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Abstract. We prove that convex geometries of convex dimensionn that satisfy two prop-
erties satisfied by nondegenerate sets of points in the plane, may have no more than 2n−1

points. We give examples of such convex geometries that have
(

n
4

)+ (n
2

)+ (n
0

)
points.

1. Introduction and Terminology

The problems we consider can be stated in terms of elementary convexity properties of
finite sets of points in general position in the plane. These properties are described in
terms of theconvex geometry(also calledantimatroid) realized by the point set.

Definition 1.1. A convex geometryis a pair(X, C), whereX is a finite set andC is a
collection of subsets ofX satisfying:

1. X ∈ C.
2. For everyA ∈ C, A 6= X there is anx ∈ X\A so thatA∪ {x} ∈ C.
3. A, B ∈ C implies A∩ B ∈ C.
A good reference for convex geometries is [2]. A convex geometry(X, C) is realizable

in Rd if there is a functionϕ: X → Rd so that for anyA ⊆ X we haveA ∈ C if and
only if ϕ(A) = K ∩ ϕ(X) for some convex setK in Rd. In this case we say thatϕ(X)
realizes(X, C).

Let E be a finite set and letL = {Le: e ∈ E} be a collection of linear orders of
X. For x, y ∈ X, x 6= y, defineSyx = {e ∈ E: y < x in Le}. Define a collectionC
as follows:A ∈ C if and only if there is nox ∈ X\A so that

⋂
y∈A Syx = ∅. The pair

(X, C) constructed this way is a convex geometry [2, Theorem 5.1]. We say that the setL
generatesC. Every convex geometry can be constructed this way [2, Theorem 5.2]. The
smallest number of linear orders needed to generate a convex geometry(X, C) in this
manner is called [4] theconvex dimensionof (X, C). If X is a set of points in the plane
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that realizes(X, C), we refer to the convex dimension of(X, C) simply as the convex
dimension ofX.

Example 1.2. SupposeX = {x, y, z, w}, x, y, andz are vertices of a triangle, andw
is in the interior of this triangle. In the convex geometry(X, C) realized byX, C is the
collection of all subsets ofX except{x, y, z}. Let L1 be the orderz < y < w < x, let
L2 be the orderx < z < w < y, and letL3 be y < x < w < z. The set{L1, L2, L3}
generates(X, C). Because{y, z, w} ∈ C, any set of linear orders generatingC must
contain an order in whichx is largest. For similar reasons, any such set of orders must
also contain an order on whichy is largest and one in whichz is largest. Thus the convex
dimension ofX is 3.

Problem 1.3. Determine the largest number of points that a setX in the plane may
have if no three points ofX are on a line and the convex dimension ofX is n.

Denote byMreal(n) the largest cardinality of a setX of points in general position in
the plane with convex dimensionn. We show in Section 3 thatMreal(n) ≤ 2n−1.

Problem 1.3 is a close relative of a famous problem of Erd˝os and Szekeres [6]:

Problem 1.4. Determine the largest number of points that a setX in the plane may
have if no three points ofX are on a line andX does not contain the vertex set of a
convex(n+ 1)-gon.

Erdős and Szekeres [7] found examples of 2n−1 points, in general position in the plane,
that contain no(n + 1)-gon. It is widely believed that no larger sets exist, but the best
known upper bound [18] is|X| ≤ (2n−3

n−2

) + 1. The paper [15] studies the problem of
Erdős and Szekeres in the context of convex geometries.

A convex geometry(X, C) with |X| > d is d-freeif every d-element subset ofX is
in C. Note that a convex geometry with at least three points that is realizable inR2 is
2-free if and only if no three points of a realization are on a line.

The members of a convex geometryC are calledclosedsets. Every convex geometry
(X, C) defines a closure operatorclC . If A is a subset ofX, clC(A) is the smallest member
of C that containsA.

Definition 1.5. A convex geometry(X, C) is calledlocally planar if for eachx ∈ X
there is a functionϕx: X → R2 that satisfies, for eachA ⊆ X, x ∈ clC(A) if and only
if ϕx(x) is in the convex hull of{ϕx(y): y ∈ A}.

Note that if(X, C) is realized by a setϕ(X) in the plane, then we may takeϕx = ϕ
for eachx ∈ X to show that(X, C) is locally planar. We will see that not every locally
planar convex geometry is realizable in the plane.

Denote byMlp(n) the largest number of points that a 2-free locally planar convex
geometry of convex dimensionn may have. We show in Section 2 thatMlp(n) ≤ 2n−1,
and hence thatMreal(n) ≤ 2n−1.

A subsetA of X is calledindependentif a /∈ clC(A\a) for all a ∈ A. If (X, C) is
generated by a setL of linear orders of a setX, andA ⊆ X, then independence ofA is
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equivalent to the requirement that each element ofA be greater than the other elements
of A in at least one of the orders ofL. It follows that the convex dimension is at least as
large as the size of a largest independent subset ofX. If (X, C) is realized by a setϕ(X)
in the plane, then a subsetA ⊆ X is independent if and only ifϕ(A) is the set of vertices
of a convex polygon.

The appearance of the function 2n−1 in the bounds for both Problems 1.3 and 1.4
suggests a closer relationship between these problems. Closer inspection in Section 3,
however, reveals thatMlp(n) < 2n−1 whenn > 5. We conjecture thatMlp(n) =

(n
4

) +(n
2

) + (n0). Furthermore, there is a unique 2-free locally planar convex geometry with
convex dimension 5 and 16 points, and this convex geometry is not realizable. Thus
Mreal(5) < Mlp(5), and it seems reasonable to conjecture thatMreal(n) is at most a
polynomial of degree 3.

The convex geometry of convex dimension 5 and 16 points constructed in Section 3
is a member of a family of locally planar convex geometries of convex dimensionn that
are not realizable in the plane, but are realizable by uniform rank 3 oriented matroids.
We give the necessary background for oriented matroids in Section 4.

Section 5 shows how to construct uniform oriented matroids of rank 3 that realize
locally planar convex geometries that have convex dimensionn and

(n
4

) + (n2) + (n0)
points. The elements of these convex geometries are regions of a disk that is cut up by
line segments connecting a set ofn points on the boundary of the disk. These examples
are interesting from the viewpoint of oriented matroid theory. Then = 5 instance meets
the conjectured upper bound for Goodman and Pollack’s “pseudoline” generalization
[9] of Problem 1.4. This example has some appealing symmetries that the corresponding
example of [7] does not have (at the price of nonrealizability.)

2. An Upper Bound

Throughout this section we assume that(X, C) is a 2-free convex geometry onX. We
also assume thatL = {Le: e ∈ E} is a finite set of linear orders ofX that generates
(X, C). For eachx ∈ X, defineDx = {Syx: y 6= x}.

Example 2.1. In Example 1.2 of Section 1, we haveDx = {{1}, {1,3}}, Dy =
{{2}, {1,2}}, Dz = {{3}, {2,3}}, and Dw = {{1,2}, {1,3}, {2,3}}. Note that all sets
in Dx contain{1}, all sets inDy contain{2}, and all sets inDz contain{3}. Each of the
sets ofDw contains two of the three elementsx, y, w.

A family of subsets ofE is calledintersectingif F ∩G 6= ∅ wheneverF,G ∈ E. An
intersecting family of subsets ofE is maximalif it is contained in no other intersecting
family.

Lemma 2.2. For each x∈ X, Dx is an intersecting family.

Proof. If Syx ∩ Szx = ∅, then{y, z} /∈ C, contradicting 2-freeness.
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Corollary 2.3. No two families Dx, for x ∈ X, are contained in the same maximal
intersecting family of subsets of E.

The corollary follows because, forx 6= y, Syx is the complement inE of Sxy. The
preceding lemma and its corollary are essentially to be found in [12]. We would like to
thank Jim Lawrence for pointing out to us that the results of [12] apply to antimatroids.
The numberγ (n) of maximal intersecting families of subsets of ann-element set grows
very quickly, see [14] and [5]. In particular,γ (4) = 12, γ (5) = 81, andγ (n) is at least

2(
n−1

b(n−1)/2c). The construction in [12] gives a 2-free convex geometry of convex dimension
n with γ (n) elements, for anyn.

The convex geometries constructed in [12] are 2-free, but they are very far from being
realizable in the plane. We show this by adding to the requirement of 2-freeness the ad-
ditional requirement of local planarity. Suppose that(X, C) is 2-free and locally planar.
Recall that this means that for everyx ∈ X we have a functionϕx: X→ R2 so that for any
A ⊆ X, x ∈ clC(A) if and only ifϕ(x) is in the convex hull ofϕ(A). We may clearly as-
sume thatϕ(x) = 0, the origin, and that|ϕx(y)| = 1 for eachy ∈ X\x. Because(X, C) is
2-free, it follows thatϕx(y) 6= −ϕx(z) for y, z ∈ X\{x}. Fory, z ∈ X\x, defineIx(y, z)
to be the shorter of the two closed arcs inS1 fromϕx(y) toϕx(z). We define a relationy ∼x

z if there is no element of−ϕ(X\x) in Ix(y, z). The following lemma is easy to verify:

Lemma 2.4. The relation∼x is an equivalence relation on X\x, and the number of
equivalence classes is odd.

If there are 2r + 1 equivalence classesA1, A2, . . . , A2r+1 for ∼x, we can assume
that we encounter the sequence(ϕx(A1), ϕx(A2), . . . , ϕx(A2r+1)) as we go clockwise
around the unit circle. A subset of{A1, A2, . . . , A2r+1} is called consecutive if its image
underϕx is consecutive in the clockwise ordering.

It is possible, using the results of [3], to define local planarity in terms of combinatorial
properties of a functionϕx from X\x to S1, without explicitly referring to the points
−ϕx(z).

Proposition 2.5. Letw, z ∈ X be such that for every y∈ X\x, eitherϕx(y) or−ϕx(y)
is in Ix(w, z). Then there exists e∈ E so that e∈ Syx if and only ifϕx(y) is in Ix(w, z).

Proof. (See Fig. 2.1.) LetA = {y ∈ X\x : ϕx(y) ∈ Ix(w, z)}. Then local planarity
implies thatx ∈ clC(B) for any proper supersetB of A, but x /∈ clC(A). The definition
of a convex geometry now implies thatA is in C. BecauseA ∈ C, ⋂y∈A Syx must be
nonempty. Letebe an element of

⋂
y∈A Syx. In particular, this means thate∈ Szx∩Swx.

On the other hand, ify /∈ (A∪ {x}), then local planarity implies thatSyx ∩ Swx ∩ Szx is
empty, soe /∈ Syx.

In the language of convex geometries, the setA of the preceding proof is called a
copointattached tox. The number of copoints attached to a pointx is called, in [13],
thevalenceof x. It is also pointed out in [13] that the number of copoints attached to a
point in a 2-free planar convex geometry is odd.
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Fig. 2.1. See Proposition 2.5.

Proposition 2.6. Suppose that∼x has2r + 1 equivalence classes for some integer r.
Then there exists a set G of2r + 1 elements of E so that for every y∈ X\x we have
|G ∩ Syx| = r + 1.

Proof. For each consecutive setH of r +1 equivalence classes we can findz, w ∈ X\x
so thatϕx(y) ∈ Ix(w, z) if and only if y is in one of the equivalence classes inH . We
can therefore find an elementeH ∈ E so thateH ∈ Syx if and only if y is in one of the
intervals inH . Eachy ∈ X\x is contained in an equivalence class, and each equivalence
class is contained inr + 1 suchH , so the result follows.

Corollary 2.7. For each x∈ X there is an odd subsetχ(x) of E so that Dx is contained
in the maximal intersecting family of subsets of E obtained by taking all subsets that
contain more than half of the elements ofχ(x).

Corollary 2.3 shows that ifx 6= y, thenχ(x) 6= χ(y). Because there are 2n−1 subsets
of odd size of a set ofn elements, we have the following:

Theorem 2.8. Suppose thatC is a 2-regular locally planar convex geometry on a set
X, and suppose that the convex dimension ofC is n. Then|X| ≤ 2n−1.

3. Uniqueness Results

This section is devoted to determining, for smalln, the locally planar 2-free convex
geometries with convex dimensionn and 2n−1 points. Suppose that(X, C) is 2-free and
locally planar, and that there exist linear ordersL1, L2, . . . , Ln of X that generateX.
Section 2 showed that there is a 1–1 functionχ from X to the collection of odd subsets of
the set{1,2, . . . ,n}, so that for everyx 6= y in X we have|χ(x)∩Syx| = (|χ(x)| + 1)/2.
We assume thatX is the collection of all odd subsets of{1,2, . . . ,n}, and thatχ is the
identity function.
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We start withn = 3. For i = 1,2,3, the point{i } must be largest in orderLi . This
is because|{i } ∩ Syx| must be 1 whenx = {i } andy 6= {i }. The point labeled{1,2,3}
must be larger than{i } on exactly two orders, which must be the orders other thanLi , for
i = 1,2,3. We have thus determined the ordersL1, L2, L3 up to the order of the least two
elements of each order. The order of these least two elements is, however, irrelevant to
determiningC. We see that{1,2,3} ∈ clC({{1}, {2}, {3}}) and hence{{1}, {2}, {3}} /∈ C,
but all other subsets ofX are inC. Thus(X, C) is realizable by four points in the plane,
for which one of the points (labeled by{1,2,3}) is in the convex hull of the other three
(as in Example 1.2.)

For n = 4, we again note that{i } must be largest in orderLi , for i = 1,2,3,4. The
point{1,2,3}must be below the point{4} on exactly one ofL1, L2, or L3. Without loss
of generality, we may assume that{1,2,3} < {4} in L3. It is, however, necessary that
both of{1,3,4} and{2,3,4} are above{4} on orderL3, because they are both below{4}
on orderL4. Because{1,2,4}must be larger than{1,2,3} on exactly one ofL1 andL2,
it must be true that{1,2,4} is below{1,2,3} in L3. Generalizing our initial choice of
{1,2,3} to arbitrary{i, j, k}, we see that each{i, j, k}must be in fifth position in exactly
one of the ordersLi , L j , Lk, and in this order,{i, j, k} is directly below the point{l },
wherel /∈ {i, j, k}. We therefore have a permutationπ : {1,2,3,4} → {1,2,3,4}, with
π(i ) = j if {i } is in the fourth position ofL j . This permutation has no fixed points, so
it is either the product of two disjoint transpositions or it is a cycle of length four. This
gives us the two different possibilities forn = 4. The two possibilities are illustrated
below, with realizations of the resulting convex geometries.

Example 3.1. Type I (cycle of length four):

{1} {2} {3} {4}
{1,2,4} {1,2,3} {2,3,4} {1,3,4}
{1,2,3} {2,3,4} {1,3,4} {1,2,4}
{2} {3} {4} {1}
{1,3,4} {1,2,4} {1,2,3} {2,3,4}
{2,3,4} {1,3,4} {1,2,4} {1,2,3}
{3} {4} {1} {2}
{4} {1} {2} {3}
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Example 3.2. Type II (two disjoint transpositions):

{1} {2} {3} {4}
{1,2,3} {1,2,4} {1,3,4} {2,3,4}
{1,2,4} {1,2,3} {2,3,4} {1,3,4}
{2} {1} {4} {3}
{1,3,4} {2,3,4} {1,2,3} {1,2,4}
{2,3,4} {1,3,4} {1,2,4} {1,2,3}
{3} {4} {1} {2}
{4} {3} {2} {1}

In each case, we may reorder arbitrarily the last three points in any order without
changing the convex geometry generated.

Then = 4 instance of a convex geometry realizable by a nondegenerate set of 2n−1

points in the plane, with no independent set of size greater thann, given in [7] and [16],
is of type II.

Next, suppose that we have a 2-regular, locally planar convex geometryC with
16 points and convex dimension 5. For eachi = 1,2,3,4,5, we define the con-
vex geometryC\i to be the convex geometry generated by the ordersL j for j 6=
i , with all elements labeled by subsets containingi deleted. It is easy to see that
C\i must be locally planar for eachi . Because eachC\i has eight points and con-
vex dimension 4, it must be of type I or type II. We now show that it cannot be of
type II.

Suppose thatC\5 is of type II, and assume that the sets in the ordersL1, L2, L3, L4

that do not contain 5 are ordered as in Example 3.2. Consider the placement of the sets
{1,2,5} and{3,4,5} in L5. Because{1,2,5} must be above{2} in L1 and above{1} in
L2, we must have{1,2,5} above{3} in bothL1 andL2. This means that{1,2,5} is below
{3} in L5. For a similar reason,{3,4,5} is below{1} in L5. However,{1,2,5} > {1} in
L5, and{3,4,5} > {3} in L5. This yields the contradiction{1,2,5} > {1} > {3,4,5} >
{3} > {1,2,5} in L5.

We can therefore assume thatC\5 is as in Example 3.1, and that each of the convex
geometriesC\i for i = 1,2,3,4 is of type I. Because of the cyclic nature of Example 3.1,
we can choose without loss of generality that{1} is the largest inL5 among the points
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{1}, {2}, {3}, {4}. Once this choice is made, the type I nature of theC\i forces the orderings
of the following example:

Example 3.3.

{1} {2} {3} {4} {5}
{1,2,5} {1,2,3} {2,3,4} {3,4,5} {1,4,5}
{1,2,4} {2,3,5} {1,3,4} {2,4,5} {1,3,5}
{1,2,3} {2,3,4} {3,4,5} {1,4,5} {1,2,5}
{2} {3} {4} {5} {1}
{1,3,5} {1,2,4} {2,3,5} {1,3,4} {2,4,5}
{1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}
{2,3,5} {1,3,4} {2,4,5} {1,3,5} {1,2,4}
{1,3,4} {2,4,5} {1,3,5} {1,2,4} {2,3,5}
{2,3,4} {3,4,5} {1,4,5} {1,2,5} {1,2,3}
{3} {4} {5} {1} {2}
{1,4,5} {1,2,5} {1,2,3} {2,3,4} {3,4,5}
{2,4,5} {1,3,5} {1,2,4} {2,3,5} {1,3,4}
{3,4,5} {1,4,5} {1,2,5} {1,2,3} {2,3,4}
{4} {5} {1} {2} {3}
{5} {1} {2} {3} {4}

We may interchange the 10th and 11th points in any order, and we may also reorder
the last four points in the orders, without changing the convex geometry generated by
these orders.

We now assume thatL1, L2, . . . , L6 generate a locally planar convex geometryC on a
set of 32 elements. It follows that each of the convex geometriesC\i , for i = 1,2, . . . ,6,
is isomorphic to the convex geometry of Example 3.3. In particular, we can assume that
the subsets of{1,2, . . . ,6} that do not contain 6 are ordered inL1, L2, . . . , L5 as in that
example. As in the argument forn = 5, we can arbitrarily assume that{1} is largest
in L6 of the elements{1}, {2}, {3}, {4}, {5}. Consideration of the convex geometriesC\i
leads us to conclude that{1,3,5} > {i + 2} > {2,4,6} on Li if i is odd, and that
{2,4,6} > {i + 2} > {1,3,5} on Li if i is even. This, however, contradicts the fact
that{2,4,6} must be above{1,3,5} on Li for some oddi . This gives us the following
proposition.

Proposition 3.4. There is no2-regular, locally planar convex geometry of convex di-
mension n with2n−1elements if n≥ 6.

4. Locally Planar Convex Geometries and Rank 3 Oriented Matroids

We show in this section that many, and perhaps all, locally planar convex geometries can
be realized by acyclic uniform oriented matroids. The standard reference for oriented
matroids is [1]. We are only interested inuniform (sometimes calledsimple) oriented
matroids.
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Definition 4.1. A signed setD on a finite setX is an ordered pair(D+, D−) of subsets
of X, whereD+ ∩ D− = ∅. We write D = D+ ∪ D− and−D = (D−, D+).

Definition 4.2. A uniform oriented matroid of rankr is a pairO = (X,D), whereD
is a collection of signed subsets ofX, called thecircuits of O, satisfying the following
properties:

1. |X| ≥ r , and if |X| > r , thenD 6= ∅.
2. If D ∈ D, then−D ∈ D.
3. If D1, D2 ∈ D andD2 ⊆ D1, thenD1 = D2 or D1 = −D2.

4. If D ∈ D, then|D| = r + 1.
5. If D1 ∈ D, x ∈ X, andx /∈ D1, then there isD2 ∈ D such thatx ∈ D+2 , D+2 ⊆

D+1 ∪ {x}, andD−2 ⊆ D−1 .

Oriented matroids that satisfy (1)–(5) are called uniform because the setsD all have
the same cardinality. The axiom system (1)–(5) appears in [8] under the namepositivity
system.

A uniform oriented matroid(X,D) of rank r is calledacyclic if D− 6= ∅ for all
D ∈ D. It is said to berealizableif there is a functionϕ: X→ Rr so that a signed setD
on X with |D| = r is inD if and only if 0 is a positive linear combination of the points
{ϕ(x): x ∈ D+} ∪ {−ϕ(x): x ∈ D−}. In this case we say that the setϕ(X) realizes
(X,D).

For a collectionD of signed subsets ofX, andx ∈ X, defineD/x to be the collection
{(D+\{x}, D−\{x}): x ∈ D}. If O = (X,D) is a uniform oriented matroid of rankr
andx ∈ X, thenO/x = (X\{x},D/x) is a uniform oriented matroid of rankr − 1,
called the oriented matroid obtained fromO by contracting x.

Suppose now thatO = (X,D) is an acyclic uniform oriented matroid. One can define
a functionclC : 2X → 2X by x ∈ clC(A) if x ∈ A or (D+, {x}) ∈ D for some subset
D+ of A. Then [2] shows thatC = {C ⊆ X: clC(C) = C} is a convex geometry onX.
In this case we say thatC is realizedbyO.

Two different notions for “realizability” of a convex geometry(X, C) have been
presented. We show next how they are related. Suppose thatO = (X,D) is an acyclic
uniform oriented matroid of rankr , and that there is a functionϕ: X→ Rr so thatϕ(X)
realizesO. BecauseO is acyclic, one can assume that the setϕ(X) is contained in an
(r −1)-dimensional affine subspace ofRr . If (X, C) is a convex geometry realized byO,
thenϕ(X) is also a realization of(X, C). Thus “realization of(X, C) by an acyclic rankr
oriented matroid” is implied by “realization of(X, C) by a set of points ofRr−1.” Unless
specific reference is made to an oriented matroid that may not be realizable, realizability
of a convex geometry can be assumed to be the stronger notion of realizability by a set
of points in the plane.

If O = (X,D) is an acyclic uniform oriented matroid of rank 3, andx ∈ X, then
O/x is a uniform oriented matroid of rank 2. It is known (Corollary 8.3.3 of [1]) that
every rank 2 oriented matroid is realizable. Thus, for everyx ∈ X we have a function
ϕx: X\{x} → R2 so that a signed setD on X\{x} is inD/x if and only if 0 is a positive
linear combination of the three points in{ϕx(y): y ∈ D+} ∪ {−ϕx(y): y ∈ D−}.
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Proposition 4.3. If C is a convex geometry on X, realized by an acyclic uniform oriented
matroidO = (X,D) of rank3, thenC is locally planar.

Proof. For eachx ∈ X, let ϕx: X → R2 satisfy ϕx(y) = ϕx(y) if y 6= x and
ϕx(x) = 0. Then, for eachA ⊆ X, x ∈ clAC if and only if ϕx(x) is in the convex hull of
{ϕx(y): x ∈ A}.

Problem 4.4. If C is a locally planar convex geometry onX, must there be an acyclic
uniform oriented matroidO of rank 3 so thatC is realized byO?

For oriented matroids, it is known that ifD is a collection of signed sets onX satisfying
(1)–(4) of Definition 4.2 withr = 3, and each of the pairs(X\{x},D/x) for x ∈ X is a
uniform oriented matroid of rank 2, then(X,D) is a uniform oriented matroid of rank
3. See [17] or the discussion following Corollary 3.6.4 of [1].

SupposeC is a convex geometry onX, D is a four-element subset ofX, and no
element ofD is in the closure of the three others. The definition of local planarity does
not tell how to assign a signed setD to D. One would like to be able to define such
signed setsD so that all of the collectionsD/x define uniform oriented matroids of rank
2, but it is not clear that this is possible.

5. Examples Generated by Regions on a Disk

Let B = {(x, y) ∈ R2: x2 + y2 ≤ 1}, and letE = (e1,e2, . . . ,en) be a sequence of
points on the boundary ofB in clockwise order aroundB. Assume that no three of the
segments connecting points inE intersect in the interior ofB. It is known (see [11]
for three proofs) that the line segments connecting points ofE create

(n
4

) + (n2) + (n0)
two-dimensional regions inB. Let X be the set of regions.

Figure 5.1 shows such a setX of regions forn = 5. We will presently define a locally
planar convex geometry(X, C) generated by five linear orders so that the odd sets in the
figure are the setsχ(x) as defined in Section 2. The five linear orders will, in fact, be
those of Example 3.3.

For x, y ∈ X we introduce the notationx| ji y to mean that the line segment fromei

to ej separatesx andy, and thatx is on the same side of this segment as the arc of the
unit circle that goes clockwise fromei to ej . We also writex|i y if x| ji y for some j , and
say thatei separates xandy if x|i y or y|i x. Finally, we sayx| ji if x is on the same side
of the line segment fromei to ej as the arc of the unit circle that goes clockwise fromei

to ej . Whenever we consider a sequence of the form(i, i − 1, . . .) we assume that the
elements are taken modulon.

Definition 5.1. For i ∈ {1,2, . . . ,n} andx, y ∈ X, definex > y in Li if x|ky where
k is the first element of the sequence(i, i − 1, . . .) so thatek separatesx andy.

Proposition 5.2. For each i∈ {1,2, . . . ,n}, Li is a linear order on X.
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Fig. 5.1. The set of regions forn = 5.

Indeed, we can write, for eachx ∈ X, a vector(x1, x2, . . . , xn), wherexj = k − j
(modulo n) if |kj x and x|k+1

j . Then Li is just lexicographic order, starting at thei th
component of(x1, x2, . . . , xn) and going backwards.

Let (X, C) be the convex geometry generated byL1, L2, . . . , Ln. Note that each of
the ordersLi has a different maximal element. It follows that(X, C) is not generated by
fewer thann linear orders ofX.

Lemma 5.3. For x, y ∈ X, the set{ei : y > x in Li } is an interval in the cyclic ordering
of E.

Proof. Suppose first thaty > x on the ordersLi andL j , where 1≤ i < j ≤ n, and
thatei andej separatey andx. Then there existk, l so thaty|ki x andy|lj x. A quick sketch
shows thatek andel are either both in the arc fromei to ej or both in the arc fromej to
ei . Without loss of generality, assume thati < k, l < j . If l < k, then the segmentsei ek

andej el cross in the interior of the disk at a pointα. If m< i or m> j ands 6= m, then
|smx whenever|smα andy|sm wheneverα|sm. In neither case can we havex|smy. It follows
thaty > x on Lm wheneverm< i or m> j . Next, suppose thaty > x on the ordersLu

andLv, that the first element of the sequenceeu,eu−1, . . . that separatesy andx is ei ,
and that the first element of the sequenceev,ev−1, . . . that separatesy andx is ej . Then
eithery > x on L j , L j+1, . . . , Li or y > x on Li , Li+1, . . . , L j . In both cases there is
an interval in the cyclic order ofE, from eu to ev or fromev to eu, such thaty > x on Lt

for eachet in the interval.

Note that the above proof does not require that the line segmentsej el andei ek be
straight, only that they cross in exactly one point.
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Figure 5.2. See Lemma 5.4.

Lemma 5.4. Suppose that y> x on Lj , x > y on Lj+1, x > y on Li , and y> x on
Li+1. Then x| j+1

i+1 y, |ij+1x, and y|i+1
j .

Proof. (See Fig. 5.2. Note that it is possible thatj + 1 = i andi + 1 = j .) From the
definition of the orderingsLi+1 andL j+1 it is clear thatx|j+1y andy|i+1x. Letk be such
thatx|kj+1y. Thenk cannot be in the sequencej + 2, . . . , i due to the previous lemma.

Thus|i+1
j+1y. A symmetric argument shows that| j+1

i+1 x, sox| j+1
i+1 y. Becausex > y on Li

and y| j+1
i , we must also havex| j+1

i , which is the same as|ij+1x. By symmetry,y|i+1
j .

Proposition 5.5. Let x, y, z be distinct elements of X. The set{ei : z > {x, y} on Li }
is a nonempty interval in the cyclic ordering of E.

Proof. Let x, y, andz be distinct elements ofX. We can assume thatx andy are as in
Lemma 5.4. Consider Fig. 5.2. Ifx|ij+1, thenz > x > y on L j+1. Suppose|i+1

j+1z|i+1
j . If

theny > z on Li+1, Li+2, . . . , L j , it would follow from Lemma 5.4 thatz|lk y for some
k andl so that the sequence(ej+1,ek,el ,ei+1) is encountered as we go clockwise from
ej+1 to ei+1 A quick look at Fig. 5.2 shows that this is not possible. Thusz > y > x
on Lk for somek in the sequence(i + 1, i + 2, . . . , j ). For the casez| ji+1 and the case
|ij+1z|i+1

j+1 we similarly find orders on whichz> {x, y}. This means thatz /∈ clC({x, y}.

Becausex, y, andz were arbitrary, we see that all two-element subsets ofX are inC.
Proposition 5.5 therefore shows thatC is 2-free.

We would now like to construct a collectionD of signed sets onX that we will later
prove to be the set of circuits of a uniform oriented matroid of rank 3. LetA = {x, y, z, w}
be a subset ofX. BecauseX is 2-free, we either have one of the elements ofA, sayx, in
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the closure of theA\x, or A is an independent set. Ifx is in the closure of{y, z, w}, then
D will include the signed sets({x}, {y, z, w}) and({y, z, w}, {x}). If A is independent,
then each ofx, y, z, andw is the largest element ofA on at least one of theLi . For each
t ∈ A let Lt be an order on whicht is the largest element ofA. Suppose the sequence
(ex,ey,ez,ew) is as in the clockwise order ofE. In that case,D will include the signed
sets({x, z}, {y, w}) and({y, w}, {x, z}). By Proposition 5.5, the set ofei for which a
given member ofA is the largest element ofA on Li is an interval in the cyclic order of
E. This implies that our signed sets are well defined. We now have a collectionD that
satisfies (1)–(4) of Definition 4.2 withr = 3. We need to show that(5) is also satisfied.
Note that(5) only involves sets of five elements ofX whenr = 3. We will therefore
have proved that(5) holds if we can show that the restriction ofD to any five-element
subset ofX yields the set of circuits of an oriented matroid that is realizable inR3.

Suppose thatA = {x, y, z,u, v} ⊆ X. We say that an elementt of A is extremefor
A if t is the largest element ofA on some orderLi . There will be three cases, depending
on the number of extreme elements forA.

Suppose that for eacht ∈ A there is an orderLt on which t is the largest ele-
ment of A. Suppose that(ex,ey,ez,eu,ev) is as in the clockwise order ofE. Then
D = {({x, z}, {y,u}), ({y,u}, {x, z}), ({x, z}, {y, v}), ({y, v}, {x, z}), ({x,u}, {y, v}),
({y, v}, {x,u}), ({x,u}, {z, v}), ({z, v}, {x,u}), ({y,u}, {z, v}), ({z, v}, {y,u})}. This is
the set of circuits of an oriented matroid that is realizable by a set of points that are the
vertices of a convex pentagon. (This pentagon would be contained in a plane inR3 that
does not contain the origin.)

Suppose that for eacht ∈ A\{v} there is an orderLt on which t is the largest el-
ement ofA\{v}, and thatv ∈ clC(A\{v}). We can assume thatex,ey,ez,eu is as in
the clockwise order ofE. Note that if y is largest inA\{v} on an orderLi , thenu
may not be second largest, for in that case the collection ofej on whichu > {x, z}
would not be an interval in the cyclic ordering ofE. There must either be an order
on which u is the largest andv is the second largest element ofA, or an order on
which y is the largest andv is the second largest element ofA, but not both, for oth-
erwise{ei : v > {x, z} on Li would not be a nonempty interval in the cyclic order of
E. We can assume that there is an order in whichu is the largest andv is the sec-
ond largest element ofA, and similarly that there is an order in whichz is the largest
and v is the second largest element ofA. Thus the sets{x, y, z, v} and {x, y, v,u}
are independent, and we havev ∈ clC({y, z,u}), v ∈ clC({x, z,u}). The circuits are
D = {({x, z}, {y,u}), ({y,u}, {x, z}), ({x, z}, {y, v}), ({y, v}, {x, z}), ({x, v}{y,u}),
({y,u}, {x, v}), ({v}, {y, z,u}), ({y, z,u}, {v}), ({v}, {x, z,u}), ({x, z,u}, {v})}. This is
the set of circuits realized by the set of vertices of a convex quadrilateral and a point in
its interior.

Finally, assume thatx, y, z are independent, and that{u, v} ⊆ clC({x, y, z}).

Lemma 5.6. v is in at most one of the sets clC({x, y,u}), clC({x, z,u}), and
clC({y, z,u}).

Proof. Suppose thatv ∈ clC({x, y,u}). There is an orderLk on whichu > {x, y}.We
must then havez> u > {x, y, v} onLk. There must be an orderLi on whichv > {x,u},
andy is the largest element ofA in Li . There is also an orderL j on whichu > {x, z},
and y is the largest element ofA in L j . If either v > z in Li or v > u in L j , then
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v /∈ clC({x, z,u}). Assume thaty > z > v > {x,u} in Li and y > u > v > {x, z}
in L j . Becauseu /∈ clC ({y, z}) and v /∈ clC({y,u}), there must be anLl on which
x > u > {y, z} and anLm on whichx > v > {y, z}. Now consider the order in which
ek,ei ,ej ,el ,em appear in the clockwise or counterclockwise ordering ofE. Within this
set,ei andej are adjacent becausey is largest in each of them, andel , em are similarly
adjacent. If we meet the subsequence(el ,ei ,ej ,ek), then the{ep: z> u in L p} is not an
interval. The other possibility is that we encounter the sequence(em,ej ,ei ,ek) (hereej

andei are reversed). In that case,{ep: u > v} in L p is not an interval. We can therefore
conclude thatv /∈ clC ({x, z,u}). An analogous argument shows thatv /∈ clC ({y, z,u}).

Because there is at most onet ∈ {x, y, z} so thatv ∈ clC{x, y, z,u}\{t} and at
most onet ∈ {x, y, z} so thatu ∈ clC{x, y, z, v}\{t}, there must be at ∈ {x, y, z} so
that{x, y, z,u, v}\{t} is independent. Assume that{x, y,u, v} is independent. For each
t ∈ {x, y,u, v}, let Lt be an order in whicht is the largest element of{x, y,u, v}. Note
thatz> u in Lu andz> v in Lv, so when we encounter{ex,ey,eu,ev} in the clockwise
or counterclockwise order ofE, theneu andev will be adjacent. We can therefore assume
that the circular ordering of these elements is(ex,ey,eu,ev). If v > u on an orderLi in
which y is the largest of{x, y,u, v}, then{ej : v > u} in L j will not be an interval in
the cyclic ordering ofE. Thusv ∈ clC({x,u, z}). Similarly, u ∈ clC({y, v, z}). We thus
have the circuitsD = {({u}, {x, y, z}), ({x, y, z}, {u}), ({v}, {x, y, z}), ({x, y, z}, {v}),
({x,u}, {y, v}), ({y, v}, {x,u}), ({v}, {x,u, z}), ({x,u, z}, {v}), ({u}, {y, v, z}),
({y, v, z}, {u})}. This is the set of circuits one gets from a triangle with verticesx, y, z
and pointsu andv in its interior, when the pointsx, y,u, v form a convex quadrilateral.

Proposition 5.7. The convex geometry(X, C) given by the method of this section with
n = 5 is not realizable by a set of points in the plane.

Proof. Let the regions of the disk be labeled as in Fig. 5.1. Suppose that there is a func-
tionϕ: X→ R2 so thatϕ(X) realizes(X, C). Note thatA = {{1,2,5}, {1,2,3}, {2,3,4},
{3,4,5}, {1,4,5}} is independent, and soϕ(A) is the set of vertices of a convex pen-
tagon. Similarly,B = {{1,2,4}, {2,3,5}, {1,3,4}, {2,4,5}, {1,3,5}} is independent.
Furthermore, each element ofB is in clC(A), soϕ(B) is in the convex hull ofϕ(A).Note
that {1,3,5} ∈ clC({{1,2,5}, {1,4,5}, {3,4,5}}) ∩ clC({{1,2,4}, {1,4,5}, {2,3,5}}).
These considerations, together with the cyclic symmetry, imply that the image ofA∪ B
must be as in Fig. 5.3. It now becomes impossible to placeϕ({1,2,3,4,5}) in the figure,
because{1,2,3,4,5} is in clC({{1,2,3}, {1,3,4}, {2,4,5}}) ∩ clC({{2,3,4}, {2,4,5},
{1,3,5}}) ∩ clC({{3,4,5}, {1,3,5}, {1,2,4}}) ∩ clC({{1,4,5}, {1,2,4}, {2,3,5}}) ∩
clC({{1,2,5}, {2,3,5}, {1,3,4}}).

The nonrealizability of this example together with Proposition 3.4 yield the following.

Proposition 5.8. There is no convex geometry of convex dimension n with2n−1 points
that is realizable by a nondegenerate set of points in the plane, for n ≥ 5.

Figure 5.4 shows one half of an arrangement of pseudocircles that represents an
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Fig. 5.3. See Proposition 5.7.

Fig. 5.4. Pseudocircle arrangement forn = 5.
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oriented matroid realizing ourn = 5 example. One should think of the disk as the northern
hemisphere ofS2, with the outside circle on the equator. On the southern hemisphere we
have a copy of the drawing, with the arrows reversed. The curves represent elements of
the convex geometry. The elements have been labeled by the odd setsχ(x) as in Fig. 5.1.
The outside circle represents the center region of Fig. 5.1, labeled{1,2,3,4,5}. Given
elementsx, y, z, w of X, one can read the associated circuit ofD as follows: Delete
all of the circles except those representingx, y, z, w. If all of the arrows point to a
cell that has four sides, then{x, y, z, w} is independent. If the circles are encountered
in the order(x, y, z, w) as one goes around the edge of this cell, thenD contains the
circuits ({x, z}, {y, w}) and({y, w}, {x, z}). If the cell pointed to by all the arrows has
only three sides, representingx, y, z, thenD contains the circuits({w}, {x, y, z}) and
({x, y, z}, {w}).

Because the convex dimension of this convex geometry is 5, it follows thatX contains
no independent set of size 6. The geometric interpretation of this statement is that if
one deletes ten of the pseudocircles of Fig. 5.4, then the region ofS2 that is pointed
to by all of the arrows cannot be adjacent to all of the six remaining pseudocircles
(see [10]).
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12. S. Hoşten and W. D. Morris, Jr., The order dimension of the complete graph,Discrete Math. 201(1999),

133–139.
13. R. E. Jamison, Copoints in antimatroids,Congr. Numer. 29 (1980), 535–544.
14. A. D. Korshunov, Families of subsets of a finite set and closed classes of Boolean functions,Bolyai Soc.

Math. Studies3 (1994), 375–396.



Convex Dimension of Locally Planar Convex Geometries 101

15. B. Korte and L. Lov´asz, Shelling structures, convexity and a happy end,Graph Theory and Combinatorics,
Academic Press, London, 1984, pp. 219–232.

16. L. Lovász,Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
17. I. Streinu, Clusters of stars,Proc. ACM Symp. Comput. Geom. (1997), pp. 439–441.
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