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Abstract. A new method of computing the homomorphism induced by a continuous map
in homology presented in [1] and [2] relies on computing coboundaries of cycles. This
paper is devoted to a precise geometric construction of a coboundary of a given cycle in a
prescribed rectangle and a description of the associated algorithm.

1. Introduction

In a recent paper [2], a new method of computing the homomorphism induced by a con-
tinuous mapf in homology is presented. The method is based on finding a rectangular-
valued point-to-set mapF whose graph contains the graph off and then finding a chain
selector ofF . In this approach, the computability of the homomorphism in homology
depends on the ability of solving the following problem:

Given aq-dimensional cyclez supported in a rectangular setA, construct a(q+ 1)-
dimensional chainc, also supported inA, such that

∂c = z. (1.1)

Since any rectangular setA is acyclic, a solutionc always exists. We call it acobound-
aryof zand denote it byCOB(z). Note thatc is not unique in general. Findingc by direct
matrix algebra methods results in a large number of algebraic operations, especially due
to the fact that the involved matrices are not invertible and that computation must be done
for integer coefficients, see [8]. Consequently, linear algebra leads to a high complexity
of the final algorithm computing the homology of a map.

∗ The second author was supported by NSERC of Canada.
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We present, in this paper, a geometric construction which takes advantage of a rectan-
gular form of the acyclic setA. The algorithm based on this method computesCOB(z) in
linear time with respect to thelengthof z, that is, with respect to the number of generators
in the carrier ofz. We briefly mentioned in [2] how this construction can be done but,
considering its importance, it seemed to us relevant to give a precise description of the
algorithm and a proof of the correctness of the formula forCOB(z).

Our main motivation for studying (1.1) comes from dynamical systems where the
homomorphism induced in homology by a continuous map carries important information
about the dynamics of a map. We refer the reader to [2], [9], and references therein for
further discussion on that topic.

Another potential motivation for studying this problem is in the fact that it is related
to the problem of finding minimal surfaces of closed curves (see [3]) and, in particular,
Seifert surfaces (see Chapters 4 and 5 of [13]). This is a hard and beautiful problem
intensely studied by methods of differential geometry, calculus of variations, and com-
binatorial geometry, and we do not claim that our construction will make a miracle here.
In order to adapt our construction for the study of minimal surfaces, one must generalize
it for simplicial triangulations since cubical surfaces will always be far from minimal.
For example, the shortest path joining two opposite vertices of a unitary square [0,1]2

is the diagonal of length
√

2 whereas our algorithm in the unitary cubical grid would
give a sum of two edges of total length 2. Generalizing our construction to simplicial
triangulations is a work in progress. If this is done, the two problems can be related as
follows:

Let C be a polygonal closed curve with consecutive vertices

v0, v1, v2, . . . , vn−1, vn = v0

which approximates a given smooth curveK. The first rough attempt would be to take a
convex hullA (it is an acyclic set) of all vertices ofC and triangulate it. Then the support
of the cycle

z := [v0, v1] + [v1, v2] + · · · + [vn−1, v0]

of the simplicial complex ofA is C. If we solve (1.1), the supportS of c will be a two-
dimensional surface whose one-dimensional skeleton containsC. Obviously we have no
guarantee that our surface is close to a minimal surface ofK but maybe the search for
an optimal triangulation and the best solution of (1.1) can be somewhat refined.

To the authors’ best knowledge, the problem (1.1) in arbitrary dimension has not been
studied from the computational point of view prior to [1] and [2]. For recent results on
computing homology of spaces, we refer the reader to [4], [5], [10], [12] and [18]. For
an overview of problems of computational topology, refer to [6].

Since the first submission of this paper, important progress has been made in the
direction of designing programs computing the homology of spaces and maps. A software
based on the algorithms presented in [10] has been developed by Pilarczyk [19]. A parallel
work based on [12] has been done by Kalies and Watson. An algorithm for solving (1.1)
by the above discussed linear algebra methods has been found by Mazur and Szybowski
[15]. The authors of that paper also wrote a computer program for the homology of
a multivalued mapF with two options to choose: our geometric algorithm or their
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algebraic algorithm. Their experiments seem to confirm the efficiency of the geometric
construction. That program is included in the Pilarczyk folder [19].

The paper is organized as follows. In Section 2 we briefly summarize preliminary
definitions related to cubical grids and cubical chain complexes. A more systematic
exposition can be found in [11]. In Section 3 we start from a simple example aimed at
providing the reader with geometric intuitions behind the recursive formula forCOB(z).
We next state the formula and prove Theorem 3.2 which states that∂COB(z) = z and
thus it affirms the correctness of the construction. Although the construction has a clear
geometric flavor, the proof of the Theorem 3.2 is not trivial and it constitutes the main
achievement of this paper. In Section 4 we give some more examples illustrating the
construction. In Section 5 we describe the algorithm and discuss its complexity.

2. Basic Concepts

The notions of grids, representable sets, and representable maps are presented in their
general formulation in [16]. Representable sets and maps for convex polyhedral grids are
discussed in [1] and [2]. We recall in this paper the most significant case of cubic grids in
Rn. The cubic gridEk of mesh 1/k, k = 0,1,2, . . ., is the collection of all cubese∈ Rn

of the forme= (1/k)(x + I1 × I2 × . . . × In) wherex ∈ Zn and I j is either the open
interval ]0,1[ or the singleton{0}. We call the elements ofEk elementary cubes. Note that
Rn is the disjoint union ofe ∈ Ek. There are many advantages of such decompositions
over simplicial triangulations, for example, the product of two elementary cubes is an
elementary cube which is not true about simplexes. A subsetX of Rn is said to be
representableoverEk or, shortly,k-representable, if there exists a finiteE ′ ⊂ Ek such
thatX =⋃ E ′ andX = X. In particular,X is a finite polyhedron. The setE ′ is uniquely
defined and denoted byEk(X). The family of all k-representable polyhedra inRn is
denoted byRk.

Any cubic gridEk can be brought to the unitary cubic gridE = E1 by simple rescaling
x 7→ kx, x ∈ Rn, which is an isomorphism ofRn. This isomorphism maps the setRk

toR = R1. In a similar way, multiplying by different factors on each coordinate axis
permits rescaling general rectangular grids to getE . Grid refinements are only needed
for purposes of numerical approximation of sets and maps. In this paper we always work
in one fixed grid, so it is enough to present the definitions and results for the unitary
cubic gridE .

Given X ∈ R, thecubical chain complexof X is the pair of sequences

C(X) = ({Cq(X)}q∈Z, {∂q: Cq(X)→ Cq−1(X)}q∈Z)
defined as follows. EachCq(X) is a free abelian group generated by the set of elementary
cubesEq(X). We putCq(X) = 0 if q < 0 or q > n. Thus the elements of this group,
calledchains, are formal linear combinations of elementary cubes. Thecarrier of a chain
c =∑ ci ei is the cubical set defined by

|c| :=
⋃
{ei : ci 6= 0},

whereei is the closure ofei .
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The map∂q: Cq(X)→ Cq−1(X), called theboundary map, is a group homomorphism
defined below on elementary cubes and extended by linearity to all chains. First, for the
cell I q = ]0,1[q ⊂ Rq, we put

Ai I
q = {(x1, . . . , xi−1,0, xi+1, . . . , xq): x ∈ I q}

and

Bi I
q = {(x1, . . . , xi−1,1, xi+1, . . . , xq): x ∈ I q}.

The facesAi I q andBi I q are called, respectively, thefront i-faceand theback i-face
of I q. We let

∂q I q =
q∑

i=1

(−1)i (Ai I
q − Bi I

q).

Now letq-cell e∈ Eq(X), X ⊂ Rn be of the forme= x+ I1× I2× · · · × In where
x ∈ Zn and I j is either the open interval ]0,1[ or the singleton{0}. The formula for∂qe
is more complicated than that forI q since some of the intervalsI j may be singletons
and, in this case, thej th coordinate does not contribute to the sign alternation. It is easily
seen thate is the image ofI q under the affine-linear mapT given by the formula

{T(y1, y2, . . . , yn)}j =
{

xj if I j = {0},
xj + yj if I j = ]0,1[.

The mapT is composed of an insertion of zeros on chosen(n − q) coordinates
corresponding to the indicesj such thatI j = {0} with the translation of the origin to the
vertexx ∈ Zn. We putAi e= T(Ai I q), Bi e= T(Bi I q), and define

∂qe=
q∑

i=1

(−1)i (Ai e− Bi e). (2.1)

Note that∂0 = 0 sinceC−1(X) = 0. For simplicity of notation we avoid indices and
write ∂ for ∂q whenever the index is clear from the context or if the statement is true for
all q. The most important property of the boundary map is that

∂ ◦ ∂ = 0, (2.2)

i.e.∂q−1◦ ∂q = 0 for all q. For the proof that our cubical boundary map has this property
we refer to [11] and [14]. A somewhat similar construction is also given in [7].

A chainz ∈ Cq(X) is called acycleor, more precisely, aq-cycleif ∂z= 0. A chain
z ∈ Cq(X) is called theboundaryif there existsc ∈ Cq+1(X) such that∂c = z. The set
of all q-cycles is the subgroupZq := ker∂q of Cq(X), while the set of all boundaries is
the subgroupBq := im ∂q+1. Equation (2.2) implies that im∂q+1 ⊂ ker∂q and hence the
quotient groupHq(X) := ker∂q/im ∂q+1, called theqth homology groupof X, is well
defined. Thehomologyof X is the sequenceH∗(X) := {Hq(X)}.

For a reader who is not familiar with homology, we should mention much information
can be extracted just from the dimensionβq of the free component of the groupHq(X).
This number is called theqth Betti numberof X. Thusβ0 is the number of connected
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components ofX, β1 is the number of nontrivial fundamental (i.e. generic) loops in
X, and, if X ⊂ R3, β2 is the number of “holes” inX (think about holes in a brick of
Ementaler cheese).

A representable setX is calledacyclic if it has the same homology as a point. The
homology of a pointp, however, is not all trivial:

Hq({p}) =
{

0 if q 6= 0,
Z if q = 0.

In order to associate trivial homologies with acyclic spaces one introducesreduced
homologyH̃∗(X) as follows: H̃q(X) = Hq(X) if q 6= 0 and H̃q(X) = kerε/im ∂1,
where the mapε: C0(X) → Z, called theaugmentation map, is given on vertices
(zero-dimensional elementary cubes) byεv := 1 for all v ∈ E0(X).

Thereduced q-cyclesin Z̃q(X) are the same as cycles ifq 6= 0 and they are elements
of Z̃0(X) = kerε if q = 0. It is easily seen that the reduced 0-cycles are generated
by chainsv − u whereu, v are vertices. IfX is acyclic, then all reduced cycles are
boundaries. That implies, in particular, that any two vertices ofX can be connected by
a path of edges. For more details see, e.g. [17].

We finish this section with the remark that any representable cubical setX can be
triangulated and its cubical homology defined above is isomorphic to the classical sim-
plicial homology. Conversely, a polyhedronP is not necessarily a cubical set but it is
homeomorphic to one, thus the two homology theories are equivalent. For details, refer
to [11].

3. Coboundary Construction

Let thenA ⊂ Rn be a representable rectangle, i.e. a Cartesian product of intervals with
integer coordinates. Given a reduced cyclez ∈ Z̃q(A), we construct a chainc ∈ Cq+1(A)
such that∂q+1c = z. We denote this procedure byc := COB(z) whereCOBstands for
the wordcoboundary. We construct in a general manner an operator

COB: Cq(A) −→ Cq+1(A),

by definingCOB(σ ) for all σ ∈ Cq(A).
We start from a simple example.

Example 3.1. Consider the clockwise oriented cyclez= e8+e7+e6+e5−e4−e3−
e2 − e1, in R2, where eachei is a positively oriented interval as indicated in Fig. 3.1.
Then

z ∈ C1(R(z)) where R(z) = [0,2]2.

Let π1 be the canonical projection onto thex2-axis and letR1(z) = {0} × [0,2] be
the image ofR(z) under this projection. For each intervalei that is not projected to
itself or a point, define [π1(ei ),ei ] to be the formal sum of the unit squares in whichei is
projected down toπ1(ei ), otherwise define [π1(ei ),ei ] = 0. It follows from the definition
that [π1(e1),e1] = [π1(e2),e2] = [π1(e7),e7] = [π1(e5),e5] = [π1(e8),e8] = 0,
[π1(e6),e6] = E4, [π1(e4),e4] = E3+ E4, and[π1(e3),e3] = E1+ E2.
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Fig. 3.1. Coboundary construction.

Now define a 2-chainCOB(z) by replacing eachei in the formula ofz by [π1(ei ),ei ]
and keeping the same coefficients, i.e.

COB(z) = 0+ 0+ E4+ 0− E4− E3− E1− E2 = −(E1+ E2+ E3).

It is clearly seen thatz is the boundary ofCOB(z). Here, if one takes into account the
orientation, then the projection ofz onto thex2-axis is 0. One asks the question whether
the definition above is still correct when the projection is not trivial. Although the answer
is negative, the formula above is still the main ingredient for the correct construction we
provide in the rest of this section.

Let σ ∈ Cq(A). One can writeσ =∑N
i=1 ci ei where ei ∈ Eq(A) andci 6= 0,∀i .

Eachei can be expressed in the formei = ((ai )1, (bi )1)× · · · × ((ai )n, (bi )n), where

(a,b) =
{

]a,b[ if a 6= b,
{a} if a = b.

The endpoints of intervals(ai )k, (bi )k are integers, either(bi )k = (ai )k+1 or(bi )k =
(ai )k, and the first equality holds exactly forq values ofk. Let thenR(σ ) be the smallest
representable rectangle inA containing the carrier|σ | of σ . It is easily seen that

R(σ ) = [m1,M1] × [m2,M2] × · · · × [mn,Mn], (3.1)

wheremk = mini {(ai )k} andMk = maxi {(bi )k}. The dimension ofR(σ ) is the number
of nontrivial intervals in formula (3.1).

Let k1 be the first nontrivial coordinate ofR(σ ), i.e. the smallest integerk with the
propertymk 6= Mk (such an integer exists unless the chainσ is trivial). Consider now
the rectangle

Rk1(σ ) = {x ∈ R(σ ): xk1 = mk1}
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contained in the hyperplane orthogonal to the first nontrivial directionk1 of R(σ ). Let
πk1: R(σ ) −→ Rk1(σ ) be the canonical projection defined by

{πk1(x)}i =
{

xi if i 6= k1,

mk1 otherwise,
(3.2)

and letπ#: Cq(R(σ )) −→ Cq(Rk1(σ )) be the chain homomorphism induced byπk1. The
chain homomorphismπ# is defined at levelq on anyq-elementary cubee= (a1,b1)×
· · · × (an,bn) ∈ Cq(R(σ )) by the formula

π#(e) =
0 if bk1 = ak1 + 1,
(a1,b1)× · · · × (ak1−1,bk1−1)× {mk1} × · · · × (an,bn)

if bk1 = ak1. (3.3)

We construct, by induction with respect to the dimensiond of R(σ ), a (q+ 1)-chain
COB(σ ). Obviously the dimension ofR(σ ) is at leastq so the induction starts from
d = q.

For d = q, setCOB(σ ) = 0.
Let d ≥ q. Suppose the construction is done for dimensions up to a certaind ≥ q

and now let dimR(σ ) = d+1. Fore= (a1,b1)×· · ·× (an,bn) in Eq(R(σ )), we define

[π#(e),e] =


0 if π#(e) = 0 or π#(e) = e,∑bk1−1

i=mk1
(a1,b1)× · · · × (ak1−1,bk1−1)× (i, i+1)× · · · × (an,bn)

otherwise. (3.4)

Note that, by definition, [π#(e),e] is a (q + 1)-chain inA. If π#(e) 6= 0 ande is not
contained inRk1(σ ), then

|[π#(e),e]| = (a1,b1)× · · · × (ak1−1,bk1−1)× (mk1,bk1)× · · · × (an,bn) (3.5)

is the (q + 1)-dimensional rectangle through whiche is projected down toπ#(e).
The (q+ 1)-chainCOB(π#(σ )) is well defined by induction hypotheses sinceπ#(σ )

is aq-chain contained inRk1(σ ), which is a representable rectangle of dimensiond. We
then define

COB(σ ) := COB(π#(σ ))+
N∑

i=1

ci [π#(ei ),ei ]. (3.6)

We may now state the main result of this paper.

Theorem 3.2. Let z=∑N
i=1 ci ei be a reduced q-cycle whose carrier is contained in

A. Then

∂q+1COB(z) = z. (3.7)

Proof. We proceed by induction on dimensiond of R(z). As in the construction of
COB(z), we may start the induction fromd = q.
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If d = q. By definition,COB(z) = 0. On the other hand, we haveCq+1(R(z)) = 0,
thenBq(R(z)) = 0 andZ̃q(R(z)) = 0 sinceH̃q(R(z)) = 0. Knowing thatz ∈ Z̃q(R(z)),
it follows thatz= 0, and finally∂q+1COB(z) = z.

Letd > q. Suppose that for dimR(z) ≤ d, (3.7) is satisfied. Now let dimR(z) = d+1.
We begin by establishing the following result.

Lemma 3.3. We have

∂q+1

(
N∑

i=1

ci [π#(ei ),ei ]

)
= z− π#(z).

Proof of the Lemma. We proceed by induction with respect to the lengthM = Mk1 −
mk1 of the first nontrivial side of the rectangleR(z) (which is the projection ofR(z) onto
thexk1-axis). Note that the transition fromM to M+1 contains the arguments that prove
the caseM = 1. When the length isM + 1= Mk1 −mk1, the rectangleR(z) is made up
of M + 1 slices, each of length 1, along thexk1-axis. Consider

R′ = [m1,M1] × [m2,M2] × · · · × [mk1,Mk1 − 1]× · · · × [mn,Mn],

the rectangle made up of the firstM slices ofR(z). Define the retractionr : R(z) −→ R′

by setting, forx ∈ R(z), {r (x)}i = xi if i 6= k1 and

{r (x)}k1
=
{

xk1 if xk1 ≤ Mk1 − 1,
Mk1 − 1 if xk1 > Mk1 − 1.

The chain homomorphismr#: Cq(R(z)) −→ Cq(R′) induced byr at levelq is defined
on aq-elementary cubee= (a1,b1)× · · · × (an,bn) ∈ Cq(R(z)) by the formula

r#(e)=
0 if ak1 = Mk1 − 1,bk1 = Mk1,

(a1,b1)×· · ·×(ak1−1,bk1−1)×{Mk1−1}×· · ·×(an,bn) if ak1=Mk1=bk1,

e otherwise. (3.8)

Setz′ = r#(z) =
∑N

i=1 ci r#(ei ), the image ofz by r#. By definition,z′ is a reduced
cycle in R′. It is clear that for anyx ∈ R(z), πk1(r (x)) = πk1(x) (see formula (3.2)) and
thereforeRk1(z) = Rk1(z

′). One can also invoke formulas (3.3) and (3.8) to check that
π#(r#(e)) = π#(e) for anye∈ Eq(R(z)). It follows thatπ#(z) = π#(z′).

The carrier of the reduced cyclez− z′ in Cq(A) is contained in the last sliceR′′ of
R(z) given by the formula

R′′ = [m1,M1] × [m2,M2] × · · · × [Mk1 − 1,Mk1] × · · · × [mn,Mn].

At this point, we decompose each(q + 1)-chain [π#(ei ),ei ] as

[π#(ei ),ei ] = [π#(ei ), r#(ei )] + [r#(ei ),ei ], (3.9)

where [π#(ei ), r#(ei )] is defined as in formula (3.4) by noticing thatπ#(ei ) = π#(r#(ei ))

and

[r#(ei ),ei ] =
0 if r#(e) = 0 or r#(e) = e,
(a1,b1)× · · · × (ak1−1,bk1−1)× (Mk1 − 1,Mk1)× · · · × (an,bn)

otherwise. (3.10)
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The carrier of the(q + 1)-chain0 =∑N
i=1 ci [r#(ei ),ei ] is contained inR′′ and one

can write

N∑
i=1

ci [π#(ei ),ei ] =
N∑

i=1

ci [π#(ei ), r#(ei )] + 0

=
N∑

i=1

ci [π#(r#(ei )), r#(ei )] + 0. (3.11)

We first prove that

∂q+10 = z− z′. (3.12)

This also proves the caseM = 1. Note that ifM = 1, we haveπ# = r#, R(z′) = Rk1(z),
z′ = π#(z), and0 = ∑N

i=1 ci [π#(ei ),ei ]. Therefore, proving formula (3.12) will prove
in caseM = 1 that

∂q+1

(
N∑

i=1

ci [π#(ei ),ei ]

)
= z− π#(z).

To prove formula (3.12), it is sufficient to establish that for any celle ∈ Eq(R′′), the
coefficient ofe in z− z′ is equal to its coefficient in∂q+10. With this in mind, we define
onCq(A)× Cq(A) a bilinear form by setting, for any two cellse, σ ∈ Eq(A),

〈e, σ 〉 =
{

1 if σ = e,
0 otherwise.

It is then enough to verify that

〈e, ∂q+10〉 = 〈e, z− z′〉, ∀e∈ Eq(R′′). (3.13)

Let Pk1 be the projection ofR(z) onto thexk1-axis. We can then consider three types
of q-cubes inR′′:

1. The setA of q-cubesA such thatPk1(A) = {Mk1 − 1}.
2. The setB of q-cubesB such thatPk1(B) = {Mk1}.
3. The setC of q-cubesC such thatPk1(C) = (Mk1 − 1,Mk1).

The(q + 1)-cubes inEq+1(R′′) are in one-to-one correspondence with the elements
of A and with the elements ofB. Indeed, for each

Q = (a1,b1)× · · · × (Mk1 − 1,Mk1)× · · · × (an,bn),

we can find a corresponding

B = (a1,b1)× · · · × {Mk1} × · · · × (an,bn) ∈ B
and

A = (a1,b1)× · · · × {Mk1 − 1} × · · · × (an,bn) = r#(B) ∈ A.
One can see that, for anyB ∈ B, theq-cubeA = r#(B) ∈ A. More precisely, the

restriction ofr# to B is a bijection fromB ontoA. For a givenB ∈ B, we denote by
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[ A, B] the (q + 1)-cube obtained by projectingB down to A. It is easily noted that if
Q ∈ Eq+1(R′′) andB ∈ B such thatQ 6= [ A, B], then

〈B, ∂Q〉 = 〈A, ∂Q〉 = 0.

Note that, sinceB is a front face of [A, B] and A a back face of it in the sense given in
the definition of∂, it follows from the choice ofk1 that

〈B, ∂[ A, B]〉 = 1, 〈A, ∂[ A, B]〉 = −1 (3.14)

for any anyB ∈ B such that〈B, z〉 6= 0.
We deduce from what precedes that for eachB ∈ B, one has

〈B,ei 〉 = 〈[ A, B], [r#(ei ),ei ]〉, ∀i .
Thus,

〈B, z〉 = 〈[ A, B], 0〉 = 〈A, z′〉 − 〈A, z〉, ∀B ∈ B. (3.15)

The latest equality is due to the fact thatA could be present in the formula ofz. Thus its
coefficient inz′ is the sum of its coefficient inz and the coefficient ofB in z (see Fig.3.1
where the celle6 = r#(e6) = r#(e4) and therefore its coefficient inz′ is 0).

Then we show the identity (3.13) for elements ofA,B, andC:
1. Let B ∈ B andb = 〈B, z− z′〉. SinceB does not intersectR′, it follows that
〈B, z′〉 = 0. Thusb = 〈B, z〉. One can then deduce that

〈B, ∂0〉 = b〈B, ∂[r#(B), B]〉 = b.

2. Now letA ∈ A andB ∈ B be such thatr#(B) = A. Leta = 〈A, z〉 andb = 〈B, z〉.
By formula (3.15), we have

b = 〈[ A, B], 0〉 = 〈A, z′〉 − 〈A, z〉.
It follows that〈A, z− z′〉 = −b. On the other hand,

〈A, ∂q+10〉 = b〈A, ∂q+1[ A, B]〉 = −b.

3. Finally, letC ∈ C andα = 〈C, z−z′〉. By definition (see formula (3.8)),r#(C) = 0.
Therefore,〈C, z′〉 = 0, henceα = 〈C, z〉. Since0 =∑N

i=1 ci [r#(ei ),ei ], it follows
that

〈C, ∂q+10〉 =
〈
C,

N∑
i=1

ci ∂q+1([r#(ei ),ei ])

〉
=

N∑
i=1

ci 〈C, ∂q+1([r#(ei ),ei ])〉.

Obviously, if the indexi is such that [r#(ei ),ei ] = 0 orC is not a face of [r#(ei ),ei ],
then 〈C, ∂q+1[r#(ei ),ei ]〉 = 0. Then letJ be the set consisting of the indices
i ∈ {0,1, . . . , N} for which [r#(ei ),ei ] 6= 0 andC is a face of [r#(ei ),ei ]. For
i ∈ J, denote byαi = 〈C, ∂q+1[r#(ei ),ei ]〉 the coefficient ofC in ∂q+1([r#(ei ),ei ]).
Then

〈C, ∂q+10〉 =
∑
i∈J

ciαi .
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Let nowF be the(q−1)-face ofC located at the levelxk1 = Mk1. It is easily seen
that F is a common face ofC and allei , i ∈ J. It follows that

0 = 〈F, ∂q∂q+1([r#(ei ),ei ])〉 = 〈F, ∂q(αi C + ei )〉
= 〈F, ∂qei 〉 + αi 〈F, ∂qC〉, ∀i ∈ J.

On the other hand, sincez is a cycle and using the precedent equality, we have

0= 〈F, ∂qz〉 =
∑
i∈J

ci 〈F, ∂qei 〉 + α〈F, ∂qC〉 =
(
α −

∑
i∈J

ciαi

)
〈F, ∂qC〉.

Henceα =∑i∈J ciαi , which proves formula (3.13) for elements ofC.
Up to now we proved that∂q+10 = z− z′, and

∂q+1

(
N∑

i=1

ci [π#(ei ),ei ]

)
= z− π#(z),

for M = 1. Let M ≥ 1 and suppose that the length of the first nontrivial side ofR(z) (in
thexk1 direction) isM + 1. We recall from formula (3.11) that

N∑
i=1

ci [π#(ei ),ei ] =
N∑

i=1

ci [π#(r#(ei )), r#(ei )] + 0.

The smallest rectangleR(z′) containing the carrier ofz′ and the carrier of the (q + 1)-
chain

∑N
i=1 ci [π#(r#(ei )), r#(ei )] is contained inR′. The first nontrivial side ofR(z′) is

also in thexk1 direction and is at most of lengthM . By the induction hypotheses, formula
(3.12), and the fact thatπ#(z) = π#(z′), we can finally write

∂q+1

(
N∑

i=1

ci [π#(ei ),ei ]

)
= ∂q+1

(
N∑

i=1

ci [π#(r#(ei )), r#(ei )]

)
+ ∂q+1(0)

= z′ − π#(z
′)+ z− z′

= z− π#(z).

This completes the proof of the lemma.

The smallest rectangleR(π#(z)) containing the carrier ofπ#(z) is contained inRk1(z),
the rectangle obtained by projectingR(z) onto the hyperplane orthogonal to the direction
xk1. It follows that the dimension ofR(π#(z)) is at mostd. Then, from the induction
hypotheses and Lemma 3.3, we deduce that

∂q+1(COB(z) = ∂q+1(COB(π#(z)))+ ∂q+1

(
N∑

i=1

ci [π#(ei ),ei ]

)
= π#(z)+ z− π#(z)

= z,

and the theorem is now proved.
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Fig. 4.1. Coboundary of a 0-cycle inR3.

4. Examples inR3

The following examples provide more insight into the construction given in Sec-
tion 3.

Example 4.1. Consider inR3 the reduced 0-cyclez= e2− e1, wheree1 = {(0,0,0)}
and e2 = {(1,1,1)} (Fig. 4.1). HereR(z) = [0,1]3 is of dimension 3 and its first
nontrivial direction is 1.

Call π1 the projection onto thex2x3-plane. The rectangleR(z) is projected onto
R1(z) = {0} × [0,1]2 and z is taken to the cyclez1 = (π1)#(z) = e′2 − e1, where
e′ = {(0,1,1)}. The dimension ofR1(z) is 2 and its first nontrivial direction is 2. Ifπ2

is the projection onto thex3-axis, thenR1(z) is projected onto the rectangleR2(z1) =
{0} × {0} × [0,1] of dimension 1 and withx3 as the first nontrivial direction. The cycle
z1 is projected onto the cyclez2 = (π2)#(z1) = e′′2−e1, wheree′′ = {(0,0,1)}. Finally
the projection onto the origin yields the rectangleR3(z2) = {0}×{0}×{0} of dimension
0 andz2 is taken to the cyclez3 = e1 − e1 = 0. It follows from the construction that
COB(z3) = 0 and therefore

COB(z) = COB(z1)+ [e′2,e2]

= COB(z2)+ [e′′2,e′2] + [e′2,e2]

= COB(z3)+ [e1,e
′′

2] + [e′′2,e′2] + [e′2,e2]

= [e1,e
′′

2] + [e′′2,e′2] + [e′2,e2].
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Fig. 4.2. Coboundary of a 1-cycle inR3.

Example 4.2. Consider inR3 the 1-cycle

z=
6∑

i=1

ci ei = −e1− e2+ e3+ e4+ e5− e6

where eachei is a positively oriented interval as indicated in Fig. 4.2.
The smallest rectangle that contains the carrier ofz is R(z) = [0,1]3. Its dimension

is 3 and its first nontrivial direction is 1. The projectionsπ1 andπ2 are defined as in the
preceding example. Consider the open squaresEi , i = 1, . . . ,6, whereE1 is the base of
the cubeR(z), E2 is the face havinge1 ande6 as sides,E3 is the face havinge2 ande3 as
sides, andE6, E4, E5 are the respective opposite faces toE1, E2, andE3. It follows that
R1(z) = {0} × [0,1]2. Moreover,π1#(e1) = e1, π1#(e2) = e2, π1#(e3) = π1#(e6) = 0,
π1#(e4) = e8, andπ1#(e5) = e7. Finally,π1#(z) = −e1 − e2 + e8 + e7. It is easily seen
that the projection ofπ1#(z) onto thex3-axis isπ2#(π1#(z)) = 0. On the other hand,
since

[π2#(e1),e1] = [π2#(e8),e8] = [π2#(e2),e2] = 0

and [π2#(e7),e7] = E1 we haveCOB(π1#(z)) = E1. Finally

COB(z) = E1+
6∑

i=1

ci [π1#(ei ),ei ]

= E1− 0− 0+ 0+ E4+ E5− 0

= E1+ E4+ E5.

Remark 4.3. Obviously, there are many chainsc such that∂c is a given cycle. We may
obtain alternative constructions by projectingz onto different faces of the cubeR(z),



138 M. Allili and T. Kaczynski

but then the signs may change in (3.14), thus care must be taken about the alternation of
sign in the formula for a boundary of a cube [2], [11].

5. The Algorithm

We now discuss the formal algorithm permitting the construction of a coboundary
COB(z) for a reduced cyclez, namely, achain COB(z) such that∂COB(z) = z.

Let z =∑N
i=1 ci ei be aq-reduced cycle inRn where 0≤ q ≤ n and each particular

ei is a (generator)cubeof dimensionq in Rn that is written in the form

ei = ((ai )1, (bi )1)× · · · × ((ai )n, (bi )n),

where onlyq intervals among{((ai )j , (bi )j )}nj=1 are nondegenerate.
The cubes will be represented by the typeCUBE. The dimension of an element of type

CUBEis internal to its representation. The typeCHAINwill be used to represent a list of
elements of typeCUBEof the same dimension together with their coefficients (integers).
The dimensionDIM (integer) of an element of typeCHAIN is the common dimension of
all its elements of typeCUBE. A chain is also characterized by its lengthLENGTHwhich
is an integer giving the number of cubes in the chain. We do not go into the details of the
definition of each of these representations here. Thesmallest rectangle containing|z| is
given by

R(z) = [m1,M1] × [m2,M2] × · · · × [mn,Mn],

wheremk = mini {(ai )k} and Mk = maxi {(bi )k}. The dimensionof R(z) is defined to
be the number of indicesi ∈ {1, . . . ,n} for which mi 6= Mi and is less than or equal
to the dimension of the ambient spaceRn. Thefirst nontrivial directionof R(z) is the
first indexi for whichmi 6= Mi . We therefore use the typeRECTANGLEwith associated
dimensionDIM and first nontrivial directionFIRST (necessary to define the projection)
in its representation.

We can create a rectangle from a given chainz,

RECTANGLE(z: CHAIN );

in at mostnN steps wheren is the dimension of the ambient spaceRn and N is the
number of cubes in the chainz, i.e. the length ofz.

We make use of two functions, namely,

PROJECTION(R: RECTANGLE; ei : CUBE): CUBE;

and

LIFT (R: RECTANGLE; ei : CUBE): CHAIN;

that are simply defined according to the definitions in formulas (3.3) and (3.5) respec-
tively. These two functions when called run in a constant time provided the output of the
functionRECTANGLEis presented in an appropriate way. For more details on algorithms
see [20].
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Algorithm 5.1

function COB(z: CHAIN): CHAIN;
begin

R := RECTANGLE(z);
d := DIM( R);
q := DIM( z);
N := LENGTH(z);
if d = q then

return 0;
else

for i := 1 to N do
σi := PROJECTION(R,ei );
Ei := LIFT( R, σi ,ei );

end for;
σ :=∑N

i=1 ciσi ;

E :=∑N
i=1 ci Ei ;

return E + COB(σ );
end if;

end;

The recursive algorithm runsd − q + 1 times, and a single call costsO(N) where
N is the length of the cyclez, q is the dimension ofz, andd is the dimension of the
rectangleR(z). Since we work in a fixed dimensionn, thend − q + 1≤ n+ 1 and the
algorithm runs in linear time in the number of cubes in the initial chain.

Remark 5.2. We mentioned in the Introduction, that it is possible to solve the equation
∂c = z by row reduction of noninvertible matrices. When this approach is chosen, the
complexity of the algorithm is aboutO(N3) in case of field coefficients and aboutO(N5)

when integer coefficients are assumed.

Remark 5.3. Our construction ofc = COB(z) is not minimal in the sense of the
number of generators in the support ofc. That could be improved by a judicious choice
of projection faces in each step. This however will substantially increase the complexity
of the algorithm.
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