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Abstract. We prove that convex geometries of convex dimensitimt satisfy two prop-
erties satisfied by nondegenerate sets of points in the plane, may have no moréthan 2
points. We give examples of such convex geometries that (e (3) + (§) points.

1. Introduction and Terminology

The problems we consider can be stated in terms of elementary convexity properties of
finite sets of points in general position in the plane. These properties are described in
terms of theconvex geometrfalso callecantimatroid realized by the point set.

Definition 1.1. A convex geometrig a pair(X, C), whereX is a finite set and is a
collection of subsets oX satisfying:

1. Xel.
2. ForeveryA € C, A # X thereis arx € X\ AsothatAU {x} € C.
3. A,BeCimpliesANnBeC.

A good reference for convex geometries is [2]. A convex geom&ry) isrealizable
in RY if there is a functionp: X — RY so that for anyA € X we haveA e C if and
only if p(A) = K N ¢(X) for some convex sef in RY. In this case we say that(X)
realizes(X, C).

Let E be a finite set and lef = {L.: e € E} be a collection of linear orders of
X.Forx,y € X,x # vy, defineSy = {e € E: y < xin L¢}. Define a collectiorC
as follows: A € C if and only if there is nox € X\ A so that(), ., Syx = @. The pair
(X, C) constructed this way is a convex geometry [2, Theorem 5.1]. We say that the set
generate€. Every convex geometry can be constructed this way [2, Theorem 5.2]. The
smallest number of linear orders needed to generate a convex gedxetiyin this
manner is called [4] theonvex dimensioaf (X, C). If X is a set of points in the plane
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that realizeg X, C), we refer to the convex dimension @X, C) simply as the convex
dimension ofX.

Example 1.2. SupposeX = {x, Y, z, w}, X, y, andz are vertices of a triangle, and

is in the interior of this triangle. In the convex geomet¥, C) realized byX, C is the
collection of all subsets oK except{x, vy, z}. Let L; be the order < y < w < X, let

L, betheordex <z < w < y,andletLzbey < X < w < z. The set{Ly, Lo, L3}
generateg X, C). Becausdy, z, w} € C, any set of linear orders generatidggmust
contain an order in whicl is largest. For similar reasons, any such set of orders must
also contain an order on whighis largest and one in whichis largest. Thus the convex
dimension ofX is 3.

Problem 1.3. Determine the largest number of points that a$eh the plane may
have if no three points oX are on a line and the convex dimensionXofs n.

Denote byMcq(Nn) the largest cardinality of a set of points in general position in
the plane with convex dimension We show in Section 3 thadl,ea(n) < 2.
Problem 1.3 is a close relative of a famous problem obEralid Szekeres [6]:

Problem 1.4. Determine the largest number of points that aXeh the plane may
have if no three points oK are on a line anK does not contain the vertex set of a
convex(n + 1)-gon.

Erdds and Szekeres [7] found examples Bf2points, in general position in the plane,
that contain nan + 1)-gon. It is widely believed that no larger sets exist, but the best
known upper bound [18] i$X| < (*'7) + 1. The paper [15] studies the problem of
Erdds and Szekeres in the context of convex geometries.

A convex geometry X, C) with | X| > d is d-freeif every d-element subset ok is
in C. Note that a convex geometry with at least three points that is realizalé i
2-free if and only if no three points of a realization are on a line.

The members of a convex geomefiare callecclosedsets. Every convex geometry
(X, C) defines a closure operatdg . If Ais asubsetoX, cle(A) is the smallest member
of C that containgA.

Definition 1.5. A convex geometry X, C) is calledlocally planarif for eachx € X
there is a functiomp,: X — R? that satisfies, for eacA C X, x € clc(A) if and only
if px(X) is in the convex hull ofpx(y): y € A}.

Note that if(X, C) is realized by a sep(X) in the plane, then we may takg = ¢
for eachx € X to show that(X, C) is locally planar. We will see that not every locally
planar convex geometry is realizable in the plane.

Denote byM,(n) the largest number of points that a 2-free locally planar convex
geometry of convex dimensianmay have. We show in Section 2 tht,(n) < 2",
and hence tha¥l,eq(n) < 271,

A subsetA of X is calledindependenif a ¢ clc(A\a) foralla € A. If (X,C) is
generated by a sét of linear orders of a seX, andA < X, then independence & is
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equivalent to the requirement that each elemen bk greater than the other elements
of Aiin at least one of the orders gf It follows that the convex dimension is at least as
large as the size of a largest independent subs¥t &f (X, C) is realized by a set(X)

in the plane, then a subsatC X is independent if and only if(A) is the set of vertices
of a convex polygon.

The appearance of the functioA=2 in the bounds for both Problems 1.3 and 1.4
suggests a closer relationship between these problems. Closer inspection in Section 3,
however, reveals tha#i,(n) < 2"~* whenn > 5. We conjecture thali,(n) = (}) +
(5) + (5)- Furthermore, there is a unique 2-free locally planar convex geometry with
convex dimension 5 and 16 points, and this convex geometry is not realizable. Thus
Mreal(3) < Mpp(5), and it seems reasonable to conjecture Maty(n) is at most a
polynomial of degree 3.

The convex geometry of convex dimension 5 and 16 points constructed in Section 3
is a member of a family of locally planar convex geometries of convex dimendioat
are not realizable in the plane, but are realizable by uniform rank 3 oriented matroids.
We give the necessary background for oriented matroids in Section 4.

Section 5 shows how to construct uniform oriented matroids of rank 3 that realize
locally planar convex geometries that have convex dimensiand (}) + (5) + (g)
points. The elements of these convex geometries are regions of a disk that is cut up by
line segments connecting a setgboints on the boundary of the disk. These examples
are interesting from the viewpoint of oriented matroid theory. ke 5 instance meets
the conjectured upper bound for Goodman and Pollack’s “pseudoline” generalization
[9] of Problem 1.4. This example has some appealing symmetries that the corresponding
example of [7] does not have (at the price of nonrealizability.)

2. An Upper Bound

Throughout this section we assume th&t C) is a 2-free convex geometry oX. We
also assume thaf = {L: e € E} is a finite set of linear orders of that generates
(X, C). Foreachx € X, defineDy = {Syx: y # X}.

Example 2.1. In Example 1.2 of Section 1, we havg, = {{1},{1,3}}, Dy =
{{2},{1,2}}, D, = {{3},{2,3}}, and D,, = {{1, 2}, {1, 3}, {2, 3}}. Note that all sets
in Dy contain{1}, all sets inDy contain{2}, and all sets irD, contain{3}. Each of the
sets ofD,, contains two of the three elementsy, w.

A family of subsets oE is calledintersectingf F NG # ¥ whenevelF, G € E. An
intersecting family of subsets & is maximalif it is contained in no other intersecting
family.

Lemma 2.2. For each xe X, Dy is an intersecting family

Proof. If Syx N Sy =¥, then{y, z} ¢ C, contradicting 2-freeness. O
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Corollary 2.3.  No two families [, for x € X, are contained in the same maximal
intersecting family of subsets of E

The corollary follows because, for # y, Sy« is the complement ik of S,y. The
preceding lemma and its corollary are essentially to be found in [12]. We would like to
thank Jim Lawrence for pointing out to us that the results of [12] apply to antimatroids.
The numbely (n) of maximal intersecting families of subsets ofraelement set grows
very quickly, see [14] and [5]. In particulap,(4) = 12, y(5) = 81, andy(n) is at least
2(in12), The construction in [12] gives a 2-free convex geometry of convex dimension
n with y (n) elements, for any.

The convex geometries constructed in [12] are 2-free, but they are very far from being
realizable in the plane. We show this by adding to the requirement of 2-freeness the ad-
ditional requirement of local planarity. Suppose tt¥t C) is 2-free and locally planar.
Recall that this means that for everye X we have afunctiop,: X — R?sothat for any
A C X, x € clg(A) ifand only if ¢ (x) is in the convex hull ok (A). We may clearly as-
sume thap(x) = 0, the origin, and thdt« (y)| = 1 foreachy € X\x. BecauséX, C) is
2-free, it follows thatp, (Y) # —¢x(2) fory, z € X\{x}. Fory, z € X\x, definel«(y, 2)
to be the shorter of the two closed arcStfrom g, () to g, (2). We define arelatiog ~
zif there is no element of ¢ (X\X) in I4(y, 2). The following lemma is easy to verify:

Lemma 2.4. The relation~, is an equivalence relation on ¥, and the number of
equivalence classes is add

If there are 2 + 1 equivalence classe&;, Ay, ..., Ax1 for ~4, we can assume
that we encounter the sequen@g (A1), ex(Az), ..., ox(Ax11)) as we go clockwise
around the unit circle. A subset pi\;, Ao, ..., Ax 1} is called consecutive if its image

undergy is consecutive in the clockwise ordering.

Itis possible, using the results of [3], to define local planarity in terms of combinatorial
properties of a functioy from X\x to S, without explicitly referring to the points
—x(2).

Proposition 2.5. Letw, z € X be such that for every g X\X, eithergy(y) or —ex(y)
isin Ix(w, z). Then there exists e E so that e Sy if and only ifex(y) is in Ix(w, 2).

Proof. (See Fig. 2.1.) LeA = {y € X\X : ¢x(Y) € Ix(w, 2)}. Then local planarity
implies thatx e clq(B) for any proper supers& of A, butx ¢ cl:(A). The definition
of a convex geometry now implies thatis in C. BecauseA € C, (), o Syx must be
nonempty. Lee be an element qﬂyeA S,x. In particular, this means thate S,xN S,x.
On the other hand, ¥ ¢ (AU {x}), then local planarity implies the&,x N S,x N Sxis
empty, sce ¢ Syx. O

In the language of convex geometries, the Aeif the preceding proof is called a
copointattached tox. The number of copoints attached to a poiris called, in [13],
thevalenceof x. It is also pointed out in [13] that the number of copoints attached to a
point in a 2-free planar convex geometry is odd.
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Fig. 2.1. See Proposition 2.5.

Proposition 2.6. Suppose that-y has2r + 1 equivalence classes for some integer r
Then there exists a set G &f + 1 elements of E so that for everyey X\x we have
IGN Syl =r+1

Proof. For each consecutive ddtofr + 1 equivalence classes we can fimdy € X\x

so thatpy (y) € Ix(w, z) if and only if y is in one of the equivalence classesHn We

can therefore find an elemesy € E so thatey € Sy, if and only if y is in one of the
intervals inH. Eachy € X\x is contained in an equivalence class, and each equivalence
class is contained in+ 1 suchH, so the result follows. O

Corollary 2.7. Foreach xe X there is an odd subsgix) of E so that [ is contained
in the maximal intersecting family of subsets of E obtained by taking all subsets that
contain more than half of the elementsyak).

Corollary 2.3 shows that i # y, theny (x) # x (y). Because there aré2 subsets
of odd size of a set af elements, we have the following:

Theorem 2.8. Suppose that is a 2-regular locally planar convex geometry on a set
X, and suppose that the convex dimensio@ &f n. Then|X| < 2"—1,

3. Uniqueness Results

This section is devoted to determining, for snrallthe locally planar 2-free convex
geometries with convex dimensiorand 2! points. Suppose thakX, C) is 2-free and
locally planar, and that there exist linear ordérs Lo, ..., L, of X that generateX.
Section 2 showed that there is a 1-1 functioinom X to the collection of odd subsets of
thesefl, 2, ..., n},sothatforeverx # yin X we have x (X)NSyx| = (|x ()| +1)/2.
We assume thaX is the collection of all odd subsets {if, 2, ..., n}, and thaty is the
identity function.
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We start withn = 3. Fori = 1, 2, 3, the point{i } must be largest in orddtr;. This
is becausé{i} N Syx| must be 1 whex = {i} andy # {i}. The point labeled1, 2, 3}
must be larger thafi} on exactly two orders, which must be the orders other thafor
i =1, 2, 3. We have thus determined the ordegsL ,, L3 up to the order of the least two
elements of each order. The order of these least two elements is, however, irrelevant to
determiningC. We see thatl, 2, 3} € cle({{1}, {2}, {3}}) and hencé{1}, {2}, {3}} ¢ C,
but all other subsets of are inC. Thus(X, C) is realizable by four points in the plane,
for which one of the points (labeled K¥, 2, 3}) is in the convex hull of the other three
(as in Example 1.2.)

Forn = 4, we again note thdt} must be largest in orddy;, fori = 1, 2,3, 4. The
point{1, 2, 3} must be below the poirid} on exactly one of 1, L,, or L3. Without loss
of generality, we may assume thdt 2, 3} < {4} in Ls. It is, however, necessary that
both of{1, 3, 4} and{2, 3, 4} are abovd4} on orderlL 3, because they are both bel¢d}
on orderlL 4. Becausd1, 2, 4} must be larger thaft, 2, 3} on exactly one of.; andL ,,
it must be true thatl, 2, 4} is below{1, 2, 3} in L3. Generalizing our initial choice of
{1, 2, 3} to arbitrary{i, j, k}, we see that eadh, j, k} must be in fifth position in exactly
one of the orderd;, L;, Lk, and in this order{i, j, k} is directly below the poinfl},
wherel ¢ {i, j, k}. We therefore have a permutation {1, 2, 3, 4} — {1, 2, 3, 4}, with
(i) = j if {i} is in the fourth position ot ;. This permutation has no fixed points, so
it is either the product of two disjoint transpositions or it is a cycle of length four. This
gives us the two different possibilities for = 4. The two possibilities are illustrated
below, with realizations of the resulting convex geometries.

Example 3.1. Type I (cycle of length four):

{1 {2} {3} {4}
{1.2,4} {123} {234} {134
{1.2,3} {234} (1,34} {124

{2} {3} {4} {1}
{134} {124} {1,2,3 {234
{2,3,4) {134} {1,2,4} (1,23}

{3} {4 {1} {2}

4 {1 {2} {3}

{1} {2}

{1,2,3}e

[ ]
{1,2,4

2,3,4}
o {1.3,4}
{4} {3}
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Example 3.2. Type Il (two disjoint transpositions):

{1} {2} {3} {4
{1,2,3) {124} {1,3,4 {234}
{1,2,4) {1,2,3} {2,3,4 {134}

{2} {1} {4 {3}
{1,3,4) {2,3,4} {1,2,3} {1,2 4}
(2,34 {1,3,4} {1,2,4 {1,23)

(3) (4} {1} (2}

{4} {3} {2} {1}

{1} {2}
0{17273} {17274}.

o231} {1,3,1}e
{4} {3}

In each case, we may reorder arbitrarily the last three points in any order without
changing the convex geometry generated.

Then = 4 instance of a convex geometry realizable by a nondegenerate et of 2
points in the plane, with no independent set of size greatemthgiven in [7] and [16],
is of type II.

Next, suppose that we have a 2-regular, locally planar convex georfietriyh
16 points and convex dimension 5. For each= 1,2, 3,4, 5, we define the con-
vex geometryC\i to be the convex geometry generated by the ordgréor j #
i, with all elements labeled by subsets containingeleted. It is easy to see that
C\i must be locally planar for each Because eacti\i has eight points and con-
vex dimension 4, it must be of type | or type Il. We now show that it cannot be of
type Il.

Suppose that\5 is of type I, and assume that the sets in the ordlgrd ,, L3, L4
that do not contain 5 are ordered as in Example 3.2. Consider the placement of the sets
{1, 2,5} and{3, 4, 5} in Ls. Becausdl, 2, 5} must be abové2} in L, and abovd1} in
L,, we must havél, 2, 5} above{3} in bothL; andL . This means thdtl, 2, 5} is below
{3} in Ls. For a similar reasor{3, 4, 5} is below{1} in Ls. However,{1, 2,5} > {1} in
Ls, and{3, 4, 5} > {3} in Ls. This yields the contradictiofl, 2, 5} > {1} > {3, 4,5} >
{3} > {1,2,5}in Ls.

We can therefore assume thiat is as in Example 3.1, and that each of the convex
geometrieg\i fori = 1, 2, 3, 4is of type I. Because of the cyclic nature of Example 3.1,
we can choose without loss of generality tf#t is the largest in.s among the points
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{1}, {2}, {3}, {4}. Once this choice is made, the type | nature oftkigforces the orderings
of the following example:

Example 3.3.
{1} {2} {3} {4} {5}
{1, 2,5} {1,2,3) (2,3, 4} (3,4,5} {1,4,5)
(1,2, 4} {2,3,5) {1, 3,4} {(2,4,5} {1,3,5)
{1,2,3 {2,3,4) {(3,4,5} {1, 4,5} {1,2,5)
{2} {3} {4} {5} {1}
{1, 3,5} {1, 2,4} {2, 3,5} {1,3,4} {2, 4,5}
{1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}
{2,3,5) {1,3,4) {2, 4, 5} {1, 3,5} {1,2,4)
{1,3,4) {2,4,5) {1, 3,5} {1,2,4) {2,3,5)
{2,3,4) {3,4,5 {1,4,5) {1,2,5) {1,2,3
{3} {4} {5} {1} {2}
{1, 4,5} {1, 2,5} {1, 2,3} {2,3,4} {3,4,5}
{(2,4,5} {1,3,5) {1, 2,4 {2,3,5) {1,3,4)
(3,4,5) {1,4,5} {1, 2,5} {1,2,3 (2,3,4)
{4} {5} {1} {2} {3}

{5} {1 {2 {3} {4

We may interchange the 10th and 11th points in any order, and we may also reorder
the last four points in the orders, without changing the convex geometry generated by
these orders.

We now assume that;, Lo, ..., Lg generate alocally planar convex geométgn a
set of 32 elements. It follows that each of the convex geometkigdori = 1, 2, ..., 6,
is isomorphic to the convex geometry of Example 3.3. In particular, we can assume that
the subsets dfl, 2, . . ., 6} that do not contain 6 are orderedlin, L,, ..., Lsas inthat
example. As in the argument for = 5, we can arbitrarily assume thgit} is largest
in L of the element$l}, {2}, {3}, {4}, {5}. Consideration of the convex geometriBg
leads us to conclude thét, 3,5} > {i + 2} > {2,4,6} onL; if i is odd, and that
{2,4,6} > {i +2} > {1,3,5} onL; if i is even. This, however, contradicts the fact
that{2, 4, 6} must be abov¢l, 3, 5} on L; for some odd. This gives us the following
proposition.

Proposition 3.4. There is na2-regular, locally planar convex geometry of convex di-
mension n witl2"~*elements if > 6.

4. Locally Planar Convex Geometries and Rank 3 Oriented Matroids

We show in this section that many, and perhaps all, locally planar convex geometries can
be realized by acyclic uniform oriented matroids. The standard reference for oriented
matroids is [1]. We are only interested imiform (sometimes calledimplg oriented
matroids.
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Definition 4.1. A signed seD on afinite sei is an ordered paifD", D~) of subsets
of X, whereD* N D~ = @. WewriteD = D*UD~ and—D = (D, D*).

Definition 4.2. A uniform oriented matroid of rank is a pairO = (X, D), whereD
is a collection of signed subsets ¥f called thecircuits of O, satisfying the following
properties:

1. |X] =>r,andif|X| > r, thenD # @.

2. If D € D,then—D € D.

3. 1fDy,DoeD andﬁz - B]_, thenDy = Dy or Dy = —D».

4. 1f D € D, then|D| =r + 1.

5. If D1 € D, x € X, andx ¢ Dy, then there iD, € D such thax € D5, D C
D U{x}, andD; < Dy.

Oriented matroids that satisfy (1)—(5) are called uniform because th®ssthave
the same cardinality. The axiom system (1)—(5) appears in [8] under thepwsitiity
system

A uniform oriented matroid X, D) of rankr is calledacyclicif D~ # ¢ for all
D € D. ltis said to baealizableif there is a functiorp: X — R" so that a signed s&
on X with |D| =r is in D if and only if 0 is a positive linear combination of the points
{p(X): X € DT} U {—p(X): x € D7}. In this case we say that the setX) realizes
(X, D).

For a collectiorD of signed subsets of, andx € X, defineD/x to be the collection
{(DT\{x}, D"\{x}): x € D}. If © = (X, D) is a uniform oriented matroid of rank
andx € X, thenO/x = (X\{x}, D/x) is a uniform oriented matroid of rank— 1,
called the oriented matroid obtained frafhby contracting x

Suppose now th&? = (X, D) is an acyclic uniform oriented matroid. One can define
a functioncle: 2* — 2X by x € clc(A) if x € Aor (DT, {x}) € D for some subset
D" of A. Then [2] shows thaf = {C € X: cl¢(C) = C} is a convex geometry oK.

In this case we say thatis realizedby O.

Two different notions for “realizability” of a convex geomet(¥X, C) have been
presented. We show next how they are related. Suppos©that X, D) is an acyclic
uniform oriented matroid of rank and that there is a functigmn X — R" so thaip(X)
realizesO. Becaus&?) is acyclic, one can assume that the g€X) is contained in an
(r — 1)-dimensional affine subspacelRf. If (X, C) is a convex geometry realized 18
theng(X) is also a realization afX, C). Thus “realization of X, C) by an acyclic rank
oriented matroid” is implied by “realization ¢, C) by a set of points oR" ~.” Unless
specific reference is made to an oriented matroid that may not be realizable, realizability
of a convex geometry can be assumed to be the stronger notion of realizability by a set
of points in the plane.

If O = (X, D) is an acyclic uniform oriented matroid of rank 3, ance X, then
O/x is a uniform oriented matroid of rank 2. It is known (Corollary 8.3.3 of [1]) that
every rank 2 oriented matroid is realizable. Thus, for every X we have a function
?,. X\{x} — R? so that a signed s& on X\{x} is in D/x if and only if 0 is a positive
linear combination of the three points{@a, (y): y € DT} U {—g,(y): y € D7}.
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Proposition 4.3. If Cisaconvex geometry on, kalized by an acyclic uniform oriented
matroid © = (X, D) of rank3, thenC is locally planar

Proof. For eachx e X, let gx: X — R? satisfy o, (y) = @,(y) if y # x and
px(X) = 0. Then, for eactA C X, x € claC if and only if g4 (X) is in the convex hull of
{px(y): x € AL O

Problem 4.4. If C is a locally planar convex geometry ofy must there be an acyclic
uniform oriented matroi@ of rank 3 so that is realized byO?

For oriented matroids, itis known thatlifis a collection of signed sets ofisatisfying
(1)—(4) of Definition 4.2 withr = 3, and each of the paifX\{x}, D/x) for x € X is a
uniform oriented matroid of rank 2, the&iX, D) is a uniform oriented matroid of rank
3. See [17] or the discussion following Corollary 3.6.4 of [1].

SupposeC is a convex geometry oX, D is a four-element subset of, and no
element ofD is in the closure of the three others. The definition of local planarity does
not tell how to assign a signed sBtto D. One would like to be able to define such
signed set® so that all of the collection®/x define uniform oriented matroids of rank
2, but it is not clear that this is possible.

5. Examples Generated by Regions on a Disk

Let B = {(x,y) € R% x? 4+ y? < 1}, and letE = (e, &, ..., &) be a sequence of
points on the boundary @ in clockwise order aroun&. Assume that no three of the
segments connecting points i intersect in the interior oB. It is known (see [11]
for three proofs) that the line segments connecting point& ofeate(}) + () + (7)
two-dimensional regions iB. Let X be the set of regions.

Figure 5.1 shows such a s¢étof regions fom = 5. We will presently define a locally
planar convex geometiyX, C) generated by five linear orders so that the odd sets in the
figure are the setg(x) as defined in Section 2. The five linear orders will, in fact, be
those of Example 3.3. '

Forx,y € X we introduce the notatior|' y to mean that the line segment freen
to g separates andy, and thaix is on the same side of this segment as the arc of the
unit circle that goes clockwise from to g;. We also writex|; y if x|iJ y for somej, and
say thatg separates »andy if x|;y or y|; x. Finally, we sayxhJ if x is on the same side
of the line segment frors to g as the arc of the unit circle that goes clockwise frgm
to g. Whenever we consider a sequence of the farm— 1, ...) we assume that the
elements are taken moduto

Definition 5.1. Fori € {1,2,...,n}andx, y € X, definex > yin L; if x|xy where
k is the first element of the sequen@ei — 1, ...) so thate, separatex andy.

Proposition 5.2. Foreachie {1, 2,...,n}, L; isalinear order on X
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g

Fig. 5.1. The set of regions fon = 5.

Indeed, we can write, for eache X, a vector(xy, Xo, ..., Xn), wherex; = k — j
(modulon) if [¥x and x|}‘“. ThenL; is just lexicographic order, starting at thi
component ofxy, X, ..., X,) and going backwards.

Let (X, C) be the convex geometry generatedlby Lo, ..., L,. Note that each of
the orderd_; has a different maximal element. It follows th@&¢, C) is not generated by
fewer tham linear orders ofX.

Lemma5.3. Forx,y e X,thesefe: y > xinL;}isanintervalinthe cyclic ordering
of E.

Proof. Suppose first thag > x on the orderd.; andL;, where 1<i < j <n, and
thate ande; separatey andx. Then there exik, | so thaty|*x andy|'j X. A quick sketch
shows that, andg are either both in the arc from to € or both in the arc frong; to
€. Without loss of generality, assume that k,| < j.If | <k, then the segmengsg,
andgg cross in the interior of the disk at a powtlf m < i orm > j ands # m, then
I3, x whenevers o andy|3, whenevew|;,. In neither case can we hax¢,y. It follows
thaty > x onL, whenevem < i orm > j. Next, suppose that > x on the orderd
andL,, that the first element of the sequergzee,_1, . .. that separateg andx is g,
and that the first element of the sequesgee,_1, . . . that separateg andx is €. Then

eithery > xonlLj, Lj41,...,Liory > xonlLi, L, ..., Lj. Inboth cases there is
an interval in the cyclic order dE, fromg, to e, or frome, to g, such thaty > x on L;
for eache in the interval. O

Note that the above proof does not require that the line segregmtande e, be
straight, only that they cross in exactly one point.
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~—

el+1 el

X>y y>x

Figure 5.2. See Lemma5.4.

Lemma5.4. Suppose thaty x on Lj, x > yon L, x>yonl,andy> x on

Li+]_. Then >¢|J.|-!_:I:_Ly» |}+1X, and MijJrl.
Proof. (See Fig. 5.2. Note that it is possible that 1 =i andi + 1 = j.) From the
definition of the ordering&; 1 andL 1 itis clear thatx|;+1y andy|i+1x. Letk be such
thatx|}<+ly. Thenk cannot be in the sequenget 2, ..., i due to the previous lemma.
Thus||1y. A symmetric argument shows thgf; x, sox|/}'y. Becausex > y on'L;
andy|/**, we must also have|/ ™!, which is the same as,;x. By symmetry,y[*".
O

Proposition 5.5. Let x, y, z be distinct elements of. Xhe setle: z > {x,y} on L}
is a nonempty interval in the cyclic ordering of E

Proof. Letx, y, andz be distinct elements of. We can assume thatandy are as in
Lemma 5.4. Consider Fig. 5.2.Xf} ,,, thenz > x > y onL;,;. Suppose;1z[;™. If

theny > zonLjq, Lit2, ..., Lj, it would follow from Lemma 5.4 thaz|'kyfor some
k andl so that the sequence;j,1, &, 6, €41) is encountered as we go clockwise from
€+1 to 641 A quick look at Fig. 5.2 shows that this is not possible. Thus y > x

on Ly for somek in the sequencé + 1,i +2,..., j). For the cas<z|ij+1 and the case
|}+1z|}ﬁ we similarly find orders on whick > {x, y}. This means that ¢ cl.({X, y}.
O

Because, y, andz were arbitrary, we see that all two-element subset$ afe inC.
Proposition 5.5 therefore shows tliais 2-free.

We would now like to construct a collectidn of signed sets oiX that we will later
prove to be the set of circuits of a uniform oriented matroid of rank 3ALet {x, y, z, w}
be a subset oK. BecauseX is 2-free, we either have one of the elementé&\p$ayx, in
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the closure of the\\x, or Ais an independent set.)fis in the closure ofy, z, w}, then
D will include the signed setgx}, {y, z, w}) and({y, z, w}, {x}). If Ais independent,
then each ok, y, z, andw is the largest element & on at least one of thk;. For each
t € Alet L; be an order on whichis the largest element k. Suppose the sequence
(&, €y, &, &,) is as in the clockwise order @&. In that case]D will include the signed
sets({x, z}, {y, w}) and ({y, w}, {X, z}). By Proposition 5.5, the set & for which a
given member ofA is the largest element & on L; is an interval in the cyclic order of
E. This implies that our signed sets are well defined. We now have a collg@tibat
satisfies (1)—(4) of Definition 4.2 with = 3. We need to show th&b) is also satisfied.
Note that(5) only involves sets of five elements &f whenr = 3. We will therefore
have proved that5) holds if we can show that the restriction Bfto any five-element
subset ofX yields the set of circuits of an oriented matroid that is realizabl&®n

Suppose thad = {X, y, z, u, v} € X. We say that an elemehbf A is extremefor
Aif tis the largest element & on some ordet.;. There will be three cases, depending
on the number of extreme elements far

Suppose that for each € A there is an ordet; on whicht is the largest ele-
ment of A. Suppose thate,, ey, &, &,, &) is as in the clockwise order dE. Then
D = {({x, z}, {y,u}), (y, u}, {x,z}), ({x, z}, {y, v}, dy, v} {X, 2, ({x, u}, {y. v}),
dy. v}, {x, ub), (%, ub, {z, v, (z v}, (X, ub), dy, uh, {z, o), {z v} {y, ub}. Thisis
the set of circuits of an oriented matroid that is realizable by a set of points that are the
vertices of a convex pentagon. (This pentagon would be contained in a pl&iehiat
does not contain the origin.)

Suppose that for eadhe A\{v} there is an ordekt; on whicht is the largest el-
ement of A\{v}, and thatv € cl¢c(A\{v}). We can assume thai, e, e;, &, is as in
the clockwise order of. Note that ify is largest inA\{v} on an orderL;, thenu
may not be second largest, for in that case the collectiog ofh whichu > {x, z}
would not be an interval in the cyclic ordering &. There must either be an order
on whichu is the largest and is the second largest element Af or an order on
which y is the largest and is the second largest element &f but not both, for oth-
erwise{g: v > {X, z} on L; would not be a nonempty interval in the cyclic order of
E. We can assume that there is an order in whicis the largest ana is the sec-
ond largest element oA, and similarly that there is an order in whiehis the largest
and v is the second largest element Af Thus the setgx, y, z, v} and{x, y, v, u}
are independent, and we havec clc({y, z,u}), v € cle({X, z, u}). The circuits are
D = {({x, z}, {y,u}, dy.u}, {x,2}), (X, 2}, {y, v}, (y, v} {X, 2D, (X, vHy, u}),
dy. ul {x, v, (h {y, z ub), dy, z ub, (o), (v}, {X, z u}), (X, z, u}, {vh}. Thisis
the set of circuits realized by the set of vertices of a convex quadrilateral and a point in
its interior.

Finally, assume that, y, z are independent, and th@t, v} C cle({X, Y, z}).

Lemma5.6. v is in at most one of the setsc€l(x,y,u}), cle({x, z,u}), and
cle(ty, z, ub).

Proof. Suppose that € clc({X, y, u}). There is an ordek, on whichu > {x, y}. We
must then have > u > {X, y, v} onLg. There must be an ordéf on whichv > {x, u},
andy is the largest element dk in L;. There is also an ordér; on whichu > {x, z},
andy is the largest element oA in L;. If eitherv > zin L; orv > uin Lj, then
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v ¢ cle({X, z,u}). Assume thay > z > v > {x,u}in Lj andy > u > v > {X, 2}
in Lj. Becauseu ¢ cl.({y,z}) andv ¢ clc({y, u}), there must be ah; on which
X > U > {y, z} and anL, on whichx > v > {y, z}. Now consider the order in which
&, &, §, 8, &y appear in the clockwise or counterclockwise orderingoWithin this
set,g ande; are adjacent becaugss largest in each of them, am ey, are similarly
adjacent. If we meet the subsequeges,, g, &), then thelep: z > uin Ly} is notan
interval. The other possibility is that we encounter the sequésces;, &, &) (hereg
ande are reversed). In that cagep: u > v} in Ly is not an interval. We can therefore
conclude thab ¢ cl, ({x, z, u}). An analogous argument shows tha¢ cl . ({y, z, u}).

O

Because there is at most ohes {X, Yy, z} so thatv € cle{X,y, z, u}\{t} and at
most onet € {X, Y, z} so thatu € cl¢{X, Y, z, v}\{t}, there must be & € {x,y, z} so
that{x, vy, z, u, v}\{t} is independent. Assume th@a¢, y, u, v} is independent. For each
t € {X,y, u, v}, letL; be an order in which is the largest element ¢k, y, u, v}. Note
thatz > uin Ly andz > vin L,, so when we encount¢ey, ey, ,, €,} in the clockwise
or counterclockwise order &, thene, ande, will be adjacent. We can therefore assume
that the circular ordering of these elementeds ey, e, €,). If v > uon an ordeL; in
which y is the largest ofx, y, u, v}, then{e;: v > u} in L; will not be an interval in
the cyclic ordering oE. Thusv € clq({X, u, z}). Similarly,u € clc({y, v, z}). We thus
have the circuitd = {({u}, {x,y, z}), ({X, Yy, z}, {u}), ({v}, {x, ¥, Z}), ({X, Y, 2}, {v}),
(x up {y, vh),  dy.vh {x,uh), vk {x,u,zh), x,u z}, {vh), (u}{y. v, 2},
({y, v, z}, {u})}. This is the set of circuits one gets from a triangle with vertixeg, z
and pointau andv in its interior, when the points, y, u, v form a convex quadrilateral.

Proposition 5.7.  The convex geomet(y, C) given by the method of this section with
n = 5is not realizable by a set of points in the plane

Proof. Letthe regions of the disk be labeled as in Fig. 5.1. Suppose that there is a func-
tionp: X — R?sothaip(X) realizeg X, C). NotethatA = {{1, 2, 5}, {1, 2, 3}, {2, 3, 4},
{3,4,5}, {1, 4,5}} is independent, and so(A) is the set of vertices of a convex pen-
tagon. Similarly,B = {{1, 2, 4}, {2, 3,5}, {1, 3, 4}, {2, 4, 5}, {1, 3, 5}} is independent.
Furthermore, each elementBfis incl¢ (A), sop(B) isin the convex hull of(A). Note
that{1, 3,5} € cle({{1, 2, 5}, {1, 4,5}, {3,4,5)}) Nncle({{1, 2, 4}, {1, 4,5}, {2, 3, 5}}).
These considerations, together with the cyclic symmetry, imply that the imafye/ &
must be as in Fig. 5.3. It now becomes impossible to pla¢g 2, 3, 4, 5}) in the figure,
becausdl, 2, 3,4, 5} isincle({{1, 2, 3}, {1, 3,4}, {2, 4,5}}) Nncle({{2, 3, 4}, {2, 4,5},
{1,3,5}}) Nncle({{3,4,5},{1, 3,5}, {1, 2,4}}) ncle({{1,4,5},{1,2,4},{2,3,5}}) N
cle({{1, 2,5}, {2, 3,5}, {1, 3,4}}). O

The nonrealizability of this example together with Proposition 3.4 yield the following.

Proposition 5.8. There is no convex geometry of convex dimension nafithpoints
that is realizable by a nondegenerate set of points in the pfane > 5.

Figure 5.4 shows one half of an arrangement of pseudocircles that represents an
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{1,4,5}

{1,3,5
)

{34.5) {1.2,5)

{2,3,4} {1,2,3}

Fig. 5.3. See Proposition 5.7.

11,45) (245) {2}

Fig. 5.4. Pseudocircle arrangement foe= 5.
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oriented matroid realizing our= 5 example. One should think of the disk as the northern
hemisphere 08?, with the outside circle on the equator. On the southern hemisphere we
have a copy of the drawing, with the arrows reversed. The curves represent elements of
the convex geometry. The elements have been labeled by the ogd seé&s in Fig. 5.1.
The outside circle represents the center region of Fig. 5.1, lalpgl@d3, 4, 5}. Given
elementsx, y, z, w of X, one can read the associated circuitIdfs follows: Delete
all of the circles except those representigy, z, w. If all of the arrows point to a
cell that has four sides, thdm, y, z, w} is independent. If the circles are encountered
in the order(x, y, z, w) as one goes around the edge of this cell, thecontains the
circuits ({x, z}, {y, w}) and({y, w}, {X, z}). If the cell pointed to by all the arrows has
only three sides, representingy, z, thenD contains the circuit${w}, {X, y, z}) and
({x. y. 2}, {w).

Because the convex dimension of this convex geometry is 5, it followthantains
no independent set of size 6. The geometric interpretation of this statement is that if
one deletes ten of the pseudocircles of Fig. 5.4, then the regi@ tifat is pointed
to by all of the arrows cannot be adjacent to all of the six remaining pseudocircles
(see [10]).
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