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Abstract. A new method of computing the homomorphism induced by a continuous map
in homology presented in [1] and [2] relies on computing coboundaries of cycles. This
paper is devoted to a precise geometric construction of a coboundary of a given cycle in a
prescribed rectangle and a description of the associated algorithm.

1. Introduction

In a recent paper [2], a new method of computing the homomorphism induced by a con-
tinuous mapf in homology is presented. The method is based on finding a rectangular-
valued point-to-set map whose graph contains the graphfoénd then finding a chain
selector ofF. In this approach, the computability of the homomorphism in homology
depends on the ability of solving the following problem:

Given ag-dimensional cycle supported in a rectangular s&t construct a8q + 1)-
dimensional chaie, also supported i\, such that

ic =z (1.1)

Since any rectangular sAtis acyclic, a solutior always exists. We call iteobound-
ary of zand denote it b£ OB(z). Note that is not unique in general. Findirgpy direct
matrix algebra methods results in a large number of algebraic operations, especially due
to the fact that the involved matrices are not invertible and that computation must be done
for integer coefficients, see [8]. Consequently, linear algebra leads to a high complexity
of the final algorithm computing the homology of a map.

* The second author was supported by NSERC of Canada.
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We present, in this paper, a geometric construction which takes advantage of a rectan-
gular form of the acyclic seA. The algorithm based on this method comp@&B(z) in
linear time with respect to tHengthof z, that is, with respect to the number of generators
in the carrier ofz. We briefly mentioned in [2] how this construction can be done but,
considering its importance, it seemed to us relevant to give a precise description of the
algorithm and a proof of the correctness of the formulaG@B(z).

Our main motivation for studying (1.1) comes from dynamical systems where the
homomorphism induced in homology by a continuous map carries importantinformation
about the dynamics of a map. We refer the reader to [2], [9], and references therein for
further discussion on that topic.

Another potential motivation for studying this problem is in the fact that it is related
to the problem of finding minimal surfaces of closed curves (see [3]) and, in particular,
Seifert surfaces (see Chapters 4 and 5 of [13]). This is a hard and beautiful problem
intensely studied by methods of differential geometry, calculus of variations, and com-
binatorial geometry, and we do not claim that our construction will make a miracle here.
In order to adapt our construction for the study of minimal surfaces, one must generalize
it for simplicial triangulations since cubical surfaces will always be far from minimal.
For example, the shortest path joining two opposite vertices of a unitary squaié [0
is the diagonal of lengtk/2 whereas our algorithm in the unitary cubical grid would
give a sum of two edges of total length 2. Generalizing our construction to simplicial
triangulations is a work in progress. If this is done, the two problems can be related as
follows:

LetC be a polygonal closed curve with consecutive vertices

vo, V1, V2, ..., Un—1, Un = Vo

which approximates a given smooth cuigeThe first rough attempt would be to take a
convex hullA (it is an acyclic set) of all vertices @éfand triangulate it. Then the support
of the cycle

z = [vo, v1] + [v1, v2] + - + [vn_1, Vo]

of the simplicial complex oA is C. If we solve (1.1), the suppo& of c will be a two-
dimensional surface whose one-dimensional skeleton corttafdbviously we have no
guarantee that our surface is close to a minimal surfadé loéit maybe the search for
an optimal triangulation and the best solution of (1.1) can be somewhat refined.

To the authors’ best knowledge, the problem (1.1) in arbitrary dimension has not been
studied from the computational point of view prior to [1] and [2]. For recent results on
computing homology of spaces, we refer the reader to [4], [5], [10], [12] and [18]. For
an overview of problems of computational topology, refer to [6].

Since the first submission of this paper, important progress has been made in the
direction of designing programs computing the homology of spaces and maps. A software
based onthe algorithms presented in [10] has been developed by Pilarczyk [19]. A parallel
work based on [12] has been done by Kalies and Watson. An algorithm for solving (1.1)
by the above discussed linear algebra methods has been found by Mazur and Szybowski
[15]. The authors of that paper also wrote a computer program for the homology of
a multivalued mapF with two options to choose: our geometric algorithm or their
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algebraic algorithm. Their experiments seem to confirm the efficiency of the geometric
construction. That program is included in the Pilarczyk folder [19].

The paper is organized as follows. In Section 2 we briefly summarize preliminary
definitions related to cubical grids and cubical chain complexes. A more systematic
exposition can be found in [11]. In Section 3 we start from a simple example aimed at
providing the reader with geometric intuitions behind the recursive formul@a@(z).

We next state the formula and prove Theorem 3.2 which states@@B(z) = z and

thus it affirms the correctness of the construction. Although the construction has a clear
geometric flavor, the proof of the Theorem 3.2 is not trivial and it constitutes the main
achievement of this paper. In Section 4 we give some more examples illustrating the
construction. In Section 5 we describe the algorithm and discuss its complexity.

2. Basic Concepts

The notions of grids, representable sets, and representable maps are presented in their
general formulation in [16]. Representable sets and maps for convex polyhedral grids are
discussed in [1] and [2]. We recall in this paper the most significant case of cubic grids in
R". The cubic grict, of mesh ¥k, k =0, 1, 2, ... ., is the collection of all cubes € R"
of the forme = (1/K)(x + 11 x I x ... x I,) wherex € Z" and|; is either the open
interval ], 1] or the singletori0}. We call the elements @k elementary cubedlote that
R" is the disjoint union ok € &. There are many advantages of such decompositions
over simplicial triangulations, for example, the product of two elementary cubes is an
elementary cube which is not true about simplexes. A sulisef R" is said to be
representablever & or, shortly,k-representablgif there exists a finite€’ c & such
thatX = |J & andX = X. In particular,X is a finite polyhedron. The sét is uniquely
defined and denoted h§k(X). The family of allk-representable polyhedra R" is
denoted byRy.

Any cubic grid€y can be brought to the unitary cubic ggd= &; by simple rescaling
X > kx, x € R", which is an isomorphism dk". This isomorphism maps the sBi
to R = Rs. In a similar way, multiplying by different factors on each coordinate axis
permits rescaling general rectangular grids to&eBrid refinements are only needed
for purposes of numerical approximation of sets and maps. In this paper we always work
in one fixed grid, so it is enough to present the definitions and results for the unitary
cubic grid€.

Given X € R, thecubical chain complerf X is the pair of sequences

C(X) = ({Cq(X)}qez, {9g: Cq(X) = Cq—1(X)}qez)

defined as follows. Eadliy (X) is a free abelian group generated by the set of elementary
cubes€9(X). We putCq(X) = 01if g < 0 org > n. Thus the elements of this group,
calledchains are formal linear combinations of elementary cubes.c&wger of a chain

c =) _ce is the cubical set defined by

el = J{@: i # 0},

whereg is the closure 0§,.



128 M. Allili and T. Kaczynski

The mapy: Cq(X) — Cqy_1(X), called theboundary mapis a group homomorphism
defined below on elementary cubes and extended by linearity to all chains. First, for the
cell 19 =10, 1[* c RY, we put

AT ={(X1, ..., %i-1,0, Xi41, ..., Xg): X € 1}

and
Bil9={(X1,....%-1, L Xit1, ..., Xq): x € 19}

The facesA |19 andB; 19 are called, respectively, tHmnt i-faceand theback i-face
of 19, We let

q
9g1% =) (-D'(AIT—BI9.
i=1

Now letg-cell e € £9(X), X C R" be of the forme = x+ 13 x I x - -+ x |, where
x € Z" andl; is either the open interval ][ or the singletor{0}. The formula ford,e
is more complicated than that fofl since some of the intervals may be singletons
and, in this case, thgh coordinate does not contribute to the sign alternation. Itis easily
seen thae is the image of 9 under the affine-linear map given by the formula

(T ) X if I; ={0},
yls y2s ceey y i = .
YU x4y i1 =10, 1L
The mapT is composed of an insertion of zeros on chogsen- q) coordinates
corresponding to the indicgssuch that; = {0} with the translation of the origin to the
vertexx € Z". We putAie=T(A 19), Bie= T(B;19), and define

q .
dqe = Z(—l)'(Aie— Bie). 2.1)
i=1

Note thatdg = 0 sinceC_1(X) = 0. For simplicity of notation we avoid indices and
write 3 for 93 whenever the index is clear from the context or if the statement is true for
all g. The most important property of the boundary map is that

309 =0, (2.2)

I.e.dq—109q = O forallg. For the proof that our cubical boundary map has this property
we refer to [11] and [14]. A somewhat similar construction is also given in [7].

A chainz e Cy(X) is called acycleor, more precisely, g-cycleif 3z = 0. A chain
z € Cy(X) is called theboundaryif there existx € Cq11(X) such thatc = z. The set
of all g-cycles is the subgroug, := kerdy of Cq(X), while the set of all boundaries is
the subgroufB, := im dq+1. Equation (2.2) implies that idy,1 C kerdq and hence the
quotient groupHy(X) := kerdy/im dy41, called theqth homology groumf X, is well
defined. Thehomologyof X is the sequenckl,.(X) := {Hq(X)}.

For a reader who is not familiar with homology, we should mention much information
can be extracted just from the dimensij@yof the free component of the grouy (X).
This number is called thgth Betti numbenf X. Thus gy is the number of connected
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components ofX, B; is the number of nontrivial fundamental (i.e. generic) loops in
X, and, if X ¢ R®, B, is the number of “holes” inX (think about holes in a brick of
Ementaler cheese).

A representable sex is calledacyclicif it has the same homology as a point. The
homology of a pointp, however, is not all trivial:

if
-3 4 928

In order to associate trivial homologies with acyclic spaces one introdadesed
homologyH..(X) as follows: Hy(X) = Hq(X) if g # 0 andHq(X) = kere/im dy,
where the mag: Co(X) — Z, called theaugmentation mapis given on vertices
(zero-dimensional elementary cubes)day.= 1 for all v € Ey(X).

Thereduced g-cyclem Zq (X) are the same as cyclegjit£ 0 and they are elements
of Zo(X) = kere if g = 0. It is easily seen that the reduced 0O-cycles are generated
by chainsv — u whereu, v are vertices. IfX is acyclic, then all reduced cycles are
boundaries. That implies, in particular, that any two verticeX @fan be connected by
a path of edges. For more details see, e.g. [17].

We finish this section with the remark that any representable cubica sanh be
triangulated and its cubical homology defined above is isomorphic to the classical sim-
plicial homology. Conversely, a polyhedrdhis not necessarily a cubical set but it is
homeomorphic to one, thus the two homology theories are equivalent. For details, refer
to [11].

3. Coboundary Construction

Let thenA C R" be a representable rectangle, i.e. a Cartesian product of intervals with
integer coordinates. Given areduced cyrte Zq(A), we constructachaime Cqy;1(A)

such tha®,1¢ = z. We denote this procedure loy.= COB(z) whereCOB stands for

the wordcoboundaryWe construct in a general manner an operator

COB Cy(A) —> Cqs1(A),

by definingCOB(o) for all & € Cq(A).
We start from a simple example.

Example 3.1. Consider the clockwise oriented cyde= eg+ €7+ €5+ 65— €, — €3 —
& — ey, in R?, where eacle is a positively oriented interval as indicated in Fig. 3.1.
Then

ze Ci(R(z) where R(2)=]0,2]%

Let r; be the canonical projection onto thg-axis and letR;(z) = {0} x [0, 2] be
the image ofR(z) under this projection. For each intenglthat is not projected to
itself or a point, definerf;(g), ] to be the formal sum of the unit squares in whéls
projected down ter;(g), otherwise definef; (e ), ] = 0. It follows from the definition
that [71(e1), 1] = [71(&2). &] = [m1(€r). €] = [mi(es), &] = [mi(es), €] = O,
[m1(€s), €] = Ea, [71(€4), €4] = E3 + E4, and[n1(e3), €3] = E1 + Ea.
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Fig. 3.1. Coboundary construction.

Now define a 2-chai€OB(z) by replacing eack in the formula ofzby [71(g), €]
and keeping the same coefficients, i.e.

COBz2) =0+0+E4+0—-Es—E3— E1— Ex = —(E1 + E2 + E3).

Itis clearly seen that is the boundary o€OB(z). Here, if one takes into account the
orientation, then the projection afonto thex,-axis is 0. One asks the question whether
the definition above is still correct when the projection is not trivial. Although the answer
is negative, the formula above is still the main ingredient for the correct construction we
provide in the rest of this section.

Leto € C4(A). One can writer = ZiN:lcie, where g € £9(A) andc # 0, Vi.
Eache can be expressed in the foen= ((g)4, (bj)1) X - -+ x ((&)n, (b)), Where

labl if a#b,
(a’b)—{{a} i a=b.

The endpoints of interval&; ), (b;), are integers, eithéb;), = (a)+ 1 or(by), =
(& )k, and the first equality holds exactly fqvalues ok. Let thenR(o') be the smallest
representable rectangle Acontaining the carrieiw | of o. It is easily seen that

R(o) = [my1, M1] x [mg, M2] x - -+ x [My, Mp], (3.1

wheremy = min;{(g )} andMy = max {(bj)}. The dimension oR(o) is the number
of nontrivial intervals in formula (3.1).

Let k; be the first nontrivial coordinate d®(o), i.e. the smallest integdrwith the
propertymy # My (such an integer exists unless the chaiis trivial). Consider now
the rectangle

R (0) = {X € R(0): X = My}
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contained in the hyperplane orthogonal to the first nontrivial diredtioof R(o). Let
mk,: R(o) — Ry, (o) be the canonical projection defined by

it ik,

otherwise (32)

X.
{nkl(x)}i = {nl]kl
and letry: Cq(R(0)) — Cq(Ry, (0)) be the chain homomorphism inducedry. The
chain homomorphismy is defined at leved] on anyg-elementary cube = (a3, by) x
-++ X (&n, by) € Cq(R(0)) by the formula

0 if by —ag+Ll
T[#(e) = (a:L? bl) XX (akl—la bkl—l) X {mk]_} X X (an, bﬂ)
it by, = a. 33)

We construct, by induction with respect to the dimengl@f R(o), a (@ + 1)-chain
COB(0). Obviously the dimension oR(c) is at leasty so the induction starts from
d=q.

Ford = q, setCOB(c) = 0.

Letd > . Suppose the construction is done for dimensions up to a cettairg
and now let dinR(o) = d+ 1. Fore = (ag, by) x - - - x (@n, by) in E9(R(0)), we define

0 if 7x(e)=0 or mue) =e¢,
[ra(e), €] = 1 S0t (@1 D) x -+ X (@t -2) x (1 14+1) x -+ x (@, bn)
otherwise 3.4

Note that, by definition,5f«(e), €] is a (@ + 1)-chain inA. If mx(e) # 0 andeis not
contained inRy, (o), then

|[7T#(e)7 e]| = (ala bl) X X (akj_—l’ bk1—1) X (mkla bk1) X e X (a’la bn) (35)

is the @ + 1)-dimensional rectangle through whielis projected down tary(e).

The @ + 1)-chainCOB(r4(0)) is well defined by induction hypotheses singgo)
is ag-chain contained iy, (o'), which is a representable rectangle of dimensiowe
then define

N
COB(0) := COB(m4(0)) + Y _ Gi[ms(&). &]. (3.6)

i=1

We may now state the main result of this paper.

Theorem 3.2. Letz= ZiNzl cie be a reduced g-cycle whose carrier is contained in
A. Then

09+1COB(2) = z. 3.7

Proof. We proceed by induction on dimensidnof R(z). As in the construction of
COB(2), we may start the induction frooh = .
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Ifd =q. By definition,COB(z) = 0. On the other hand, we ha@1(R(2)) = 0,
thenBq(R(2)) = 0andZ4(R(2)) = 0sinceHy(R(2)) = 0.Knowingthat € Z,(R(2)),
it follows thatz = 0, and finallyd,;1COB(z) = z.

Letd > q. Suppose thatfordiR(z) < d, (3.7) is satisfied. Now let diR(z) = d+1.
We begin by establishing the following result. O

Lemma 3.3. We have

N
dg+1 (Z Gi[mu(e), a]) =7 — 7x(2).

i=1

Proof of the Lemma We proceed by induction with respect to the lenljth= M, —
my, of the first nontrivial side of the rectangR(z) (which is the projection oR(z) onto
thexy,-axis). Note that the transition frodM to M + 1 contains the arguments that prove
the caseM = 1. When the length iM + 1 = My, — my,, the rectangldr(z) is made up
of M + 1 slices, each of length 1, along the-axis. Consider

R = [myg, M;] x [mg, M2] x -+ x [my,, My, — 1] x - -+ x [mp, My],

the rectangle made up of the fitdt slices ofR(z). Define the retraction: R(z) — R
by setting, forx € R(2), {r (X)}; = x; if i #ky and

Xk if Xy < My —1,
{r (X)}k1 = {Mk -1 if X, > Mkl -1

1

The chain homomorphism: Cy(R(2)) — C4(R) induced by atlevelq is defined
on ag-elementary cube = (ag, by) x --- x (an, bn) € Cq(R(2)) by the formula

0 |f ak1 = Mkl - 1, bkl == Mkla .
r#(e) =1 (a1, by) x- - x (A1, b, —1) X {My, =1} x- - - x (@, b)) if &y, =My, =Dy,
e otherwise (3.8)

SetZ =ry(2) = ZiN:l cirx(e), the image oz by ry. By definition,z is a reduced
cycle inR'. Itis clear that for anx € R(2), i, (r (X)) = 7k, (X) (see formula (3.2)) and
thereforeRy, (z) = Ry, (Z)). One can also invoke formulas (3.3) and (3.8) to check that
mu(rz(€)) = my(e) for anye € £9(R(2)). It follows thatmy(z) = 7x(Z).

The carrier of the reduced cycte— Z' in Cy(A) is contained in the last slicR” of
R(z) given by the formula

R = [mg, M1] x [my, M2] x -+ x [Mk1 -1, Mk1] X -+ X [Mp, Mp].
At this point, we decompose ea@hp + 1)-chain frx(g), 6] as
[ms(e), 6] = [mu(8), re(@)] + [ru(e), &], (3.9

where [rx(g), r«(e)] is defined as in formula (3.4) by noticing that(e) = mx(rz(e))
and
0 if rz(€ =0 or rxe =e,
[r#(a)a a] = (a]_, bl) X X (aklflv bklfl) X (Mk1 - 17 Mkl) X X (an» bn)
otherwise (3.10
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The carrier of theq + 1)-chainl” = ZiN:l Gi[rx(e), §] is contained inR” and one
can write

N N
Glmse),a] = Y clms@), re@)] +T
i=1 i=1
N
= Y Glma(rs(@)), ra(@)] +T. (3.11)
i=1
We first prove that
g1 =z—-7. (3.12)

This also proves the cad¢ = 1. Note that ifM = 1, we havery = ry, R(Z) = R, (2),
Z = 74(2), andl' = ZiNzl ci[mx(e), ]. Therefore, proving formula (3.12) will prove
in caseM = 1 that

N
dq+1 <Z Gi[ma(e), a]) =z —m(2).
i=1
To prove formula (3.12), it is sufficient to establish that for any eell £9(R”), the

coefficient ofein z — 7' is equal to its coefficient idg;1I". With this in mind, we define
onCq(A) x Cq(A) a bilinear form by setting, for any two celiso € £9(A),

©.0) = 1 if o=e¢
97 =10 otherwise

It is then enough to verify that
(e, 0g+1l") = (6,2 — 2), Ve e EYR"). (3.13

Let P, be the projection oR(z) onto thex,-axis. We can then consider three types
of g-cubes inR":

1. The setA of g-cubesA such thatP, (A) = {M, — 1}.
2. The sef3 of g-cubesB such thatP (B) = {My,}.
3. The set of g-cubesC such thatP, (C) = (My, — 1, My,).

The (q + 1)-cubes in€9+1(R”) are in one-to-one correspondence with the elements
of A and with the elements &. Indeed, for each

Q= (as,by) x - x (Mg, =1, Mi,) x -+ x (@, bn),
we can find a corresponding
B={(a,by) x - x{Myg}x--x(an by eB
and

A= (a3, b)) x - x {My, — 1} x -+ x (an, by) =re(B) € A.

One can see that, for ary € B, theg-cube A = rx(B) € A. More precisely, the
restriction ofry to 55 is a bijection fromB onto .A. For a givenB € B, we denote by
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[A, B] the (g + 1)-cube obtained by projectingB down to A. It is easily noted that if
Q € £9*1(R") andB e B such thatQ # [A, B], then

(B,9Q) = (A,9Q) =0.

Note that, sinceB is a front face of A\, B] and A a back face of it in the sense given in
the definition ofg, it follows from the choice ok; that

(B,d[A,B])=1, (A J[A B])=-1 (3.14)

for any anyB € B such thatB, z) £ 0.
We deduce from what precedes that for e&ch 5, one has

(B,&) =([A, B].[rz(e). &]), Vi.

Thus,
(B,z2) = ([A,B],T) = (A, Z) — (A, 2), VB e B. (3.15

The latest equality is due to the fact thatould be present in the formula pf Thus its
coefficient inzZ' is the sum of its coefficient inand the coefficient oB in z (see Fig.3.1
where the cele; = ru(es) = ru(e4) and therefore its coefficient i is 0).

Then we show the identity (3.13) for elements4AfB, andC:

1. LetB € Bandb = (B,z — Z). SinceB does not intersedR, it follows that
(B, Z) =0. Thusb = (B, z). One can then deduce that

(B, aT") = b(B, 3[r4(B), B]) = b.

2. NowletA € AandB € Bbesuchthaty(B) = A.Leta = (A, z) andb = (B, z).
By formula (3.15), we have

It follows that(A, z— Z’) = —b. On the other hand,
(Aa 3q+lr) = b(Av 8q+1[Aa B]> = -

3. Finally,letC € Candx = (C, z—Z'). By definition (see formula (3.8))«(C) = 0
Therefore{C, Z) = 0,hencer = (C, z). Sincel’ = ZiN:lci[r#(el), g], itfollows
that

N
(C, dgsal") = <c ZQ8q+1([r#(e|) a])>= Y c(C, dgia(lrse), a).
i=1

Obviously, ifthe index is such thatiz(g ), €] = 0 orCis notaface offx(e ), g1,
then (C, dg4+1[r«(&), &]) = 0. Then letd be the set consisting of the indices
i €{0,1,..., N} for which [rx«(e), ] # 0 andC is a face of [«(g), §]. For

i € J,denote by = (C, dg+1[rs(e), &]) the coefficientoC in dq1([rs(&), &1).
Then

C 8q+lr ZC| o .

ied
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Let nowF be the(q — 1)-face ofC located at the level,, = My, . Itis easily seen
thatF is a common face of and allg, i € J. It follows that

0 = (F, dqdg+1([r#(&), &])) = (F, 3 («iC + &))
= (F,048) + i (F, 34C), Vi e J.

On the other hand, sincais a cycle and using the precedent equality, we have

0= (F,dq2) = Zci(F, 3q8) +a(F, 3C) = (oe - qu> (F, 3C).

ied ied
Hencex = ), _, Giei, which proves formula (3.13) for elements@f

Up to now we proved thaiy.,I" = z— 7, and

N
Oq+1 (Z Gi[mu(e), G]) =z — mu(2),

i=1

for M = 1. LetM > 1 and suppose that the length of the first nontrivial sidR@) (in
thex,, direction) isM + 1. We recall from formula (3.11) that

N N
Y clmse), el = clmars(@)), rae)] +I.
i=1 i=1

The smallest rectanglR(z') containing the carrier af and the carrier of theg(+ 1)-
chainzi’\‘=1 Gi[ma(ru(e)), re(e)] is contained inR’. The first nontrivial side oR(Z) is
also in thexy, direction and is at most of lengt¥i . By the induction hypotheses, formula
(3.12), and the fact thatx(z) = 7x(Z'), we can finally write

N
dg+1 (ZQ[JT#(G), a])
=

N
dg+1 (Z Ci[ma(ra(e)), ra(e )]) + 9g+2()

i=1
=7 -mu@)+z2-7
= z— 1mx(2).

This completes the proof of the lemma. O

The smallest rectangR(rr4(2)) containing the carrier of4(z) is contained irR, (2),
the rectangle obtained by projectiRgz) onto the hyperplane orthogonal to the direction
Xk, . It follows that the dimension oR(7x(2)) is at mostd. Then, from the induction
hypotheses and Lemma 3.3, we deduce that

N
33+1(COB(2) = 8441(COB(T4(2))) + dg41 <Zq[n#(a>,e]>

i—1
= m4(2) +Z2— mu(2)
= Z’

and the theorem is now proved. |
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Fig. 4.1. Coboundary of a 0-cycle iR3.

4. Examples inR3

The following examples provide more insight into the construction given in Sec-
tion 3.

Example 4.1. Consider inR® the reduced 0-cycle = e, — e;, wheree; = {(0, 0, 0)}
ande; = {(1,1,1)} (Fig. 4.1). HereR(z) = [0, 1]3 is of dimension 3 and its first
nontrivial direction is 1.

Call ; the projection onto thexxxs-plane. The rectangl®(z) is projected onto
Ri(z) = {0} x [0, 1] and z is taken to the cyclg; = (m1)4«(2) = €» — €, where
€ = {(0, 1, 1)}. The dimension oR,(2) is 2 and its first nontrivial direction is 2. i,
is the projection onto thgs-axis, thenRy(2) is projected onto the rectang(z;) =
{0} x {0} x [0, 1] of dimension 1 and witkxz as the first nontrivial direction. The cycle
73 is projected onto the cycl® = (72)4(z1) = €’ — €1, wheree” = {(0, 0, 1)}. Finally
the projection onto the origin yields the rectanfgz,) = {0} x {0} x {0} of dimension
0 andz; is taken to the cycles = e; — e; = 0. It follows from the construction that
COB(z3) = 0 and therefore

COB(z) = COB(zy) + [€2, &]
COB(zp) + [€"2, €3] + [€2, &]
COB(z3) + [e1, €"2] + [€'2, €3] + [€2, €]

[e1, €"2] + [€"2, €2] + [€2, &].



Geometric Construction of a Coboundary of a Cycle 137

»

Fig. 4.2. Coboundary of a 1-cycle iRS.
Example 4.2. Consider inR® the 1-cycle
6
zzzqe =-e-&+6+e+6—6
i—1

where eaclg is a positively oriented interval as indicated in Fig. 4.2.

The smallest rectangle that contains the carrierisfR(z) = [0, 1]°. Its dimension
is 3 and its first nontrivial direction is 1. The projectionsandzr, are defined as in the
preceding example. Consider the open squires= 1, ..., 6, whereE; is the base of
the cubeR(2), E, is the face having; ande; as sidesE; is the face having, ande; as
sides, andEg, E4, Es are the respective opposite face€tq E,, andEs. It follows that
Ri(2) = {0} x [0, 1]2. Moreover,rix(€1) = €1, T14(€) = €, T14(€3) = m14(65) = O,
1x(€1) = €, andmyz(es) = €. Finally, m14(2) = —e1 — €, + €3 + €. It is easily seen
that the projection ofr14(2) onto thexz-axis ismox(w14(2)) = 0. On the other hand,
since

[24(€1), €1] = [m24(68), €8] = [m24(€2), €] = O
and frox(€7), €7] = E; we haveCOB(rr14(2)) = E;. Finally

6
E1+ ) _clmu(&). &l

i=1
=E;-0-0+0+E4+Es5-0

= E;1+ E4+ Es.

COB(2)

Remark 4.3. Obviously, there are many chaiasuch thabcis a given cycle. We may
obtain alternative constructions by projectingnto different faces of the cubi(z),
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but then the signs may change in (3.14), thus care must be taken about the alternation of
sign in the formula for a boundary of a cube [2], [11].

5. The Algorithm

We now discuss the formal algorithm permitting the construction of a coboundary
COB(z) for a reduced cycle, namely, achain CORz) such thabCOB(z) = z.

Letz= ZiNzl cie be ag-reduced cycle ilR" where 0< q < n and each particular
g is a (generatorgubeof dimensiong in R" that is written in the form

& = (@)1, (0)1) x - x (@), (B)n),

where onlyq intervals amond((a);, (); )}JT‘:1 are nondegenerate.

The cubes will be represented by the typ¢BE The dimension of an element of type
CUBEis internal to its representation. The typeIAIN will be used to represent a list of
elements of typ€UBEof the same dimension together with their coefficients (integers).
The dimensioDIM (integer) of an element of typ@HAIN is the common dimension of
all its elements of typ€UBE A chain is also characterized by its lengBNGTHwhich
is an integer giving the number of cubes in the chain. We do not go into the details of the
definition of each of these representations here.shhallest rectangle containing| is
given by

R(Z) = [ml, Ml] X [mz, Mz] X o X [mn, Mn],

wherem, = min; {(g),} and My = max {(b;),}. The dimensionof R(2) is defined to
be the number of indiceise {1, ..., n} for whichm; £ M; and is less than or equal
to the dimension of the ambient spaké. Thefirst nontrivial directionof R(z) is the
firstindexi for whichm; # M;. We therefore use the tyflRECTANGLEvith associated
dimensiorDIM and first nontrivial directiorIRST (necessary to define the projection)
in its representation.

We can create a rectangle from a given clain

RECTANGLE: CHAIN);

in at mostnN steps wheren is the dimension of the ambient spakeé and N is the
number of cubes in the chami.e. the length of.
We make use of two functions, namely,

PROJECTIONR: RECTANGLE; g: CUBE): CUBE;
and
LIFT (R: RECTANGLE; g: CUBE). CHAIN;

that are simply defined according to the definitions in formulas (3.3) and (3.5) respec-
tively. These two functions when called run in a constant time provided the output of the
functionRECTANGLIES presented in an appropriate way. For more details on algorithms
see [20].
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Algorithm 5.1

function COB(z: CHAIN): CHAIN;
begin
R := RECTANGLER);
d:= DIM(R);
q := DIM(2);
N := LENGTH@);
if d=q then
return 0;
else
for i:=1to N do
o; .= PROJECTIONQR, §);
Ei .= LIFT( R,0i,8);
end for;
o= ZiNlei(fi;
E .= ZiNzl G E;;
return E + CORo);
end if;
end;

The recursive algorithm rurg — g + 1 times, and a single call cos®&(N) where
N is the length of the cycle, q is the dimension of, andd is the dimension of the
rectangleR(z). Since we work in a fixed dimensian thend — q + 1 < n + 1 and the
algorithm runs in linear time in the number of cubes in the initial chain.

Remark 5.2. We mentioned in the Introduction, that it is possible to solve the equation
dc = z by row reduction of noninvertible matrices. When this approach is chosen, the
complexity of the algorithm is abo@(N?) in case of field coefficients and abadt N®)

when integer coefficients are assumed.

Remark 5.3. Our construction ot = COB(z) is not minimal in the sense of the
number of generators in the supportcofThat could be improved by a judicious choice

of projection faces in each step. This however will substantially increase the complexity
of the algorithm.
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