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1 Mathematical Institute of the Hungarian Academy of Sciences,
H-1364 Budapest, PF. 127, Hungary
makai@math-inst.hu

2 Faculty of Mathematics, University of Belgrade,
Studentski trg 16, 11001 Belgrade, p.p. 550, Yugoslavia
vrecica@matf.bg.ac.yu

3 Mathematical Institute of the Serbian Academy of Sciences and Arts,
Knez Mihajlova 35/1, 11001 Belgrade, p.p. 367, Yugoslavia
rade@turing.mi.sanu.ac.yu

Abstract. LetK = {K0, . . . , Kk} be a family of convex bodies inRn,1≤ k ≤ n−1. We
prove, generalizing results from [9], [10], [13], and [14], that there always exists an affine
k-dimensional planeAk ⊆ Rn, called acommon maximal k-transversalofK, such that, for
eachi ∈ {0, . . . , k} and eachx ∈ Rn,

Vk(Ki ∩ Ak) ≥ Vk(Ki ∩ (Ak + x)),

where Vk is the k-dimensional Lebesgue measure inAk and Ak + x. Given a family
K = {Ki }li=0 of convex bodies inRn, l < k, the setCk(K) of all common maximal
k-transversals ofK is not only nonempty but has to be “large” both from the measure
theoretic and the topological point of view. It is shown thatCk(K) cannot be included in a
ν-dimensionalC1 submanifold (or more generally in an(Hν, ν)-rectifiable,Hν-measurable
subset) of the affine GrassmannianAGrn,k of all affine k-dimensional planes ofRn, of
O(n + 1)-invariantν-dimensional (Hausdorff) measure less than some positive constant
cn,k,l , whereν = (k − l )(n − k). As usual, the “affine” GrassmannianAGrn,k is viewed
as a subspace of the GrassmannianGrn+1,k+1 of all linear (k + 1)-dimensional subspaces
of Rn+1. On the topological side we show that there exists a nonzero cohomology class
θ ∈ Hn−k(Gn+1,k+1; Z2) such that the classθ l+1 is concentrated in an arbitrarily small
neighborhood ofCk(K). As an immediate consequence we deduce that the Lyusternik–
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Shnirel’man category of the spaceCk(K) relative toGrn+1,k+1 is≥ k− l . Finally, we show
that there exists a link between these two results by showing that a cohomologically “big”
subspace ofGrn+1,k+1 has to be large also in a measure theoretic sense.

1. Introduction

A convex body K⊆ Rn is a compact convex set with nonempty interior. Amaximal
k-sectionof a convex bodyK ⊆ Rn is a setK ∩ Ak, where Ak ⊆ Rn is an affine
k-dimensional plane such that, for eachx ∈ Rn,

Vk(K ∩ Ak) ≥ Vk(K ∩ (Ak + x)).

HereVk denotes the normalized Lebesgue measure defined on affinek-dimensional
subspaces inRn (i.e., the measure of a unit cube is 1). Given a familyK of convex bodies,
a common maximal k-transversalof K is an affinek-dimensional planeAk for which
K ∩ Ak is a maximalk-section ofK for each elementK of K.

In this paper we give lower bounds on the size of the setCk(K) of all common maxi-
malk-transversals ofK, both from the measure theoretic and topological point of view.
It is obvious thatCk(K) is “in general” empty if|K| > k+1, where|K| is the cardinality
of the familyK. We show that the condition|K| ≤ k+1 that is “in general” necessary for
the existence of a common maximalk-transversal ofK is also sufficient (Theorem 6).
When the size of the familyK decreases belowk + 1, we show that the setCk(K)
increases both measure theoretically and topologically (Theorems 7 and 8). Theorem 9
is a link between these two results, which shows that a sufficiently cohomologically
nontrivial compactC1 submanifold (or more generally a compact(Hν, ν)-rectifiable,
Hν-measurable subset) of a Grassmannian must also have a sufficiently large measure
in its own dimension. Our methods are: reduction to a topological coincidence question
for a family of continuous cross sections of a vector-bundle, integral geometry in ho-
mogeneous spaces, topology of Grassmannians, cohomological technique, and Poincar´e
duality. Before we formulate precise statements of these theorems, we review some other
related combinatorial geometric results which serve as a motivation for studying these
questions.

2. A Review of Motivating Results

We always assume thatn ≥ 2. ForC ⊆ Rn, we denote by linC and affC the linear and
affine subspace ofRn spanned byC, respectively.O(n) denotes the orthogonal group in
Rn, that is, the group of all linear isometries ofRn, while SO(n) is the special orthogonal
group{T ∈ O(n) | detT = 1}. The line segment with endpointsx andy is denoted by
[x, y].

Now we recall some definitions, see also 2.10.1–2 of [6]. For a metric spaceX and
m ≥ 0 them-dimensional Hausdorff-measureHm is an outer measure defined on all
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subsets ofX as follows: forA ⊂ X,

Hm(A) = sup
δ>0

(
inf

{ ∞∑
i=1

diam(Ai )
m · πm/2

/(
2m0

(
1+ m

2

)) ∣∣∣
A ⊂

∞⋃
i=1

Ai ⊂ X, ∀i, diam(Ai ) ≤ δ
})
,

where diam means diameter. All closed subsets ofX areHm-measurable (see pp. 54 and
170 of [6]). If m is a positive integer, one callsA ⊂ X, with Hm(A) < ∞, (Hm,m)-
rectifiable, if,

∀ε > 0, ∃Aε ⊂ X, Hm(A\Aε) < ε,

and Aε is the image of a bounded subset ofRm by a Lipschitz map defined on this
subset, see pp. 251–252 of [6]. The zero-dimensional Hausdorff-measureH0(A) of
a setA equals its cardinality, ifA is finite, and equals∞ if A is infinite. One calls
A ⊂ X(H0,0)-rectifiableif A is finite [6, p. 252].

If X is a Euclidean space andA is a compactC1 m-dimensional submanifold, thenA is
(Hm,m)-rectifiable, andHm(A)coincides with the differential geometricm-dimensional
volume (Theorems 3.2.26 and 3.2.39 in [6]).

There are several star-shaped sets associated with a convex bodyK ⊆ Rn. For
0 ∈ int K thedouble chordal symmetral21̃K of K (see Definition 5.1.3 of [7]) is defined
by 21̃K := {λu | u ∈ Sn−1, |λ| ≤ V1(K ∩ (Ru))}, whereRu= {ru | r ∈ R}; 1̃K is a
0-symmetric star-shaped set having the same chord lengths through 0 in all directions as
K . Thedifference bodyof K (see §12, Section 53 of [1], or Section 3.2 of [7]) isK+(−K );
equivalently, it can be defined as{λu | u ∈ Sn−1, |λ| ≤ max{V1(K ∩ (Ru+ x)) | x ∈
Rn}}. The inclusion 2̃1K ⊆ K + (−K ) readily follows from the definitions.

Theorem 1[10, Theorem 3.1], [17, proof of Theorem 4].For any convex body K⊆
Rn with 0 ∈ int K the boundaries of the associated double chordal symmetral and the
difference body have a nonempty intersection:

bd(21̃K ) ∩ bd(K + (−K )) 6= ∅

Geometrically, this theorem says that 0 belongs to someaffine diameter[x, y] of
K , that is, to a nondegenerate line segment [x, y] = aff{x, y} ∩ K such that, for each
z ∈ Rn, V1([x, y]) ≥ V1(K∩(aff{x, y}+z)). Equivalently, in a more usual formulation,
there exist two different parallel supporting hyperplanes ofK , passing throughx andy,
respectively, see p. 293 of [10]. The geometrical reformulation of the statement of the
theorem remains true even without the assumption 0∈ int K . A purely geometrical proof
can be found in [10], while the proof in [17] uses elementary index theory as presented
in [18]. Theorem 1 of [9] proves the geometrical reformulation in the case 06∈ K , but
its arguments are easily modifiable to obtain the case 0∈ K as well.

For 0 ∈ int K the intersection body IKof K , introduced in [12] (see also Defi-
nition 8.1.1 of [7]), is defined byIK := {λu | u ∈ Sn−1, |λ| ≤ Vn−1(K ∩ u⊥)},
whereu⊥ = {x ∈ Rn | 〈x,u〉 = 0}. Thecross-section body CKof K , introduced in
[15] (see also Definition 8.3.1 of [7]) is defined byCK := {λu | u ∈ Sn−1, |λ| ≤
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max{Vn−1(K ∩ (u⊥ + x)) | x ∈ Rn}}. Again there is an inclusion of the formIK ⊆ CK
and a theorem relating the boundaries of these bodies.

Theorem 2[13, Theorem 1 obtained jointly with R. Gardner].For any convex body
K ⊆ Rn with 0 ∈ int K one hasbd(IK) ∩ bd(CK) 6= ∅.

Geometrically, this theorem says that 0 belongs to amaximal(n − 1)-dimensional
section K∩ u⊥ of K , for someu ∈ Sn−1. In other words the sectionK ∩ u⊥ has the
property that, for eachx ∈ Rn, Vn−1(K ∩u⊥) ≥ Vn−1(K ∩ (u⊥ + x)). This geometrical
reformulation holds even without the assumption 0∈ int K . Actually, not only must there
exist someu ∈ Sn−1 for which K ∩ u⊥ is maximal in the sense above, but the set of all
such unit vectors cannot be included in a compactC1(n− 2)-dimensional submanifold
(or more generally in an(Hn−2,n − 2)-rectifiable,Hn−2-measurable subset) ofSn−1,
of (n − 2)-volume (or more generally(n − 2)-dimensional Hausdorff-measure) less
thancn−2, wherecn−2 is the volume of the sphereSn−2. Moreover, herecn−2 cannot be
replaced by any larger number. It is implicit in the proof of Theorem 2 that there always
exists a maximal(n − 1)-sectionK ∩ u⊥ of K such thatu⊥ contains any given linear
(n − 2)-dimensional subspace ofRn prescribed in advance. The proof of this result is
purely geometrical in combination with a simple continuity argument.

It was natural to try to generalize Theorems 1 and 2 both to the case of families of
convex bodies and to the case of arbitraryk-dimensional maximal sections. As before
Grn,k is the Grassmann manifold of all lineark-dimensional subspaces ofRn.

Theorem 3[14, Theorem 4]. For any convex bodies K0, K1 ⊆ Rn there exists a line
A1 ⊆ Rn such that K0∩ A1 is an affine diameter of K0 and K1∩ A1 is an affine diameter
of K1.

Theorem 4[14, Theorem 3]. Let 1 ≤ k ≤ n − 1 be an integer. Then for any convex
body K⊆ Rn the origin0belongs to some maximal k-section K∩ Ak of K. Actually, the
set of all such k-dimensional linear subspaces Ak cannot be included in aν-dimensional
compact C1 submanifold(or, more generally, in an (Hν, ν)-rectifiable,Hν-measurable
subset) of the Grassmannian Grn,k, of O(n)-invariant ν-measure(or, more generally,
ν-dimensional Hausdorff measure) less than some positive constant cn,k, whereν =
(k−1)(n− k). This is sharp in the sense that there exists some convex body K such that
the above set is a smooth compactν-dimensional submanifold of finite O(n)-invariant
ν-measure.

TheO(n)-invariantν-dimensional Hausdorff measure (ν = (k−1)(n− k)) is meant
with respect to anO(n)-invariant Riemannian metricds2 onGrn,k. This O(n)-invariant
metric is described at the lineark-dimensional subspaceL0

k = lin{e1, . . . ,ek} spanned
by the firstk basic vectorse1, . . . ,ek as follows. The tangent space toGrn,k at the point
L0

k is the set of all linear functionsA: lin{e1, . . . ,ek} → lin{ek+1, . . . ,en}, and the
Riemannian metric atL0

k is given by

ds2 =
k∑

i=1

n∑
j=k+1

〈Aei ,ej 〉2 = Tr(A∗ · A),
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where Tr means trace. SinceO(n) acts transitively onGrn,k, this extends uniquely to
a Riemannian metric onGrn,k, by the formula thatds2 at the left-translateg′(A) of A,
for g ∈ O(n), equalsds2 at A, as given above. (Hereg′ denotes the derivative of the
action byg, between the respective tangent spaces atL0

k andgL0
k.) Still we have to see

that this extension exists, i.e., ifg′1(A1) = g′2(A2), then Tr(A∗1 · A1) = Tr(A∗2 · A2).
Letting g = g−1

2 g1, we havegL0
k = L0

k and A2 = g′(A1). That is,g is the direct
sum of two orthogonal matricesh1 acting onL0

k and h2 acting on lin{ek+1, . . . ,en}
and graphA2 = g · graphA1, or A2 = h2A1h−1

1 . (For the relation about the graphs
observe that atL0

k locally Grn,k can be considered as the vector space of all linear
mapsL0

k → lin{ek+1, . . . ,en}, by identifying these linear functions with their graphs.
Then the action byg becomes a linear map, whose derivativeg′ is a linear transfor-
mation, that pointwise coincides withg, after this identification.) Then Tr(A∗2 · A2) =
Tr((h−1

1 )∗A∗1h∗2h2A1h−1
1 ) = Tr((h−1

1 )∗A∗1 A1h−1
1 ) = Tr(h1A∗1 A1h−1

1 ) = Tr(A∗1 A1), as
required. It is implicit in the proof of Theorem 4 that there always exists a maximal
k-sectionK ∩ Ak of K such thatAk contains any linear(k − 1)-dimensional subspace
Lk−1 prescribed in advance.

Theorem 5[14, Theorem 5]. For any convex bodies K0, . . . , Kn−1 ⊆ Rn there exists
an affine(n − 1)-dimensional plane An−1 ⊆ Rn such that for any i∈ {0, . . . ,n −
1}, Ki ∩ An−1 is a maximal(n− 1)-section of Ki .

The proofs of Theorems 3–5 used partly geometrical arguments, sometimes involved
ones, together with elementary topological tools like Gr¨unbaum’s theorem on the non-
existence of continuous even unit tangent vector fields onSn−1, Brouwer’s fixed point
theorem, and the Borsuk–Ulam theorem on the nonexistence of odd continuous map-
pingsSn−1→ Sn−2.

Observe that the equivalent (geometrical) form of Theorem 1 which refers to the
maximal 1-sections (without assuming 0∈ int K ) is a special case of Theorem 3, when
one body is chosen to be the unit ball centered at 0. Similarly, the geometrical form
of Theorem 2 (again without assuming 0∈ int K ) is a particular case of Theorem 4
(up to the value of the constantcn,k). Moreover, the assertion after Theorem 2 about
the existence of a maximal(n − 1)-sectionK ∩ u⊥ of K such thatu⊥ contains any
linear (n − 2)-dimensional subspaceLn−2 ⊆ Rn, prescribed in advance, is a special
case of Theorem 5 as well. Indeed, it is sufficient to apply Theorem 5 to the family
{K , B1, . . . , Bn−1}, whereBi are unit balls which have the property that the affine hull
of their centers is equal toLn−2.

The main objective of this paper is to extend Theorems 3–5 to the general case of
k-sections, where 1≤ k ≤ n− 1.

3. Statements of New Results

In this section we formulate several results about common maximalk-sections for
families of convex bodies inRn. The first result is an existence result. It is shown
that common maximalk-transversals exist if the given familyK = {Ki }li=0 of con-
vex bodies consists ofl+1≤ k+1 elements. The proof of this theorem is topological
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and follows from the assertion that(wn−k)
k ∈ Hk(n−k)(Grn,n−k; Z2) is nonzero, where

wn−k is the top Stiefel–Whitney class of the canonical(n−k)-plane bundle overGrn,n−k.
The following two theorems (Theorems 7 and 8) are of more quantitative nature. In
Theorem 7 we show that measure theoretically the setCk(K) of all common maxi-
mal k-transversals ofK is “sufficiently large” with respect to a measure defined on the
GrassmannianGrn+1,k+1. The argument is based on a generalized Cauchy–Crofton–
Poincaré formula from integral geometry. In Theorem 8 we show that the setCk(K) is
cohomologically nontrivial in the following sense. There exists a cohomology class
θ ∈ Hn−k(Grn+1,k+1; Z2) such that for each open neighborhoodU of Ck(K), the
classθ l+1 is contained in the image of the homomorphismH (l+1)(n−k)(Gr,Gr\U ) →
H (l+1)(n−k)(Gr), whereGr := Grn+1,k+1 and the cohomology is taken withZ2-coeffi-
cients. Finally, in Theorem 9 we establish a link between Theorems 7 and 8 by
showing that any compact subset cohomologically nontrivial in the sense of Theorem
8 must be measure theoretically “large” in the sense of Theorem 7. This means
that Theorem 8 is formally more general than Theorem 7. Note however that the
key nontopological ideas in the proof of Theorem 9 are already present in the proof of
Theorem 7, so this theorem can also be seen as a companion of Theorem 7.

Theorem 6. Let1≤ k ≤ n−1 be an integer. Then for each familyK = {K0, K1, . . . ,

Kk} of convex bodies in Rn there exists an affine common maximal k-transversal. In
other words there exists an affine k-dimensional plane Ak such that, for each x∈ Rn

and each i∈ {0, . . . , k},Vk(Ki ∩ Ak) ≥ Vk(Ki ∩ (Ak+ x)), where Vk is the normalized
Lebesgue measure defined on affine k-dimensional subspaces of Rn.

Simple examples show that there exist familiesK = {Ki }ki=0 of convex bodies inRn

such that the common maximalk-section, whose existence was asserted in the previous
theorem, is unique (see the remarks following Theorem 9). If the size of the familyK is
l + 1, wherel < k, then the setCk(K) of all common maximalk-sections is not only
nonempty but is quite big both from a measure theoretic and a topological point of view.
The exact statements are given in the following two theorems.

We assume thatRn is embedded in the real projective spaceRPn in the usual way.
Thus an affinek-dimensional planeAk of Rn becomes a projectivek-dimensional plane of
RPn, that can be identified with a linear(k+1)-dimensional plane ofRn+1 (namely, with
lin(Lk+en+1), whereLk ⊆ Rn is embedded inRn+1 by(x1, . . . , xn) 7→ (x1, . . . , xn,0)).
Thus the set of all affinek-dimensional planes ofRn will be considered as a (dense open)
subset of the GrassmannianGrn+1,k+1, and theO(n+1)-invariant(k−l )(n−k)-measure
is defined as the(k − l )(n − k)-dimensional Hausdorff-measure with respect to the
O(n+ 1)-invariant Riemannian metricds2 on Grn+1,k+1, defined like after Theorem 4
(for n, k rather thann+ 1, k+ 1).

Theorem 7. Let1≤ k ≤ n− 1 and0≤ l ≤ k be integers and letν := (k− l )(n− k).
Suppose thatK = {K0, K1, . . . , Kl } is a family of l+1convex bodies in Rn and let Ck(K)
be the space of all common maximal k-transversals ofK. Then Ck(K) cannot be included
in an (Hν, ν)-rectifiable,Hν-measurable subset of Grn+1,k+1, of O(n+ 1)-invariantν-
dimensional Hausdorff-measure less than some positive constant cn,k,l . This is sharp in
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the sense that there are choices ofK such that Ck(K) is a compact C∞ ν-dimensional
manifold of finite O(n+ 1)-invariantν-measure.

Definition 1. Let K be a compact subset of a compact manifoldM . We say that a
cohomology classθ ∈ H p(M; Z2) is concentrated in an arbitrarily small neighborhood
of K if, for each open neighborhoodU of K , the classθ is contained in the image of the
mapH p(M,M\U ; Z2)→ H p(M; Z2).

Definition 2. Suppose thatA is a subspace of the topological spaceX. The Lyusternik–
Shnirel’man category CatX(A) of A relative toX is the minimum cardinality of a family
F of closed sets such that

⋃
F = A and each elementF ∈ F is contractible to a point

by a homotopy that movesF insideX.

As before, we consider the affine GrassmannianAGrn,k of all affinek-dimensional
planes inRn as a subspace of the manifold of allk-dimensional planes in the projective
spaceRPn which can be considered also as the GrassmannianGr = Grn+1,k+1 of all
linear(k+ 1)-dimensional subspaces ofRn+1.

Theorem 8. We make the same assumptions about n, k, l , andK as in Theorem7.
Givenv ∈ Rn, let [Mv] be the Z2-fundamental class of the submanifold Mv := {L ∈
AGrn,k | v ∈ L}. Let θ ∈ Hn−k(Grn+1,k+1; Z2) be the cohomology class which is the
Poincaŕe dual of[Mv]. Thenθk+1 6= 0and the classθ l+1 is concentrated in an arbitrarily
small neighborhood of Ck(K) in Grn+1,k+1, in the sense of Definition1.

Corollary 1. The Lyusternik–Shnirel’man category of the space Ck(K) of all common
maximal k-transversals relative to Gr:= Grn+1,k+1 is at least k− l + 1,

CatGr (Ck(K)) ≥ k− l + 1.

Theorem 9. Suppose that C⊆ Grn+1,k+1 is a compact subset such that the classθ l+1 ∈
H (n−k)(l+1)(Grn+1,k+1; Z2), defined in Theorem8, is concentrated in an arbitrarily small
neighborhood of the subset C. Then the conclusion of Theorem7 holds for the subset
C. In other words, for ν = (k − l )(n − k), the O(n + 1)-invariant ν-measure of any
(Hν, ν)-rectifiable, Hν-measurable subset of Grn+1,k+1 containing C is at least cn,k,l ,
where cn,k,l is the same constant as in Theorem7.

Before turning to the proofs we make some remarks. Forl = k, Theorem 7 reduces
to Theorem 6. Theorem 6 is sharp in the sense that in general fork + 2 convex bodies
K0, . . . , Kk+1 ⊆ Rn there does not exist an affinek-dimensional planeAk such that
Ki ∩ Ak is a maximalk-section ofKi : takek + 2 unit balls with centers not lying in
an affinek-dimensional plane. Similarly, fork + 1 convex bodiesK0, . . . , Kk ⊆ Rn in
general there do not exist two affinek-dimensional planes with the stated property: take
k+ 1 unit balls with centers not lying in an affine(k− 1)-dimensional plane. Moreover,
Theorem 6 includes Theorems 3 and 5, while Theorem 7 includes Theorem 4, by choosing
l = 1, K0 = K , K1 the unit ball with center 0.
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4. Proofs of the Theorems

Proof of Theorem6. We begin with the observation that it suffices to prove the theorem
for strictly convex bodies. Recall that a convex bodyK is strictly convex if bdK does
not contain a line segment. This observation is based on the fact that each convex body
can be approximated (in the sense of the Hausdorff distance) by strictly convex smooth
(C1) bodies [1, §6, Section 27]. Also, ifK m ⊆ Rn, m ∈ N, is a sequence of convex
bodies converging in the Hausdorff metric to a convex bodyK ⊆ Rn and Am

k ⊆ Rn is
a sequence of affinek-dimensional planes converging to an affinek-dimensional plane
Ak ⊆ Rn (in the topology inherited fromGrn+1,k+1) then, if K m ∩ Am

k is a maximal
k-section ofK m for all m, thenK ∩ Ak is a maximalk-section ofK . The details of this
argument can be found in [14]. We conclude from here that the general result follows
from the result in the special case of strictly convex bodies, so from hereon we assume
that all bodiesKi are strictly convex.

Our general plan of the proof is to reduce the problem of the existence of common
maximalk-transversals to a topological coincidence question for a family of continuous
cross sections of a vector bundle over a Grassmannian manifold. A similar plan was
applied in [14] and to other combinatorial geometric problems in [20] and [4]. Let
Lk ⊆ Rn be a lineark-dimensional subspace inRn. Then anyk-dimensional affine
subspace ofRn, parallel toLk, is of the formLk + x, where we may choosex from the
linear subspaceL⊥k that is the orthogonal complement ofLk. Let π : Rn → L⊥k be the
orthogonal projection ontoL⊥k . For x ∈ π(Ki ) let fi (x) = Vk(Ki ∩ (Lk + x))1/k. By
the Brunn–Minkowski theorem [1, §11, Section 48]fi is a concave function onπ(Ki ).
By strict convexity ofKi , for x ∈ relbd(π(Ki )) the intersectionKi ∩ (Lk + x) consists
of one point, hencefi (x) = 0 for suchx. (The relative boundary (relbd) and relative
interior (relint) are taken with respect toL⊥k .) Hence fi (x) is a continuous function on
π(Ki ) which attains its maximum in relint(π(Ki )), and for such a point of maximumx
we have thatKi ∩ (Lk + x) is ak-dimensional convex body.

Moreover, this maximum pointx is unique. Indeed, if there were two maximum
pointsx1, x2 ∈ relint(π(Ki )), then by concavity offi onπ(Ki )we would havef (x1) =
f ( 1

2(x1+ x2)) = f (x2). From here and the well-known fact that the Brunn–Minkowski
inequality is strict unless the convex bodies are homothetic (see §11, Section 48 of [1]),
we deduce thatKi ∩ (Lk + x1) andKi ∩ (Lk + x2) are translates of each other. Since
Vk(Ki ∩ (Lk + x1)) = Vk(Ki ∩ (Lk + 1

2(x1+ x2))), the inclusion1
2[(Ki ∩ (Lk + x1))+

(Ki ∩ (Lk + x2))] ⊆ Ki ∩ (Lk + 1
2(x1 + x2)) turns out to be an equality, hence also

Ki ∩ (Lk + 1
2(x1+ x2)) is a translate ofKi ∩ (Lk + x1). Therefore bdKi contains a line

segment, contradicting strict convexity ofKi .
So we have a functionL⊥k 7→ xi (L⊥k ) wherexi (L⊥k ) is the unique point wherefi

attains its maximum. It is not difficult to show that this function is continuous. Indeed,
if Lm

k → Lk is a convergent sequence inGrn,k, then any limit point ofxi ((Lm
k )
⊥) equals

xi (L⊥k ) and allxi ((Lm
k )
⊥) lie in a compact set. This is sufficient to imply the continuity

of the functionL⊥k 7→ xi (L⊥k ). The details of the above arguments can be found in [14].
The theorem clearly follows if we can find a planeLk ∈ Grn,k and somex ∈ L⊥k such

thatKi ∩(Lk+x) is a maximalk-section ofKi for eachi ∈ {0, . . . , k}. In other words we
have to prove that for someLk ∈ Grn,k we have a coincidencex0(L⊥k ) = · · · = xk(L⊥k ).
Note that each of the functionsxi can be considered as a continuous cross section of the
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canonical(n − k)-plane bundle over the Grassmann manifoldGrn,n−k. Recall that the
total space of this bundle is{(L⊥k , x) | L⊥k ∈ Grn,n−k, x ∈ L⊥k ⊆ Rn} with the topology
inherited from the product spaceGrn,n−k × Rn, and its projection is(L⊥k , x) 7→ L⊥k .
We consider thek continuous cross sectionsx1(L⊥k ) − x0(L⊥k ), . . . , xk(L⊥k ) − x0(L⊥k )
of this bundle. By [5] or Proposition 2 of [20], anyk continuous cross sections of this
bundle have a common zero. In other words, there exists a planeL⊥k ∈ Grn,n−k such that
x0(L⊥k ) = · · · = xk(L⊥k ), which completes the proof of the theorem.

In the proof of the following theorem the integral geometric considerations, leading
to the proof of (3) in the(Hν, ν)-rectifiable,Hν-measurable case, were kindly commu-
nicated to us by R. Howard.

Proof of Theorem7. 1. We want to prove that the setCk(K) cannot be included in an
(Hν, ν)-rectifiable,Hν-measurable subset ofO(n + 1)-invariantν-dimensional Haus-
dorff measure smaller than a positive constantcn,k,l . Forl = k the setCk(K) is not empty,
an(H0,0)-rectifiable set is just a finite set, and a zero-dimensional Hausdorff-measure
of a finite set is just the cardinality of the set. Hence we may choosecn,k,k = 1. Now let
0 ≤ l < k. We choosek− l additional bodiesKl+1, . . . , Kk. It is convenient to choose
these bodies to be unit balls such that their centers are affinely independent. Obviously
each affine(k−l−1)-dimensional plane can arise as the affine hull of these centers, for an
appropriate choice of these balls. Then by Theorem 6 there exists an affinek-dimensional
plane Ak ⊆ Rn such that for eachi ∈ {0, . . . , l } we have thatKi ∩ Ak is a maximal
k-section ofKi , andAk contains an arbitrary affine(k− l −1)-dimensional planeAk−l−1

given in advance. Moreover, we may also take projective(k− l −1)-dimensional planes
Pk−l−1 rather than affine ones. In fact, if a projective(k−l−1)-dimensional planePk−l−1

lies in the infinite hyperplane ofRn, e.g., is the infinite hyperplane of lin{e1, . . . ,ek−l },
then we choose the centers of the unit ballsKl+1, . . . , Kk at λe1, . . . , λek−l , and let
λ → ∞. Again by Theorem 6 there exist affinek-dimensional planesAk(λ) which
give maximalk-sections of all bodiesK0, . . . , Kl and which converge to a (projec-
tive) k-dimensional planeAk that necessarily containsPk−l−1. However, then for each
i ∈ {0, . . . , l } we have thatKi ∩ Ak is a maximalk-section ofKi (see [14], cited in the
beginning of the proof of Theorem 6).

For a projective(k − l − 1)-dimensional planePk−l−1 ⊆ RPn (real projectiven-
dimensional space) let

Sk(Pk−l−1) = {Pk | Pk ⊆ RPn is a projectivek-dimensional plane,Pk−l−1 ⊆ Pk}.
Recall thatCk(K) = {Ak | Ak ⊆ Rn is an affinek-dimensional plane such that(∀i ∈
{0, . . . , l }) Ki ∩ Ak is a maximalk-section ofKi }. Henceforward we considerCk(K)
as a set of projectivek-dimensional planes. Then the above assertion about projective
(k− l − 1)-dimensional planes can be reformulated as follows:

for each projective(k− l − 1)-dimensional planePk−l−1 ⊆ RPn,

Ck(K) ∩ Sk(Pk−l−1) 6= ∅. (1)

The setCk(K) of affine, thus projective,k-dimensional planes inRn is considered as a
subset ofGrn+1,k+1, and we identify the projective(k− l −1)-dimensional planePk−l−1
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with a linear(k− l )-dimensional subspaceLk−l of Rn+1. Moreover, we writeSk(Pk−l−1)

as Sk+1(Lk−l ), and we consider it as a set of linear(k + 1)-dimensional subspaces of
Rn+1. Thus

for eachLk−l ∈ Grn+1,k−l , Ck(K) ∩ Sk+1(Lk−l ) 6= ∅. (2)

Now we recall some integral geometric considerations from [3] and [11]. We follow
the notation of [11] but assume that the results hold in the generality given in [3]. Let
G be a Lie group, letK ⊆ G be a compact (thus Lie) subgroup ofG, and letG/K
be the homogeneous space of left cosetsξK of K in G. Then G acts onG/K by
g(ξK ) = (gξ)K . Let π : G → G/K denote the natural projection, whose derivative
will be denoted byπ ′. Suppose thatG has a Riemannian metricds2, that is left invariant
on G, moreover is right invariant under elements ofK . We denote the corresponding
bilinear form onG by 〈 , 〉. This induces aG-invariant Riemannian metricds′2 onG/K .
The corresponding bilinear form is denoted by〈 , 〉′, and it is described as follows:

〈X, X〉′T(G/K )x = 〈[π ′|(kerπ ′(ξ))⊥]−1X, [π ′|(kerπ ′(ξ))⊥]−1X〉T Gξ
,

wherex ∈ G/K , andξ is any element ofπ−1(x). (Observe thatπ ′|(kerπ ′(ξ))⊥ is a
linear isomorphism of the orthogonal complement(kerπ ′(ξ))⊥ of kerπ ′(ξ) in T Gξ onto
T(G/K )x, and that this definition is independent of the choice ofξ .)

LetHp be thep-dimensional Hausdorff measure onG/K and letM be an(Hp, p)-
rectifiable subset ofG/K . (See Section 3.2.14 of [6] or Section 2 of this paper for the
definition.) Basically these are subsets of finiteHp measure that can be covered up to a
set ofHp zero by a countable number of Lipschitz images of subsets ofRp. This includes
the class of rectifiable sets (which are the Lipschitz images of bounded subsets ofRp).
If M is alsoHp measurable, then (see Theorem 3.2.19 of [6]) forHp almost allx ∈ M
there is ap-dimensional subspace tangent space Tanp(HpbM, x) which we just denote
by T(M)x and its orthogonal complement inT(G/K )x will be denoted byT⊥(M)x.
(To simplify notation we sometimes suppress the dimension and just say thatM is
H rectifiable and measurable.) IfM is an embeddedp-dimensional submanifold of class
C1 and finite volume, thenM isH rectifiable and measurable and Vol(M) = Hp(M).

Let M ⊂ G/K be an(Hp, p)-rectifiable subset ofG/K which isHp measurable
and letN ⊂ G/K be an(Hq,q)-rectifiable subset ofG/K which isHq-measurable and
p+ q ≥ dim(G/K ). Setm = dim(G/K ). Then for almost allg ∈ G the intersection
M ∩ gN is anHp+q−m-measurable(Hp+q−m, p+ q − m)-rectifiable subset ofG/K .
Moreover, ifG is unimodular (in particular, compact, see Remark 2.4 of [11]), then the
integral geometric formula, the so-called Poincar´e’s formula (compare Theorem 3.8 of
[11] stated for the smooth case),∫

G
Hp+q−n(M ∩ gN)dg=

∫ ∫
M×N

σK (T
⊥(M)x, T⊥(N)y)dHp × dHq(x, y)

holds. Heredg is the volume form onG associated with the Riemannian metricds2

on G, see Remark 2.6 of [11], and the Hausdorff measures are taken with respect to
the Riemannian metricds′2. Further,σK (T⊥(M)x, T⊥(N)y) (see Definition 3.3 of [11])
is a type of “integrated absolute value of sine of angle” and for our purposes all that
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matters is that 0≤ σK (T⊥(M)x, T⊥(N)y) ≤ Vol(K ) (Vol(K ) taken in the sense of the
Riemannian metricds2, see the inequality 0≤ σ(V,W) ≤ 1 from 2.1 of [11]) so that∫

G
Hp+q−m(M ∩ gN)dg≤ Vol(K ) ·Hp(M) ·Hq(N). (3)

This can be seen by modifying the arguments in either [3] or [11]. We briefly indicate how
to do the modifications of the arguments of [11]. First note that the proof of the Basic
Integral Formula ([11, p. 7]; assumingG is unimodular this is essentially the special
case of the formula above whereK = {e} is the trivial subgroup ofG) only depends
on Sard’s theorem, the coarea formula, and some changes of variables in integrals.
If in deriving formula (2-12) on p. 8 of [11] the smooth coarea formula is replaced
by the form given by Federer (see Theorem 3.2.22, p. 258, of [6]) we get the same
formula except that nowM and N are as above and (using the notation of [11, p. 8])
the fibers f −1[g] are H p+q−n-measurable,(Hp+q−n, p+ q − n)-rectifiable subsets of
G for almost allg ∈ G. The rest of the proof is pretty much word for word the same.
Therefore the Basic Integral Formula of [11] holds whenM and N areH-rectifiable
and measurable subsets ofG. Poincaré’s formula [11, Theorem 3.8, p. 15] follows
from the Basic Integral Formula by purely formal considerations (basically changes
of variables in integrals) so it will also hold forH-rectifiable and measurable setsM
andN.

We apply this inequality toG = SO(n + 1), K = [SO(k + 1) × SO(n − k)] ∪
[(O(k+1)\SO(k+1))×(O(n−k)\SO(n−k))], whereO(k+1)acts on lin{e1, . . . ,ek+1}
and O(n − k) acts on lin{ek+2, . . . ,en+1}, where {e1, . . . ,en+1} is the standard or-
thonormal base ofRn+1. Then K is the stabilizer of lin{e1, . . . ,ek+1} in SO(n + 1),
henceG/K can be identified withGrn+1,k+1, with π : G → G/K given byπ(g) =
g(lin{e1, . . . ,ek+1}) for g ∈ SO(n+ 1).

We define the bi-invariant Riemannian metricds2 onG as follows. We have thatT GI ,
the tangent space ofG at I , i.e., the Lie algebra ofG, is the set of all skew-symmetric
n+1 byn+1 matrices. Then forT GI 3 (ai j )we letds2 =∑i< j a2

i j = 1
2 Tr[(ai j )

∗(ai j )].
This has a left-invariant and a right-invariant extension toG, which however coincide,
to give a bi-invariant extension [11, 3.12a].

Next we consider the derivative ofπ at I , i.e., π ′(I ): T GI → T(G/K )π(I ). We
recall from the remarks following Theorem 4 thatT(G/K )π(I ) is the set of all linear
transformations lin{e1, . . . ,ek+1} → lin{ek+2, . . . ,en+1}. Then we have for(ai j ) ∈ T GI

thatπ ′(I )(ai j ) = (ai j )
1≤ j≤k+1
k+2≤i≤n+1 ∈ T(G/K )π(I ). Therefore kerπ ′(I ) = {(ai j ) ∈ T GI |

ai j = 0 for j ≤ k+ 1< i }. Hence for its orthogonal complement(kerπ ′(I ))⊥ in T GI

in the sense of the above Riemannian metricds2 we have(kerπ ′(I ))⊥ = {(ai j ) ∈ T GI |
ai j = 0 for i, j ≤ k+ 1 and fori, j > k+ 1}.

By definition,ds′2 in G/K , at(ai j )
1≤ j≤k+1
k+2≤i≤n+1 ∈ T(G/K )π(I ) is obtained the following

way. We extend(ai j )
1≤ j≤k+1
k+2≤i≤n+1 to ann + 1 by n + 1 matrix (ai j ) ∈ (kerπ ′(I ))⊥, i.e.,

to a skew-symmetric matrix satisfyingai j = 0 for i, j ≤ k + 1 and fori, j > k + 1,
and evaluateds2 for the obtained matrix. This however gives us

∑
i< j a2

i j =
∑

i> j a2
i j =∑n+1

i=k+2

∑k+1
j=1 a2

i j . That is, onT(G/K )π(I ) theSO(n+ 1)-invariant Riemannian metric
ds′2 onG/K = Grn+1,k+1 considered in [11] equals theO(n+1)-invariant Riemannian
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metricds2 on Grn+1,k+1, introduced after Theorem 4 (forn, k rather thann+ 1, k+ 1),
and considered in this theorem. Since both of these Riemannian metrics areSO(n+ 1)-
invariant, they coincide on the wholeG/K .

Now suppose thatCk(K) is included in an(Hν, ν)-rectifiable,Hν-measurable subset
M of Grn+1,k+1, whereν = (k − l )(n − k). We are going to show that theO(n + 1)-
invariantν-dimensional Hausdorff-measure ofM , in the sense of theO(n+1)-invariant
Riemannian metricds′2 on Grn+1,k+1 considered in this theorem, is at least a suitably
chosen positive constantcn,k,l .

By (2) we have for eachLk−l ∈ Grn+1,k−l thatM ∩Sk+1(Lk−l ) 6= ∅. Observe that for
anyLk−l ∈ Grn+1,k−l we have thatSk+1(Lk−l ) is a compactC∞manifold, diffeomorphic
to Grn−k+l+1,l+1, that has dimension(l + 1)(n− k). We fix someL0

k−l ∈ Grn+1,k−l . We
have for anyg ∈ SO(n+1) thatSk+1(gL0

k−l ) = gSk+1(L0
k−l ). LetN = Sk+1(L0

k−l ). Then
for eachg ∈ SO(n+1)we haveM∩gN = M∩gSk+1(L0

k−l ) = M∩Sk+1(gL0
k−l ) 6= ∅.

Further,ν+dim N = (k−l )(n−k)+(l+1)(n−k) = (k+1)(n−k) = dimGrn+1,k+1 =
dim(G/K ).

Applying the above cited results from [11], for almost allg ∈ SO(n + 1) we have
that M ∩ gN is a finite subset ofGrn+1,k+1, and we have by (3)∫

SO(n+1)
H0(M ∩ gN)dg≤ Vol(K ) ·Hν(M) ·H(l+1)(n−k)(N), (4)

where

K = [SO(k+ 1)× SO(n− k)] ∪ [(O(k+ 1)\SO(k+ 1))× (O(n− k)\SO(n− k))].

Since for almost allg ∈ SO(n + 1) we have thatM ∩ gN is a finite set, in which
case 1≤ H0(M ∩ gN), we have

Vol(SO(n+ 1)) ≤
∫

SO(n+1)
H0(M ∩ gN)dg. (5)

The inequalities (4) and (5) together imply

Hν(M) ≥ cn,k,l , (6)

for a suitably chosen positive constantcn,k,l , as asserted.
2. It remains to be shown that, for some choice of the convex bodiesK0, . . . , Kl in Rn,

the setCk(K) of affinek-dimensional planesAk ⊆ Rn in question is a compactC∞ ν-
dimensional submanifold ofGrn+1,k+1, of the consideredO(n+1)-invariantν-measure
some finite number, forν = (k− l )(n− k).

Let K0, . . . , Kl ⊆ Rn be unit balls, whose centers span an affinel -dimensional
plane A0

l ⊆ Rn. Then Ck(K) = Sk(A0
l ) = Sk+1(L0

l+1), where L0
l+1 is the linear

(l + 1)-dimensional subspace ofRn+1, corresponding to the affine (thus projective)
l -dimensional planeA0

l . FurtherSk+1(L0
l+1) is diffeomorphic toGrn−l ,k−l , therefore

Sk+1(L0
l+1) is a compactC∞ ν-dimensional submanifold ofGrn+1,k+1, hence has a

finite O(n+ 1)-invariantν-measure.

Remark. Using [11] it is not difficult to give the constantcn,k,l from the above proof
explicitly also forl < k. In fact, (4) and (5) giveHν(M) ≥ Vol(SO(n+ 1))/[Vol(K ) ·
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Vol(N)]. Here Vol(K ) = 2 Vol(SO(k + 1)) · Vol(SO(n − k)). Moreover, we have
N = Sk+1(L0

k−l )
∼= Grn−k+l+1,l+1. Further, like in 3.12.(a) of [11], sinceds2 is bi-

invariant onG and π is a Riemannian submersion, we have Vol(Grn−k+l+1,l+1) =
Vol(SO(n−k+ l +1))/[2 Vol(SO(l +1)) ·Vol(SO(n−k))]. It remains to observe that
by 3.12(a), formula (3–15), of [11] for any natural numberm we have Vol(SO(m)) =
Vol(S1)Vol(S2) · · ·Vol(Sm−1).

Proof of Theorem8. Like in Theorem 6, it also suffices to prove this theorem for strictly
convex bodies only. Namely, letK m

0 , . . . , K m
l ,m ∈ N, be strictly convex bodies con-

verging (in the sense of the Hausdorff distance) toK0, . . . , Kl . As in the beginning of the
proof of Theorem 6, by the arguments in [14], forKm = {K m

0 , . . . , K m
l }we have for any

subsequencemi ∈ N that Ami
k ∈ Ck(Kmi ), Ami

k → Ak imply Ak ∈ Ck(K). Therefore
Ck(Km) (which are contained in a compact subset ofGrn+1,k+1 independent ofm), lie,
for m sufficiently large, in an arbitrarily small open neighborhood ofCk(K), prescribed
in advance.

Next we recall some well-known facts about the topology of Grassmannians. Standard
references are [16], [8], and [2] as well as other more elementary topological textbooks.
We include the relevant details to make the proof as self-contained as possible.

The direct sum decompositionRn+1 ∼= Rn ⊕ R and the identification ofRn with
the hyperplaneH := {x ∈ Rn+1 | xn+1 = 1} allows us to view the affine Grassmann
manifoldAGrn,k of all affinek-dimensional planes inRn as a submanifold ofGrn+1,k+1.
More precisely, the manifoldAGrn,k is embedded inGrn+1,k+1 by the map which sends
a k-dimensional planeL ∈ AGrn,k to the(k+ 1)-dimensional linear subspace ofRn+1

spanned byL. From now on,AGrn,k will often be identified with its image inGrn+1,k+1.
The spaceN0 := Grn+1,k+1\AGrn,k is identified as the Grassmann manifoldGrn,k+1 of
all “horizontal” (k+1)-dimensional planes inGrn+1,k+1. The “dual” manifoldN1 of all
“vertical” (k+1)-dimensional planes inGrn+1,k+1, i.e., the planes which contain the basic
vectoren+1, is clearly homeomorphic toGrn,k. Indeed, each vertical(k+1)-dimensional
planeL in Rn+1 = Rn⊕R intersects the horizontal spaceRn in ak-dimensional planeL ′

and conversely eachL ′ ∈ Grn,k determines the correspondingL ∈ N1. A very important
observation, already used in the proof of Theorem 6, is that the space

AGrn,k = Grn+1,k+1\Grn,k+1

of all nonhorizontal(k+1)-dimensional linear subspaces ofRn+1 is homeomorphic to the
total space of the canonical (tautological)(n−k)-dimensional bundleξn−k overGrn,k

∼=
Grn,n−k. Recall that ak-dimensional planeP ∈ AGrn,k is of the formP = Lk+en+1+v
whereLk is the unique parallel horizontalk-dimensional linear subspace inRn andv ∈
Rn. Note that there exists a unique vectorv ∈ L⊥k in the linear subspace ofRn orthogonal
to Lk such thatP = Lk+en+1+v. This defines a bijective correspondenceP 7→ (Lk, v)

which proves the assertion thatAGrn,k is a tautological,(n−k)-dimensional bundle over
Grn,k. Note that the zero section of this bundle is naturally identified with the manifold
N1. This follows from the fact that the zero section consists of the planesP = (Lk, v)

for which v = 0. Note that this implies thatAGrn,k = Grn+1,k+1\Grn,k+1 is an open
“tubular” neighborhood ofN1 which can also be seen as the normal bundleν(N1) to
N1 in Grn+1,k+1. All the (co)homologies are understood to be withZ2 coefficients. Let
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[N1] be the fundamental class ofN1, i.e., the generator of the groupHk(n−k)(N1) ∼=
Hk(n−k)(Grn,k) ∼= Z2. By a slight abuse of notation, let [N1] also be the image of this
class inHk(n−k)(Grn+1,k+1) upon the embeddingN1→ Grn+1,k+1. The Poincar´e dual of
the class [N1], denoted byθ , is a cohomology class inHn−k(Grn+1,k+1). Actually, by the
usual link between the Poincar´e duality and the Thom isomorphism theorem, see, e.g.,
[2] or Theorem 10.2, Chapter VI, especially Section 11, of [16],θ can be seen as a class
in H ∗(ν(N1), ν(N1)\N1) ∼= H∗(Grn+1,k+1,Grn+1,k+1\Grn,k+1). Moreover, the Thom
isomorphism theorem says that each classω ∈ H∗(ν(N1), ν(N1)\N1) has a unique
decomposition of the formω = wθ wherew ∈ H∗(ν(N1)) ∼= H∗(N1). In particular
θ2 = wn−kθ wherewn−k is the top Stiefel–Whitney class of the bundleν(N1)→ N1 or
equivalently theZ2-Euler class of the bundleξn−k overGrn,k defined above. Hence,

θk+1 = (wn−k)
kθ. (7)

It is a well-known fact, already used in the proof of Theorem 6, that(wn−k)
k 6= 0. A

cohomological proof of this observation can be found in [5], see also [20], while an
alternative proof, based on Schubert calculus, is in Section 1.5 of [8]. From here we
deduce thatθk+1 = wk

n−kθ 6= 0 which follows fromwk
n−k 6= 0.

Let xi : Grn,n−k → ξn−k, i = 0, . . . , l , be the sections of the bundleξn−k
∼= ν(N1) ∼=

AGrn,k, introduced in the proof of Theorem 6. Recall thatxi (L⊥k ) = x′i (Lk) is by
definition the unique point inL⊥k such thatLk + xi (L⊥k ) is the maximalk-section of the
strictly convex bodyKi . Let Xi = Im(xi ), considered as a subset ofξn−k ⊂ Grn+1,k+1.
By definition,Ck(K) =

⋂l
i=0 Xi . Note thatXi is aC0 submanifold ofξn−k sincexi is

a continuous cross section, and that the fundamental class [Xi ] of Xi , seen as a class in
H ∗(Grn+1,k+1), is equal to [N1]. The last assertion follows from the fact thatxi is linearly
homotopic to the zero cross section. The same argument shows thatθ is the Poincar´e
dual of any class of the form [Mv], whereMv is the submanifold ofAGrn,k defined in the
statement of Theorem 8. We conclude thatθ , the Poincar´e dual of [N1] = [Xi ] = [Mv],
is concentrated in an arbitrarily small open neighborhoodUi of Xi , which means thatθ
is in the image of the map

Hn−k(Grn+1,k+1,Grn+1,k+1\Ui ) −→ Hn−k(Grn+1,k+1).

From here it follows, essentially by the argument of Theorem 11.10 in Chapter VI, p. 373,
of [2], thatθ l+1 is in the image of the map

H (l+1)(n−k)

(
Grn+1,k+1,Grn+1,k+1\

l⋂
i=0

Ui

)
−→ H (l+1)(n−k)(Grn+1,k+1),

which means thatθ l+1 is concentrated in an arbitrarily small neighborhood of the set
Ck(K), in the sense of Definition 1.

In the proof of Corollary 1 we assume that the cohomology we work with is a con-
tinuous extension of the singular cohomology theory, say theČech or the Alexander–
Spanier–Kolmogoroff cohomology theory. This is only a technical assumption, similar
to the corresponding assumptions in Poincar´e–Lefschetz duality theorems.
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Proof of Corollary1. Suppose that CatGr (Ck(K)) ≤ k − l . This means that there ex-
ists a familyF = {F1, . . . , Fk−l } of closed subspaces ofGr = Grn+1,k+1 such that⋃k−l

j=1 Fj = Ck(K) and eachFi is contractible to a point by a homotopy which moves
Fi insideGr . More precisely, this means that the inclusion mapFi ↪→ Gr is homotopic
to a constant map and as a consequence of this, the induced mapHn−k(Gr, Z2) →
Hn−k(Fi , Z2) is trivial. Moreover, by the continuity of the cohomology theory, there ex-
ists an open setVi ⊃ Fi such that the homomorphismHn−k(Gr, Z2)→ Hn−k(Vi , Z2)

is also trivial. From the cohomology exact sequence of a pair we conclude that there
exists a classθi ∈ Hn−k(Gr,Vi ; Z2) which is mapped to the classθ by the homo-
morphismHn−k(Gr, Fi ; Z2) → Hn−k(Gr, Z2). By Theorem 8, the classθ l+1 is con-
centrated in an arbitrarily small neighborhood ofCk(K). It follows that there exists a
classθ0 ∈ H (n−k)(l+1)(Gr,Gr\V; Z2), whereV := ⋃k−l

i=1 Vi , which is mapped to the
classθ l+1. We conclude that the classθ0θ1 · · · θk−l ∈ H (n−k)(k+1)(Gr,Gr; Z2) ∼= 0
is mapped to the classθk+1. This is a contradiction to the fact from Theorem 8, that
θk+1 6= 0.

Proof of Theorem9. The key topological property of the setCk(K), used in the proof
of Theorem 7, was the relation(1). We will show that the setC has the same property,
i.e., that

for each projective(k− l − 1)-dimensional planePk−l−1 ⊆ RPn,

C ∩ Sk(Pk−l−1) 6= ∅. (1a)

After we establish(1a), the rest of the proof will be just the repetition of the proof of
Theorem 7. So we concentrate on the proof of(1a). Given a(k − l − 1)-dimensional
planePk−l−1, let M be the manifold of all projectivek-dimensional planesP such that
Pk−l−1 ⊆ P and let [M ] be its fundamental class. Alternatively, the manifoldM can be
described as the space of all linear(k+1)-dimensional subspaces inRn+1 which contain
the(k− l )-dimensional linear spaceLk−l associated toPk−l−1. The Poincar´e dual of the
class [M ] is the classθk−l , whereθ is the class introduced in the formulation of Theorem 8.
One way to see this is, in light of the fact thatθ is the Poincar´e dual of classes [Mv] (see
Theorem 8), to observe that [M ] = [Mv1] ∩ · · · ∩ [Mvk−l ], wherevi are points which
spanLk−l . In other words, the classθ l+1 is, by assumption, concentrated in an arbitrarily
small neighborhood ofC andθk−l , being a Poincar´e dual, is concentrated in an arbitrarily
small neighborhood of the manifoldM . Since the nonzero classθk+1 = θ l+1θk−l is
concentrated in an arbitrarily small neighborhood ofC ∩M , we conclude that this set is
nonempty and the relation(1a) follows. Note that this proof is essentially a repetition of
the argument already used in the proof of Corollary 1, see also the proof of Theorem 11.10
in Chapter VI, p. 373, of [2].

5. Counterexamples for Nonconvex Bodies

One can ask if one could replace the convex bodiesKi with more general, say compact,
sets. However, for one-dimensional sections this is not the case, as shown by an example
kindly communicated to us by J. Matouˇsek.
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Example 1(J. Matoušek). The geometrical form of Theorem 1, without assuming 0∈
int K (and hence the stronger Theorem 3), is false for the compact setK = {x ∈
Rn | r1 ≤ ‖x‖ ≤ r2}, where 0< r1 < r2 (and for K1 = K and K2 the unit ball of
Rn, respectively). In particular, forn = 2 the (geometrical forms) of Theorems 1–8
and Corollary 1 (without assuming 0∈ int K at Theorems 1 and 2), with the maximal
k-sections, are not valid for all compact sets.

Proof. If a line A1 in Rn has a distancex from 0, then

V1(K ∩ A1) = 2

(√
max(r 2

2 − x2,0)−
√

max(r 2
1 − x2,0)

)
,

that attains its maximum forx = r1. Hence all maximal 1-sections are those withA1

being tangent to the ball of radiusr1 about 0, and none of these linesA1 contains 0.

Based on this example, we can give further examples, fork-dimensional sections, 1≤
k ≤ n− 1.

Example 2. For eachk ∈ {1, . . . ,n− 1} the statement of Theorem 6 (and that of its
special case Theorem 5) is not valid for all compact setsKi .

Proof. Let K1 = K × Bk−1, whereK = {x ∈ lin{e1, . . . ,en−k+1} | r1 ≤ ‖x‖ ≤ r2}
(with 0 < r1 < r2) and Bk−1 = {x ∈ lin{en−k+2, . . . ,en} | ‖x‖ ≤ 1}, and let
K2, . . . , Kk+1 be k unit balls centered at 0,en−k+2, . . . ,en. Let Ak ⊆ Rn be an affine
k-dimensional plane, and suppose thatKi ∩ Ak is a maximalk-section ofKi for any
i ∈ {2, . . . , k+ 1}. ThenAk passes through the centers ofK2, . . . , Kk+1, hence is of the
form Ak = A1×lin{en−k+2, . . . ,en}, where 0∈ A1 ⊆ lin{e1, . . . ,en−k+1} is a linear one-
dimensional subspace. Then, by Example 1,Vk(K1∩ Ak) = V1(K ∩ A1) ·Vk−1(Bk−1) <

V1(K ∩ (A1 + x)) · Vk−1(Bk−1) = Vk(K1 ∩ (Ak + x)) for x ∈ lin{e1, . . . ,en−k+1}
orthogonal toA1 and‖x‖ = r1, henceK1 ∩ Ak is not a maximalk-section ofK1.
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