ∪ B′ ∪ C′ ∪ D′ ∪ E′ = A′ ∪ ρ(B′) = C′ ∪ σ(D′) ∪ τ(E′).

Besides that, we need the following lemma (see [4]).

Lemma 1. Let ρ, σ ∈ SO3 be rotations with the same angleα of rotation such that
their axes are perpendicular andtan(α/2) is transcendental. Thenρ andσ generate a
free non-Abelian group of rank two.

The above give rise to a theorem onk-fold replications of spheres, balls, and pointed
balls, which includes a statement on the optimal number of pieces in the correspon-
ding decompositions. Thepointed ballcentred atx with radiusr is meant to be the set
Bp(x, r ) = B(x, r )\{x}.

Theorem 3. Let x ∈ E3, r > 0, and k ∈ {2,3,4, . . .}. Then the sphere S=
bd(B(x, r )) as well as the balls Bp(x, r ) and B(x, r ) admit a k-fold replication in

the sense of S
∗' k · S, Bp(x, r )

∗' k · Bp(x, r ), and B(x, r )
∗' k · B(x, r ), respectively.

Moreover,

deg(S, k · S) = deg(Bp(x, r ), k · Bp(x, r )) = 2k

and

deg(B(x, r ), k · B(x, r )) = 3k− 1.
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Proof. We assume thatx = 0 andr = 1 without loss of generality, i.e.,S= S2 and
B(x, r ) = B(0,1). By Lemma 1, there exist rotationsρ, σ ∈ SO3 generating a free
non-Abelian group of rank two.

We employ part (a) of Proposition 2 for provingS
2k' k · S. Let Bi+1 = ρ−(i−1)(B),

Ci = ρ−(i−1)(C), and Di = ρ−(i−1)(D) for i = 1,2,3, . . . . Obviously, Bk can be
decomposed intoBk = ρ−(k−1)(ρ(B)) = ρ−(k−1)(B ∪ C ∪ D) = Bk+1 ∪ Ck ∪ Dk.
Now a simple induction with respect tok shows thatS admits the following decompo-
sitions:

S= A∪ Bk ∪ C1 ∪ C2 ∪ · · · ∪ Ck−1 ∪ D1 ∪ D2 ∪ · · · ∪ Dk−1 (1)

as well as

S = A∪ ρk−1(Bk) and

S = ρ i−1(Ci ) ∪ σρ i−1(Di ) for 1≤ i ≤ k− 1. (2)

This provesS
2k' k · S and, in particular, deg(S, k · S) ≤ 2k. On the other hand,

deg(S, k · S) ≥ 2k, since each of thek copies ofSmust consist of at least two pieces.
The treatment of the pointed ballBp(0,1) is similar; one has to consider half-open

radii {λx: 0< λ ≤ 1} of the ball instead of pointsx from the sphere.
We use Proposition 2(b) for replicating the solid ballB(x, r ) = B(0,1). Putting

B′i+1 = ρ−(i−1)(B′), C′i = ρ−(i−1)(C′), D′i = ρ−(i−1)(D′), andE′i = ρ−(i−1)(E′) for
i = 1,2,3, . . ., we obtain the decompositions

B(x, r ) = A′ ∪ B′k ∪ C′1 ∪ · · · ∪ C′k−1 ∪ D′1 ∪ · · · ∪ D′k−1 ∪ E′1 ∪ · · · ∪ E′k−1 (3)

as well as

B(x, r ) = A′ ∪ ρk−1(B′k) and

B(x, r ) = ρ i−1(C′i ) ∪ σρ i−1(D′i ) ∪ τρ i−1(E′i ) for 1≤ i ≤ k− 1. (4)

This givesB(x, r )
3k−1' k · B(x, r ) and deg(B(x, r ), k · B(x, r )) ≤ 3k− 1.

The inverse inequality deg(B(x, r ), k · B(x, r )) ≥ 3k − 1 is based on an idea from
the paper by Robinson [13], who has originally shown that the smallest possible number

of pieces in the duplicationB(x, r )
∗' 2 · B(x, r ) of solid balls is five. In fact, he has

proved the following (see also pp. 40–41 of [14]):There do not exist any four disjoint
subsets A1, A2, A3, A4 of B(0,1) and isometriesα1, α2, α3, α4 ∈ I3 such that both
α1(A1) ∪ α2(A2) andα3(A3) ∪ α4(A4) cover B(0,1). Consequently, in any realization

of the equidecomposabilityB(x, r )
∗' k · B(x, r ) at most one term of the sumk ·

B(x, r ) is decomposed into two pieces, whereas the others need at least three. Hence,
deg(B(x, r ), k · B(x, r )) ≥ 2+ 3(k− 1) = 3k− 1. This completes the proof.

We remark that one can similarly show the equidecomposability ofE3 \ {x} and
k · (E3\{x}) with deg(E3\{x}, k · (E3\{x})) = 2k for all x ∈ E3 andk ≥ 2. The

considerations of solid balls can be continued toE3 3k−1' k · E3.
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All estimates to follow for the degree of equidecomposabilitiesa
∗' b make use of

the Banach–Schr¨oder–Bernstein theorem (Theorem 2). That is, we shall showa
nº b

andb
mº a in order to conclude that deg(a,b) ≤ n+m. Proposition 3 is a useful tool for

proofs of that type.

Proposition 3. Let a = A1 + A2 + · · · + Ak,b = B1 + B2 + · · · + Bl ∈ 〈2E3〉,
and n∈ N. Suppose that there exist pairwise disjoint subsets M1,M2, . . . ,Mn of A1, a
representation n= s1+ s2+ · · · + sl , sj ∈ N, and isometriesϕv ∈ I3, 1≤ v ≤ n, such
that the terms Bj , 1≤ j ≤ l , of the sum b are covered by

Bj ⊆
s1+···+sj⋃

v=s1+···+sj−1+1

ϕv(Mv).

Then a
nº b.

Proof. Obviously, there exist suitable subsetsM ′v ⊆ Mv such that the setsBj admit
decompositions

Bj =
s1+···+sj⋃

v=s1+···+sj−1+1

ϕv(M
′
v).

Thus we haveA′1
n' b with A′1 = M ′1 ∪ M ′2 ∪ · · · ∪ M ′n. Putting A′i = ∅ for 2 ≤

i ≤ k anda′ = A′1 + A′2 + · · · + A′k we obtaina′
n' b. By Definition 3, this shows

thata
nº b.

The following quantified generalization of Theorem 1 rests on coverings of bounded
sets by balls. A quantity describing optimal coverings of that type is given byKolmogo-
roff ’s entropy function(see p. 4 of [7]). For bounded setsM ⊆ E3 and radiir > 0, the
functionNr (M) is defined by

Nr (M) = min{m ∈ N: M can be covered bym closed balls of radiusr }.

Theorem 4. Let a= A1+ A2+ · · · + Ak and b= B1+ B2+ · · · + Bl be sums from
〈2E3〉 such that all sets Ai and Bj are bounded and that at least one term of the sum a

as well as one term of b has inner points. Then a
∗' b.

If r and s are the radii of closed balls contained in a term of a and of b, respectively,
then

deg(a,b) ≤ 3

(
k∑

i=1

Ns(Ai )+
l∑

j=1

Nr (Bj )

)
− 2.

Proof. Without loss of generality, we assume thatB(x0, r ) ⊆ A1. By the definition
of Nr (Bj ), the setsBj , 1 ≤ j ≤ l , can be simultaneously covered byh = Nr (B1) +
Nr (B2) + · · · +Nr (Bl ) translates ofB(x0, r ). On the other hand, by Theorem 3, there
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exist 3h−1 disjoint subsetsM1,M2, . . . ,M3h−1 ⊆ B(x0, r ) such that suitable isometric
images of them form decompositions of the above-mentionedh translates ofB(x0, r ).
Consequently, the images of the 3h− 1 disjoint subsetsMv ⊆ A1 give rise to coverings

of the termsBj of the sumb in the sense of Proposition 3. Thus we obtaina
3h−1º b, i.e.,

a
nº b with n = 3

(
l∑

j=1

Nr (Bj )

)
− 1.

Similar arguments yield

b
mº a with m= 3

(
k∑

i=1

Ns(Ai )

)
− 1.

Now Theorem 2 shows thata
m+n' b and, in particular,

deg(a,b) ≤ m+ n = 3

(
k∑

i=1

Ns(Ai )+
l∑

j=1

Nr (Bj )

)
− 2.

We finish this section with a corollary based on the following upper estimate of
Kolmogoroff’s entropy functionNr (M).

Proposition 4. Let M ⊆ E3 be a bounded set whose circumball is of radius R and let
r > 0 be a real number. Then

Nr (M) < min

{(√
3

R

r
+ 1

)3

,

√
3π

2

(
R

r
+ 2

)3
}
.

Proof. Let B(x0, R) be the circumball ofM . It is contained in a cubeC whose edges
are of length 2R. Clearly,C can be covered byh3 subcubes whose edges have length
2R/h, where the integerh is chosen such that

√
3R/r ≤ h <

√
3R/r +1. Any of these

subcubes has a circumscribed ball of radiusr , since
√

3R/h ≤ r . This shows thatM
admits a covering byh3 balls of radiusr . Thus

Nr (M) ≤ h3 <

(√
3

R

r
+ 1

)3

.

For proving the second estimate we use a covering ofE3 by a lattice of cubes with
edges of length 2r /

√
3. M is covered by those cubes whose intersection with the cir-

cumballB(x0, R) is non-empty. Letj be the number of these cubes. Obviously, they all
are contained inB(x0, R+ 2r ). We can estimate their volume by

j ·
(

2r√
3

)3

< vol(B(x0, R+ 2r )) = 4π

3
(R+ 2r )3.
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Any of the j cubes can be covered by a ball of radiusr . Thus we obtain

Nr (M) ≤ j <

(√
3

2r

)3

· 4π
3
(R+ 2r )3 =

√
3π

2

(
R

r
+ 2

)3

.

This completes the proof of Proposition 4.

It can easily be seen that the minimum considered in Proposition 4 is given by
(
√

3R/r + 1)3 if R/r ≤ 5.3 and by(
√

3π/2) (R/r + 2)3 if R/r ≥ 5.4.

Corollary 1. Let a= A1+ A2+ · · · + Ak and b= B1+ B2+ · · · + Bl be sums from
〈2E3〉 such that all sets Ai and Bj are bounded and that at least one term of the sum a as
well as one term of b has inner points. Moreover, let r and s be the radii of closed balls
contained in a term of a and of b, respectively.

(a) If R1, R2, . . . , Rk and S1, S2, . . . , Sl are the radii of the circumballs of the sets
A1, A2, . . . , Ak and B1, B2, . . . , Bl , respectively, then

deg(a,b) < 3

(
k∑

i=1

min

{(√
3

Ri

s
+ 1

)3

,

√
3π

2

(
Ri

s
+ 2

)3
}

+
l∑

j=1

min

{(√
3

Sj

r
+ 1

)3

,

√
3π

2

(
Sj

r
+ 2

)3
})
− 2.

(b) If R and S are the largest radii of the circumballs of the k terms of the sum a and
of the l terms of b, respectively, then

deg(a,b) < 3

(
k ·min

{(√
3

R

s
+ 1

)3

,

√
3π

2

(
R

s
+ 2

)3
}

+ l ·min

{(√
3

S

r
+ 1

)3

,

√
3π

2

(
S

r
+ 2

)3
})
− 2.

We remark that in [5] the following very rough estimate for the degree of equide-
composability of setsM, N ⊆ E3 is given: if M and N contain a ball of radiusr in
their intersection and if their union is covered by a ball of radiusR, then deg(M, N) ≤
(1+ 2420(R/r )6)2. The second part of Corollary 1 gives rise to the essentially better
estimate deg(M, N) < 6 ·min{(√3(R/r )+ 1)3, (

√
3π/2)(R/r + 2)3} − 2.

3. Replicating Sets

Therorem 4 shows that any bounded setM ⊆ E3 with non-empty interior admits ak-fold

replication in the sense ofM
∗' k · M for all k ≥ 2. Moreover, ifM contains a closed

ball of radiusr , then

deg(M, k · M) ≤ 3(k+ 1) ·Nr (M)− 2. (5)
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In this section we sharpen this estimate. First we present a statement resting on coverings
by balls as the claim of Theorem 4.

Theorem 5. Let M ⊆ E3 be a bounded set with non-empty interior and let k≥ 2 be
an integer.

(a) If M can be covered by m translates of a closed ball being a subset of M, then

deg(M, k · M) ≤ 3m(k− 1)+ 3.

(b) If M can be covered by m translates of a pointed ball being a subset of M, then

deg(M, k · M) ≤ 2m(k− 1)+ 3.

Proof. Let the ballB(x, r ) be a subset ofM such thatM admits a covering

M ⊆ τ1(B(x, r )) ∪ τ2(B(x, r )) ∪ · · · ∪ τm(B(x, r )) (6)

with suitable translationsτi ∈ I3. By Theorem 3, we have the relationB(x, r )
3m(k−1)+2'

(m(k − 1) + 1) · B(x, r ). The particular structure of this equidecomposability is de-
scribed by formuals (3) and (4) in the proof of Theorem 3. Accordingly, there exist a
decomposition

B(x, r ) = A′ ∪ M2 ∪ M3 ∪ · · · ∪ M3m(k−1)+2 (7)

and isometriesϕu ∈ I3, 2≤ u ≤ 3m(k− 1)+ 2, such that

B(x, r ) = A′ ∪ ϕ2(M2) (8)

and

B(x, r ) =
3v+2⋃
u=3v

ϕu(Mu) (9)

for 1≤ v ≤ m(k− 1).
We putM1 = (M\B(x, r )) ∪ A′. By (7), we obtain the decomposition

M = M1 ∪ M2 ∪ · · · ∪ M3m(k−1)+2.

Moreover, the first termM of the sumk · M has the representation

M = (M\B(x, r )) ∪ A′ ∪ ϕ2(M2) = M1 ∪ ϕ2(M2)

by (8). Finally, by (6) and (9), thek− 1 remaining terms ofk · M admit the coverings

M ⊆
m⋃

i=1

3(( j−1)m+i )+2⋃
u=3(( j−1)m+i )

τiϕu(Mu)

for 1≤ j ≤ k−1. Thus all terms ofk ·M are covered by isometric images of the disjoint

setsMu ⊆ M , 1≤ u ≤ 3m(k−1)+2. Now Proposition 3 yieldsM
3m(k−1)+2º k ·M . The

counterpartk·M 1º M is trivial. Applying Theorem 2 we conclude thatM
3m(k−1)+3' k·M .

Hence part (a) of Theorem 5 is proved.
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Part (b) can be shown in the same way by the aid of the statement from Theorem 3
on replications of pointed balls.

Theorem 5 sharpens the estimate (5) obtained by the general Theorem 4 in so far as
we get

deg(M, k · M) ≤ 3(k− 1) ·Nr (M)+ 3.

Proposition 4 gives rise to the following.

Corollary 2. Let M ⊆ E3 be a bounded set with non-empty interior and let k≥ 2 be
an integer. If M contains a closed ball of radius r and if R is the radius of the circumball
of M, then

deg(M, k · M) ≤ 3(k− 1) ·min

{(√
3

R

r
+ 1

)3

,

√
3π

2

(
R

r
+ 2

)3
}
+ 3.

As mentioned above, the present paper is motivated by the question for a paradoxical
duplication of a cube with a small number of pieces. We illustrate the result attainable by
Theorem 5. We have to find the smallest possiblem which can be used when applying
Theorem 5 to the case of replicating the cube.

Proposition 5. Any cube C⊆ E3 can be covered by eight translates of a suitable
pointed ball which is contained in C. A covering by seven translates of a solid closed
ball being a subset of C does not exist.

Proof. We consider the cubeC = [−1,1]3. Of course,C is covered by the eight pointed
balls Bp(x,1), x = (± 1

2,± 1
2,± 1

2).
Now letC be covered bym solid balls of radius 1. We have to show thatm≥ 8. Any

of them balls can contain at most two vertices ofC. Accordingly,m= m0+m1+m2,
mi denoting the number of balls containing exactlyi vertices. Forx ∈ vert(C), leth1(x)
be the number of those balls which coverx but no other vertex, and leth2(x) be the
number of those containingx and one additional vertex. Obviously,

m≥ m1+m2 =
∑

x∈vertC

(h1(x)+ 1
2h2(x)).

Next we observe thath1(x) ≥ 1 or h2(x) = 3 for any x ∈ vert(C). Indeed, if
h1(x) = 0, thenx together with some neighbourhood ofx in C must be covered by balls
containing an additional vertex besidesx. Each of these balls must contain one of the
three edges starting inx as a diameter. Clearly, all three balls of that kind are needed to
cover a neighbourhood ofx, and thereforeh2(x) = 3.

Thus we obtainh1(x)+ 1
2h2(x) ≥ 1 for all verticesx, and the estimate given above

can be continued to

m≥
∑

x∈vertC

1= 8,
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which completes the proof. (Moreover it is shown that the optimal covering ofC consists
of eight balls each containing exactly one vertex.)

We can apply both parts of Theorem 5 withm = 8. Obviously, part (b) gives the
better estimate: for any cubeC ⊆ E3 and any integerk ≥ 2,

deg(C, k · C) ≤ 16(k− 1)+ 3, (10)

in particular, deg(C,C + C) ≤ 19 for duplicating the cube.
The remainder of this section deals with a second theorem concerning the degree of

replicationsM
∗' k · M .

Theorem 6. Let M ⊆ E3 be a bounded set such that its closurecl(M) can be covered
by m isometric images of its interiorint(M). Then

deg(M, k · M) ≤ 2mk+ 1

for all integers k≥ 2.

Before giving the proof we demonstrate the power of Theorem 6 compared with that
of Theorem 5. The crucial numberm in Theorem 6 is given by a covering of cl(M)
by images of int(M), whereas in Theorem 5 the setM has to be covered by translates
of a ball B(x, r ) contained inM . Obviously, this newm can be chosen smaller than
that from Theorem 5 for many reasonable setsM , since int(M) is usually much larger
than B(x, r ). The next section gives some interesting applications of Theorem 6. We
presentuniversalestimates of deg(M, k · M) for setsM belonging to certain classes of
sets.

We give an example by applying Theorem 6 to the replication of cubes. In Section 5
we prove that any cubeC ⊆ E3 admits a covering by four isometric images of its interior
(see Proposition 7). Thus we obtain the estimate

deg(C, k · C) ≤ 8k+ 1 (11)

for all k ≥ 2, in particular, deg(C,C + C) ≤ 17. This obviously improves the above
estimate (10) inferred from Theorem 5.

However, in some cases Theorem 5 gives the better result. Assume for instance that
M is the union of two closed balls. Then Theorem 5, part (a), applies withm = 2, i.e.,
deg(M, k · M) ≤ 6k − 3. On the other hand, the smallestm in Theorem 6 is four. This
gives rise to a worse inequality deg(M, k · M) ≤ 8k+ 1.

In preparation for the proof of Theorem 6, we show that any setM fulfilling the
assumptions of the theorem can be covered bym images of aninner parallel set. The
inner parallel setM−r of M ⊆ E3 to the distancer > 0 is defined by

M−r = {x ∈ M : B(x, r ) ⊆ M}.

Proposition 6. Let M ⊆ E3 be a bounded set whose closurecl(M) admits a covering
by m isometric images of its interiorint(M). Then there exists someε > 0 such that M
can be covered by m isometric images of the inner parallel set M−ε.
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Proof. There exist Euclidean motionsϕi ∈ I3, 1≤ i ≤ m, such that

cl(M) ⊆ ϕ1(int(M)) ∪ ϕ2(int(M)) ∪ · · · ∪ ϕm(int(M)).

We define a functionf : cl(M)→ R by

f (x) = max
1≤i≤m

d(x, (ϕi (int(M)))c),

d denoting the Euclidean distance,(ϕi (int(M)))c the complement ofϕi (int(M)), and
d(x, (ϕi (int(M)))c) = inf {d(x, y): y ∈ (ϕi (int(M)))c}. Obviously, f is positive and
continuous on the compact set cl(M) and therefore attains its minimumδ > 0 at some
point x0 ∈ cl(M). Puttingε = δ/2 we obtain the asserted covering

M ⊆ ϕ1(M−ε) ∪ ϕ2(M−ε) ∪ · · · ∪ ϕm(M−ε).

Indeed, anyx ∈ M fulfils the inequality f (x) > ε. Thusd(x, (ϕi (int(M)))c) > ε

for somei ∈ {1,2, . . . ,m}, which means thatB(x, ε) ⊆ ϕi (int(M)). Accordingly,
x ∈ (ϕi (int(M)))−ε = ϕi (int(M)−ε) ⊆ ϕi (M−ε). This proves Proposition 6.

Proof of Theorem6. By Proposition 6, there existε > 0 and isometriesϕi ∈ I3,
1≤ i ≤ m, with

M ⊆ ϕ1(M−ε) ∪ ϕ2(M−ε) ∪ · · · ∪ ϕm(M−ε). (12)

Now we verify the existence of a decomposition

M = M1 ∪ M2 ∪ · · · ∪ M2mk

of M and of motionsψu ∈ I3, 1≤ u ≤ 2mk, such that the inclusions

M−ε ⊆ ψ2 j−1(M2 j−1) ∪ ψ2 j (M2 j ) for 1≤ j ≤ mk (13)

hold true. Without loss of generality, we assume thatM is a subset of the pointed ball
Bp(0,1). Recall that the proof of Theorem 3 concerning the replication of spheres and
pointed balls has shown the following: for any two rotationsρ, σ ∈ SO3 generating a
free non-Abelian subgroup of rank two, there are decompositions

Bp(0,1) = A∪ Bmk∪ C1 ∪ C2 ∪ · · · ∪ Cmk−1 ∪ D1 ∪ D2 ∪ · · · ∪ Dmk−1

as well as

Bp(0,1) = A∪ ρmk−1(Bmk) and

Bp(0,1) = ρ j−1(Cj ) ∪ σρ j−1(Dj ) for 1≤ j ≤ mk− 1

of Bp(0,1) (see formulas (1) and (2)). By Lemma 1, we can chooseρ andσ such that
all rotationsρ j−1, 1≤ j ≤ mk, andσρ j−1, 1≤ j ≤ mk− 1, have an angle of rotation
less thanε. Thus we have shown: there exist decompositions

Bp(0,1) = H1 ∪ H2 ∪ · · · ∪ H2mk (14)
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and

Bp(0,1) = ψ2 j−1(H2 j−1) ∪ ψ2 j (H2 j ) for 1≤ j ≤ mk, (15)

whereψu ∈ SO3, 1≤ u ≤ 2mk, are rotations whose angles of rotation are less thanε.
This restriction for the angles makes sure thatd(x, ψ−1

u (x)) < ε for all x ∈ Bp(0,1)
and, in particular, for allx ∈ M . Thus we obtainM−ε = {x ∈ E3: B(x, ε) ⊆ M} ⊆
{x ∈ E3: ψ−1

u (x) ∈ M} = ψu(M), i.e.,

M−ε ⊆ ψu(M) for 1≤ u ≤ 2mk. (16)

We putMu = Hu ∩ M , 1≤ u ≤ 2mk. By (14), M ⊆ Bp(0,1) is decomposed into

M = M1 ∪ M2 ∪ · · · ∪ M2mk.

By the help of (15) and (16), we obtain the coverings

M−ε = Bp(0,1) ∩ M−ε
= (ψ2 j−1(H2 j−1) ∪ ψ2 j (H2 j )) ∩ M−ε
= (ψ2 j−1(H2 j−1) ∩ M−ε) ∪ (ψ2 j (H2 j ) ∩ M−ε)
⊆ (ψ2 j−1(H2 j−1) ∩ ψ2 j−1(M)) ∪ (ψ2 j (H2 j ) ∩ ψ2 j (M))

= ψ2 j−1(M2 j−1) ∪ ψ2 j (M2 j )

for 1≤ j ≤ mk. This completes the verification of formula (13).
By (12) and (13), there exist coverings

M ⊆
m⋃

i=1

(ϕiψ2(h−1)m+2i−1(M2(h−1)m+2i−1) ∪ ϕiψ2(h−1)m+2i (M2(h−1)m+2i ))

for 1≤ h ≤ k. Thus thek terms of the sumk · M are covered by images of the pairwise

disjoint subsetsMu ⊆ M , 1 ≤ u ≤ 2mk. By Proposition 3, we getM
2mkº k · M .

Applying Theorem 2 to this relation and the trivial counterpartk · M 1º M , we obtain

M
2mk+1' k · M . This proves our claim.

4. Applications of Theorem 6

If one wants to apply Theorem 6 to a bounded setM with non-empty interior one
immediately is lead to the following question: How many images of int(M) are needed
to cover cl(M)? Although the smallest possible number is not easy to find in general,
there exist useful results from combinatorial geometry which give rise to reasonable
universal estimates for certain classes of setsM .

Most of the combinatorial statements are given for convex bodiesK . Recall that a
boundary pointx of K is calledregular if there exists only one supporting hyperplane
of K throughx.
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Lemma 2. Let K ⊆ E3 be a compact convex set with non-empty interior and let m
denote the smallest integer such that K can be covered by m translates ofint(K ). Then
the following estimates are valid:

(a) m≤ 16.
(b) m≤ 8 if K is centrally symmetric.
(c) m≤ 6 if K is of constant width.
(d) m= 4 if K has at most four non-regular boundary points.

Proof. On p. 262 of [2] it is shown that the following three problems are equivalent
for all setsK of the above type: What is the smallest numberm such thatK can be
covered bym translates of int(K ) (Levi)? What is the smallestm ∈ N such thatm
smaller homothetic copies ofK suffice to coverK (Gohberg, Markus, Hadwiger)?
What is the smallestm such that the whole boundary ofK can be illuminated bym
directions (Boltyanski)? (For historical details as well as for recent developements and
more general results concerning these problems we refer the reader to [2] and to the
references given there.) Thus parts (b) and (c) of the lemma are equivalent to Lassak’s
results on coverings by homothetic copies from his papers [9] and [10]. The remaining
statements rest on corresponding theorems on the illumination problem (see [11] and
p. 280 of [2]).

Now Theorem 6 immediately leads to the following conclusions.

Theorem 7. Let K ⊆ E3 be a bounded convex set with non-empty interior and let
k ≥ 2 be an integer. Then the following estimates are valid:

(a) deg(K , k · K ) ≤ 32k+ 1.
(b) deg(K , k · K ) ≤ 16k+ 1 if K is centrally symmetric.
(c) deg(K , k · K ) ≤ 12k+ 1 if K is of constant width.
(d) deg(K , k · K ) ≤ 8k+ 1 if K has at most four non-regular boundary points.

A second lemma of combinatorial type can be shown for certain Minkowski sums
M = N ⊕ K . We present this statement not only for the three-dimensional case, since
we did not find it in the literature and it could be of independent interest besides its
application in the present paper. Note that the Minkowski sums considered in Lemma 3
and Corollary 3 are not necessarily bounded, closed, or convex. However, the idea is
taken from a theorem on convex bodies (see Theorem 34.8 of [2]).

Lemma 3. Let M ⊆ En be a Minkowski sum M= N ⊕ K of two sets N, K ⊆ En

such that at least one of them is bounded. If the closurecl(K ) of K can be covered by m
translates of the interiorint(K ), thencl(M) can be covered by m translates ofint(M),
too.

Proof. One can easily verify the inclusions

cl(M) ⊆ cl(N)⊕ cl(K ) and cl(N)⊕ int(K ) ⊆ int(M).
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According to the assumption there existm vectorst1, t2, . . . , tm ∈ En such that cl(K ) ⊆⋃m
i=1(int(K )+ ti ). Thus we obtain

cl(M) ⊆ cl(N)⊕ cl(K ) ⊆ cl(N)⊕
(

m⋃
i=1

(int(K )+ ti )

)

=
m⋃

i=1

(
cl(N)⊕ int(K )+ ti

) ⊆ m⋃
i=1

(int(M)+ ti ).

Hence cl(M) is covered bym translates of int(M).

An important subclass of sets considered in Lemma 3 consists of the so-calledparallel
sets M. That is,M is a Minkowski sumM = N ⊕ B of some setN ⊆ En and a closed
ball B. Lemma 3 yields a universal estimate for all parallel sets, since any ballB ⊆ En

can be covered byn+ 1 translates of its interior.

Corollary 3. The closure of any parallel set in En can be covered by n+ 1 translates
of its interior.

The three-dimensional cases of Lemma 3 and of Corollary 3 give rise to another
application of Theorem 6.

Theorem 8. Let M = N ⊕ K be a Minkowski sum of two bounded sets N, K ⊆ E3

such that the closurecl(K ) can be covered by m translates ofint(K ). Then

deg(M, k · M) ≤ 2mk+ 1

for all integers k≥ 2.
In particular, any bounded parallel set M⊆ E3 fulfils the estimate

deg(M, k · M) ≤ 8k+ 1

for all k ≥ 2.

5. Replicating the Cube

Now we come back to the problem of duplicating (or replicating) the cube. The best result
obtained by the general theorems given above has been presented in formula (11). In this
section we improve this estimate by proving a particular theorem concerning the cube.
We have to use the special geometric structure of the cube. The following proposition
prepares the forthcoming considerations.

Proposition 7. For any cube C⊆ E3 whose edges are of length s, there exists a real
numberε > 0 such that

(a) C can be covered by four isometric images of the inner parallel set C−ε and
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(b) C can be covered by two isometric images of C−ε and one rectangular parallelo-
tope of size(s− 2ε)× (s− 2ε)× s.

Proof. Without loss of generality, we consider the cubeC = [−1,1]3 with s= 2. We
put ε = 1

3(1− (2
√

2/3)). It can easily be seen that the four points(2
√

2/3)(1,1,− 1
2),

(2
√

2/3)( 1
2,−1,−1), (2

√
2/3)(−1,−1, 1

2), and(2
√

2/3)(− 1
2,1,1) are the vertices of

a squareS whose edges are of length 2 and which is completely contained in the cube
[−2
√

2/3,2
√

2/3]3 = C−3ε. Consequently, the rectangular parallelotopeP with baseS
and altitude 2ε is a subset ofC−ε.

The proof of part (a) is based on the covering

C = [−1,1− 2ε]3 ∪ ([1− 2ε,1]× [−1,1]2)

∪ ([−1,1]× [1− 2ε,1]× [−1,1]) ∪ ([−1,1]2× [1− 2ε,1]).

The first set is a translate ofC−ε. The additional three sets are congruent withP and
therefore contained in suitable images ofC−ε.

The second assertion (b) can be verified by

C = ([−1,1− 2ε]2× [−1,1]) ∪ ([1− 2ε,1]× [−1,1]2)

∪ ([−1,1]× [1− 2ε,1]× [−1,1]).

The first set in the covering is a rectangular parallelotope of size(s−2ε)× (s−2ε)×s,
whereas the two remaining parallelotopes again are subsets of images ofC−ε.

Theorem 9. Let C⊆ E3 be a cube and let k≥ 2 be an integer. Then

2k ≤ deg(C, k · C) ≤ 8k− 3.

Proof. The left-hand inequality is trivial.
The proof of the upper estimate is similar to that of Theorem 6. Without loss of

generality, we restrict our considerations to the cubeC = [ 1
4,

1
2]3, which is a subset of

the pointed ballBp(0,1) and whose edges are parallel to the coordinate axes (see Fig. 1).
We apply Proposition 7 to the cubeC with s = 1

4. Hence there exist someε > 0 and
isometriesϕi ∈ I3, 1≤ i ≤ 7, such that

C ⊆ ϕ1(C−ε) ∪ ϕ2(C−ε) ∪ ϕ3(C−ε) ∪ ϕ4(C−ε) (17)

and

C ⊆ ϕ5([0, 1
4 − 2ε]2× [0, 1

4]) ∪ ϕ6(C−ε) ∪ ϕ7(C−ε). (18)

The proof ofBp(0,1)
8k−4' (4k−2) ·Bp(0,1) in Theorem 3 has shown the following:

for any two rotationsρ, σ ∈ SO3 generating a free non-Abelian subgroup of rank two
there exist decompositions

Bp(0,1) = A∪ B4k−2 ∪ C1 ∪ · · · ∪ C4k−3 ∪ D1 ∪ · · · ∪ D4k−3 (19)
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Fig. 1. Position ofC in E3.

as well as

Bp(0,1) = A∪ ρ4k−3(B4k−2), Bp(0,1) = C1 ∪ σ(D1) (20)

and

Bp(0,1) = ρ j−1(Cj ) ∪ σρ j−1(Dj ) for 2≤ j ≤ 4k− 3 (21)

of the pointed ballBp(0,1) (see formulas (1) and (2)). By Lemma 1, we can chooseρ

andσ such that the axes ofρ andσ coincide with the first and the second coordinate
axis, respectively, and such that all the angles of the rotationsρ j−1, 2 ≤ j ≤ 4k − 2,
andσρ j−1, 1≤ j ≤ 4k− 3, are less thanε.

We putM1 = A∩ C, M2 = B4k−2 ∩ C, M2 j+1 = Cj ∩ C, andM2 j+2 = Dj ∩ C for
1≤ j ≤ 4k− 3. By (19), we obtain a decomposition

C = M1 ∪ M2 ∪ · · · ∪ M8k−4 (22)

of the cubeC. As in the proof of Theorem 6, (21) combined with the restriction of the
angles of rotation gives rise to the representations

C−ε ⊆ ρ j−1(M2 j+1) ∪ σρ j−1(M2 j+2) for 2≤ j ≤ 4k− 3. (23)

Next we show that a rectangular parallelotope of size( 1
4 − 2ε) × ( 1

4 − 2ε) × 1
4 is

covered byM1 ∪ ρ4k−3(M2):

([ 1
4,

1
2] × [ 1

4 + ε, 1
2 − ε]2) ⊆ M1 ∪ ρ4k−3(M2). (24)

We have([ 1
4,

1
2]× [ 1

4 + ε, 1
2 − ε]2) ⊆ ρ4k−3(C), sinceρ4k−3 is a rotation around the first
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coordinate axis whose angle of rotation is less thanε. By (20), we can conclude that

([ 1
4,

1
2] × [ 1

4 + ε, 1
2 − ε]2) = Bp(0,1) ∩ ([ 1

4,
1
2] × [ 1

4 + ε, 1
2 − ε]2)

= (A∩ ([ 1
4,

1
2] × [ 1

4 + ε, 1
2 − ε]2))

∪ (ρ4k−3(B4k−2) ∩ ([ 1
4,

1
2] × [ 1

4 + ε, 1
2 − ε]2))

⊆ (A∩ C) ∪ (ρ4k−3(B4k−2) ∩ ρ4k−3(C))

= M1 ∪ ρ4k−3(M2),

which proves the inclusion (24). Similar arguments show that the second equation of
(20) yields

([ 1
4 + ε, 1

2 − ε] × [ 1
4,

1
2] × [ 1

4 + ε, 1
2 − ε]) ⊆ M3 ∪ σ(M4). (25)

Now we use the pairwise disjoint subsetsMu ⊆ C, 1 ≤ u ≤ 8k − 4, from the
decomposition (22) to cover thek termsC of the sumk · C. Letψ1 ∈ I3 be a motion
mapping the parallelotope from fromula (24) onto the congruent one from (18). Then,
by (23),

C ⊆ ϕ5ψ1(M1) ∪ ϕ5ψ1ρ
4k−3(M2) ∪ ϕ6ρ(M5) ∪ ϕ6σρ(M6) ∪ ϕ7ρ

2(M7) ∪ ϕ7σρ
2(M8).

Similarly, (18), (25), and (23) with a suitable isometryψ2 ∈ I3 give rise to the covering

C ⊆ ϕ5ψ2(M3)∪ ϕ5ψ2σ(M4)∪ ϕ6ρ
3(M9)∪ ϕ6σρ

3(M10)∪ ϕ7ρ
4(M11)∪ ϕ7σρ

4(M12).

Finally, the remainingk− 2 terms ofk · C admit the coverings

C ⊆
4⋃

i=1

(ϕiρ
4h+i (M8h+2i+3) ∪ ϕiσρ

4h+i (M8h+2i+4))

for 1 ≤ h ≤ k − 2 according to (17) and (23). Thus we can apply Proposition 3 and

obtainC
8k−4º k · C. By Theorem 2, this and the trivial relationk · C 1º C imply that

C
8k−3' k · C. This proves the desired inequality deg(C, k · C) ≤ 8k− 3.

In particular, Theorem 9 states that

4≤ deg(C,C + C) ≤ 13. (26)

This is the sharpest estimate for the smallest possible number of pieces in a paradoxical
duplication of a cube which we were able to derive.

6. Concluding Remarks

We remark that some problems remain open. Although Theorems 6 and 9 use finer
arguments than simple coverings by balls as Theorem 5 does, they only give estimates
for the optimal numbers deg(M, k · M) and deg(C, k · C), respectively. Even in the
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“simple” particular case of duplicating the cube our methods have not led farther than
to the above result (26). Can this estimate be improved?

We did not consider paradoxical decompositions in higher dimensions. The third
dimension is the natural one for the Banach–Tarski paradox. However, many results
from the three-dimensional case could be generalized.

Considerations of equidecomposabilities with respect to other groups of transforma-
tions possibly acting on spaces different from the Euclidean one can be found in [14].
One can regard the present paper with its almost pure geometric methods as a counterpart
to the abstract algebraic extensions of the classical paradox.

The paradox of Banach, Tarski, and Hausdorff concerning equidecomposabilities
in dimension three and higher has found a modern two-dimensional counterpart in
Laczkovich’s positive solution of Tarski’s Circle-Squaring Problem (see [8]). We finish
this paper by posing the corresponding deep question: What is the minimal number of
pieces in an equidecomposability of a circle and a square in the sense of Laczkovich?
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