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Abstract. LetK = {Ko, ..., Ky} be afamily of convex bodiesiR", 1 <k <n—1.We
prove, generalizing results from [9], [10], [13], and [14], that there always exists an affine
k-dimensional planéy € R", called acommon maximal k-transversafl /C, such that, for
eachi € {0,...,k} and eaclkx € R",

Vk(Ki N A > Vk(Ki N (A + X)),

where V is the k-dimensional Lebesgue measure Ap and Ay + x. Given a family

K = {Ki}l_, of convex bodies iR", | < k, the setCy(K) of all common maximal
k-transversals ofC is not only nonempty but has to be “large” both from the measure
theoretic and the topological point of view. It is shown t8at/C) cannot be included in a
v-dimensionaC?! submanifold (or more generally in &k(", v)-rectifiable, 1’ -measurable
subset) of the affine Grassmanni&®r, x of all affine k-dimensional planes oR", of

O(n + D)-invariantv-dimensional (Hausdorff) measure less than some positive constant
Cnkl, Wherev = (k — 1)(n — k). As usual, the “affine” GrassmanniakGr, y is viewed

as a subspace of the Grassmanran, 1 «;1 of all linear (k + 1)-dimensional subspaces

of R™1, On the topological side we show that there exists a nonzero cohomology class
0 € H"™X(Gpy1ks1; Zo) such that the clasg'+! is concentrated in an arbitrarily small
neighborhood ofC(K). As an immediate consequence we deduce that the Lyusternik—
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Shnirel’'man category of the spa€g(K) relative toGrn,1 k11 iS > k —I. Finally, we show
that there exists a link between these two results by showing that a cohomologically “big”
subspace o6r,.1 k1 has to be large also in a measure theoretic sense.

1. Introduction

A convex body KC R" is a compact convex set with nonempty interiormfaximal
k-sectionof a convex bodyK C R" is a setK N Ay, where Ay € R" is an affine
k-dimensional plane such that, for eacle R",

Vil(K N A > V(K N (A + X))

Here Vi denotes the normalized Lebesgue measure defined on leffliimensional
subspacesiR" (i.e., the measure of a unit cube is 1). Given a farkilgf convex bodies,
a common maximal k-transversaf K is an affinek-dimensional planéy for which
K N A¢ is a maximak-section ofK for each elemenK of K.

In this paper we give lower bounds on the size of theZz€kC) of all common maxi-
mal k-transversals ok, both from the measure theoretic and topological point of view.
Itis obvious thatC¢ (K) is “in general” empty if | > k+ 1, wherg K| is the cardinality
of the familyC. We show that the conditidi’| < k+ 1 thatis “in general” necessary for
the existence of a common maxinatransversal ofC is also sufficient (Theorem 6).
When the size of the familyC decreases below + 1, we show that the se(K)
increases both measure theoretically and topologically (Theorems 7 and 8). Theorem 9
is a link between these two results, which shows that a sufficiently cohomologically
nontrivial compaciC! submanifold (or more generally a compaet, v)-rectifiable,
‘H'-measurable subset) of a Grassmannian must also have a sufficiently large measure
in its own dimension. Our methods are: reduction to a topological coincidence question
for a family of continuous cross sections of a vector-bundle, integral geometry in ho-
mogeneous spaces, topology of Grassmannians, cohomological technique, andPoincar”
duality. Before we formulate precise statements of these theorems, we review some other
related combinatorial geometric results which serve as a motivation for studying these
guestions.

2. A Review of Motivating Results

We always assume that> 2. ForC C R", we denote by lirf€ and affC the linear and
affine subspace d®" spanned by, respectivelyO(n) denotes the orthogonal group in
R", that s, the group of all linear isometriesRf, while SO(n) is the special orthogonal
group{T € O(n) | detT = 1}. The line segment with endpointsandy is denoted by
[x. yl.

Now we recall some definitions, see also 2.10.1-2 of [6]. For a metric Spaoel
m > 0 them-dimensional Hausdorff-measuk¢™ is an outer measure defined on all
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subsets o as follows: forA C X,

H™A) = sup(inf {gdiam(Ai)m-nm/z/(ZmF <1+ g)) ‘

§>0

Ac|JA c X vi, damA) < 5})
i=1

where diam means diameter. All closed subsets afe {™-measurable (see pp. 54 and

170 of [6]). If m is a positive integer, one calls c X, with HM(A) < oo, (H™, m)-

rectifiable if,

Ve >0, 3JA. C X, HM(A\A,) < &,

and A, is the image of a bounded subsetRT by a Lipschitz map defined on this
subset, see pp. 251-252 of [6]. The zero-dimensional Hausdorff-mea&im® of

a setA equals its cardinality, ifA is finite, and equalso if A is infinite. One calls
A C X(H°, 0)-rectifiableif Ais finite [6, p. 252].

If X is a Euclidean space ards a compact! m-dimensional submanifold, thehis
(H™, m)-rectifiable, and{™(A) coincides with the differential geometrnedimensional
volume (Theorems 3.2.26 and 3.2.39 in [6]).

There are several star-shaped sets associated with a convexkbadyR". For
0 € int K thedouble chordal symmetr@AK of K (see Definition 5.1.3 of [7]) is defined
by 2AK :={Au|ue "1, |A] < Vi(K N (RU))}, whereRu= {ru | r € R}; AK isa
0-symmetric star-shaped set having the same chord lengths through 0 in all directions as
K. Thedifference bodgf K (see §12, Section 53 of [1], or Section 3.2 of [7]Kig-(— K);
equivalently, it can be defined ésu | u € S™ 1, |A| < maxVi(K N (RU+Xx)) | X €
R"}}. The inclusion AK C K + (—K) readily follows from the definitions.

Theorem 1[10, Theorem 3.1], [17, proof of Theorem 4]For any convex body KC
R" with 0 € intK the boundaries of the associated double chordal symmetral and the
difference body have a honempty intersection

bd(2AK) Nbd(K + (=K)) # @

Geometrically, this theorem says that O belongs to saffire diametefx, y] of
K, that is, to a nondegenerate line segmenty] = aff{x, y} N K such that, for each
ze R", Vi([x,y]) = Vi(KN(aff{x, y}+2)). Equivalently, in a more usual formulation,
there exist two different parallel supporting hyperplanek ppassing througk andy,
respectively, see p. 293 of [10]. The geometrical reformulation of the statement of the
theorem remains true even without the assumptiarift K. A purely geometrical proof
can be found in [10], while the proof in [17] uses elementary index theory as presented
in [18]. Theorem 1 of [9] proves the geometrical reformulation in the cagekO, but
its arguments are easily modifiable to obtain the casekDas well.

For 0 € intK the intersection body IKof K, introduced in [12] (see also Defi-
nition 8.1.1 of [7]), is defined byK = {Au | u € S, |A| < Vi_1(K Nub)},
whereut = {x € R" | (x,u) = 0}. Thecross-section body Ckf K, introduced in
[15] (see also Definition 8.3.1 of [7]) is defined IBK := {xu | u € "1, |A| <
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max{Vy_1(K N (Ut +x)) | x € R"}}. Again there is an inclusion of the forl{ € CK
and a theorem relating the boundaries of these bodies.

Theorem 2[13, Theorem 1 obtained jointly with R. Gardner]For any convex body
K € R"with 0 € int K one hashd (IK) N bd(CK) # @.

Geometrically, this theorem says that O belongs tnaximal(n — 1)-dimensional
section KN ut of K, for someu € S"1. In other words the sectiok N u* has the
property that, for eack € R", V,_1(K Nut) > V,_1(K N (u* 4+ x)). This geometrical
reformulation holds even without the assumptioa bt K. Actually, not only mustthere
exist somas € S"~1 for which K N u' is maximal in the sense above, but the set of all
such unit vectors cannot be included in a comgizigh — 2)-dimensional submanifold
(or more generally in aii"~2, n — 2)-rectifiable, {"~2-measurable subset) &',
of (n — 2)-volume (or more generallyn — 2)-dimensional Hausdorff-measure) less
thanc,_», wherec,_, is the volume of the sphei®~2. Moreover, here,_, cannot be
replaced by any larger number. It is implicit in the proof of Theorem 2 that there always
exists a maxima{n — 1)-sectionK N ut of K such that' contains any given linear
(n — 2)-dimensional subspace &" prescribed in advance. The proof of this result is
purely geometrical in combination with a simple continuity argument.

It was natural to try to generalize Theorems 1 and 2 both to the case of families of
convex bodies and to the case of arbitrrglimensional maximal sections. As before
Grpk is the Grassmann manifold of all linelrdimensional subspaces Bf.

Theorem 3[14, Theorem 4]. For any convex bodies {(K; C R" there exists a line
A; € R"such that kN Aq is an affine diameter of {Kand K; N A; is an affine diameter
of Kj.

Theorem 4[14, Theorem 3]. Letl < k < n — 1 be an integerThen for any convex
body K € R" the origin0 belongs to some maximal k-sectiomi®y of K. Actually, the

set of all such k-dimensional linear subspacgs@nnot be included in a-dimensional
compact C submanifoldor, more generallyin an (H*, v)-rectifiablg 7"-measurable
subse of the Grassmannian Gk, of O(n)-invariant v-measure(or, more generally
v-dimensional Hausdorff measyrkess than some positive constapikcwherev =
(k—1)(n—k). This is sharp in the sense that there exists some convex body K such that
the above set is a smooth compaalimensional submanifold of finite (@)-invariant
v-measure

The O(n)-invariantv-dimensional Hausdorff measune £ (k — 1)(n — k)) is meant
with respect to al© (n)-invariant Riemannian metri¢s’> on Gr,, x. This O(n)-invariant

metric is described at the linekrdimensional subspade) = lin{ey, ..., &} spanned
by the firstk basic vectorgy, . . ., & as follows. The tangent space®, « at the point
L‘k) is the set of all linear function#\.: lin{ey,...,e&} — lin{ex.1,..., €}, and the

Riemannian metric at? is given by

k n
d&=>" Y (Ae.g)’=Tr(A"- A),

i=1 j=k+1
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where Tr means trace. Sin€(n) acts transitively orGr, k, this extends uniquely to

a Riemannian metric oG, k, by the formula thatls® at the left-translate (A) of A,

for g € O(n), equalsds’ at A, as given above. (Herg' denotes the derivative of the
action byg, between the respective tangent spacdsandgL?.) Still we have to see
that this extension exists, i.e., @f (A1) = g,(A2), then TIAT - Ag) = Tr(A; - Ay).
Letting g = g,"g1, we havegL) = L and A, = g/(Ay). That is,g is the direct
sum of two orthogonal matricds; acting on L(k) and h, acting on lifec1, ..., e}

and graphA, = g - graphAq, or Ay = thlhfl. (For the relation about the graphs
observe that aL‘k) locally Gr,k can be considered as the vector space of all linear
mapsL? — lin{ec 1, ..., &}, by identifying these linear functions with their graphs.
Then the action by becomes a linear map, whose derivatiyds a linear transfor-
mation, that pointwise coincides with after this identification.) Then TA} - Ay) =
Tr((hyH* Athsha Ashh) = Tr((hph* AsAhT Y = Tr(h AL AhTY = Tr(ALA)), as
required. It is implicit in the proof of Theorem 4 that there always exists a maximal
k-sectionK N Ax of K such thatAy contains any lineatk — 1)-dimensional subspace
Lk_1 prescribed in advance.

Theorem 5[14, Theorem 5]. For any convex bodies K. .., K,_1 € R" there exists
an affine(n — 1)-dimensional plane A1 € R" such that for any ie {0,...,n —
1}, Kj N A,_1is a maximal(n — 1)-section of K.

The proofs of Theorems 3-5 used partly geometrical arguments, sometimes involved
ones, together with elementary topological tools likei@rdum’s theorem on the non-
existence of continuous even unit tangent vector field§br, Brouwer’s fixed point
theorem, and the Borsuk—Ulam theorem on the nonexistence of odd continuous map-
pingsS"! — S"2,

Observe that the equivalent (geometrical) form of Theorem 1 which refers to the
maximal 1-sections (without assumingsdnt K) is a special case of Theorem 3, when
one body is chosen to be the unit ball centered at 0. Similarly, the geometrical form
of Theorem 2 (again without assuminge0int K) is a particular case of Theorem 4
(up to the value of the constant ). Moreover, the assertion after Theorem 2 about
the existence of a maximah — 1)-sectionK N ut of K such thatu! contains any
linear (n — 2)-dimensional subspade, , € R", prescribed in advance, is a special
case of Theorem 5 as well. Indeed, it is sufficient to apply Theorem 5 to the family
{K, By, ..., Bho_1}, whereB; are unit balls which have the property that the affine hull
of their centers is equal tb,_».

The main objective of this paper is to extend Theorems 3-5 to the general case of
k-sections, where ¥ k < n — 1.

3. Statements of New Results

In this section we formulate several results about common maxkasaictions for
families of convex bodies irR". The first result is an existence result. It is shown
that common maximak-transversals exist if the given familf = {K;}!_, of con-
vex bodies consists 0f+1 <k+1 elements. The proof of this theorem is topological
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and follows from the assertion thab, ¥ € H "0 (Gr, ,_x; Z,) is nonzero, where
wn_k IS the top Stiefel-Whitney class of the canonigat k)-plane bundle ove®ry, _k.

The following two theorems (Theorems 7 and 8) are of more quantitative nature. In
Theorem 7 we show that measure theoretically theGg€k) of all common maxi-

mal k-transversals ok is “sufficiently large” with respect to a measure defined on the
GrassmanniaiGry, 1 k+1. The argument is based on a generalized Cauchy—Crofton—
Poincag formula from integral geometry. In Theorem 8 we show that th€ggf) is
cohomologically nontrivial in the following sense. There exists a cohomology class
6 € H"(Grni1kse1; Z2) such that for each open neighborhoddof Cy(K), the
classh'** is contained in the image of the homomorphistfi*Y"— (Gr, Gr\U) —
H{+D(-(Gr), whereGr := Grn, 1.1 and the cohomology is taken witp-coeffi-
cients. Finally, in Theorem 9 we establish a link between Theorems 7 and 8 by
showing that any compact subset cohomologically nontrivial in the sense of Theorem
8 must be measure theoretically “large” in the sense of Theorem 7. This means
that Theorem 8 is formally more general than Theorem 7. Note however that the
key nontopological ideas in the proof of Theorem 9 are already present in the proof of
Theorem 7, so this theorem can also be seen as a companion of Theorem 7.

Theorem 6. Letl < k < n—1be an integerThen for each familyC = {Kg, Ky, ...,
Ky} of convex bodies in 'Rthere exists an affine common maximal k-transveisal
other words there exists an affine k-dimensional plapesuch thatfor each xe R"
and eachie {0, ..., k}, Vk(Ki N AY) > V(K N (Ac + X)), where V is the normalized
Lebesgue measure defined on affine k-dimensional subspaces of R

Simple examples show that there exist familiés= {K; }}(:0 of convex bodies irR"
such that the common maximlalsection, whose existence was asserted in the previous
theorem, is unique (see the remarks following Theorem 9). If the size of the f&hly
| + 1, wherel < k, then the se€y(K) of all common maximak-sections is not only
nonempty but is quite big both from a measure theoretic and a topological point of view.
The exact statements are given in the following two theorems.

We assume thaR" is embedded in the real projective spd€" in the usual way.
Thus an affin&-dimensional planéy of R" becomes a projectidedimensional plane of
R P", that can be identified with a lineék+ 1)-dimensional plane dR"** (namely, with
lin(Lx+€n41), whereL, € R"is embedded iR"1 by (X1, ..., Xn) — (X1, ..., Xn, 0)).
Thus the set of all affink-dimensional planes d®" will be considered as a (dense open)
subset of the Grassmanni@m, 1 x+1, and thed (n+ 1)-invariant(k—I)(n—k)-measure
is defined as thék — 1)(n — k)-dimensional Hausdorff-measure with respect to the
O(n + 1)-invariant Riemannian metrids? on Grnt1k+1, defined like after Theorem 4
(for n, k rather tham + 1, k + 1).

Theorem 7. Letl<k<n-1andO<I| <kbeintegers and lat := (k—1)(n—Kk).
Supposethat = {Ko, Ky, ..., K;}isafamily of h-1 convex bodies in Rand let G (K)
be the space of all common maximal k-transversals.dthen G (K) cannot be included
in an (H", v)-rectifiable H"-measurable subset of G k.1, of O(n + 1)-invariant v-
dimensional Hausdorff-measure less than some positive congtantitis is sharp in
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the sense that there are choicestotuch that G(K) is a compact C° v-dimensional
manifold of finite @n + 1)-invariant v-measure

Definition 1. Let K be a compact subset of a compact manifivld We say that a
cohomology clas8 € HP(M; Z,) is concentrated in an arbitrarily small neighborhood
of K if, for each open neighborhoddl of K, the clas® is contained in the image of the
mapHP(M, M\U; Z) - HP(M; Z,).

Definition 2. Suppose thah is a subspace of the topological spacéhe Lyusternik—
Shnirel’'man category Cat A) of Arelative toX is the minimum cardinality of a family
F of closed sets such thj F = A and each elemetit € F is contractible to a point
by a homotopy that moves inside X.

As before, we consider the affine Grassmanrda®r,,  of all affine k-dimensional
planes inR" as a subspace of the manifold of eltlimensional planes in the projective
spaceR P" which can be considered also as the GrassmarBrag: Grp;1k+1 Of all
linear (k + 1)-dimensional subspaces Bfft,

Theorem 8. We make the same assumptions abqut h and K as in Theorenv.
Givenv € R", let[M,] be the &-fundamental class of the submanifold, M= {L €
AGryx | v e L}. Letd € H"K(Grp 1x:1; Z2) be the cohomology class which is the
Poincaré dual of M, ]. Therp**! £ 0and the class'+! is concentrated in an arbitrarily
small neighborhood of &) in Gryi1.k+1, in the sense of Definitioh.

Corollary 1. The Lyusternik—Shnirel'man category of the spag¢é@ of all common
maximal k-transversals relative to G& Grpy1 41 iS atleastk—1 + 1,

Catsr (Ck(K)) = k—1+1.

Theorem 9. Supposethat & Gry, 1,1 iSacompactsubset suchthatthe clalss e
H =0+ (Grp 1.k41; Z2), defined in Theorem, is concentrated in an arbitrarily small
neighborhood of the subset Then the conclusion of Theorefholds for the subset
C. In other words for v = (k — I)(n — k), the O(n + 1)-invariant v-measure of any
(H", v)-rectifiable H"-measurable subset of G k1 containing C is at least |,
where g i is the same constant as in Theorém

Before turning to the proofs we make some remarks.|Eerk, Theorem 7 reduces
to Theorem 6. Theorem 6 is sharp in the sense that in generahfd convex bodies
Ko, ..., Kkz1 € R" there does not exist an affiredimensional planédy such that
Ki N Ay is a maximalk-section ofK;: takek + 2 unit balls with centers not lying in
an affinek-dimensional plane. Similarly, fdc + 1 convex bodieKo, ..., Kk € R"in
general there do not exist two affikedimensional planes with the stated property: take
k + 1 unit balls with centers not lying in an affirjle — 1)-dimensional plane. Moreover,
Theorem 6includes Theorems 3and 5, while Theorem 7 includes Theorem 4, by choosing
| =1, Ko = K, Kj the unit ball with center 0.
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4. Proofs of the Theorems

Proof of Theoren®. We begin with the observation that it suffices to prove the theorem
for strictly convex bodies. Recall that a convex bddlyis strictly convex if bdk does

not contain a line segment. This observation is based on the fact that each convex body
can be approximated (in the sense of the Hausdorff distance) by strictly convex smooth
(CY) bodies [1, §6, Section 27]. Also, K™ € R", m € N, is a sequence of convex
bodies converging in the Hausdorff metric to a convex bBdg R" andAy € R" is

a sequence of affine-dimensional planes converging to an affkadimensional plane

A € R" (in the topology inherited fronGr, 1 k11) then, if K™ N AF is a maximal
k-section ofK™ for all m, thenK N Ay is a maximak-section ofK. The details of this
argument can be found in [14]. We conclude from here that the general result follows
from the result in the special case of strictly convex bodies, so from hereon we assume
that all bodie; are strictly convex.

Our general plan of the proof is to reduce the problem of the existence of common
maximalk-transversals to a topological coincidence question for a family of continuous
cross sections of a vector bundle over a Grassmannian manifold. A similar plan was
applied in [14] and to other combinatorial geometric problems in [20] and [4]. Let
Lx € R" be a lineark-dimensional subspace iR". Then anyk-dimensional affine
subspace oR", parallel toLy, is of the formLy + x, where we may choosefrom the
linear subspace that is the orthogonal complementbb§. Letz: R" — Li- be the
orthogonal projection onta-. Forx € m(K;) let fi(x) = Vk(K; N (Lx + x))¥%. By
the Brunn—Minkowski theorem [1, 811, Section 48Jis a concave function on(K;).

By strict convexity ofK;, for x € relbd(z (K;)) the intersectiorkK; N (L 4+ X) consists
of one point, hencdj(x) = 0 for suchx. (The relative boundary (relbd) and relative
interior (relint) are taken with respect tq-.) Hencef; (x) is a continuous function on
7 (Kji) which attains its maximum in relitt (K;)), and for such a point of maximum
we have thak; N (Lx + X) is ak-dimensional convex body.

Moreover, this maximum poink is unique. Indeed, if there were two maximum
pointsxy, X, € relint(z (Kj)), then by concavity of; onw (K;) we would havef (x;) =
f(%(xl + X2)) = f(X2). From here and the well-known fact that the Brunn—Minkowski
inequality is strict unless the convex bodies are homothetic (see 811, Section 48 of [1]),
we deduce thaK; N (Lx + x;) andK; N (Lx + X2) are translates of each other. Since
Vic(Ki N (Li +X1)) = Vi(Ki N (L + 3(X1 + X2))), the inclusions [(Ki N (Lk + X)) +
(Ki N (Lx +x2)] € Kj N (Lg + %(xl + X2)) turns out to be an equality, hence also
Ki N (Lg+ %(xl + X)) is a translate oK; N (Lx + X1). Therefore bK; contains a line
segment, contradicting strict convexity Kf.

So we have a functioh i — X (L) wherex (L) is the unique point wherd;
attains its maximum. It is not difficult to show that this function is continuous. Indeed,
if L' — L is a convergent sequence@Ty k, then any limit point o (L)) equals
Xi (Lﬁ) and allx; ((LE”)L) lie in a compact set. This is sufficient to imply the continuity
of the functionL: — x;(L{). The details of the above arguments can be found in [14].

The theorem clearly follows if we can find a plabg € Gr, x and somex € L such
thatK; N(Lk+X) is a maximak-section ofK; foreach € {0, ..., k}. In other words we
have to prove that for some, € Grp x we have a coincidenOQ,(LkL) =...= xk(LkL).

Note that each of the functions can be considered as a continuous cross section of the
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canonical(n — k)-plane bundle over the Grassmann manif@id, . Recall that the
total space of this bundle {§L;", X) | L € Gryn_x, X € L € R"} with the topology
inherited from the product spacer, n_x x R", and its projection iL;, X) — L.
We consider thé continuous cross sectioms(Li) — Xo(Lit), - - -, Xk(Li&) — Xo(Li)

of this bundle. By [5] or Proposition 2 of [20], arkycontinuous cross sections of this
bundle have a common zero. In other words, there exists a plﬁrmGrn,n_k such that
Xo(Li) = -+ = x(Li), which completes the proof of the theorem. O

In the proof of the following theorem the integral geometric considerations, leading
to the proof of (3) in th&H", v)-rectifiable,H"-measurable case, were kindly commu-
nicated to us by R. Howard.

Proof of TheorenY. 1.We want to prove that the s€(K) cannot be included in an
(H", v)-rectifiable, H"-measurable subset @i(n + 1)-invariantv-dimensional Haus-
dorff measure smaller than a positive constant . Forl = kthe seCy (K) is not empty,
an (H°, 0)-rectifiable set is just a finite set, and a zero-dimensional Hausdorff-measure
of a finite set is just the cardinality of the set. Hence we may chagsge = 1. Now let
0 < I < k. We choos& — | additional bodies,1, ..., K. It is convenient to choose
these bodies to be unit balls such that their centers are affinely independent. Obviously
each affingk—1 —1)-dimensional plane can arise as the affine hull of these centers, foran
appropriate choice of these balls. Then by Theorem 6 there exists arkaffimensional
plane Ax € R" such that for each € {0, ..., |} we have thaK; N A is a maximal
k-section ofK;, andAx contains an arbitrary affingk —| — 1)-dimensional planéy_| 1
given in advance. Moreover, we may also take projegtvel — 1)-dimensional planes
Px_i_1 rather than affine ones. In fact, if a projectike-1 — 1)-dimensional plan®_, _;
lies in the infinite hyperplane dr", e.g., is the infinite hyperplane of lia, .. ., &},
then we choose the centers of the unit b#lsy, ..., Kk at Aeq, ..., A&, and let
A — oo. Again by Theorem 6 there exist affikedimensional planeg\ (1) which
give maximalk-sections of all bodieKy, ..., K; and which converge to a (projec-
tive) k-dimensional plan&\ that necessarily contairg_,_;. However, then for each
i €{0,...,1}we have thaK; N Ay is a maximak-section ofK; (see [14], cited in the
beginning of the proof of Theorem 6).

For a projectivelk — | — 1)-dimensional plané_;_; € RP" (real projectiven-
dimensional space) let

S((Pcoi—1) = {P« | P« € RP" is a projectivek-dimensional planeR__1 € Py}.

Recall thatCy(K) = {A« | Ax € R"is an affinek-dimensional plane such théti e

{0,...,1}H) Ki N A¢ is a maximalk-section ofK;}. Henceforward we considésy (K)
as a set of projectivie-dimensional planes. Then the above assertion about projective
(k — I — 1)-dimensional planes can be reformulated as follows:
for each projectiveék — | — 1)-dimensional plan®_,_; € RP",
C() N &(Pei-1) # 9. ()

The setCy(K) of affine, thus projectivk-dimensional planes iR" is considered as a
subset ofGr,11 k+1, and we identify the projectivék — | — 1)-dimensional plan®y_,_;
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with a linear(k — I )-dimensional subspadg,_; of R"*1. Moreover, we writeS (Px__1)
as S1(Lk_), and we consider it as a set of lingdgr+ 1)-dimensional subspaces of
R™1 Thus

for eachLy_| € Grpy1k-1, Ck(K) N Seqa(Lk—r) # 9. 2

Now we recall some integral geometric considerations from [3] and [11]. We follow
the notation of [11] but assume that the results hold in the generality given in [3]. Let
G be a Lie group, leK C G be a compact (thus Lie) subgroup Gf and letG/K
be the homogeneous space of left coggts of K in G. ThenG acts onG/K by
gEK) = (g&)K. Letr: G — G/K denote the natural projection, whose derivative
will be denoted byr’. Suppose thab has a Riemannian metrits?, that is left invariant
on G, moreover is right invariant under elementskof We denote the corresponding
bilinear form onG by ( , ). This induces &-invariant Riemannian metri¢gs? onG /K.

The corresponding bilinear form is denoted(y)’, and it is described as follows:

(X, X)r ek, = ([7'I(kerm )] 7X, [7'|(kern (€)'] 7 X)re,.

wherex € G/K, and¢ is any element ofr ~(x). (Observe thatr’|(kerz’(£))* is a
linear isomorphism of the orthogonal complemé@r =’ (¢))+ of kerz’(£) in T G; onto
T (G/K)y, and that this definition is independent of the choicé .pf

Let HP be thep-dimensional Hausdorff measure @K and letM be an(HP, p)-
rectifiable subset 06/K. (See Section 3.2.14 of [6] or Section 2 of this paper for the
definition.) Basically these are subsets of firfit€ measure that can be covered up to a
set of P zero by a countable number of Lipschitz images of subse®oThis includes
the class of rectifiable sets (which are the Lipschitz images of bounded sub&ts of
If M is alsoHP measurable, then (see Theorem 3.2.19 of [6])HBralmost allx € M
there is ap-dimensional subspace tangent space’Tat® | M, x) which we just denote
by T(M), and its orthogonal complement Th(G/K), will be denoted byT+(M).

(To simplify notation we sometimes suppress the dimension and just sapthat
‘H rectifiable and measurable.)Nf is an embeddeg-dimensional submanifold of class
C! and finite volume, theM is H rectifiable and measurable and Wal) = HP(M).

Let M c G/K be an(HP, p)-rectifiable subset o&6/K which is HP measurable
and letN c G/K be an(H9, q)-rectifiable subset d&/K which isH%-measurable and
p+q > dim(G/K). Setm = dim(G/K). Then for almost aly € G the intersection
M N gN is anHPt9~M-measurablgHP+t9~™ p + q — m)-rectifiable subset o6 /K.
Moreover, ifG is unimodular (in particular, compact, see Remark 2.4 of [11]), then the
integral geometric formula, the so-called Poiresuformula (compare Theorem 3.8 of
[11] stated for the smooth case),

/H"“““(M mgN>d9=// ok (TH(M)x, TH(N)y) dHP x dHI(x, )
G M x N

holds. Heredg is the volume form orG associated with the Riemannian metris®

on G, see Remark 2.6 of [11], and the Hausdorff measures are taken with respect to
the Riemannian metrids’?. Furtherok (T-(M)y, T+(N),) (see Definition 3.3 of [11])

is a type of “integrated absolute value of sine of angle” and for our purposes all that
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matters is that 6< ok (T(M)x, TL(N)y) < Vol(K) (Vol(K) taken in the sense of the
Riemannian metrids?, see the inequality & o (V, W) < 1 from 2.1 of [11]) so that

pr+q‘m(M NgN)dg < Vol(K) - HP(M) - HI(N). 3
G

This can be seen by modifying the arguments in either [3] or [11]. We briefly indicate how
to do the modifications of the arguments of [11]. First note that the proof of the Basic
Integral Formula ([11, p. 7]; assumin@ is unimodular this is essentially the special
case of the formula above whelke = {€} is the trivial subgroup ofs) only depends
on Sard’s theorem, the coarea formula, and some changes of variables in integrals.
If in deriving formula (2-12) on p. 8 of [11] the smooth coarea formula is replaced
by the form given by Federer (see Theorem 3.2.22, p. 258, of [6]) we get the same
formula except that noi and N are as above and (using the notation of [11, p. 8])
the fibersf ~![g] are H P*9~"-measurable(:P*9", p 4+ q — n)-rectifiable subsets of
G for almost allg € G. The rest of the proof is pretty much word for word the same.
Therefore the Basic Integral Formula of [11] holds whdnand N are H-rectifiable
and measurable subsets @f Poinca€’s formula [11, Theorem 3.8, p. 15] follows
from the Basic Integral Formula by purely formal considerations (basically changes
of variables in integrals) so it will also hold fdi-rectifiable and measurable sés
andN.

We apply this inequality t&> = SO(n+ 1), K =[SOk + 1) x SOn — k)] U
[(O(k+1)\SOk+1)) x (O(n—k)\SO(n—k))], whereO(k+1)actsonlifey, ..., &1}
and O(n — k) acts on liffec, ..., enr1}, where{ey, ..., ey1} is the standard or-
thonormal base oR™?. ThenK is the stabilizer of lifey, . .., &1} in SON + 1),
henceG/K can be identified wittGrn1 k41, With 7: G — G/K given byx(g) =
g(in{ey, ..., &41}) forge SO(n + 1).

We define the bi-invariant Riemannian metti& on G as follows. We have that G, ,
the tangent space @ at |, i.e., the Lie algebra o6, is the set of all skew-symmetric
n+1byn+1matrices. Thenfof G, > (g;) we letds? = i aizj = 1 Tr[(@))*(@j)].
This has a left-invariant and a right-invariant extensioiGtovhich however coincide,
to give a bi-invariant extension [11, 3.12a].

Next we consider the derivative af at |, i.e.,7'(1): TG, — T(G/K),a). We
recall from the remarks following Theorem 4 thR{G/K),, is the set of all linear
transformations lifey, . . ., &1} — lin{ewo, . .., ent1}. Thenwe have fofa;;) € TG,

thatr'(1)(@j) = @)y oeromes € T(G/K)xq). Therefore ker'(1) = {(aj) € TGy |
aj; = 0for j <k+ 1 <i}. Hence for its orthogonal complemegker’ (| Nin TG
in the sense of the above Riemannian metgewe havelkerrn'(1))* = {(aj) € TG |
aj = 0fori, j <k4+1andfori, j > k4 1}.

By definition,ds2in G/K, at(aij)is 5= enis € T(G/K)xq) is obtained the following
way. We extenda; )ﬁi,k;lﬂ to ann + 1 by n + 1 matrix (a;) € (kerz'(1))%, i.e.,
to a skew-symmetric matrix satisfyirg; = O fori, j < k+ 1 and fori, j > k+ 1,

and evaluatels® for the obtained matrix. This however givesyis_; a5 =Y, a} =
{’:,(1+2 Z:(j aizj . Thatis, onT (G/K)~ ) the SO(n + 1)-invariant Riemannian metric
ds?onG/K = Grp,1k41 considered in [11] equals tf@(n + 1)-invariant Riemannian
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metricds? on Gry, 1k, 1, introduced after Theorem 4 (for k rather tham + 1, k + 1),
and considered in this theorem. Since both of these Riemannian metrie©aner 1)-
invariant, they coincide on the wholg/K .

Now suppose thaEy (K) is included in anH"”, v)-rectifiable, H"-measurable subset
M of Grp1kr1, Wherev = (k —1)(n — k). We are going to show that th@(n + 1)-
invariantv-dimensional Hausdorff-measure Mf, in the sense of th® (n+ 1)-invariant
Riemannian metrids?2 on Grnt1.k+1 considered in this theorem, is at least a suitably
chosen positive constaot k| .

By (2) we have for eachy_| € Grpp1k— thatM N S 1(Lk-1) # @. Observe that for
anyLy_ € Grpy1k- We have tha&1(Lk_) isacompacC> manifold, diffeomorphic
to Grnp_ks1+11+1, that has dimensio + 1)(n — k). We fix someLEq € Grpy1k—1- We
have foranyg € SO(n+1) thatSc11(gL? ) = gS1(LY ). LetN = Sc.1(L2 ). Then
foreachg € SO(n+1) we haveM NgN = MNgS1(LY ) = MNSea(gLly ) # 0.
Furtherv+dimN = (k—=DH(n—k)+( +1)(n—k) = (k+D)(n—k) = dimGry i ki1 =
dim(G/K).

Applying the above cited results from [11], for almost@le SO(n + 1) we have
thatM N gN is a finite subset 061,11 k+1, and we have by (3)

/ HO(M NgN)dg < Vol(K) - H"(M) - HI+DO=0(N), (4)
SO(n+1)

where
K=[SOk+1) x SONn—-K]JU[(OK+D\SOk+ 1)) x (O(n—k)\SOn — k))].

Since for almost aly € SO(n + 1) we have thaM N gN is a finite set, in which
case 1< H°(M N gN), we have

\Vol(SO(n + 1)) 5/ HO(M NgN)dg. (5)
SO(n+1)

The inequalities (4) and (5) together imply
H"(M) > Cnkis (6)

for a suitably chosen positive constanj |, as asserted.

2.ltremains to be shown that, for some choice of the convex bddjes. . , K, in R",
the setCy (K) of affinek-dimensional planegy € R" in question is a compa&® v-
dimensional submanifold @ry 1 k11, Of the considere® (n + 1)-invariantv-measure
some finite number, for = (k — ) (n — k).

Let Ko, ..., K; € R" be unit balls, whose centers span an affirdimensional
plane A’ € R". ThenCy(K) = S«(A) = Swua(LP,)), whereLp,, is the linear

(I + 1)-dimensional subspace @&"*1, corresponding to the affine (thus projective)
I-dimensional planeAP. FurtherS.1(LY,,) is diffeomorphic toGrn_ «-i, therefore
S<+1(L|°+1) is a compaciC>™ v-dimensional submanifold o6r,.1k+1, hence has a

finite O(n 4+ 1)-invariantv-measure. O

Remark. Using [11] it is not difficult to give the constawf, x| from the above proof
explicitly also forl < k. In fact, (4) and (5) givé{"(M) > Vol(SO(n + 1))/[Vol (K) -
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Vol (N)]. Here Wol(K) = 2 WI(SOk + 1)) - Vol(SO(n — k)). Moreover, we have
N = S<+1(LE,|) = Grp_k4l+11+1- Further, like in 3.12.(a) of [11], sincds? is bi-
invariant onG and z is a Riemannian submersion, we have (@fn_ki1411+1) =
Vol (SO(n —k+1 +1))/[2 Vol (SO( + 1)) - Vol (SO(n — k))]. It remains to observe that
by 3.12(a), formula (3—-15), of [11] for any natural numipere have Vo{S O(m)) =
Vol (SY) VoI (S?) - - - Vol (8™ D).

Proof of Theoren8. Likein Theorem 6, it also suffices to prove this theorem for strictly
convex bodies only. Namely, 1&7", ..., K™, m € N, be strictly convex bodies con-
verging (in the sense of the Hausdorff distancel §0. . . , K|. As in the beginning of the
proof of Theorem 6, by the arguments in [14], f6F = {K{", ..., K"} we have for any
subsequence; € N that A7' € C(K™), AL — Acimply A € Cy(K). Therefore
Ck(KX™) (which are contained in a compact subse6of.,1 1 independent ofn), lie,

for m sufficiently large, in an arbitrarily small open neighborhoo@g§/C), prescribed

in advance.

Next we recall some well-known facts about the topology of Grassmannians. Standard
references are [16], [8], and [2] as well as other more elementary topological textbooks.
We include the relevant details to make the proof as self-contained as possible.

The direct sum decompositioR"™! = R" @ R and the identification oR" with
the hyperplanéd := {x € R | x,,1 = 1} allows us to view the affine Grassmann
manifold AGr,  of all affinek-dimensional planes iR" as a submanifold d&rn;1 k+1.
More precisely, the manifoldGry, « is embedded iGrn 1 k+1 by the map which sends
ak-dimensional plané. € AGr, to the(k 4+ 1)-dimensional linear subspace Bf 1
spanned by.. From now on AGr;, k will often be identified with its image i1 k+1-
The spacéNg := Grni1k+1\AGn k is identified as the Grassmann manif@d, 1 of
all “horizontal” (k 4+ 1)-dimensional planes i®rn1 k+1. The “dual” manifoldN; of all
“vertical” (k+1)-dimensional planesiGrn1k+1, i-€., the planes which contain the basic
vectoren, 1, is clearly homeomorphic t8r,, . Indeed, each verticgk + 1)-dimensional
planeL in R™! = R"@ Rintersects the horizontal spaB& in ak-dimensional plan&’
and conversely eadli € Grp, i determines the correspondibge N;. A very important
observation, already used in the proof of Theorem 6, is that the space

AGrhkx = Grnp1k+1\Grnks1

of all nonhorizontalk+1)-dimensional linear subspacesR§f"! is homeomorphic to the
total space of the canonical (tautological)- k)-dimensional bundlg,_x overGrp x =
Grn.n-k- Recall that &-dimensional plan® € AGr, «is ofthe formP = Ly+en1+v
whereL is the unigue parallel horizontktdimensional linear subspaceRY andv €
R". Note that there exists a unique vectos Li- in the linear subspace &" orthogonal
to Ly suchthatP = Ly +e,,1+v. This defines a bijective corresponderite> (L, v)
which proves the assertion th&Gr;, i is a tautological(n — k)-dimensional bundle over
Grn. Note that the zero section of this bundle is naturally identified with the manifold
N;. This follows from the fact that the zero section consists of the pl&es(Ly, v)
for which v = 0. Note that this implies thaAGr,x = Grpi1k+1\Grk+1 IS an open
“tubular” neighborhood ofN; which can also be seen as the normal bundl,;) to
N1 in Grpy1k+1. All the (co)homologies are understood to be withcoefficients. Let
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[N1] be the fundamental class &, i.e., the generator of the groufn_k (N1) =
Hkn—k)(Grnx) = Z,. By a slight abuse of notation, leNj] also be the image of this
class inHyn—k) (Grt1.k+1) upon the embeddiny; — Gryi1k+1. The Poincag dual of
the class Ny], denoted by, is a conomology class iH"K(Grp,1 k.1). Actually, by the
usual link between the Poineaduality and the Thom isomorphism theorem, see, e.g.,
[2] or Theorem 10.2, Chapter VI, especially Section 11, of [#G]an be seen as a class
in H*(w(Ng), v(N1)\N1) = H*(Grnt1.k+1, Gratik+1\Grk+1). Moreover, the Thom
isomorphism theorem says that each clase€ H*(v(Ni), v(N;)\N;) has a unique
decomposition of the formm = wd wherew € H*(v(Ny)) = H*(Ny). In particular
62 = wp_xf Wherewn_y is the top Stiefel-Whitney class of the bundigN;) — N; or
equivalently thez,-Euler class of the bundlg,_i overGr, x defined above. Hence,

0t = (wn_i)*6. @)

It is a well-known fact, already used in the proof of Theorem 6, that )" # 0. A
cohomological proof of this observation can be found in [5], see also [20], while an
alternative proof, based on Schubert calculus, is in Section 1.5 of [8]. From here we
deduce thag*** = wX 0 # 0 which follows fromwX_, # 0.

Letx: Gron-k = &én—k, I =0, ..., I, bethe sections of the bundig_x = v(N;) =
AGr,, introduced in the proof of Theorem 6. Recall tha(LkL) = X/ (Ly) is by
definition the unique point imﬁ such thatlL g + X; (Lﬁ) is the maximak-section of the
strictly convex bodyK;. Let X; = Im(x;), considered as a subset@fx C Grpi1k+1-

By definition, Cx(K) = ﬂ!:O Xi. Note thatX; is aC° submanifold of,_x sincex; is

a continuous cross section, and that the fundamental ckabsf X;, seen as a class in
H*(Grni1k+1), is equal to N1]. The last assertion follows from the fact thais linearly
homotopic to the zero cross section. The same argument shows igh#tte Poincag”
dual of any class of the fornM, ], whereM, is the submanifold oAGr,  defined in the
statement of Theorem 8. We conclude thathe Poincag’dual of N;] = [Xi] = [M,],

is concentrated in an arbitrarily small open neighborhdpdf X;, which means that

is in the image of the map

H" (G Mitk+1, Grnyrkra\Uip) —> Hn_k(Grn+1,k+1)~

From here it follows, essentially by the argument of Theorem 11.10 in Chapter VI, p. 373,
of [2], that6' 1 is in the image of the map

|
H{+D0O— (an+1,k+1, Grn+l,k+1\ﬂ Ui) — HIFDOW(Grp g 440),

i=0
which means that'+! is concentrated in an arbitrarily small neighborhood of the set
Ck(K), in the sense of Definition 1. O

In the proof of Corollary 1 we assume that the cohomology we work with is a con-
tinuous extension of the singular cohomology theory, sayCtaeh or the Alexander—
Spanier—Kolmogoroff cohomology theory. This is only a technical assumption, similar
to the corresponding assumptions in Poiee&gfschetz duality theorems.
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Proof of Corollaryl. Suppose that Cat(Cx(K)) < k —I. This means that there ex-
ists a family F = {F4, ..., Fx_} of closed subspaces @r = Grn 1 k+1 Such that
U:‘;'l F; = C«(K) and eaclt; is contractible to a point by a homotopy which moves
F insideGr. More precisely, this means that the inclusion nkgp— Gr is homotopic

to a constant map and as a consequence of this, the inducedm&pGr, Z,) —
H"K(F;, Z,) is trivial. Moreover, by the continuity of the cohomology theory, there ex-
ists an open s&¥, O F; such that the homomorphiski"*(Gr, Z,) — H" XV, Z,)

is also trivial. From the cohomology exact sequence of a pair we conclude that there
exists a clas® € H"X(Gr, Vi; Z») which is mapped to the clagsby the homo-
morphismH"K(Gr, F;; Z,) — H"X(Gr, Z,). By Theorem 8, the clagg*! is con-
centrated in an arbitrarily small neighborhood@#(C). It follows that there exists a
classfy € HO WD (Gr, Gr\V: Z,), whereV = |k=_ll Vi, which is mapped to the
class6't1. We conclude that the claggt; -6 € HOP&D(Gr, Gr; Z,) = 0

is mapped to the clag&*!. This is a contradiction to the fact from Theorem 8, that
oK+ £ 0. O

Proof of Theoren®. The key topological property of the $8t(«C), used in the proof
of Theorem 7, was the relatiqd). We will show that the se€ has the same property,
i.e., that

for each projectivék — | — 1)-dimensional pland®_,_; € RP",
C N &P # 9. (1a)

After we establish(1a), the rest of the proof will be just the repetition of the proof of
Theorem 7. So we concentrate on the prootid. Given a(k — | — 1)-dimensional
planePy_;_;, let M be the manifold of all projectivk-dimensional plane® such that
Pc_i—1 € P and let M] be its fundamental class. Alternatively, the maniftddcan be
described as the space of all linglar- 1)-dimensional subspaces®i*+* which contain
the(k —I)-dimensional linear spade,_| associated t®_,_;. The Poincag’dual of the
classM]isthe clas®*~', whered is the class introduced in the formulation of Theorem 8.
One way to see this is, in light of the fact thais the Poincag'dual of classedl,] (see
Theorem 8), to observe thaM] = [M,,] N --- N [M,,, ], wherev; are points which
spanL_;. In other words, the clagd*! is, by assumption, concentrated in an arbitrarily
small neighborhood o and9*~', being a Poincardual, is concentrated in an arbitrarily
small neighborhood of the manifoll. Since the nonzero clagd*! = 'tk is
concentrated in an arbitrarily small neighborhoodCaft M, we conclude that this set is
nonempty and the relatioria) follows. Note that this proof is essentially a repetition of
the argument already used in the proof of Corollary 1, see also the proof of Theorem 11.10
in Chapter VI, p. 373, of [2]. O

5. Counterexamples for Nonconvex Bodies
One can ask if one could replace the convex boHiewith more general, say compact,

sets. However, for one-dimensional sections this is not the case, as shown by an example
kindly communicated to us by J. Mateek.
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Example 1(J. Matowsek). The geometrical form of Theorem 1, without assumirg O
int K (and hence the stronger Theorem 3), is false for the compadf set {x €

R" | ry < |IX|| <2}, where O< r; < rp (and forK; = K andKj; the unit ball of
R", respectively). In particular, fon = 2 the (geometrical forms) of Theorems 1-8
and Corollary 1 (without assuming® int K at Theorems 1 and 2), with the maximal
k-sections, are not valid for all compact sets.

Proof. Ifaline A; in R" has a distance from 0, then

Vi(KNA) =2 <\/max(r22 —x2,0) — \/max(rlz —x2,0) )

that attains its maximum fax = r;. Hence all maximal 1-sections are those with
being tangent to the ball of radiug about 0, and none of these linds contains 0. O

Based on this example, we can give further examplesk-fitimensional sections,
k<n-1.

Example 2. For eachk € {1, ..., n — 1} the statement of Theorem 6 (and that of its
special case Theorem 5) is not valid for all compact &gts

Proof. LetK; = K x BK1 whereK = {x e linfe, ..., €1} | 1 < [IX]| <2}
(With 0 < r1 < rp) and B! = {x € lin{e k2, .... &} | IIX|| < 1}, and let
Kz, ..., Kkr1 bek unit balls centered at,@, .2, ..., e, Let Ax £ R" be an affine

k-dimensional plane, and suppose thatn A is a maximalk-section ofK; for any
i €{2,...,k+1}. ThenAy passes through the centerddf, . . ., K. 1, hence is of the
form Ax = Ay xlin{e,_ki2, ..., € },where0c A; Clin{ey, ..., e,_ks1}isalinearone-
dimensional subspace. Then, by Exampéd K1 N Ay) = Vi(K N A7) - Vi1 (B 1) <
Vi(K N (Ar + X)) - Viea(B¥Y) = V(K1 N (A + X)) for x € linfey, ..., enks1}
orthogonal toA; and||x|| = r1, henceK; N Ag is not a maximak-section ofKj. O
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