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Abstract. Consider an arrangement ofn hyperplanes inRd. Families of convex polytopes
whose boundaries are contained in the union of the hyperplanes are the subject of this paper.
We aim to bound their maximum combinatorial complexity. Exact asymptotic bounds were
known for the case where the polytopes are cells of the arrangement. Situations where the
polytopes are pairwise openly disjoint have also been considered in the past. However, no
nontrivial bound was known for the general case where the polytopes may have overlapping
interiors, ford > 2. We analyze families of polytopes that do not share vertices. InR3 we
show anO(k1/3n2)bound on the number of faces ofk such polytopes. We also discuss worst-
case lower bounds and higher-dimensional versions of the problem. Among other results,
we show that the maximum number of facets ofk pairwise vertex-disjoint polytopes inRd

isÄ(k1/2nd/2) which is a factor of
√

n away from the best known upper bound in the range
nd−2 ≤ k ≤ nd. The case where 1≤ k ≤ nd−2 is completely resolved as a known2(kn)
bound for cells applies here.

1. Introduction

Consider an arrangementA of n hyperplanes inRd. We say thatP is apolytope in the
arrangementA if P is a closed boundedd-dimensional cell in the arrangement of a
subset of the hyperplanes. Thecomplexityof a polytope is the total number of its faces
of all dimensions. We are interested in the maximum complexity ofk polytopes in ad-
dimensional arrangement ofn hyperplanes. In the absence of additional constraints, it is
2(knbd/2c) by the Upper Bound Theorem for Simple Polytopes [19], as, for example, one
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could takek identical polytopes. (One could object that thek polytopes must be distinct,
but then it is only a matter of modifying each polytope slightly to be able to distinguish
them. In any case, we do not discuss the unconstrained problem in this paper.) We discuss
below several different sets of conditions, some old and some apparently new, that make
this question more interesting. Several special cases of the problem arise naturally and
are discussed below. We denote the desired maximum complexity byK∗(k,n,d) with ∗
replaced by an abbreviation of the class of polytope families over which the maximum
is taken.

For clarity, we do not consider unbounded polyhedra in our analysis, although they
can be accommodated by introducing additional constraints.

1.1. Cell Families

In recent years considerable attention has been paid to the problem of estimating the
maximum total numberKc(k,n,d) of faces ink distinct cells in an arrangement ofn
hyperplanes inRd; see Chapter 6 of Edelsbrunner’s book [8] and a more recent survey
by Halperin [11]. This is known as themany-faces(or many-cells) problem in arrange-
ments. Besides being a challenging combinatorial question, the problem has bearing in
applications such as robotics and design of geometric algorithms; see, for example, [15].
For d = 2, an optimal boundKc(k,n,2) = 2(k2/3n2/3 + n) is known [4], [8]. Sim-
ilarly, for d = 3 it is known thatKc(k,n,3) = 2(k2/3n + n2) for n ≤ k ≤ n3 and
Kc(k,n,3) = 2(kn) for k < n, see [1] and [8]. In higher dimensions the situation is
not completely resolved. Ford > 3, an upper bound ofO(k1/2nd/2 log(bd/2c−1)/2 n), and
a lower bound which isÄ(k1/2nd/2−1/4) for all valid values ofk andn, and reaches
Ä(k1/2nd/2) for many combinations of values, are known forKc(k,n,d); see [2] for
details. If only thefacets((d− 1)-faces) of thek cells are of interest, optimal bounds of
2(k2/3nd/3+ nd−1) for nd−2 ≤ k ≤ nd and2(kn) for k ≤ nd−2 are known [1], [9].

Most of the following discussion concentrates on classes of polytope families that
include families of arrangement cells. In particular, for such classesK∗(k,n,d) ≥
Kc(k,n,d). In three dimensions, in this case,K∗(k,n,3) = O(kn) as any 3-polytope in
the arrangement has complexityO(n), andK∗(k,n,3) = 2(kn) for k = O(n), as it is
easy then to arrange fork completely disjoint cells in the arrangement, each of complex-
ity 2(n). In higher dimensions, an analogous argument gives a bound ofO(knbd/2c) on
K∗(k,n,d) for anyk andd ≥ 2 andK∗(k,n,d) = 2(knbd/2c) wheneverd is odd and
k ≤ n. Hence for “reasonable” polytope classes we hereafter assumek > n if d is odd
(in particular, whend = 3).

1.2. Noncell Families

After considering cell families, the next natural question is bounding the maximum
complexity Kdis(k,n,d) of a family of polytopes in an arrangement ofn hyperplanes
that need not coincide with arrangement cells, but are pairwise openly disjoint. (Two
sets with nonempty interiors areopenly disjointif their interiors do not intersect.) They
correspond to (a subset of) cells in what Hershberger and Snoeyink call “erased ar-
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rangements” [16] and Dey and Shah call “convex arrangements” [7]. As already noted,
Kdis(k,n,d) ≥ Kc(k,n,d). In fact,Kdis(k,n,2) = 2(k2/3n2/3+n), surprisingly match-
ing the asymptotic bounds forKc(k,n,2) [12], [14], [16]. This quantity arose in the
analysis of a simple algorithm for decomposing a nonconvex polyhedron into convex
pieces using planes that resolve reflex edges [3]. The algorithm can be extended to
higher dimensions in a relatively straightforward manner, however requiring the com-
plexity functionKdis(k,n,d) for precise analysis. To the best of our knowledge nothing
is known ford ≥ 3 beyond the immediate upper bound ofO(knbd/2c) that follows from
the Upper Bound Theorem [19].

We look into a larger class of polytope families that properly includes all the classes
discussed so far. We let the polytopes overlap in their interiors. As already pointed
out, further restrictions are necessary to exclude trivial cases. Specifically, we consider
polytope families in which polytopes are not allowed to share vertices, but overlap of faces
of higher dimension is permitted. This class of polytope families, which is the subject
of this paper, in essence generalizes all other families discussed above and has not been
studied earlier except inR2. We denote the resulting complexity functionKvert(k,n,d).
Katoh and Tokuyama [18] consider the related structure of a set of convex polyhedral
surfaces whose facets lie onn planes and study the complexity of theirk-level.

InR2, Halperin and Sharir show thatKvert(k,n,2) = 2(k1/2n) [13], a result motivated
by their analysis of certain motion planning problems with three degrees of freedom.
When the polygons (or convex polygonal chains) are not even permitted to overlap along
edges (i.e., when polygon boundaries or polygonal chains must cross at discrete points),
the respective bound is2(k1/3n) for k ≤ n and2(k2/3n2/3) for n ≤ k ≤ n2. The upper
and lower bounds in the first range follow from the results of Dey [5] and Eppstein [10],
respectively. The bound in the second range follows from the many-faces results.

In dimensions less than four, for any polytope the number of facets and the number
of faces of all dimensions are within a constant factor of each other. However, in higher
dimensions this assertion no longer holds. Hence it is reasonable to distinguish between
the number of facets in polytopes and the total number of faces in them. We denote
the maximum number of facets byF∗(k,n,d). As pointed out above,K∗(k,n,d) =
2(F∗(k,n,d)) for d ≤ 3.

1.3. Results

It is known thatKvert(k,n,2) = 2(k1/2n) [13]. We show an upper bound ofO(k1/3n2)

on Kvert(k,n,3) whenn ≤ k ≤ n3. It is better than the trivialO(kn) bound in the range
n3/2 ≤ k ≤ n3. For k = O(n), Kvert(k,n,3) = 2(kn), as families of vertex-disjoint
polytopes generalize cell families; more precisely,Kvert(k,n,d) ≤ Kc(k,2n,d), since
by replacing each hyperplane with a pair of nearly parallel hyperplanes one can turn
any family of closed bounded cells in an arrangement into a family of strictly disjoint
cells. On the other hand, we show a lower bound ofÄ(k1/2n3/2) on Kvert(k,n,3) for
n ≤ k ≤ n3. These bounds are summarized in Table 1 and Fig. 1.

In Rd, d > 3, we show several lower bounds on the two complexity functions. For
example, we show anÄ(k1/2nd/2) bound onKvert(k,n,d), unlessk ≤ n andd is odd.
This bound is slightly stronger than the best known lower bound onKc(k,n,d) [2].
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Table 1. Bounds inR3.

Upper bound Lower bound

2(kn), k ≤ n
Kvert(k,n,3) O(kn), n < k < n3/2 Ä(k1/2n3/2), k > n

O(k1/3n2), n3/2 ≤ k ≤ n3

Fig. 1. Bounds onKvert(k,n,3). The shaded area indicates the gap between best known lower and upper
bounds.

Table 2. Bounds inRd.

Upper bound Lower bound

2(kn), k ≤ nd−2

Fvert(k,n,d) O(min {kn,nd}), nd−2 ≤ k ≤ nd Ä(k1/2nd/2), nd−2 ≤ k ≤ nd

Kvert(k,n,d) 2(knbd/2c), k ≤ n and oddd
O(min {knbd/2c,nd}) Ä(k1/2nd/2), n ≤ k ≤ nd

Fig. 2. Bounds onFvert(k,n,d). The dashed line indicates the weakerO(k1/2nd/2+1/2) bound.
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The same expression also boundsFvert(k,n,d) from below fork ≥ nd−2 and alld. The
latter lower bound is close to an upper boundO(k1/2nd/2+1/2) that follows from the
straightforward upper boundO(min {kn,nd}) on Fvert(k,n,d). Nontrivial upper bounds
on the two quantities remain elusive. Table 2 and Fig. 2 summarize our results ind
dimensions.

The paper is organized as follows. Section 2 presents preliminary definitions and
assumptions. Section 3 proves anO(k1/3n2)upper bound and anÄ(k1/2n3/2) lower bound
on Kvert(k,n,3). Section 4 presents results inRd and finally we conclude in Section 5.
For completeness we attach an appendix containing a simple proof of a projective version
of a well-known crossing result that we use in our upper bound arguments.

2. Preliminaries

LetA = A(5) denote the arrangement of a set5 of n hyperplanes inRd. We assume
thatA is asimplearrangement, i.e., every set ofi hyperplanes meets in a flat of dimen-
sion exactlyd − i , for i = 1, . . . ,d, and does not have a point in common ifi > d.
A sufficiently small perturbation of the hyperplanes replaces any polytope inA by a
polytope with at least as large a complexity, in a simple arrangement. (More precisely,
consider a pointp in the interior of the polytopeP. P is the (closed) cell of a subar-
rangement ofA containing the pointp. Perturbing the hyperplanes slightly yields a new
subarrangement in whichp marks a cellP′ whose complexity is at least as large as the
complexity ofP. Two perturbed polytopes do not share vertices if the original ones did
not.) LetP1, P2, . . . , Pk bek polytopes inA; the polytopes need not be cells ofA. InR3,
thecomplexityof {P1, P2, . . . , Pk}, i.e., the total number of their faces, is proportional
to the number of their vertices, since the boundary of eachPi is a plane graph.

For our analysis inR3 we use the standard duality between points and planes. (For
technical reasons, here we viewR3 as a subset of the three-dimensional real projective
spaceRP3.) It maps a planeπ expressed in homogeneous coordinates(x, y, z, w) as
ax+ by+ cz+ dw = 0 to the dual pointπ∗ with homogeneous coordinates(a,b, c,d)
in RP3. Conversely, a pointp: (a,b, c,d) is mapped to the dual planep∗: ax+ by+
cz+ dw = 0.

3. Bounds inR3

In this section we derive an upper boundO(k1/3n2) on Kvert(k,n,3) using the duality
between crossings among triangles and common tangents among polytopes. A lower
boundÄ(k1/2n3/2) is proved using the “lifting” technique detailed in [8].

3.1. Crossings

Given three non-collinear points in the three-dimensional real projective spaceRP3,
consider the projective plane spanned by them. In the plane, draw the three lines defined
by pairs of the points and consider the resulting projective arrangement. It contains four
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2-faces, each bounded by three edges and three vertices. We refer to each such 2-face as
a (projective) triangle spanned by the three points. Two triangles (properly) crossif and
only if they are vertex-disjoint and have a nonempty intersection.

Consider the set5∗ of points dual to the planes of5. Each vertexv of Pi can be
associated with a projective triangleσv spanned by the three points dual to the three
planes of5 incident withv, as follows. The three points span a projective plane and
induce a three-line arrangement in it. This arrangement contains four triangular faces,
one of which consists precisely of points dual to primal planes tangent toP atv. Letσv
denote this face.

LetT denote the set of all dual projective trianglesσv space that correspond to vertices
v of P1, P2, . . . , Pk. If X denotes the total number of crossings (i.e., pairs of triangles
that cross) inT , then by a result of [6]X ≥ ct4/n6 for some positive absolute constantc
whenevert = |T | ≥ 3n2; see the Appendix for a self-contained proof of this statement
for projective triangles. Our goal is to establish an upper bound onX and use the above
inequality to obtain an upper bound ont .

3.2. Common Tangents

To establish an upper bound onX it is sufficient to count the number of polytope vertex
pairs supporting planes tangent to two of the polytopes. InR3 we use the standard notion
of tangency. Namely, we say that a planeπ is tangentto a polytopeP at vertexv if
π passes throughv but avoids the interior ofP. Consider verticesu andv of Pi and
Pj 6= Pi , respectively. Letu = πu

1 ∩ πu
2 ∩ πu

3 andv = πv1 ∩ πv2 ∩ πv3 , with πu
i , π

v
j ∈ 5.

Supposeσu andσv cross, i.e.,σu andσv are vertex disjoint and meet; the assumption that
A is simple guarantees the absence of “accidental” collinearities and/or coplanarities
among the pointsπu

i
∗, πvj

∗. Note that,πu
i 6= πvj for any i, j , i.e.,u andv do not lie on

a common plane of5. A point in σu ∩ σv corresponds to a dual planeπ tangent toPi

at u and toPj at v. Each crossing pair(σu, σv) in T is thus associated with a unique
pair of verticesu, v (of different polytopes) with a common tangent plane through them,
but with no plane of5 passing through both points. Therefore, an upper bound on the
number of such pairs, over all pairs of polytopes, provides an upper bound onX as well.

Two openly disjoint polytopes can haveouter and inner tangent planes, the former
keeping both polytopes on the same side and the latter separating them. Polytopes with
overlapping interiors have only outer tangents.

We first deal with outer tangents. Letti denote the number of vertices ofPi . Two
verticesu andv (not on a common plane of5) of Pi and Pj , respectively, support a
common tangent planeonly if uv is an edge of the convex hull ofPi ∪ Pj . Certainly, this
hull cannot have more thanti + tj vertices and 3(ti + tj ) edges.

Now consider a pair(Pi , Pj ) of openly disjoint polytopes. Suppose there is a plane
π strictly separating them. After performing a projective transformation that mapsπ

to the plane at infinity, we obtain two new polytopes with the property that theirouter
common tangents are exactly theinner common tangents of the original pair, and vice
versa. HencePi , Pj also have no more than 3(ti + tj ) pairs of vertices supporting inner
common tangents, for a total of at most 6(ti + tj ) pairs of vertices supporting common
tangents altogether. We can disregard the case wherePi andPj touch, that is their interiors



Polytopes in Arrangements 57

are disjoint while their closures meet. Due to the simplicity ofA, two such polytopes
cannot have an inner common tangent plane through two vertices that do not share a
plane ofA.

As observed above the total number of (inner and outer) common-tangent-defining
vertex pairs, over all pairs(Pi , Pj ), is an upper bound onX. Thus

X ≤
∑
i 6= j

6(ti + tj )

= 6
∑

1≤ j≤k

∑
i 6= j

ti

< 6kt,

with the first summation taken over all unequal pairs of indicesi, j = 1, . . . , k.

3.3. Tangents and Crossings

Now we are ready to prove an upper bound inR3.

Theorem 1. Kvert(k,n,3) is O(k1/3n2)which is better than O(kn) in the range n3/2 <
k ≤ n3.

Proof. In the dual we havet = |T | triangles with vertices from a fixed set ofn points.
Since the total number of crossings among these triangles isO(kt) by the argument
in Section 3.2, we havect4/n6 ≤ X ≤ O(kt) for t ≥ 3n2. This immediately gives
t = O(k1/3n2). Since the total complexity of{Pi }i is O(t), the bound follows.

The condition of vertex-disjointness on polytopes cannot be completely removed
since otherwise one may considerk copies of the same polytope and a2(kn) bound is
obvious. However, this restriction can be relaxed to require only that if two polytopes
share a vertex, then their interiors do not intersect. Indeed, if this is the case, one can
replace each plane of5 by an almost parallel slab with the two planes meeting far away
from all polytope features. This process only doubles the number of planes eliminating
shared vertices. The claim follows.

Corollary 2. The bound in Theorem1 applies to a collection of k convex polytopes in
an arrangement of n planes, such that any two polytopes are either vertex disjoint or
openly disjoint.

3.4. Lower Bound inR3

In this section we use the “lifting” technique of [8] to deduce a lower bound on
Kvert(k,n,3) from its two-dimensional analogue. Halperin and Sharir [13] construct
a set ofk convex polygons that are vertex disjoint, are drawn from an arrangement of
n lines, and whose total complexity isÄ(k1/2n) for 1 ≤ k ≤ n2. For completeness,
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we briefly outline their construction. Form an arrangement ofn/k1/2 lines in which one
face has the form of a regular polygon with all the lines appearing on its boundary.
Now replace each of the lines byk1/2 essentially parallel lines. They intersect near each
polygon corner ink1/2 × k1/2 points. It is not difficult now to constructk overlapping,
closed convex chains each of lengthn/k1/2 and each turning at a different one of these
k arrangement vertices, near each polygon corner.

Theorem 3. Kvert(k,n,3) isÄ(k1/2n3/2) for n ≤ k ≤ n3.

Proof. Let p = 4k/n wherek ≥ n. Consider a horizontal plane with an arrangement
of n/2 − 1 lines wherep pairwise vertex-disjoint convex polygons have complexity
Ä(p1/2n). “Lift” this arrangement to an arrangement ofn/2 − 1 vertical planes in
which there arep prism-shaped polyhedra of total complexityÄ(p1/2n) that do not
share vertical edges. Addn/2+ 1 horizontal planes, so that each of thep prisms is cut
into n/2+ 2 subprisms, two unbounded andn/2 bounded. Picking every other bounded
subprism from each prism, we obtain a set ofpn/4= k vertex-disjoint convex polytopes
with boundaries inn planes. They must haveÄ((p1/2n)n) = Ä(p1/2n2) complexity.
Using p = 2(k/n), we get the desired bound.

4. Higher-Dimensional Bounds

The “lifting” technique of the previous section can be generalized to higher dimensions to
derive a lower bound onFvert(k,n,d). Another approach based on taking product spaces
is used to derive a lower bound onKvert(k,n,d). We do not have satisfactory upper
bounds on the asymptotic behavior of these complexity functions though we suspect that
our lower bounds are close to optimal. InRd, d > 3, the lower boundÄ(k1/2nd/2−1/4)

on Kc(k,n,d) [2] immediately applies toKvert(k,n,d). We show a better lower bound
Ä(k1/2nd/2) on Kvert(k,n,d).

We first discuss upper bounds, starting with a straightforward observation:

Observation 4. Kvert(k,n,d) and Fvert(k,n,d) are O(nd).

Proof. SinceF∗(k,n,d) < K∗(k,n,d), it is sufficient to argue forKvert(k,n,d).
Consider a family ofk pairwise vertex-disjoint polytopes in an arrangement ofn

hyperplanes in general position inRd. The polytopes cannot have more thanO(nd)

vertices altogether, as each vertex of the arrangement can be used at most once. Each
vertex may be incident to at most one polytope of the family and hence to at most 2d

faces of all dimensions.

First, we derive bounds onFvert(k,n,d). If k ≤ nd−2, one can easily construct an ar-
rangement ofn hyperplanes withk disjoint closed cells, each bounded by2(n) facets [8].
This implies a trivial tight bound of2(kn) for k ≤ nd−2 on Fvert(k,n,d). So only the
casek ≥ nd−2 is interesting. We prove anÄ(k1/2nd/2) lower bound onFvert(k,n,d)
for k ≥ nd−2 andd ≥ 3. Interestingly enough, this bound is close to the upper bound
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O(k1/2nd/2+1/2) on Fvert(k,n,d). The latter bound is weaker than the immediate bound
of Fvert(k,n,d) = O(min {kn,nd}) that follows from Observation 4 and the fact that no
polytope has more thann facets.

The lower bound onFvert(k,n,d) is derived by generalizing theÄ(k1/2n) lower
bound of Halperin and Sharir [13] onFvert(k,n,2) to a higher dimension using the same
“lifting” method as in Theorem 3.

Theorem 5. Fvert(k,n,d) isÄ(k1/2nd/2) for k ≥ nd−2 and d≥ 3.

Proof. Let p = 4k/n ≥ nd−3. In a horizontal hyperplane construct inductively an
arrangement ofn/2− 1 (d− 2)-flats with p pairwise vertex-disjoint(d− 1)-polytopes
with c = Ä(p1/2n(d−1)/2) facets. “Lift” this arrangement to an arrangement ofn/2− 1
vertical hyperplanes in which there arep prism-shapedd-polyhedra with a total ofc
facets. Addn/2+ 1 horizontal hyperplanes to obtainn/2+ 2 subprisms from each of
the p prisms. Picking every other bounded subprism from each prism, we obtain a set of
pn/4= k pairwise vertex-disjoint convexd-polytopes with boundaries inn hyperplanes.
They must haveÄ(cn) = Ä(p1/2n(d+1)/2) facets. Usingp = 2(k/n), we obtain the
claimed bound.

In the above proof we requiredk ≥ nd−2 to carry the induction through dimen-
sions. This is not an artifact of our proof but an intrinsic requirement, for we have
observed earlier thatFvert(k,n,d) is 2(kn) whenk = O(nd−2). It follows from the
next theorem that this is not true forKvert(k,n,d). In fact, the lower boundÄ(k1/2nd/2)

applies toKvert(k,n,d) for a larger range ofk. Recall that Aronov et al. [2] have con-
sidered maximum cell family complexityKc(k,n,d), and constructed a lower bound
somewhat smaller than2(k1/2nd/2) and an upper bound slightly larger than it. It is
conceivable thatKc(k,n,d) = 2(k1/2nd/2). We show a lower bound ofÄ(k1/2nd/2)

on Kvert(k,n,d), which is better than the (best currently known) corresponding lower
bound onKc(k,n,d). The proof again uses theÄ(k1/2n) lower bound of Halperin and
Sharir [13].

Theorem 6. Kvert(k,n,d) isÄ(k1/2nd/2) for d ≥ 2, unless d is odd and k≤ n.

Proof. Supposed is even. Letp = k2/d andq = 2n/d. Construct a family ofp pairwise
vertex-disjoint convex polygons in an arrangement ofq lines in the plane withÄ(p1/2q)
vertices, as described in [13]. Placed/2 copies of this construction ind/2 orthogonal
2-flats which together spanRd. Consider one such flatπ and one of theq lines we drew
there. Extend it to a hyperplane by a Cartesian product with the orthogonal complement
ofπ . This yields a set ofqd/2= n hyperplanes altogether. We obtaink = pd/2 polytopes
in the resulting arrangement by taking all possible Cartesian products ofd/2 polygons,
one from each 2-flat. It is easy to see that no vertex is shared between two resulting
polytopes and the number of their vertices is(Ä(p1/2q))d/2 = Ä(k1/2nd/2) satisfying
the claimed bound.

Now supposed is odd andk > n. As in Theorem 5, use the bound in the immediately
lower even dimension and “lift” it to the desired bound in the claimed range.
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5. Conclusions

In this paper we discussed the complexity of families of polytopes in an arrangement of
hyperplanes. Unlike most previous work, we allow the polytopes to overlap, but do not
permit sharing vertices. Except inR2 these families have not been studied in erstwhile
literature with the same generality as considered here. We obtain several bounds in three
and higher dimensions. The exact asymptotic complexity of these quantities is still to be
determined, however. Moreover, several other classes of families of polytopes in hyper-
plane arrangements deserve investigation, such as those generalizing non-overlapping
convex curve families studied by Dey [5] and Eppstein [10]. In addition, we recently
learned that Sharir and Smorodinsky [20] have produced a tight2(k1/2n3/2) bound
on the maximum complexity ofk > n polytopes with non-overlapping edges, in an
arrangement ofn planes inR3.

Appendix

Throughout this appendix,S is a set ofn points in general position inRP3—no three on
a line, no four on a plane. Consider three non-collinear pointsv,w,u ∈ S. They define a
projective planeπ ⊂ RP3. A (projective) triangle with vertices u, v, w is defined, as in
Section 3.1, as a 2-face in the two-dimensional line arrangement formed inπ by the three
linesuv, vw, uw. Three non-collinear points define four triangles. Similarly, two distinct
points define two (projective straight-line) segments. Given two distinct triangles, we
say that theycross properlyif they intersect and are vertex-disjoint, andimproperly if
their interiors intersect, but the triangles share vertices. LetT be a collection of triangles
with vertices fromS, and putt = |T |.

In this Appendix we present a self-contained proof of the following theorem. An affine
version of this theorem was originally proven by Dey and Edelsbrunner [6]. An affine
version of the simpler proof given below was communicated to the authors at different
times by Jiˇrı́ Matoušek and by Emo Welzl, but to our knowledge it has not appeared in
print. A related proof is presented in [17].

Theorem 7. Given a set S of n points inRP3 in general position and a set T of
t = Ä(n2) triangles spanned by the points, there areÄ(t4/n6) pairs of properly crossing
triangles in T.

We prove this statement by a series of assertions on the number and type of pairs of
crossing triangles inT .

Lemma 8. If t > n2, there are two triangles whose interiors intersect.

Proof. As each triangle is incident to three points, there is a pointp ∈ S incident to
3t/n > 3n triangles. Drawing a sufficiently small sphere aroundp and intersecting it
with segments connectingp to other points ofS and with triangles ofT incident top,
we obtain a graph onn− 1 vertices with more than 3n edges on the sphere. This graph
has too many edges to be planar, so some two edges intersect in their interiors; an edge
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cannot pass through a vertex by the general position assumption. Therefore some two
triangles incident top have nondisjoint interiors (and share a vertex).

Lemma 9. If t > 5n2/2, T contains a pair of properly crossing triangles.

Proof. Suppose the interiors of two triangles meet. The intersection of the triangles
lies in the intersection line of the respective planes containing them. Consider a segment
s (there might be more than one) of an intersection of the two projective triangles that
meets both interiors. We claim thats cannot be delimited by two triangle vertices, so a
nonvertex endpoint ofs is a point where an edge of one triangle pierces (i.e., meets the
interior of) the other. Indeed, suppose both endpoints ofs are vertices. If they belong to
the same triangle, the interior ofs lies completely on the triangle boundary or outside
of it, contradicting the assumption thats meets both triangle interiors. If they belong to
different triangles, we have a vertex of one triangle lying in the other, contradicting the
general position assumption.

We now turn to the proof of the lemma. Suppose all triangle crossings are improper.
As argued above, any time two triangle interiors meet, an edge pierces a triangle. LetE
be the set of such edges. We claim that every edgee ∈ E can be incident with at most
three triangles ofT . Indeed, by the definition ofE, epierces some1 ∈ T . If e is incident
with four or more triangles, at least one of them does not share a vertex with1 and thus
crosses it properly.

We now delete the at most 3
(n

2

)
< 3n2/2 triangles incident on edges inE. What is left

is a set of triangles that do not cross at all (otherwise, there would be an edge crossing a
triangle and we have deleted all triangles incident on such edges). By Lemma 8 we are
left with at mostn2 triangles, sot < 3n2/2+ n2 = 5n2/2, completing the proof of the
lemma.

Let X be the number of pairs of properly crossing triangles inT . By repeatedly
removing one of a crossing pair of triangles that is guaranteed to exist by the previous
lemma, we deduce

Lemma 10. The number X of properly crossing pairs is always at least t− 5n2/2.

Proof. For t ≤ 5n2/2, the statement holds vacuously. For larger values oft , at least
one pair exists by Lemma 9, so deleting one triangle of the pair removes at least one
properly crossing pair, and the result follows by induction ont .

Finally, we are ready to prove Theorem 7.

Proof of Theorem7. We now use a standard random sampling argument, see, for ex-
ample [21] and [17]. Given a collection ofn points andt triangles spanned by them,
we select a sampleS′ ⊂ S of the points, with each point selected independently with
probabilityq, which is to be fixed below. The sample hasn′ points andt ′ triangles (a
triangle of T is selected only if it is spanned by three selected points). LetX be the
number of properly crossing triangle pairs inSand letX′ be the corresponding number
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for S′. By Lemma 10,X′ > t ′ − 5(n′)2/2. By linearity of expectation this means that
E[X′] > E[t ′] − ( 5

2)E[(n′)2]. A simple calculation givesE[X′] = Xq6, E[t ′] = tq3,
E[(n′)2] = nq+ n(n− 1)q2, so the inequality can be rewritten as

X >
t

q3
− 5n

2q5
− 5n2

2q4
+ 5n

2q4
>

t

q3
− 5n

2q5
− 5n2

2q4
.

We putq = 3n2/t and obtain, for 3n2 ≤ t ≤ (n3) ≤ n3/6,

X >
t4

27n6
− 5t5

486n9
− 5t4

162n6

= t4

27n6

(
1

6
− 5t

18n3

)
≥ t4

27n6

(
1

6
− 5

108

)
= 1

27
· 13

108
· t4

n6
.
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