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Abstract. Consider an arrangementohyperplanes iiR?. Families of convex polytopes
whose boundaries are contained in the union of the hyperplanes are the subject of this paper.
We aim to bound their maximum combinatorial complexity. Exact asymptotic bounds were
known for the case where the polytopes are cells of the arrangement. Situations where the
polytopes are pairwise openly disjoint have also been considered in the past. However, no
nontrivial bound was known for the general case where the polytopes may have overlapping
interiors, ford > 2. We analyze families of polytopes that do not share verticeR2 we

show anO (k*/3n?) bound on the number of faceskafuch polytopes. We also discuss worst-
case lower bounds and higher-dimensional versions of the problem. Among other results,
we show that the maximum number of facetkgfairwise vertex-disjoint polytopes R

is © (k¥2n¥/2y which is a factor of,/n away from the best known upper bound in the range
nd=2 < k < n9. The case where ¥ k < n4-2 is completely resolved as a knov@ykn)

bound for cells applies here.

1. Introduction

Consider an arrangemedtof n hyperplanes ifRY. We say thaP is apolytope in the
arrangementA if P is a closed bounded-dimensional cell in the arrangement of a
subset of the hyperplanes. Tbemplexityof a polytope is the total number of its faces

of all dimensions. We are interested in the maximum complexity mdlytopes in a-
dimensional arrangement nthyperplanes. In the absence of additional constraints, it is
©(knld/2ly by the Upper Bound Theorem for Simple Polytopes [19], as, for example, one
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could takek identical polytopes. (One could object that #hgolytopes must be distinct,
but then it is only a matter of modifying each polytope slightly to be able to distinguish
them. Inany case, we do not discuss the unconstrained problem in this paper.) We discuss
below several different sets of conditions, some old and some apparently new, that make
this question more interesting. Several special cases of the problem arise naturally and
are discussed below. We denote the desired maximum complexiy ty n, d) with
replaced by an abbreviation of the class of polytope families over which the maximum
is taken.

For clarity, we do not consider unbounded polyhedra in our analysis, although they
can be accommodated by introducing additional constraints.

1.1. Cell Families

In recent years considerable attention has been paid to the problem of estimating the
maximum total numbeK(k, n, d) of faces ink distinct cells in an arrangement of
hyperplanes ilR?; see Chapter 6 of Edelsbrunner’s book [8] and a more recent survey
by Halperin [11]. This is known as thmany-facegor many-cell¥ problem in arrange-
ments. Besides being a challenging combinatorial question, the problem has bearing in
applications such as robotics and design of geometric algorithms; see, for example, [15].
Ford = 2, an optimal boun&K(k, n, 2) = ®(k?3n?3 4 n) is known [4], [8]. Sim-
ilarly, for d = 3 it is known thatK¢(k, n, 3) = ®(k%3n +n?) forn < k < n® and
Kc(k, n,3) = ®(kn) for k < n, see [1] and [8]. In higher dimensions the situation is
not completely resolved. Far > 3, an upper bound d (k'/2n%/2|0g19/2=1/2 ) ' and
a lower bound which i£2(k¥/2n9/2-1/4) for all valid values ofk andn, and reaches
Q (k¥2n9/2) for many combinations of values, are known #¢(k, n, d); see [2] for
details. If only thefacets((d — 1)-faces) of thek cells are of interest, optimal bounds of
O(k?3n9/3 4 nd-1) for nd-2 < k < n? and® (kn) for k < n4=2 are known [1], [9].

Most of the following discussion concentrates on classes of polytope families that
include families of arrangement cells. In particular, for such clagsgk, n,d) >
Kc(k, n, d). In three dimensions, in this cad€, (k, n, 3) = O(kn) as any 3-polytope in
the arrangement has complexi®/(n), andK,(k, n, 3) = ®(kn) for k = O(n), as it is
easy then to arrange fercompletely disjoint cells in the arrangement, each of complex-
ity @(n). In higher dimensions, an analogous argument gives a bou@dkafl?/2)) on
K.(k, n, d) for anyk andd > 2 andK,(k, n, d) = ®(kn'92y wheneved is odd and
k < n. Hence for “reasonable” polytope classes we hereafter askume if d is odd
(in particular, wherd = 3).

1.2. Noncell Families

After considering cell families, the next natural question is bounding the maximum
complexity Kgis(k, n, d) of a family of polytopes in an arrangementmhyperplanes

that need not coincide with arrangement cells, but are pairwise openly disjoint. (Two
sets with nonempty interiors aopenly disjointif their interiors do not intersect.) They
correspond to (a subset of) cells in what Hershberger and Snoeyink call “erased ar-
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rangements” [16] and Dey and Shah call “convex arrangements” [7]. As already noted,
Kais(k, n, d) > Kc(k, n, d). Infact,Kgis(k, n, 2) = ©(k?3n%3+n), surprisingly match-

ing the asymptotic bounds fdf.(k, n, 2) [12], [14], [16]. This quantity arose in the
analysis of a simple algorithm for decomposing a nonconvex polyhedron into convex
pieces using planes that resolve reflex edges [3]. The algorithm can be extended to
higher dimensions in a relatively straightforward manner, however requiring the com-
plexity functionKis(k, n, d) for precise analysis. To the best of our knowledge nothing

is known ford > 3 beyond the immediate upper bound®knl9/2)) that follows from

the Upper Bound Theorem [19].

We look into a larger class of polytope families that properly includes all the classes
discussed so far. We let the polytopes overlap in their interiors. As already pointed
out, further restrictions are necessary to exclude trivial cases. Specifically, we consider
polytope families in which polytopes are not allowed to share vertices, but overlap of faces
of higher dimension is permitted. This class of polytope families, which is the subject
of this paper, in essence generalizes all other families discussed above and has not been
studied earlier except iR?. We denote the resulting complexity functiéier(k, n, d).

Katoh and Tokuyama [18] consider the related structure of a set of convex polyhedral
surfaces whose facets lie amplanes and study the complexity of thiievel.

InRR?, Halperin and Sharir show thEteq(k, n, 2) = @ (k¥?n)[13], aresult motivated
by their analysis of certain motion planning problems with three degrees of freedom.
When the polygons (or convex polygonal chains) are not even permitted to overlap along
edges (i.e., when polygon boundaries or polygonal chains must cross at discrete points),
the respective bound 8 (k3n) for k < n and® (k¥3n?/3) for n < k < n?. The upper
and lower bounds in the first range follow from the results of Dey [5] and Eppstein [10],
respectively. The bound in the second range follows from the many-faces results.

In dimensions less than four, for any polytope the number of facets and the number
of faces of all dimensions are within a constant factor of each other. However, in higher
dimensions this assertion no longer holds. Hence it is reasonable to distinguish between
the number of facets in polytopes and the total number of faces in them. We denote
the maximum number of facets Wy, (k, n, d). As pointed out aboveK,(k,n,d) =
®(F.(k,n,d) ford < 3.

1.3. Results

It is known thatKen(k, N, 2) = @(k¥?n) [13]. We show an upper bound @f(k*/3n?)
on Kyer(k, N, 3) whenn < k < n. Itis better than the triviaD (kn) bound in the range
n¥? < k < n. Fork = O(n), Kyen(k, n, 3) = ©(kn), as families of vertex-disjoint
polytopes generalize cell families; more precisdlyen(k, n, d) < K¢(k, 2n, d), since
by replacing each hyperplane with a pair of nearly parallel hyperplanes one can turn
any family of closed bounded cells in an arrangement into a family of strictly disjoint
cells. On the other hand, we show a lower bound2gk2n%2) on Ken(k, n, 3) for
n < k < n%. These bounds are summarized in Table 1 and Fig. 1.

InRY, d > 3, we show several lower bounds on the two complexity functions. For
example, we show af® (k/2n%2) bound onKen(k, n, d), unlessk < n andd is odd.
This bound is slightly stronger than the best known lower boun&eggk, n, d) [2].
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Table 1. Bounds inR3.

Upper bound Lower bound

®kn),k<n
Kvert(k, n, 3) O(kn), n < k < n¥2 Q(KkY¥2n%2), k > n
O(kl/3n2)’ n3/2 < k < n3

logn I(vert(ka , 3)

3 F

1 2 3

log,, k

Fig. 1. Bounds onKeri(k, n, 3). The shaded area indicates the gap between best known lower and upper
bounds.

Table 2. Bounds inR9Y.

Upper bound Lower bound
©(kn), k < nd-2
Feert(k, n, d) ommintkn,nh,nd2 <k <n?  QkY2n%?),n4-2 <k <nd
Kvert(k, n, d) ©(knl92l) k < nand oddd
O(min {knld/2 ndy) QkY2n9/2) n <k <nd

log,, Fyers(k, 1, d)

d-3 ' ' —= log, k
d-2 d—1 d

Fig. 2. Bounds onFyer(k, n, d). The dashed line indicates the wealaik!/2nd/2+1/2) pound.
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The same expression also bourgs:(k, n, d) from below fork > n9=2 and alld. The
latter lower bound is close to an upper bouBdk/?2n%/2+1/2) that follows from the
straightforward upper boun@(min {kn, n%}) on Fyer(k, n, d). Nontrivial upper bounds
on the two quantities remain elusive. Table 2 and Fig. 2 summarize our results in
dimensions.

The paper is organized as follows. Section 2 presents preliminary definitions and
assumptions. Section 3 proves@tk/3n?) upper bound and & (k/2n%?) lower bound
on Kyer(k, N, 3). Section 4 presents resultsi{ and finally we conclude in Section 5.
For completeness we attach an appendix containing a simple proof of a projective version
of a well-known crossing result that we use in our upper bound arguments.

2. Preliminaries

Let A = A(IT) denote the arrangement of a $&bf n hyperplanes iiRY. We assume
that.A4 is asimplearrangement, i.e., every setidfiyperplanes meets in a flat of dimen-
sion exactlyd — i, fori = 1,...,d, and does not have a point in common it d.

A sufficiently small perturbation of the hyperplanes replaces any polytopéliy a
polytope with at least as large a complexity, in a simple arrangement. (More precisely,
consider a poinp in the interior of the polytopd®. P is the (closed) cell of a subar-
rangement of4 containing the poinp. Perturbing the hyperplanes slightly yields a new
subarrangement in which marks a cellP’ whose complexity is at least as large as the
complexity of P. Two perturbed polytopes do not share vertices if the original ones did
not.) LetPy, P,, ..., P bek polytopes in4; the polytopes need not be cells.4f In R3,

the complexityof {Py, P,, ..., P}, i.e., the total number of their faces, is proportional
to the number of their vertices, since the boundary of dadh a plane graph.

For our analysis ifR® we use the standard duality between points and planes. (For
technical reasons, here we Vi@ as a subset of the three-dimensional real projective
spaceRP?.) It maps a planer expressed in homogeneous coordindtesy, z, w) as
ax+ by+ cz+ dw = 0to the dual point* with homogeneous coordinatés b, c, d)
in RP2. Conversely, a poinp: (a, b, ¢, d) is mapped to the dual plang: ax + by +
cz+dw = 0.

3. BoundsinR?®

In this section we derive an upper bou@dk/3n?) on Ker(k, n, 3) using the duality
between crossings among triangles and common tangents among polytopes. A lower
bound$2 (k/2n%?) is proved using the “lifting” technique detailed in [8].

3.1. Crossings

Given three non-collinear points in the three-dimensional real projective $pte

consider the projective plane spanned by them. In the plane, draw the three lines defined
by pairs of the points and consider the resulting projective arrangement. It contains four



56 B. Aronov and T. K. Dey

2-faces, each bounded by three edges and three vertices. We refer to each such 2-face as
a (projective triangle spanned by the three pointsvo triangles properly) crossif and
only if they are vertex-disjoint and have a nonempty intersection.

Consider the sefl* of points dual to the planes dl. Each vertex of P, can be
associated with a projective triangle spanned by the three points dual to the three
planes ofIT incident withv, as follows. The three points span a projective plane and
induce a three-line arrangement in it. This arrangement contains four triangular faces,
one of which consists precisely of points dual to primal planes tangdnt. Leto,
denote this face.

LetT denote the set of all dual projective trianglespace that correspond to vertices
v of P, Py, ..., P. If X denotes the total number of crossings (i.e., pairs of triangles
that cross) ifil, then by a result of [6K > ct*/n® for some positive absolute constant
whenevett = |T| > 3n?; see the Appendix for a self-contained proof of this statement
for projective triangles. Our goal is to establish an upper bound and use the above
inequality to obtain an upper bound tin

3.2. Common Tangents

To establish an upper bound &hit is sufficient to count the number of polytope vertex
pairs supporting planes tangent to two of the polytopeR3lwe use the standard notion
of tangency. Namely, we say that a plamds tangentto a polytopeP at vertexwv if

7 passes through but avoids the interior oP. Consider verticesi andv of B, and

P # R, respectively. Leti = nj N7ty Nzg andv = nf Ny Ny, with 7, 7" € T1.
Suppose, ando, Cross, i.e.gy ando, are vertex disjoint and meet; the assumption that
A is simple guarantees the absence of “accidental” collinearitiegoamaplanarities
among the points"*, 7"*. Note that" # =}’ for anyi, j, i.e.,u andv do not lie on

a common plane of1. A point in oy N o, corresponds to a dual plametangent toP;

atu and toP; atv. Each crossing paifoy, o,) in T is thus associated with a unique
pair of verticesau, v (of different polytopes) with a common tangent plane through them,
but with no plane ofiT passing through both points. Therefore, an upper bound on the
number of such pairs, over all pairs of polytopes, provides an upper bouXdenvell.

Two openly disjoint polytopes can haeeter andinner tangent planes, the former
keeping both polytopes on the same side and the latter separating them. Polytopes with
overlapping interiors have only outer tangents.

We first deal with outer tangents. Lgtdenote the number of vertices &f. Two
verticesu andv (not on a common plane dfl) of B, and P;, respectively, support a
common tangent plarenly if uv is an edge of the convex hull & U P;. Certainly, this
hull cannot have more than+- t; vertices and @ + t;) edges.

Now consider a paitP;, P;) of openly disjoint polytopes. Suppose there is a plane
7 strictly separating them. After performing a projective transformation that maps
to the plane at infinity, we obtain two new polytopes with the property that thder
common tangents are exactly timmer common tangents of the original pair, and vice
versa. Hencéd, P; also have no more thar(t3+ t;) pairs of vertices supporting inner
common tangents, for a total of at most; 6+ tj) pairs of vertices supporting common
tangents altogether. We can disregard the case vilhar&l P, touch, thatis their interiors
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are disjoint while their closures meet. Due to the simplicityfftwo such polytopes
cannot have an inner common tangent plane through two vertices that do not share a
plane ofA.

As observed above the total number of (inner and outer) common-tangent-defining
vertex pairs, over all pair&P;, Pj), is an upper bound oK. Thus

> 6t + 1)
i#]

=6y >t

1<j<k i#]
< obkt,

X

IA

with the first summation taken over all unequal pairs of indicgs= 1, ..., k.

3.3. Tangents and Crossings
Now we are ready to prove an upper boundih

Theorem 1. Kyen(K, n, 3) is O(k¥3n?) which is better than @kn) in the range #/? <
k <nd.

Proof. Inthe dual we have = |T| triangles with vertices from a fixed set ofpoints.
Since the total number of crossings among these triangl€ks) by the argument
in Section 3.2, we havet*/n® < X < O(kt) for t > 3n?. This immediately gives
t = O(kY3n?). Since the total complexity dfP, }; is O(t), the bound follows. O

The condition of vertex-disjointness on polytopes cannot be completely removed
since otherwise one may considecopies of the same polytope an®akn) bound is
obvious. However, this restriction can be relaxed to require only that if two polytopes
share a vertex, then their interiors do not intersect. Indeed, if this is the case, one can
replace each plane of by an almost parallel slab with the two planes meeting far away
from all polytope features. This process only doubles the number of planes eliminating
shared vertices. The claim follows.

Corollary 2. The bound in Theorehapplies to a collection of k convex polytopes in
an arrangement of n plangsuch that any two polytopes are either vertex disjoint or
openly disjoint

3.4. Lower Bound inR3

In this section we use the “lifting” technique of [8] to deduce a lower bound on
Kvert(k, n, 3) from its two-dimensional analogue. Halperin and Sharir [13] construct
a set ofk convex polygons that are vertex disjoint, are drawn from an arrangement of
n lines, and whose total complexity §8(k?n) for 1 < k < n?. For completeness,



58 B. Aronov and T. K. Dey

we briefly outline their construction. Form an arrangememt/d/2 lines in which one

face has the form of a regular polygon with all the lines appearing on its boundary.
Now replace each of the lines by/? essentially parallel lines. They intersect near each
polygon corner irk}/? x k*/2 points. It is not difficult now to construdt overlapping,
closed convex chains each of lengthk’? and each turning at a different one of these

k arrangement vertices, near each polygon corner.

Theorem 3. Kyen(k, n, 3) is Q(k¥2n%2) forn < k < n®.

Proof. Let p = 4k/n wherek > n. Consider a horizontal plane with an arrangement
of n/2 — 1 lines wherep pairwise vertex-disjoint convex polygons have complexity
Q(pY?n). “Lift” this arrangement to an arrangement nf2 — 1 vertical planes in
which there arep prism-shaped polyhedra of total complexi®( p*/?n) that do not
share vertical edges. Ad¢'2 + 1 horizontal planes, so that each of fa@risms is cut
into n/2+ 2 subprisms, two unbounded an®? bounded. Picking every other bounded
subprism from each prism, we obtain a sepaf 4 = k vertex-disjoint convex polytopes
with boundaries im planes. They must hav@ ((p¥2n)n) = Q(p*?n?) complexity.
Using p = ®(k/n), we get the desired bound. O

4. Higher-Dimensional Bounds

The “lifting” technique of the previous section can be generalized to higher dimensions to
derive a lower bound oRyr(k, n, d). Another approach based on taking product spaces
is used to derive a lower bound dfr(k, n, d). We do not have satisfactory upper
bounds on the asymptotic behavior of these complexity functions though we suspect that
our lower bounds are close to optimal.k4, d > 3, the lower bound2 (k%/2nd/2-1/4)
on K¢(k, n, d) [2] immediately applies t&er(k, n, d). We show a better lower bound
Q(kY2n92) on Kyer(k, N, d).

We first discuss upper bounds, starting with a straightforward observation:

Observation 4. Kyer(k, n, d) and Rer(k, n, d) are O(n%). O

Proof. SinceF.(k, n,d) < K,(k, n, d), itis sufficient to argue foKen(k, n, d).

Consider a family ok pairwise vertex-disjoint polytopes in an arrangementof
hyperplanes in general position Rf. The polytopes cannot have more th@rn®)
vertices altogether, as each vertex of the arrangement can be used at most once. Each
vertex may be incident to at most one polytope of the family and hence to at fhost 2
faces of all dimensions. O

First, we derive bounds oRer(k, n, d). If k < n9—2, one can easily construct an ar-
rangement o hyperplanes witk disjoint closed cells, each bounded®yn) facets [8].
This implies a trivial tight bound 0® (kn) for k < n9=2 on Fyen(k, N, d). So only the
casek > nd-2 s interesting. We prove af (k¥/2n%2) lower bound onFye(k, n, d)
for k > nd=2 andd > 3. Interestingly enough, this bound is close to the upper bound
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O (kY/2nd4/2+1/2y on Fyen(k, n, d). The latter bound is weaker than the immediate bound
of Feri(k, n, d) = O(min{kn, n}) that follows from Observation 4 and the fact that no
polytope has more thamfacets.

The lower bound orFe(k, n, d) is derived by generalizing the (k'/2n) lower
bound of Halperin and Sharir [13] dRrt(k, N, 2) to a higher dimension using the same
“lifting” method as in Theorem 3.

Theorem 5. Fyen(k, n, d) is Q(k¥2n%/2) for k > n4~2 and d > 3.

Proof. Let p = 4k/n > n93. In a horizontal hyperplane construct inductively an
arrangement afi/2 — 1 (d — 2)-flats with p pairwise vertex-disjoinfd — 1)-polytopes

with ¢ = Q(pY/2n@-D/2) facets. “Lift” this arrangement to an arrangemenhg® — 1
vertical hyperplanes in which there apeprism-shapedl-polyhedra with a total ot
facets. Addn/2 + 1 horizontal hyperplanes to obtaii2 + 2 subprisms from each of

the p prisms. Picking every other bounded subprism from each prism, we obtain a set of
pn/4 = k pairwise vertex-disjoint convekpolytopes with boundaries mhyperplanes.
They must have2(cn) = Q(p¥2n@+D/2) facets. Usingp = ®(k/n), we obtain the
claimed bound. O

In the above proof we requirekl > n%=2 to carry the induction through dimen-
sions. This is not an artifact of our proof but an intrinsic requirement, for we have
observed earlier thaen(k, n, d) is ®(kn) whenk = O(nd-2). It follows from the
next theorem that this is not true f&.en(k, n, d). In fact, the lower boun&? (k%/2nd/2)
applies toKeri(k, N, d) for a larger range ok. Recall that Aronov et al. [2] have con-
sidered maximum cell family complexiti{.(k, n, d), and constructed a lower bound
somewhat smaller tha® (k¥2n9/2) and an upper bound slightly larger than it. It is
conceivable thaK¢(k, n, d) = ©(kY2n%2). We show a lower bound a2 (k'/2n9/2)
on Kyert(k, n, d), which is better than the (best currently known) corresponding lower
bound onK(k, n, d). The proof again uses tte(k'/?n) lower bound of Halperin and
Sharir [13].

Theorem 6. Kyer(k, N, d) is €2 (k¥2n9/2) for d > 2, unless d is odd and k n.

Proof. Supposelis even. Lep = k% andq = 2n/d. Construct a family op pairwise
vertex-disjoint convex polygons in an arrangemery bifies in the plane witls2 (p*/2q)
vertices, as described in [13]. Plad¢2 copies of this construction id/2 orthogonal
2-flats which together spak. Consider one such flat and one of thej lines we drew
there. Extend it to a hyperplane by a Cartesian product with the orthogonal complement
of 7. Thisyields asetajd/2 = n hyperplanes altogether. We obt&ir= p®/2 polytopes
in the resulting arrangement by taking all possible Cartesian produd{®qjolygons,
one from each 2-flat. It is easy to see that no vertex is shared between two resulting
polytopes and the number of their verticeg§s(pY/2q))%? = Q (k'/?2n%/?) satisfying
the claimed bound.

Now supposel is odd anck > n. As in Theorem 5, use the bound in the immediately
lower even dimension and “lift” it to the desired bound in the claimed range. O
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5. Conclusions

In this paper we discussed the complexity of families of polytopes in an arrangement of
hyperplanes. Unlike most previous work, we allow the polytopes to overlap, but do not
permit sharing vertices. Except R? these families have not been studied in erstwhile
literature with the same generality as considered here. We obtain several bounds in three
and higher dimensions. The exact asymptotic complexity of these quantities is still to be
determined, however. Moreover, several other classes of families of polytopes in hyper-
plane arrangements deserve investigation, such as those generalizing non-overlapping
convex curve families studied by Dey [5] and Eppstein [10]. In addition, we recently
learned that Sharir and Smorodinsky [20] have produced a &égkt/?n*?) bound

on the maximum complexity df > n polytopes with non-overlapping edges, in an
arrangement o planes inR3.

Appendix

Throughout this appendiis a set o points in general position iRP>—no three on
aline, no four on a plane. Consider three non-collinear peints u € S. They define a
projective planer ¢ RIP. A (projective triangle with vertices uv, w is defined, as in
Section 3.1, as a 2-face in the two-dimensional line arrangement formellithe three
linesuv, vw, uw. Three non-collinear points define four triangles. Similarly, two distinct
points define two (projective straight-line) segments. Given two distinct triangles, we
say that theycross properlyif they intersect and are vertex-disjoint, amoproperlyif

their interiors intersect, but the triangles share verticesTLst a collection of triangles
with vertices fromS, and put = |T|.

In this Appendix we present a self-contained proof of the following theorem. An affine
version of this theorem was originally proven by Dey and Edelsbrunner [6]. An affine
version of the simpler proof given below was communicated to the authors at different
times by Jif Matousek and by Emo Welzl, but to our knowledge it has not appeared in
print. A related proof is presented in [17].

Theorem 7. Given a set S of n points iRP? in general position and a set T of
t = Q(n?) triangles spanned by the pointkere are (t*/n®) pairs of properly crossing
trianglesin T.

We prove this statement by a series of assertions on the number and type of pairs of
crossing triangles iif .

Lemma 8. Ift > n?, there are two triangles whose interiors intersect

Proof. As each triangle is incident to three points, there is a ppirt Sincident to

3t/n > 3n triangles. Drawing a sufficiently small sphere aroyndnd intersecting it

with segments connecting to other points ofS and with triangles ofl incident top,

we obtain a graph on — 1 vertices with more thanrBedges on the sphere. This graph

has too many edges to be planar, so some two edges intersect in their interiors; an edge
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cannot pass through a vertex by the general position assumption. Therefore some two
triangles incident tg have nondisjoint interiors (and share a vertex). O

Lemma9. Ift >5n?/2, T contains a pair of properly crossing triangles

Proof. Suppose the interiors of two triangles meet. The intersection of the triangles
lies in the intersection line of the respective planes containing them. Consider a segment
s (there might be more than one) of an intersection of the two projective triangles that
meets both interiors. We claim thatannot be delimited by two triangle vertices, so a
nonvertex endpoint of is a point where an edge of one triangle pierces (i.e., meets the
interior of) the other. Indeed, suppose both endpointsast vertices. If they belong to

the same triangle, the interior eflies completely on the triangle boundary or outside

of it, contradicting the assumption thatneets both triangle interiors. If they belong to
different triangles, we have a vertex of one triangle lying in the other, contradicting the
general position assumption.

We now turn to the proof of the lemma. Suppose all triangle crossings are improper.
As argued above, any time two triangle interiors meet, an edge pierces a triandgte. Let
be the set of such edges. We claim that every exigeE can be incident with at most
three triangles of . Indeed, by the definition dt, e pierces somé < T. If eisincident
with four or more triangles, at least one of them does not share a vertexwaittd thus
crosses it properly.

We now delete the at mos{3} < 3n?/2 triangles incident on edgesh What is left
is a set of triangles that do not cross at all (otherwise, there would be an edge crossing a
triangle and we have deleted all triangles incident on such edges). By Lemma 8 we are
left with at mostn? triangles, sd < 3n?/2 4+ n? = 5n?/2, completing the proof of the
lemma. O

Let X be the number of pairs of properly crossing trianglesTinBy repeatedly
removing one of a crossing pair of triangles that is guaranteed to exist by the previous
lemma, we deduce

Lemma 10. The number X of properly crossing pairs is always at leastdn?/2.

Proof. Fort < 5n?/2, the statement holds vacuously. For larger values af least
one pair exists by Lemma 9, so deleting one triangle of the pair removes at least one
properly crossing pair, and the result follows by inductiort on O

Finally, we are ready to prove Theorem 7.

Proof of TheorenY. We now use a standard random sampling argument, see, for ex-
ample [21] and [17]. Given a collection of points andt triangles spanned by them,
we select a sampl& c S of the points, with each point selected independently with
probability q, which is to be fixed below. The sample hagoints and’ triangles (a
triangle of T is selected only if it is spanned by three selected points). X &k the
number of properly crossing triangle pairs3rand letX’ be the corresponding number
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for S. By Lemma 10X’ > t' — 5(n)?/2. By linearity of expectation this means that
E[X] > E[t'] — (2)E[(n)?]. A simple calculation giveE[X'] = X¢?, E[t'] = tq?,
E[(n)?] = ng+ n(n — 1)g?, so the inequality can be rewritten as

t 5n  5n? N 5n t 5n  5n?
— t+ = > —.
a® 295 29* 29* ¢® 29° 29°

We putq = 3n?/t and obtain, for 82 <t < (3) < n%/6,

t4 5t5 5t4
27n6 48619 16X

_tt /1 Bt
2% \6 183

(15
27m% \6 ~ 108

1 13 t*
27 108 né’

X >

v
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