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Abstract. We prove a generalization of the famous Ham Sandwich Theorem for the plane.
Givengn red points andym blue points in the plane in general position, there exists an
equitable subdivisioof the plane intqy disjoint convex polygons, each of which contains

n red points anan blue points. Fog = 2 this problem is equivalent to the Ham Sandwich
Theorem in the plane. We also present an efficient algorithm for constructing an equitable
subdivision.

1. Introduction

The planar case of the well-known discrete Ham Sandwich Theorem [18] states that, for
finite sets of red and blue points in the plane, there exists a line dividing both red and
blue points into sets of equal size. The Ham Sandwich problem is well studied from an
algorithmic point of view [2], [5]-[7], [12]-[14], [17], [19]. An optimal algorithm of Lo

et al. [13] finds a Ham Sandwich cut in linear time. Kaneko and Kano [11] considered
balanced partitions of two sets in the plane. They gave the following conjecture.

Conjecture 1. Letm > 2,n > 2, and g be positive integeréet R and B be two
disjoint sets of points in the plane such that no three points of R are collinear
IRl = gn and|B| = gm. Then RU B can be partitioned into g subsets,P. ., Py
satisfying the following two condition¢i) P and B are linearly separable for all
l<i<j=<g;and(i) [IPNR =nand|RNB|=mforalll<i <g.

For g = 2 the conjecture is equivalent to the Ham Sandwich Theorem [18, p. 212].
Kaneko and Kano proved the conjecture in the caseof2. In this paper we prove their

* Support from NSERC is gratefully acknowledged.
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(a)

Fig. 1. An example of three red pointg, r», andrsz and nine blue pointby, . . ., bg for g = 3. (@) There is
no equitable 2-cutting. (b) An equitable 3-cutting.

conjecture. Actually we prove a stronger theorem providing what we catbarable
subdivisionof the plane.

Note that, forg = 2%, Conjecture 1 can be proved by applying the Ham Sandwich
Theorem in a divide-and-conquer fashion. For gengralich a strategy is not possible.
Specifically, Fig. 1 illustrates an example of three red and nine blue points that does
not admit anequitable2-cutting, that is, a partition of the plane by a line such that the
ith halfplane containg;n red andg;m blue points for some integeig, g, < g (in
other words, there is no halfplane with exactly one red and three blue points). However,
it is sufficient to apply arequitable3-cutting An equitable 3-cutting is a partition
of the plane by three rays with a common apex into three convex wedges, each of
which contains a proportional number of red and blue points. In other wordsttthe
wedge containg;n red points and) m blue points, for some & g1, g2, g3 < g with
htP+d&=0

Theorem 2(3-Cutting). Forany gn red point¢g > 2) and gm blue points in the plane
in general positionthere is equitabl&-cutting of red and blue points

Wheng = 2, Theorem 2 is equivalent to the Ham Sandwich TheoremgFe, we
can apply Theorem 2 recursively for the wedges wgth= 2. This produces what we
refer to as an equitable subdivision of the plane. We present an algbfithproducing
such an equitable subdivision @(N*3log® N log g) time whereN = g(n + m) is the
total number of points. Note we need to use the fact that an equitable 3-cutting defines a
convex partition in order to preserve connectivity of the regions produced in the recursive
application of Theorem 2.

1 A Java demo is available http://www.cs.ubc.ca/spider/besp/ham.htm
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Very recently the conjecture of Kaneko and Kano has been independently proven
by Ito et al. [10] and Sakai [16]. Comparing our result with papers [10] and [16] we
can say that they prove essentially the same 3-cutting theorems but both use different
(and somewhat more complicated) techniques. Ito et al. [10] prove the existence of a
3-cutting with one ray passing through a fixed point on the convex hull of the union
of the red and blue points. Sakai [16] gives a direct proof of the continuous version of
the 3-Cutting Theorem using a partition of the plane into square cells of an appropriate
size. Paper [10] refers only to the discrete version. Neither of the papers present efficient
algorithms.

Béarany and Matosék [3] consider partitions of the plariefans, using lines and
specified weights ok regions. They prove a weaker version of Theorem 2, namely the
existence of a 3-fan that defines a not necessarily convex subdivision.

2. Preliminaries

Let Rbe a set ofinred points and leB be a set ofmblue points in the plane in general
position, i.e., there are no three points lying on the same line. The irgeég#re number
of groups into which the setR and B are to be divided. A Zuttingis a partition of
the plane by the line into two halfplanes. A 2-cuttingeipuitable(or more specifically
(91, 92)-equitable) if tha th open halfplane contains exactyn red andg; m blue points
for some integers;, g2 < gwith g; + 92 = g.

If there is a(g:, g2)-equitable 2-cutting of the red and blue points, then the problem
can be reduced to the subproblems for the number of grgupadg,. Otherwise, for
anyg; € {1,...,g — 1}, a halfplane containing exactly;n red points (we call it a
0:-halfplang contains either less than or greater tigam blue points. We assign to the
halfplane the sigr-1 or 41, respectively.

Lemma 3. If,forsome ge {1,..., g— 1}, there are two g-halfplanes with opposite
signs then there is dg;, g2)-equitable2-cutting

Proof. Lemma 3isthe same as Lemma 2 of [11]. We prove the result using geometric
duality exploiting an interpretation in termslofevels of the dual arrangement associated
with the point seR U B. The dual of a poinp = (p1, p2) is the liney = —p;x + po,

and the dual of a ling = ax + biis the point(a, b).

Letl; andl, be the lines that define twa -halfplanes with signs-1 and+1. We can
rotate the plane so that the lines become nonvertical argj thalfplanes become lower
halfplanes. In the dual setting the red and blue points correspond to red and blue lines.
Thek-levelof an arrangement of lines is a polygonal line formed by all edges of kevel
where the level of an edge is the number of lines lying strictly below its interior point.
The point dual of an equitable 2-cutting lies betweenghelevel and(g;n + 1)-level
of red lines and between tlggm-level and(g;m + 1)-level of blue lines. An equitable
2-cutting can be found if two levels of different colors cross, see Fig. 2. Otherwise the
entire(g;n + 1)-level of red lines lies below thg;m-level of blue lines or thg;n-level
of red lines lies above th@;m + 1)-level of blue lines. In this case the poing, p.
dual toly, I, lie below theg;m-level of blue lines or above thgym + 1)-level of blue
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gin-level (gan + 1)-level (g1n + 1)-level gin-level

p®

grm-level grm-level (g1m + 1)-level (g1m + 1)-level

(a) (b) (e) (d)

Fig. 2. The pointp is the dual of an equitable 2-cutting.

lines (the pointy,, p; lie between theyn-level and(gin + 1)-level of red lines). Itis
impossible because the poipt is below theg;m-level and the poinfp; is above the
(g1m + 1)-level of blue lines. O

Lemma 3 allows us to assume that, for anyall g;-halfplanes have the same sign.
However, in our algorithm we avoid the computation of all signs. Instead we use Lemma 3
to find an equitable 2-cutting if in the course of the algorithm it is discovered that two
g:-halfplanes have opposite signs for sogaeTo begin we define signs for a canonical
set of halfplanes. Drag — 1 vertical lines that divide red points intpsets ofn points.

We assume that there are no two points lying on the same vertical line (otherwise we
can rotate the points). We define tsignof g;, S(g1), as the sign of the left halfplane
formed by theg;th vertical line.

A 3-cuttingis a partition of the plane into three wedddfs, W., andW; by three rays
with a common point that is called tlagpexof the 3-cutting. A 3-cutting isonvexf its
wedges are convex. A convex 3-cuttingeiguitable(or more specifically(g:, g2, gs3)-
equitable) if the open wedgd# contains exactlyg;n red andg; m blue points for some
integers 0< g1, 02, g3 < g with g1 + g2 + gz = g. Note that an equitable 2-cutting is
an equitable 3-cutting for songg = 0.

We will find a 3-cutting with one ray going down, see Fig. 3. We call the wedges
adjacent to this raleft andright. The remaining wedge igoper. The rays aréeft, right,
anddownward (Note that at most one of the wedges can be nonconvex.)

Right

Upper wedge ray

Left
ray

Left wedge Right wedge

Downward ray

Fig. 3. The notation of a 3-cutting.
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Though our goal is to find 3-cutting whose rays do not pass through data points,
it is convenient to define aanonical red3-cutting for a triple (gi1, 9o, g3) that vio-
lates this condition. Lep be a point in the plane and Ig, ..., pgn be a list of red
points in clockwise order starting from (but omitting) the downward ray franiif p
is red, thenp; = p. For a red pointy directly below p, pgn = ¢.) The pointspg,
and pg,+g,)n define a red 3-cutting with apgx A canonical blue3-cuttingis defined
similarly.

3. A 3-Cutting Exists

Note that any(g:, g»)-equitable 2-cutting can be viewed as@, g, 0)-equitable 3-
cutting. Thus the Ham Sandwich Theorem implies that Theorem 2 is true forgeven
The case of odd is more complicated.

3.1. Oddg=>3
We use the following topological lemma (a variant of one from [9]).

Lemma4. LetR be any closed region in the planket A be a finite arrangement

of curves inR, in which each face of A is labeled withla 2, 3,or 4. Suppose that
there are points p and,dabeledl and 3, on the boundaryR such that one compo-
nent of§R—{p, q} uses labeld, 2, 3and the other component us&s3, 4 Fig. 4).
Then some point dR lies on the boundary between two faces whose labels differ by
two.

Proof. Subtract the faces labeled 2 and 4 fr&pand walk along the boundary of the
resulting region starting fronp. We either reaclyg, in which case we have seen a 1-3
transition, or we return tg, in which case we have walked from one component of
SR — {p, q} to the other, and have seen a 2-4 transition. O

The following theorem provides an equitable 3-cutting or 2-cutting for a given num-
bers of points in groups.

1,2,3

1,3,4

Fig. 4. 1-3 or 3-4 transition.
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Fig. 5. The regionR for triple (g1, 92, 93).

Theorem 5. Let R be any set of gn red points and let B be any set gm blue points in the
plane in general positiarLet g1, gz, and g be positive integers withig g + g3 = g.
If s(g1) = s(g2) = s(03), then there exists either

e a (01, 92, 93)-equitable3-cutting or
e a (g, g — g)-equitable2-cutting for some.i

Proof. We can assume the sigtg;) = —1; if s(g1) = 1 we exchange the colors red
and blue. We define a regida and label eaclp € R as follows: LetR consist of those
points in which the canonical red 3-cutting for trighg, g2, g3) with apexp are convex
(Fig. 5). Recall that no vertical line contains more than one data poink;l et. , Xy, be

a sorted list of-coordinates of red points. Consider two vertical liheandl, passing
through theginth and(g; + g»)nth coordinates, i.ex = Xgn andx = X, +g,n- The
closed halfplane left df, contains exactlg;n red points and less thaiam blue points
sinces(g;) = —1. Symmetrically, the open halfplane rightlgfcontains exactlygsn
red points and less thapm blue points since(gs) = —1. For any point left of,, the
left wedge of a canonical red 3-cutting is nonconvex. Symmetrically, for any point right
of |5, the right wedge of a canonical red 3-cutting is nonconvex. Hence the r&gisn
bounded by the linds andl,. Note that an open strip between the lihgandl, contains
exactlygyn red points and greater thgam blue points.

Consider any vertical line betweerl; andl,. For a pointp onl, the angles of left
and right wedges of the canonical red 3-cutting are both lessith&nrthermore, each
such angle is a monotone function of §reoordinate of the poinp (the angles decrease
when p goes up). It follows that the angle of the upper wedge is monotone. If the point
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1=RB-RB 2=RB-BR 3=BR-BR 4=BR-RB

Fig. 6. The labels. The dashed rays are blue.

p has they-coordinate less than the minimumyfcoordinates of data points, then both
the left and right rays go up and the upper wedge is convex. For a paint above all
y-coordinates of red and blue points, the upper wedge of the canonical red 3-cutting has
an angle greater than. Hence there is a point on the lihsuch that the points below
belong toR.

The lines passing through pairs of pointsRf B and the vertical lines through the
points ofRU B form an arrangemem. For any pointp from the interior of afacd < A,
the left (right) rays of the two canonical cuttings are distinct. We are interested in the
clockwise order of left rays (RB or BR) and the clockwise order of the right rays of the
two canonical cuttings. We assign a labelg@ccording to 1= RB-RB, 2= RB-BR,
3 =BR-BR, and 4= BR-RB (Fig. 6). All points of the same face of the arrangemfent
have the same label, which is taken to be the label of the face.

Consider the labels on the boundary?f At y = —oo all labels are 2= RB-BR
due to the signs af; andgs. The faces forming the left boundary &f, all of which are
incident on and right of the ling, have labels RBxx by the sign of, which implies
labels 1 or 2. Symmetrically, the faces of the right boundarfRdfiave labels xxBR,
which implies labels 2 or 3. Along the remaining boundarRpthe red partition uses a
straight line at the top, so the sign@f rules out label 2= RB-BR. The top face along
the linel; has label 1= RB-RB. The top face along the lirig has label 3= BR-BR.
By Lemma 4, therefore, we must have a 1-3 or 2-4 transition. This implies the existence
of an equitable 3-cutting by Lemma 6. O

Lemma 6. Let p be apoint of the regioR that lies on the boundary between two faces
whose labels differ by tw®ne of the faces around p contains the apex of an equitable
3-cutting

Proof.  First consider a special case where no data point lies below thepa{bey. 7).
Letq be a pointin a face whose boundary contains the gmihetr; andr; be red points
that define canonical red 3-cuttingaggtwith gr; being the left ray. Similarly, leb; and
b, be blue points that define canonical blue 3-cutting.actually these points define
canonical red and blue 3-cuttings for all points aroymdf the line passing through
the pointsr; andb, does not contairp, then the order of raygri andﬂ is still the
same when the poirg is rotated aroundp. This implies that the faces aroummuse
only two consecutive labels ( RB-RB, 2= RB-BR or 3= BR-BR, 4= BR-RB)
contradicting the assumptions. Hence the pain@ndb; lie on a ray emanating from
p. Similarly, some ray emanating frommintersects the points andb,. The required
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(b)

(a)

Fig. 7. Construction of an equitable 3-cutting (dashed rays) for a gpwith a 2-transition of labels. (a) No
point belowp. (b) The red poing below p.

equitable 3-cutting can be obtained by rotating the na_lfﬁandﬁz by a sufficiently
small angle clockwise.

Now suppose some poiqt, say red, lies below or coincides withp. Clearly, all
canonical blue 3-cuttings for points in a sufficiently small ball with centgraxe defined
by the same blue points, séy andb,. We prove that an equitable 3-cutti@can be
obtained by a translation of the blue 3-cuttingpatiownward by a sufficiently small
distance and a rotation of the left ray by a sufficiently small angle clockwise such that the
data points on the raﬁ (exceptp, if p € R) remain in the left wedge. The 3-cutting
C divides the blue points into subsetsgfn, g,m, andgsm points.

Split the ball containingp by a vertical line passing through Let H be the left open
halfball. If the orders of left rays of red and blue 3-cuttings for some pointd iare
changed (in other words there are two pointddinwith labels RBxx and BRxx), then
there is ared point; in the raypb, that forms all left rays of the red 3-cuttings for points
in H. Therefore the left wedge @@ consist ofg;n red points. Otherwise the change
of the order of left rays for points whose labels differ by two is caused by inserting the
red pointp into the left wedge of a red 3-cutting (with an apex in the right halfball). It
follows that the left wedge of again consist ofj;n red points.

Using a similar argument, we can show that the number of red points in the right
wedge ofC is gsn. Note that the right wedge & is convex because it is covered by
a convex right wedge of red 3-cutting for a point with a label xxRB. He@cis an
equitable 3-cutting. O

It remains to show how to construct an appropriate trigle gz, Js).

3.2. Finding (g1, 92, 93)

To apply Theorem 5 we need a triplgs, 02, 93) With g1+ 02+ 93 =0,0< g < g,
and signss(g;) = s(g2) = s(gs). Recall that the signs are defined by vertical cuts. We



Generalizing Ham Sandwich Cuts to Equitable Subdivisions 613

can apply Lemma 3 if thigh vertical line cuts off less (greater) tham blue points and
the (g — i)th vertical line cuts off greater (less) tham blue points. In other words the
signss(i) ands(g — i) are the same. To apply Theorem 5 we need a triple with the same
signs. The following theorem provides one of these conditions.

Theorem 7. For any sequence of signsls, ..., s(g — 1), there is a pair(gz, g2) or
a triple (91, g2, g3) with sum g and the same signs

Proof. If the pair(1, g— 1) has the same signs, we are done. Supp@be# s(g—1).
Let k be the smallest index with(k) # s(1) ands(k — 1) = s(1). Then eitheis(k) =
s(g — k) or the triple(1, k — 1, g — k) has the same signs. O

In fact one of the numbers in the triple can be specified.

Corollary 8. For any sequence of signgl13, ..., s(g — 1), there is a pair(g:, g2) or
a triple (g1, g2, 1) with sum g and the same signs

Applying Theorem 7 directly adds extra fac@to the running time of constructing
a subdivision of the plane intg regions. The following theorem reduces this factor to

logg.

Theorem 9. For any sequence of signsls, ..., s(g — 1), there is a pair(gs, g3) or
a triple (91, 92, 93) with sum g and the same signs such that gny ¢2g/3].

Proof. For everg the pair(g/2, g/2) has the same signs. Suppose that 2k + 1. We
can assums(l) = —1; otherwise we exchange the colors red and blus(kf = —1,
then triple(d, k, k) satisfies the theorem, so suppesk) = 1. If s(k + 1) = 1, then
the pair (k, k + 1) satisfies the theorem, so suppagk + 1) = —1. Letk; < k
be the number such thatj) = 1 forall j, k; < j < kands(k;) = —1. Denote
ko = 19/3].

Suppos&k; > ky. Then the triple1, ky, g — k; — 1) has the same signs sinsgy —
ki —1) = —s(k; + 1) = —1. Note thatg — k; — 1 < g — |g/3] — 1. One can prove
g — 19/3] — 1 < |29/3] by considering all residues gfmodulo 3.

Alternativelyk; < ky. In this casey > 5 becausé, = 1 for g = 5. It follows that
g>6andk;+1=|g/3]+1<9/3+1<(g+1)/2=k. Hences(k+ 1) =1.The
final triple with the same signs depends on the residugerbdulo 3:

e If g = 3ky, then the triplaks, ks, ko) has the same signs.
o If g =3k, + 1, then the triplgky, ky, ko + 1) has the same signs.
o If g =3k, + 2, then the triplgkz, ko + 1, ko + 1) has the same signs. O

4. Subdivision Theorems

Applying Theorem 2 in a divide-and-conquer fashion we prove the main result of our
paper.
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Theorem 10(Equitable Subdivision). Given gn red and gm blue points in the plane
in general positionthere exists a subdivision of the plane into g convex regions each of
which contains n red and m blue points

The 3-Cutting Theorem and the Equitable Subdivision Theorem are discrete. In the
rest of this section we prove continuous versions of these theorems.

Let p1 and p, be measurable function®?> — [0, co) with fRz pidx = 1. A
convex 3-cutting of the plane into wedg¥®%,, W,, and W5 is equitable (or more
specifically (g:, g2, g3)-equitable) iffWi prdx = fvv. p2dXx = gi/g for some integers
0<01.02.93<gWithg1 + g+ g =g

Theorem 11(3-Cutting, Continuous Version).Let p; and p, be measurable functions
R? — [0, c0) with Jre pi dx = 1. For any integer g> 2, there exists an equitable
3-cutting

Proof. Note that, forg = 2, this is the continuous Ham Sandwich Theorem. Fix any
integerg > 3. The idea is to approximate functiopsusing a continuous version of the
Ham Sandwich Theorem. Consider the functignFor a regionR, theweightof R is

[r p1(x) dx. The weight of the plane is 1. Draw any lihe(for example, vertical) that
defines halfplanesl; and H; of Weight%. Define functiongy; andg, on the plane by

o )201(p) if peH,,
i (p) = {0 otherwise.

Applying the continuous version of the Ham Sandwich Theorem we constructla line
that halves bothd; andH,, producing four wedges of Weiglﬁt

We partition each of the four wedges into four regions in the same fashion. The
number of convex regions after partitionikgimes is 4. This subdivisionS satisfies a
line propertythat any line properly intersects at mo&tragions. The line property can
be proved using the fact that a line cannot contain four interior points of wedges formed
by two lines.

Pick a red point in each region. We definellue points in similar way using the
function p,. To apply Theorem 2 the number of red and blue points must be an integer
multiple of g. We remove any = 4¥ — g|4%/g] red and blue points. By 3-cutting
Theorem 2, for ank, there exists an equitable 3-cuttinggi®#/g] red and blue points.
Letit be a(g:, g2, g3)-equitable 3-cutting of the plane into the wedd®s W, andWs.

By the line property, each ray of the 3-cutting crosses at mbsbBvex regions o8.
The wedgew; contains at leass; [4%/g] — 2 - 3X — r whole regions oS and intersects
at mostg; |4“/g) + 2- 3 4 r regions ofS. Each region ofs has weight 14%. Hence

4« 4«
Oi {—J—2~3k—r 54"/ p1dX < g L—J+2~3k+r
g W g

4k
4k/ p1dX — g {—J
W g

or

<2.34r.




Generalizing Ham Sandwich Cuts to Equitable Subdivisions 615

Usingr = 4 — g|4¥/g| we obtain

4“(/ pldx—&)+r%’§2-3k+r
W g g

or
4“/ pldx—% <2 3F4r+rd <o 3o
W, g g
Hence
g 3.k g
’/ipldX—a 52(71) +2E'
One can prove the same bound fgr
g 3.k g
/iPZdX—a 52(2) +2E.

The triples(g:, g2, g3) can be different if we chande We extract an infinite sequence
of numberky, ..., ki, ... that define the same tripl€g;, g2, 93). Let p; be an apex of
the 3-cutting constructed fér= k;. It is clear thatp; lies in the vertical slab defined by
the linesx = a andx = b such that

1
/ ,OldXZ/ pldX=—.
x<a x>b g

We can extract an infinite subsequence of apgxe;,, . . . that converges to some point

p € R? or to an infinite point(x, +00). In the first case the wedges of corresponding
3-cuttings converge to some wedgt’s, W,, andWs that define dg:, 0o, g3)-equitable
3-cutting. In the remaining case some two rays of 3-cuttings converge to vertical lines
that define three slabs of weigtgs, g», andgs (for both functionsp; andp,). Each of
these lines defines a 2-cutting that is a special case of 3-cutting. O

Applying Theorem 11 recursively for regions with a number of groups more than one
we can prove the following theorem.

Theorem 12(Equitable Subdivision, Continuous Version)Let p; and p, be measur-
able functionsR? — [0, co) with Jre pi dx = 1. For any integer g> 0, there exists a
subdivision of the plane into g convex regions R., Ry such that

/pidX=E, for i=212 and j=1,...,q.
R; g

5. Algorithm

We next describe an algorithm that finds discrete 3-cuttings recursively. The recursive
procedure has inpugt, n, m and two set®k andB of points. Ifg is even we use the linear
time algorithm of Lo et al. for the Ham Sandwich Problem [13]. Otherwise provided
g > 1 we find a triple(g:, g2, g3) using Theorem 9, and find an equitable 3-cutting
by Theorem 5 (in fact, the algorithm may find 2-cutting instead of 3-cutting). For each
wedge withg; n red andg; m blue points, we continue recursively.
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5.1. Computing a Tripl€g:, gz, g3)

We need a triple of integers 8 gi, g2, g3 < g that sum tog and have the same signs
s(g1) = s(g2) = s(gs). To compute the signs(1), ..., s(g — 1) we construcg — 1
vertical lines separating red points irgcsets of equal size. This can be done in linear
time if the red points are presorted. Presorting ta®&8l log N) time. We can count
the number of blue points in thgstrips in linear time if the blue points are presorted.
For each vertical line, we compute the number of blue points to the left of the line.
Comparing th number withim gives signs(i ). If, for somei, theith number coincides
with im, then the th vertical line gives the equitable 2-cutting.

Now we can find the tripl€g;, g2, 93) using Theorem 9.

5.2. One More Topological Lemma

The most difficult part of the algorithm is finding an equitable 3-cutting. Recall that our
proof that an equitable 3-cutting exists depends on the fact (Lemma 4) that in a certain
arrangement with faces labeled?l 3, or 4, there are adjacent faces whose labels differ
by two. Unfortunately, Lemma 4 does not give a way to compute two such faces except
to look through all faces. We give a general topological lemma for the existence of such
faces that supports binary search.

Let G be a dual graph of the arrangeménfiormed by the lines passing through pairs
of points of RU B and the vertical lines through the pointsRfJ B. The vertices ofs
correspond to the faces and two vertices are adjacent iff corresponding faces are adjacent.
The graphG is planar. We associate the poiriis 0), (0, 1), (—1, 0), and(0, —1) with
the labels 1, 2, 3, and 4, respectively. ISdie the square with these vertices. We label the
vertices of the grapf by the points associated with labels of corresponding faces. Note
that the labels of two vertices corresponding to faces whose labels differ by two form a
diagonal of the squarg. If two such vertices are adjacent, we call an edge connecting
them adiagonal

If the exterior face of the grap& contains a diagonal edge we are done. Consider
a nondiagonal directed edge= (u, v) of G. It corresponds to a directed side of the
squareS. We assign directed lengtho the edgeto be 1 (resp-—1) if the corresponding
directed side of the squa&has clockwise (resp. counterclockwise) directionlirected
lengthof a pathP without diagonal edges is the sum of directed lengths of edg®s of

Recall the labels of the boundary of the regiBnThe top has labels 1, 2, or 4, the
bottom has 2, the left side has 1, 2, and the right side has 2, 3. This means that any closed
path along the boundary @ clockwise has the directed length 4.

Observation 13. The length of any closed path without diagonal edges is an integer
multiple of four

Proof. The length of a path? does not change if we remove two consecutive edges
with opposite directed lengths. After all deletions the patbonsists of edges with the
same directed length 1 erl. The length of a patf? modulo 4 does not change if we
remove any four consecutive edges. Now the gattontains only one point. |
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We define aaumber of turn®f a closed patlP to be the directed length & divided
by four. So the clockwise boundary @& has one turn. Now we can formulate the
topological lemma.

Lemma 14. Let G be a connected graph embedded to the plane and the vertices of G
are labeled by the vertices of the squardf3he boundary of G has an odd number of
turns then there are two vertices of the same face of G whose labels form a diagonal
of S

Proof. The proof is constructive and can be used in a binary search. If the Graph
not a cycle, we can find a cutting pakhwith only two vertices in the boundary &
that are ends oP. The pathP dividesG into two subgraph&; andG; (both graphs
containP). The clockwise directed length & is equal to the sum of clockwise directed
lengths of subgraphs because each eddeisfincluded twice in the sum with opposite
signs. It follows that the number of turns of the boundargaé the sum of the number
of turns of the boundaries of the subgraphs. One of the subgraphs has an odd number of
turns because its sum is odd, so we have reduced the graph.

If the graphG cannot be reduced, thea is a cycle with one bounded face. The
vertices ofG use all labels (otherwise the directed length of a cycle is zero). Hence there
are two vertices that form a diagonal. O

5.3. Binary Search

Given a triple(g,, g2, g3) from Theorem 9. The algorithm finds an equitable 3-cutting.
First we determine the location of an apex of 3-cutting among the vertical lines passing
through red and blue points. We apply the binary searck-ooordinates of data points.
Actually, each data poinp gives two vertical cuts of the regioR, left and right ofp,

sayx = px + ¢ andx = px — ¢ for a sufficiently smalls (blue point from the line

li,i =1, 2, gives only one cut).

The input of the binary search procedure is a strip between two vertical lines, a cutting
linel, two directed lengthd; andd, of the left and right boundary of the region in the
strip in clockwise order and labetg andt, of the top faces. The boundary of a graph
corresponding to the region has an odd numbers of turns. The algorithm computes a top
labelt and a directed lengtt of | (in the down—up direction) induced by the faces.
The cutting lind makes two subgraphs whose boundary lengths can be computed using
lengthsd,, dy, andd and top label$;, t,, andt (note that all top paths do not use label 2).
One of the subgraphs has an odd number of turns. The binary search proceeds to this
subgraph.

The main problem is to compute the lengttA vertical cut of the regiofR intersects
Q(N?) faces of the arrangemeAt Fortunately, the faces form sequences with the same
labels and the number of such sequences is at @ast”3). Consider a set of red points
to the left of the cutting liné. The left ray of any red 3-cutting with an apex on the line
| cuts off a fixed numbeg; n of red points.

In this way the problem of computing the length of a cutting line is reduced to a
well-studiedk-level problemn a dual setting, see [1] for a recent survey. Suppose we
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g1n red points

Fig. 8. Convex hulls.

are given an arrangementMflines in the dual plane in general position. A pofrfrom

on one of the lines of the arrangement has lé&viélexactly k other lines pass beloyp.
Thek-levelis the union of all such points of levé&l a piecewise-linear curve. Recall
that thek-level problem is to findyx(N), the maximum possible number of segments
that can be on thk-level of an arrangement & lines. Lety (N) be the maximum of
the ¥ (N) problem over alk. Dey [4] recently showed thag(N) = O(NkY3), so
¥(N) = O(N#3). Thek-level reporting problenis to describe the vertices that form
thek-level, in order ofx-coordinate.

The points of thggin — 1)-level correspond to the lines cutting affn red points
(Fig. 8). Each segment of thg,n — 1)-level corresponds to the set of lines that cut
off gin red points and pass through the same red point. In this waggtine— 1)-level
induces a patrtition df into segments. The number of such segmen@(ig (N)). The
blue points also generate a partition of the liivido O (v (N)) segments. (If the halfplane
left of | contains less thag;m blue points, all left wedges of blue canonical 3-cuttings
are nonconvex and the order of left rays is RB.) Combining both partitions we divide the
linel into O(y (N)) segments such that, for all apexes from the same segment, the left
rays of red and blue 3-cuttings pass through the same pair of red and bluegpants
pp- Hence the order of the left rays can change at most one time along a segment, if it
is crossed by the line passing throughand p,. Symmetrically, the points to the right
of | generateD (¢ (N)) segments with an unchangeable order of right rays. Combining
all segments we obtai® (¥ (N)) segments such that the points from the same segment
have the same labels.

The algorithm uses four current segments in one of four combining sets. Fora segment,
we maintain two convex hulls of subsets that are divided by a corresponding ray. We use
the dynamic algorithm by Overmars and van Leeuwen [15] that maintains a convex hull
in O(log? N) time per update (see [8], for example). Thus we obtai®& (N) log? N)
algorithm to compute a directed lengthTherefore we proved the following theorem.

Theorem 15. Let T(N) be the running time of an algorithm for reporting a k-level
The binary search can be implemented iGTON) log N) time

Corollary 16. The binary search can be implemented itNJ’3log® N) using the
algorithm of Overmars and van Leeuwird).
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5.4. Searching in the Strip

The binary search can be interrupted if one of the vertical cuts contains a diagonal. We
find an equitable 3-cutting in linear time using Lemma 6. Otherwise the binary search
outputs a vertical strip with at most one data point in the interior®fif s contains one

data point, then there are two neighbor segments whose labels differ by two. We again
apply the construction of Lemma 6.

Consider the case of the empty stapOf course our technique would allow us to
continue the binary search among all crossing points of the arrangelmétdawever,
locating the appropriate vertical cuts seems difficult. Actually the final stdpfines
the set of left and right rays and we can find two rays with a crossing point iaside
strip s contains an apex of the solution but no data points. We look through the sides of
the strip but we change their roles. We use the partition of the jigenerated by the
points to the right of the strip. Similarly the lingis partitioned by the points to the left
of the strip. The difference is that we use two pointers for each color. For thk lioee
colored pointer indicates ttgnth point of the same color, the second pointer indicates
the (gin + 1)th point. So, for a point of the link, we know the range of left red rays.

The total number of the segments into which the linis divided is stillO (¥ (N)). We

also define the blue range and two ranges for thellinBlote that the ranges of each
segment are defined by four points (two red and two blue). We exclude the intersection
of the lines passing through these points and the segment by dividing the segment.

Now we are ready to start a climb. We pass segments from a side of the strip if
the red and blue ranges do not intersect. Otherwise all rays emanating from a point
of a segment lie between the rays emanating from the endpoints of the segment and
form a trapezoid in the strig, for example, the trapezo®BCDin Fig. 9. Suppose both
segments frorhy andl, form trapezoids. If two trapezoids intersect, then any point of the
intersection gives an equitable 3-cutting, as in the dashed lines of Fig. 9. Otherwise one
of the trapezoids lies below the other. The lower trapezoid does not contain an apex of

Fig. 9. Searching in the strip. Two extreme rapd and BC form a trapezoidABCD. Two intersecting
trapezoidsABCDand A'B’C’ D’ give an equitable 3-cutting (dashed rays).



620 S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink

an equitable 3-cutting by invariant. We pass the segment corresponding to this trapezoid.
Climbing will eventually stop because the strip contains a solution.

5.5. Running Time Analysis

The running time for the searching in the strip@gN*°3log® N). The total running
time of the 3-cutting algorithm i©® (N*3log® N). To obtain a planar subdivision we use
Theorem 9, which gives extra factor IggTherefore we proved the following theorem.

Theorem 17. Given gn red points and gm blue points in the plane in general position
A subdivision of the plane into g convex polygonal regions each of which contains n red
and m blue points can be computed N3 log® N log g) time where N= g(n +m).

6. Discussion

Recall that the conjecture of Kaneko and Kano asserts the existence of disjoint con-
vex polygons. Such polygons do not guarantee a subdivision of the plane into convex
polygonal regions. Figure 10(a) shows an example of such polygons. There is no convex
subdivision of the plane into three polygonal regions such that each region contains one
of these polygons. Actually our 3-cutting theorem induces a more restricted class of

subdivisions. Figure 10(b) gives an example of a subdivision of the plane that cannot be
constructed by 3-cuttings.

7. Conclusion

We proved the existence of an equitable subdivision of the plane (Theorem 10). The
special case aff = m = 1 corresponds to the classical result that,Joed points and

g blue points in general position, there is a perfect matching,g.disjoint segments
connecting red and blue points.

(2)

(b)

Fig. 10. (a) Three polygons that cannot be extended to a subdivision of the plane into three convex regions.
(b) Polygonal subdivision that cannot be obtained by 3-cuttings.
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The presented method can be used to derive the following subdivision result for an
arbitrary number of red and blue points in an arbitrary position.

Theorem 18. Let R and B be finite sets of red and blue points in the pl&oeany

g > 0, there exists a subdivision of the plane into g convex polygonal regions so that
the interior of each region contains at ma$R| /g red points and at mos{B|/g] blue
points

Actually the proof of Theorem 5 allows us to restrict the 3-cuttings to be fourgph If
red andgm blue points in general position do not admit 2-cutting, then there exists an
equitable 3-cutting with a prescribed direction of one of the rays and the order of groups
around apex. Itis interesting that the sequence of sghs. .., s(g — 1) is the source
of various triples for the equitable 3-cuttings, for example, Theorems 7 and 9.

Finally it should be mentioned that our proof of the continuous version of 3-cutting
(Theorem 11) can be used to produce an approximate algorithm for finding an equitable
subdivision of two mass distributions in the plane using the 3-cutting algorithm (discrete
version) and an approximate algorithm for 2-cutting.
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