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Abstract. We prove a generalization of the famous Ham Sandwich Theorem for the plane.
Given gn red points andgm blue points in the plane in general position, there exists an
equitable subdivisionof the plane intog disjoint convex polygons, each of which contains
n red points andm blue points. Forg = 2 this problem is equivalent to the Ham Sandwich
Theorem in the plane. We also present an efficient algorithm for constructing an equitable
subdivision.

1. Introduction

The planar case of the well-known discrete Ham Sandwich Theorem [18] states that, for
finite sets of red and blue points in the plane, there exists a line dividing both red and
blue points into sets of equal size. The Ham Sandwich problem is well studied from an
algorithmic point of view [2], [5]–[7], [12]–[14], [17], [19]. An optimal algorithm of Lo
et al. [13] finds a Ham Sandwich cut in linear time. Kaneko and Kano [11] considered
balanced partitions of two sets in the plane. They gave the following conjecture.

Conjecture 1. Let m ≥ 2,n ≥ 2, and g be positive integers. Let R and B be two
disjoint sets of points in the plane such that no three points of R∪ B are collinear,
|R| = gn and|B| = gm. Then R∪ B can be partitioned into g subsets P1, . . . , Pg

satisfying the following two conditions: (i) Pi and Pj are linearly separable for all
1≤ i < j ≤ g; and(ii) |Pi ∩ R| = n and|Pi ∩ B| = m for all 1≤ i ≤ g.

For g = 2 the conjecture is equivalent to the Ham Sandwich Theorem [18, p. 212].
Kaneko and Kano proved the conjecture in the case ofn ≤ 2. In this paper we prove their
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Fig. 1. An example of three red pointsr1, r2, andr3 and nine blue pointsb1, . . . ,b9 for g = 3. (a) There is
no equitable 2-cutting. (b) An equitable 3-cutting.

conjecture. Actually we prove a stronger theorem providing what we call anequitable
subdivisionof the plane.

Note that, forg = 2k, Conjecture 1 can be proved by applying the Ham Sandwich
Theorem in a divide-and-conquer fashion. For generalg, such a strategy is not possible.
Specifically, Fig. 1 illustrates an example of three red and nine blue points that does
not admit anequitable2-cutting, that is, a partition of the plane by a line such that the
i th halfplane containsgi n red andgi m blue points for some integersg1, g2 < g (in
other words, there is no halfplane with exactly one red and three blue points). However,
it is sufficient to apply anequitable3-cutting. An equitable 3-cutting is a partition
of the plane by three rays with a common apex into three convex wedges, each of
which contains a proportional number of red and blue points. In other words, thei th
wedge containsgi n red points andgi m blue points, for some 0≤ g1, g2, g3 < g with
g1+ g2+ g3 = g.

Theorem 2(3-Cutting). For any gn red points(g ≥ 2)and gm blue points in the plane
in general position, there is equitable3-cutting of red and blue points.

Wheng = 2, Theorem 2 is equivalent to the Ham Sandwich Theorem. Forg ≥ 3, we
can apply Theorem 2 recursively for the wedges withgi ≥ 2. This produces what we
refer to as an equitable subdivision of the plane. We present an algorithm1 for producing
such an equitable subdivision inO(N4/3 log3 N logg) time whereN = g(n+m) is the
total number of points. Note we need to use the fact that an equitable 3-cutting defines a
convex partition in order to preserve connectivity of the regions produced in the recursive
application of Theorem 2.

1 A Java demo is available athttp://www.cs.ubc.ca/spider/besp/ham.htm .
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Very recently the conjecture of Kaneko and Kano has been independently proven
by Ito et al. [10] and Sakai [16]. Comparing our result with papers [10] and [16] we
can say that they prove essentially the same 3-cutting theorems but both use different
(and somewhat more complicated) techniques. Ito et al. [10] prove the existence of a
3-cutting with one ray passing through a fixed point on the convex hull of the union
of the red and blue points. Sakai [16] gives a direct proof of the continuous version of
the 3-Cutting Theorem using a partition of the plane into square cells of an appropriate
size. Paper [10] refers only to the discrete version. Neither of the papers present efficient
algorithms.

Bárány and Matouˇsek [3] consider partitions of the plane,k-fans, usingk lines and
specified weights ofk regions. They prove a weaker version of Theorem 2, namely the
existence of a 3-fan that defines a not necessarily convex subdivision.

2. Preliminaries

Let R be a set ofgn red points and letB be a set ofgmblue points in the plane in general
position, i.e., there are no three points lying on the same line. The integerg is the number
of groups into which the setsR and B are to be divided. A 2-cutting is a partition of
the plane by the line into two halfplanes. A 2-cutting isequitable(or more specifically
(g1, g2)-equitable) if thei th open halfplane contains exactlygi n red andgi m blue points
for some integersg1, g2 < g with g1+ g2 = g.

If there is a(g1, g2)-equitable 2-cutting of the red and blue points, then the problem
can be reduced to the subproblems for the number of groupsg1 andg2. Otherwise, for
any g1 ∈ {1, . . . , g − 1}, a halfplane containing exactlyg1n red points (we call it a
g1-halfplane) contains either less than or greater thang1m blue points. We assign to the
halfplane the sign−1 or+1, respectively.

Lemma 3. If, for some g1 ∈ {1, . . . , g− 1}, there are two g1-halfplanes with opposite
signs, then there is a(g1, g2)-equitable2-cutting.

Proof. Lemma 3 is the same as Lemma 2 of [11]. We prove the result using geometric
duality exploiting an interpretation in terms ofk-levels of the dual arrangement associated
with the point setR∪ B. The dual of a pointp = (p1, p2) is the liney = −p1x + p2,
and the dual of a liney = ax+ b is the point(a,b).

Let l1 andl2 be the lines that define twog1-halfplanes with signs−1 and+1. We can
rotate the plane so that the lines become nonvertical and theg1-halfplanes become lower
halfplanes. In the dual setting the red and blue points correspond to red and blue lines.
Thek-levelof an arrangement of lines is a polygonal line formed by all edges of levelk,
where the level of an edge is the number of lines lying strictly below its interior point.
The point dual of an equitable 2-cutting lies between theg1n-level and(g1n+ 1)-level
of red lines and between theg1m-level and(g1m+ 1)-level of blue lines. An equitable
2-cutting can be found if two levels of different colors cross, see Fig. 2. Otherwise the
entire(g1n+ 1)-level of red lines lies below theg1m-level of blue lines or theg1n-level
of red lines lies above the(g1m+ 1)-level of blue lines. In this case the pointsp1, p2

dual tol1, l2 lie below theg1m-level of blue lines or above the(g1m+ 1)-level of blue
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Fig. 2. The pointp is the dual of an equitable 2-cutting.

lines (the pointsp1, p2 lie between theg1n-level and(g1n+ 1)-level of red lines). It is
impossible because the pointp1 is below theg1m-level and the pointp2 is above the
(g1m+ 1)-level of blue lines.

Lemma 3 allows us to assume that, for anyg1, all g1-halfplanes have the same sign.
However, in our algorithm we avoid the computation of all signs. Instead we use Lemma 3
to find an equitable 2-cutting if in the course of the algorithm it is discovered that two
g1-halfplanes have opposite signs for someg1. To begin we define signs for a canonical
set of halfplanes. Drawg− 1 vertical lines that divide red points intog sets ofn points.
We assume that there are no two points lying on the same vertical line (otherwise we
can rotate the points). We define thesignof g1, s(g1), as the sign of the left halfplane
formed by theg1th vertical line.

A 3-cuttingis a partition of the plane into three wedgesW1, W2, andW3 by three rays
with a common point that is called theapexof the 3-cutting. A 3-cutting isconvexif its
wedges are convex. A convex 3-cutting isequitable(or more specifically(g1, g2, g3)-
equitable) if the open wedgeWi contains exactlygi n red andgi m blue points for some
integers 0≤ g1, g2, g3 < g with g1 + g2 + g3 = g. Note that an equitable 2-cutting is
an equitable 3-cutting for somegi = 0.

We will find a 3-cutting with one ray going down, see Fig. 3. We call the wedges
adjacent to this rayleft andright. The remaining wedge isupper. The rays areleft, right,
anddownward. (Note that at most one of the wedges can be nonconvex.)

Fig. 3. The notation of a 3-cutting.
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Though our goal is to find 3-cutting whose rays do not pass through data points,
it is convenient to define acanonical red3-cutting for a triple (g1, g2, g3) that vio-
lates this condition. Letp be a point in the plane and letp1, . . . , pgn be a list of red
points in clockwise order starting from (but omitting) the downward ray fromp. (If p
is red, thenp1 = p. For a red pointq directly below p, pgn = q.) The pointspg1n

and p(g1+g2)n define a red 3-cutting with apexp. A canonical blue3-cutting is defined
similarly.

3. A 3-Cutting Exists

Note that any(g1, g2)-equitable 2-cutting can be viewed as a(g1, g2,0)-equitable 3-
cutting. Thus the Ham Sandwich Theorem implies that Theorem 2 is true for eveng.
The case of oddg is more complicated.

3.1. Odd g≥ 3

We use the following topological lemma (a variant of one from [9]).

Lemma 4. LetR be any closed region in the plane. Let A be a finite arrangement
of curves inR, in which each face of A is labeled with a1, 2, 3,or 4. Suppose that
there are points p and q, labeled1 and3, on the boundaryδR such that one compo-
nent ofδR−{p,q} uses labels1, 2, 3and the other component uses1, 3, 4 (Fig. 4).
Then some point ofR lies on the boundary between two faces whose labels differ by
two.

Proof. Subtract the faces labeled 2 and 4 fromR, and walk along the boundary of the
resulting region starting fromp. We either reachq, in which case we have seen a 1-3
transition, or we return top, in which case we have walked from one component of
δR− {p,q} to the other, and have seen a 2-4 transition.

The following theorem provides an equitable 3-cutting or 2-cutting for a given num-
bers of points in groups.

Fig. 4. 1-3 or 3-4 transition.
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Fig. 5. The regionR for triple (g1, g2, g3).

Theorem 5. Let R be any set of gn red points and let B be any set gm blue points in the
plane in general position. Let g1, g2, and g3 be positive integers with g1+ g2+ g3 = g.
If s(g1) = s(g2) = s(g3), then there exists either

• a (g1, g2, g3)-equitable3-cutting, or
• a (gi , g− gi )-equitable2-cutting for some i.

Proof. We can assume the signs(g1) = −1; if s(g1) = 1 we exchange the colors red
and blue. We define a regionR and label eachp ∈ R as follows: LetR consist of those
points in which the canonical red 3-cutting for triple(g1, g2, g3) with apexp are convex
(Fig. 5). Recall that no vertical line contains more than one data point. Letx1, . . . , xgn be
a sorted list ofx-coordinates of red points. Consider two vertical linesl1 andl2 passing
through theg1nth and(g1 + g2)nth coordinates, i.e.,x = xg1n andx = x(g1+g2)n. The
closed halfplane left ofl1 contains exactlyg1n red points and less thang1m blue points
sinces(g1) = −1. Symmetrically, the open halfplane right ofl2 contains exactlyg3n
red points and less thang3m blue points sinces(g3) = −1. For any point left ofl1, the
left wedge of a canonical red 3-cutting is nonconvex. Symmetrically, for any point right
of l2, the right wedge of a canonical red 3-cutting is nonconvex. Hence the regionR is
bounded by the linesl1 andl2. Note that an open strip between the linesl1 andl2 contains
exactlyg2n red points and greater thang2m blue points.

Consider any vertical linel betweenl1 andl2. For a pointp on l , the angles of left
and right wedges of the canonical red 3-cutting are both less thanπ . Furthermore, each
such angle is a monotone function of they-coordinate of the pointp (the angles decrease
when p goes up). It follows that the angle of the upper wedge is monotone. If the point
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Fig. 6. The labels. The dashed rays are blue.

p has they-coordinate less than the minimum ofy-coordinates of data points, then both
the left and right rays go up and the upper wedge is convex. For a pointp on l above all
y-coordinates of red and blue points, the upper wedge of the canonical red 3-cutting has
an angle greater thanπ . Hence there is a point on the linel such that the points belowp
belong toR.

The lines passing through pairs of points ofR∪ B and the vertical lines through the
points ofR∪B form an arrangementA. For any pointp from the interior of a facef ∈ A,
the left (right) rays of the two canonical cuttings are distinct. We are interested in the
clockwise order of left rays (RB or BR) and the clockwise order of the right rays of the
two canonical cuttings. We assign a label top according to 1= RB-RB, 2= RB-BR,
3= BR-BR, and 4= BR-RB (Fig. 6). All points of the same face of the arrangementA
have the same label, which is taken to be the label of the face.

Consider the labels on the boundary ofR. At y = −∞ all labels are 2= RB-BR
due to the signs ofg1 andg3. The faces forming the left boundary ofR, all of which are
incident on and right of the linel1, have labels RBxx by the sign ofg1, which implies
labels 1 or 2. Symmetrically, the faces of the right boundary ofR have labels xxBR,
which implies labels 2 or 3. Along the remaining boundary ofR, the red partition uses a
straight line at the top, so the sign ofg2 rules out label 2= RB-BR. The top face along
the linel1 has label 1= RB-RB. The top face along the linel2 has label 3= BR-BR.
By Lemma 4, therefore, we must have a 1-3 or 2-4 transition. This implies the existence
of an equitable 3-cutting by Lemma 6.

Lemma 6. Let p be a point of the regionR that lies on the boundary between two faces
whose labels differ by two. One of the faces around p contains the apex of an equitable
3-cutting.

Proof. First consider a special case where no data point lies below the apexp (Fig. 7).
Letq be a point in a face whose boundary contains the pointp. Letr1 andr2 be red points
that define canonical red 3-cutting atq, with−→qr1 being the left ray. Similarly, letb1 and
b2 be blue points that define canonical blue 3-cutting atq. Actually these points define
canonical red and blue 3-cuttings for all points aroundp. If the line passing through
the pointsr1 andb1 does not containp, then the order of rays−→qr1 and

−→
qb1 is still the

same when the pointq is rotated aroundp. This implies that the faces aroundp use
only two consecutive labels (1= RB-RB, 2= RB-BR or 3= BR-BR, 4= BR-RB)
contradicting the assumptions. Hence the pointsr1 andb1 lie on a ray emanating from
p. Similarly, some ray emanating fromp intersects the pointsr2 andb2. The required
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Fig. 7. Construction of an equitable 3-cutting (dashed rays) for a pointp with a 2-transition of labels. (a) No
point belowp. (b) The red pointq below p.

equitable 3-cutting can be obtained by rotating the rays
−→
pb1 and

−→
pb2 by a sufficiently

small angle clockwise.
Now suppose some pointq, say red, lies belowp or coincides withp. Clearly, all

canonical blue 3-cuttings for points in a sufficiently small ball with center atp are defined
by the same blue points, sayb1 andb2. We prove that an equitable 3-cuttingC can be
obtained by a translation of the blue 3-cutting atp downward by a sufficiently small
distance and a rotation of the left ray by a sufficiently small angle clockwise such that the
data points on the ray

−→
pb1 (exceptp, if p ∈ R) remain in the left wedge. The 3-cutting

C divides the blue points into subsets ofg1m, g2m, andg3m points.
Split the ball containingp by a vertical line passing throughp. Let H be the left open

halfball. If the orders of left rays of red and blue 3-cuttings for some points inH are
changed (in other words there are two points inH with labels RBxx and BRxx), then
there is a red pointr1 in the raypb1 that forms all left rays of the red 3-cuttings for points
in H . Therefore the left wedge ofC consist ofg1n red points. Otherwise the change
of the order of left rays for points whose labels differ by two is caused by inserting the
red pointp into the left wedge of a red 3-cutting (with an apex in the right halfball). It
follows that the left wedge ofC again consist ofg1n red points.

Using a similar argument, we can show that the number of red points in the right
wedge ofC is g3n. Note that the right wedge ofC is convex because it is covered by
a convex right wedge of red 3-cutting for a point with a label xxRB. HenceC is an
equitable 3-cutting.

It remains to show how to construct an appropriate triple(g1, g2, g3).

3.2. Finding (g1, g2, g3)

To apply Theorem 5 we need a triple(g1, g2, g3) with g1 + g2 + g3 = g, 0 ≤ gi < g,
and signss(g1) = s(g2) = s(g3). Recall that the signs are defined by vertical cuts. We
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can apply Lemma 3 if thei th vertical line cuts off less (greater) thanim blue points and
the(g− i )th vertical line cuts off greater (less) thanim blue points. In other words the
signss(i ) ands(g− i ) are the same. To apply Theorem 5 we need a triple with the same
signs. The following theorem provides one of these conditions.

Theorem 7. For any sequence of signs s(1), . . . , s(g− 1), there is a pair(g1, g2) or
a triple (g1, g2, g3) with sum g and the same signs.

Proof. If the pair(1, g−1) has the same signs, we are done. Supposes(1) 6= s(g−1).
Let k be the smallest index withs(k) 6= s(1) ands(k − 1) = s(1). Then eithers(k) =
s(g− k) or the triple(1, k− 1, g− k) has the same signs.

In fact one of the numbers in the triple can be specified.

Corollary 8. For any sequence of signs s(1), . . . , s(g− 1), there is a pair(g1, g2) or
a triple (g1, g2,1) with sum g and the same signs.

Applying Theorem 7 directly adds extra factorg to the running time of constructing
a subdivision of the plane intog regions. The following theorem reduces this factor to
logg.

Theorem 9. For any sequence of signs s(1), . . . , s(g− 1), there is a pair(g1, g3) or
a triple (g1, g2, g3) with sum g and the same signs such that any gi ≤ b2g/3c.

Proof. For eveng the pair(g/2, g/2) has the same signs. Suppose thatg = 2k+1. We
can assumes(1) = −1; otherwise we exchange the colors red and blue. Ifs(k) = −1,
then triple(1, k, k) satisfies the theorem, so supposes(k) = 1. If s(k + 1) = 1, then
the pair (k, k + 1) satisfies the theorem, so supposes(k + 1) = −1. Let k1 ≤ k
be the number such thats( j ) = 1 for all j , k1 < j ≤ k and s(k1) = −1. Denote
k2 = bg/3c.

Supposek1 ≥ k2. Then the triple(1, k1, g− k1 − 1) has the same signs sinces(g−
k1 − 1) = −s(k1 + 1) = −1. Note thatg− k1 − 1 ≤ g− bg/3c − 1. One can prove
g− bg/3c − 1≤ b2g/3c by considering all residues ofg modulo 3.

Alternativelyk1 < k2. In this caseg > 5 becausek2 = 1 for g = 5. It follows that
g > 6 andk2+ 1= bg/3c + 1≤ g/3+ 1< (g+ 1)/2= k. Hences(k2+ 1) = 1. The
final triple with the same signs depends on the residue ofg modulo 3:

• If g = 3k2, then the triple(k2, k2, k2) has the same signs.
• If g = 3k2+ 1, then the triple(k2, k2, k2+ 1) has the same signs.
• If g = 3k2+ 2, then the triple(k2, k2+ 1, k2+ 1) has the same signs.

4. Subdivision Theorems

Applying Theorem 2 in a divide-and-conquer fashion we prove the main result of our
paper.
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Theorem 10(Equitable Subdivision). Given gn red and gm blue points in the plane
in general position, there exists a subdivision of the plane into g convex regions each of
which contains n red and m blue points.

The 3-Cutting Theorem and the Equitable Subdivision Theorem are discrete. In the
rest of this section we prove continuous versions of these theorems.

Let ρ1 and ρ2 be measurable functionsR2 → [0,∞) with
∫

R2 ρi dx = 1. A
convex 3-cutting of the plane into wedgesW1, W2, and W3 is equitable (or more
specifically(g1, g2, g3)-equitable) if

∫
Wi
ρ1 dx = ∫

Wi
ρ2 dx = gi /g for some integers

0≤ g1, g2, g3 < g with g1+ g2+ g3 = g.

Theorem 11(3-Cutting, Continuous Version).Letρ1 andρ2 be measurable functions
R2 → [0,∞) with

∫
R2 ρi dx = 1. For any integer g≥ 2, there exists an equitable

3-cutting.

Proof. Note that, forg = 2, this is the continuous Ham Sandwich Theorem. Fix any
integerg ≥ 3. The idea is to approximate functionsρi using a continuous version of the
Ham Sandwich Theorem. Consider the functionρ1. For a regionR, theweightof R is∫

R ρ1(x)dx. The weight of the plane is 1. Draw any linel1 (for example, vertical) that
defines halfplanesH1 andH2 of weight 1

2. Define functionsϕ1 andϕ2 on the plane by

ϕi (p) =
{

2ρ1(p) if p ∈ Hi ,

0 otherwise.

Applying the continuous version of the Ham Sandwich Theorem we construct a linel2
that halves bothH1 andH2, producing four wedges of weight1

4.
We partition each of the four wedges into four regions in the same fashion. The

number of convex regions after partitioningk times is 4k. This subdivisionSsatisfies a
line propertythat any line properly intersects at most 3k regions. The line property can
be proved using the fact that a line cannot contain four interior points of wedges formed
by two lines.

Pick a red point in each region. We define 4k blue points in similar way using the
functionρ2. To apply Theorem 2 the number of red and blue points must be an integer
multiple of g. We remove anyr = 4k − gb4k/gc red and blue points. By 3-cutting
Theorem 2, for anyk, there exists an equitable 3-cutting ofgb4k/gc red and blue points.
Let it be a(g1, g2, g3)-equitable 3-cutting of the plane into the wedgesW1, W2, andW3.
By the line property, each ray of the 3-cutting crosses at most 3k convex regions ofS.
The wedgeWi contains at leastgi b4k/gc − 2 · 3k − r whole regions ofSand intersects
at mostgi b4k/gc + 2 · 3k + r regions ofS. Each region ofShas weight 1/4k. Hence

gi

⌊
4k

g

⌋
− 2 · 3k − r ≤ 4k

∫
Wi

ρ1 dx ≤ gi

⌊
4k

g

⌋
+ 2 · 3k + r

or ∣∣∣∣4k
∫

Wi

ρ1 dx− gi

⌊
4k

g

⌋∣∣∣∣ ≤ 2 · 3k + r.
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Usingr = 4k − gb4k/gc we obtain∣∣∣∣4k

(∫
Wi

ρ1 dx− gi

g

)
+ r

gi

g

∣∣∣∣ ≤ 2 · 3k + r

or

4k

∣∣∣∣∫
Wi

ρ1 dx− gi

g

∣∣∣∣ ≤ 2 · 3k + r + r
gi

g
≤ 2 · 3k + 2r.

Hence ∣∣∣∣∫
Wi

ρ1 dx− gi

g

∣∣∣∣ ≤ 2( 3
4)

k + 2
g

4k
.

One can prove the same bound forρ2:∣∣∣∣∫
Wi

ρ2 dx− gi

g

∣∣∣∣ ≤ 2( 3
4)

k + 2
g

4k
.

The triples(g1, g2, g3) can be different if we changek. We extract an infinite sequence
of numbersk1, . . . , ki , . . . that define the same triples(g1, g2, g3). Let pi be an apex of
the 3-cutting constructed fork = ki . It is clear thatpi lies in the vertical slab defined by
the linesx = a andx = b such that∫

x<a
ρ1 dx =

∫
x>b

ρ1 dx = 1

g
.

We can extract an infinite subsequence of apexespii , pi2, . . . that converges to some point
p ∈ R2 or to an infinite point(x,±∞). In the first case the wedges of corresponding
3-cuttings converge to some wedgesW1, W2, andW3 that define a(g1, g2, g3)-equitable
3-cutting. In the remaining case some two rays of 3-cuttings converge to vertical lines
that define three slabs of weightsg1, g2, andg3 (for both functionsρ1 andρ2). Each of
these lines defines a 2-cutting that is a special case of 3-cutting.

Applying Theorem 11 recursively for regions with a number of groups more than one
we can prove the following theorem.

Theorem 12(Equitable Subdivision, Continuous Version).Let ρ1 andρ2 be measur-
able functionsR2 → [0,∞) with

∫
R2 ρi dx = 1. For any integer g> 0, there exists a

subdivision of the plane into g convex regions R1, . . . , Rg such that∫
Rj

ρi dx = 1

g
, for i = 1,2 and j = 1, . . . , g.

5. Algorithm

We next describe an algorithm that finds discrete 3-cuttings recursively. The recursive
procedure has inputg,n,m and two setsR andB of points. Ifg is even we use the linear
time algorithm of Lo et al. for the Ham Sandwich Problem [13]. Otherwise provided
g > 1 we find a triple(g1, g2, g3) using Theorem 9, and find an equitable 3-cutting
by Theorem 5 (in fact, the algorithm may find 2-cutting instead of 3-cutting). For each
wedge withgi n red andgi m blue points, we continue recursively.
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5.1. Computing a Triple(g1, g2, g3)

We need a triple of integers 0≤ g1, g2, g3 ≤ g that sum tog and have the same signs
s(g1) = s(g2) = s(g3). To compute the signss(1), . . . , s(g − 1) we constructg − 1
vertical lines separating red points intog sets of equal size. This can be done in linear
time if the red points are presorted. Presorting takesO(N log N) time. We can count
the number of blue points in theg strips in linear time if the blue points are presorted.
For each vertical line, we compute the number of blue points to the left of the line.
Comparingi th number withim gives signs(i ). If, for somei , thei th number coincides
with im, then thei th vertical line gives the equitable 2-cutting.

Now we can find the triple(g1, g2, g3) using Theorem 9.

5.2. One More Topological Lemma

The most difficult part of the algorithm is finding an equitable 3-cutting. Recall that our
proof that an equitable 3-cutting exists depends on the fact (Lemma 4) that in a certain
arrangement with faces labeled 1,2,3, or 4, there are adjacent faces whose labels differ
by two. Unfortunately, Lemma 4 does not give a way to compute two such faces except
to look through all faces. We give a general topological lemma for the existence of such
faces that supports binary search.

Let G be a dual graph of the arrangementA formed by the lines passing through pairs
of points ofR∪ B and the vertical lines through the points ofR∪ B. The vertices ofG
correspond to the faces and two vertices are adjacent iff corresponding faces are adjacent.
The graphG is planar. We associate the points(1,0), (0,1), (−1,0), and(0,−1) with
the labels 1, 2, 3, and 4, respectively. LetSbe the square with these vertices. We label the
vertices of the graphG by the points associated with labels of corresponding faces. Note
that the labels of two vertices corresponding to faces whose labels differ by two form a
diagonal of the squareS. If two such vertices are adjacent, we call an edge connecting
them adiagonal.

If the exterior face of the graphG contains a diagonal edge we are done. Consider
a nondiagonal directed edgee = (u, v) of G. It corresponds to a directed side of the
squareS. We assign adirected lengthto the edgee to be 1 (resp.−1) if the corresponding
directed side of the squareShas clockwise (resp. counterclockwise) direction. Adirected
lengthof a pathP without diagonal edges is the sum of directed lengths of edges ofP.

Recall the labels of the boundary of the regionR. The top has labels 1, 2, or 4, the
bottom has 2, the left side has 1, 2, and the right side has 2, 3. This means that any closed
path along the boundary ofG clockwise has the directed length 4.

Observation 13. The length of any closed path without diagonal edges is an integer
multiple of four.

Proof. The length of a pathP does not change if we remove two consecutive edges
with opposite directed lengths. After all deletions the pathP consists of edges with the
same directed length 1 or−1. The length of a pathP modulo 4 does not change if we
remove any four consecutive edges. Now the pathP contains only one point.
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We define anumber of turnsof a closed pathP to be the directed length ofP divided
by four. So the clockwise boundary ofG has one turn. Now we can formulate the
topological lemma.

Lemma 14. Let G be a connected graph embedded to the plane and the vertices of G
are labeled by the vertices of the square S. If the boundary of G has an odd number of
turns, then there are two vertices of the same face of G whose labels form a diagonal
of S.

Proof. The proof is constructive and can be used in a binary search. If the graphG is
not a cycle, we can find a cutting pathP with only two vertices in the boundary ofG
that are ends ofP. The pathP dividesG into two subgraphsG1 andG2 (both graphs
containP). The clockwise directed length ofG is equal to the sum of clockwise directed
lengths of subgraphs because each edge ofP is included twice in the sum with opposite
signs. It follows that the number of turns of the boundary ofG is the sum of the number
of turns of the boundaries of the subgraphs. One of the subgraphs has an odd number of
turns because its sum is odd, so we have reduced the graph.

If the graphG cannot be reduced, thenG is a cycle with one bounded face. The
vertices ofG use all labels (otherwise the directed length of a cycle is zero). Hence there
are two vertices that form a diagonal.

5.3. Binary Search

Given a triple(g1, g2, g3) from Theorem 9. The algorithm finds an equitable 3-cutting.
First we determine the location of an apex of 3-cutting among the vertical lines passing
through red and blue points. We apply the binary search onx-coordinates of data points.
Actually, each data pointp gives two vertical cuts of the regionR, left and right ofp,
say x = px + ε and x = px − ε for a sufficiently smallε (blue point from the line
l i , i = 1,2, gives only one cut).

The input of the binary search procedure is a strip between two vertical lines, a cutting
line l , two directed lengthsd1 andd2 of the left and right boundary of the region in the
strip in clockwise order and labelst1 andt2 of the top faces. The boundary of a graph
corresponding to the region has an odd numbers of turns. The algorithm computes a top
label t and a directed lengthd of l (in the down–up direction) induced by the faces.
The cutting linel makes two subgraphs whose boundary lengths can be computed using
lengthsd1,d2, andd and top labelst1, t2, andt (note that all top paths do not use label 2).
One of the subgraphs has an odd number of turns. The binary search proceeds to this
subgraph.

The main problem is to compute the lengthd. A vertical cut of the regionR intersects
Ä(N2) faces of the arrangementA. Fortunately, the faces form sequences with the same
labels and the number of such sequences is at mostO(N4/3). Consider a set of red points
to the left of the cutting linel . The left ray of any red 3-cutting with an apex on the line
l cuts off a fixed numberg1n of red points.

In this way the problem of computing the length of a cutting line is reduced to a
well-studiedk-level problemin a dual setting, see [1] for a recent survey. Suppose we
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Fig. 8. Convex hulls.

are given an arrangement ofN lines in the dual plane in general position. A pointp from
on one of the lines of the arrangement has levelk if exactly k other lines pass belowp.
The k-level is the union of all such points of levelk, a piecewise-linear curve. Recall
that thek-level problem is to findψk(N), the maximum possible number of segments
that can be on thek-level of an arrangement ofN lines. Letψ(N) be the maximum of
theψk(N) problem over allk. Dey [4] recently showed thatψk(N) = O(Nk1/3), so
ψ(N) = O(N4/3). Thek-level reporting problemis to describe the vertices that form
thek-level, in order ofx-coordinate.

The points of the(g1n − 1)-level correspond to the lines cutting offg1n red points
(Fig. 8). Each segment of the(g1n − 1)-level corresponds to the set of lines that cut
off g1n red points and pass through the same red point. In this way the(g1n− 1)-level
induces a partition ofl into segments. The number of such segments isO(ψ(N)). The
blue points also generate a partition of the linel into O(ψ(N)) segments. (If the halfplane
left of l contains less thang1m blue points, all left wedges of blue canonical 3-cuttings
are nonconvex and the order of left rays is RB.) Combining both partitions we divide the
line l into O(ψ(N)) segments such that, for all apexes from the same segment, the left
rays of red and blue 3-cuttings pass through the same pair of red and blue pointspr and
pb. Hence the order of the left rays can change at most one time along a segment, if it
is crossed by the line passing throughpr and pb. Symmetrically, the points to the right
of l generateO(ψ(N)) segments with an unchangeable order of right rays. Combining
all segments we obtainO(ψ(N)) segments such that the points from the same segment
have the same labels.

The algorithm uses four current segments in one of four combining sets. For a segment,
we maintain two convex hulls of subsets that are divided by a corresponding ray. We use
the dynamic algorithm by Overmars and van Leeuwen [15] that maintains a convex hull
in O(log2 N) time per update (see [8], for example). Thus we obtain anO(ψ(N) log2 N)
algorithm to compute a directed lengthd. Therefore we proved the following theorem.

Theorem 15. Let T(N) be the running time of an algorithm for reporting a k-level.
The binary search can be implemented in O(T(N) log N) time.

Corollary 16. The binary search can be implemented in O(N4/3 log3 N) using the
algorithm of Overmars and van Leeuwen[15].
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5.4. Searching in the Strip

The binary search can be interrupted if one of the vertical cuts contains a diagonal. We
find an equitable 3-cutting in linear time using Lemma 6. Otherwise the binary search
outputs a vertical strips with at most one data point in the interior ofs. If s contains one
data point, then there are two neighbor segments whose labels differ by two. We again
apply the construction of Lemma 6.

Consider the case of the empty strips. Of course our technique would allow us to
continue the binary search among all crossing points of the arrangementA. However,
locating the appropriate vertical cuts seems difficult. Actually the final strips defines
the set of left and right rays and we can find two rays with a crossing point insides. The
strip s contains an apex of the solution but no data points. We look through the sides of
the strip but we change their roles. We use the partition of the linel1 generated by the
points to the right of the strip. Similarly the linel2 is partitioned by the points to the left
of the strip. The difference is that we use two pointers for each color. For the linel2, one
colored pointer indicates theg1nth point of the same color, the second pointer indicates
the(g1n+ 1)th point. So, for a point of the linel2, we know the range of left red rays.
The total number of the segments into which the linel2 is divided is stillO(ψ(N)). We
also define the blue range and two ranges for the linel1. Note that the ranges of each
segment are defined by four points (two red and two blue). We exclude the intersection
of the lines passing through these points and the segment by dividing the segment.

Now we are ready to start a climb. We pass segments from a side of the strip if
the red and blue ranges do not intersect. Otherwise all rays emanating from a point
of a segment lie between the rays emanating from the endpoints of the segment and
form a trapezoid in the strips, for example, the trapezoidABCDin Fig. 9. Suppose both
segments froml1 andl2 form trapezoids. If two trapezoids intersect, then any point of the
intersection gives an equitable 3-cutting, as in the dashed lines of Fig. 9. Otherwise one
of the trapezoids lies below the other. The lower trapezoid does not contain an apex of

Fig. 9. Searching in the strip. Two extreme raysAD and BC form a trapezoidABCD. Two intersecting
trapezoidsABCDandA′B′C′D′ give an equitable 3-cutting (dashed rays).
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an equitable 3-cutting by invariant. We pass the segment corresponding to this trapezoid.
Climbing will eventually stop because the strip contains a solution.

5.5. Running Time Analysis

The running time for the searching in the strip isO(N4/3 log2 N). The total running
time of the 3-cutting algorithm isO(N4/3 log3 N). To obtain a planar subdivision we use
Theorem 9, which gives extra factor logg. Therefore we proved the following theorem.

Theorem 17. Given gn red points and gm blue points in the plane in general position.
A subdivision of the plane into g convex polygonal regions each of which contains n red
and m blue points can be computed in O(N4/3 log3 N logg) time where N= g(n+m).

6. Discussion

Recall that the conjecture of Kaneko and Kano asserts the existence of disjoint con-
vex polygons. Such polygons do not guarantee a subdivision of the plane into convex
polygonal regions. Figure 10(a) shows an example of such polygons. There is no convex
subdivision of the plane into three polygonal regions such that each region contains one
of these polygons. Actually our 3-cutting theorem induces a more restricted class of
subdivisions. Figure 10(b) gives an example of a subdivision of the plane that cannot be
constructed by 3-cuttings.

7. Conclusion

We proved the existence of an equitable subdivision of the plane (Theorem 10). The
special case ofn = m = 1 corresponds to the classical result that, forg red points and
g blue points in general position, there is a perfect matching, i.e.,g disjoint segments
connecting red and blue points.

Fig. 10. (a) Three polygons that cannot be extended to a subdivision of the plane into three convex regions.
(b) Polygonal subdivision that cannot be obtained by 3-cuttings.
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The presented method can be used to derive the following subdivision result for an
arbitrary number of red and blue points in an arbitrary position.

Theorem 18. Let R and B be finite sets of red and blue points in the plane. For any
g > 0, there exists a subdivision of the plane into g convex polygonal regions so that
the interior of each region contains at mostb|R|/gc red points and at mostb|B|/gc blue
points.

Actually the proof of Theorem 5 allows us to restrict the 3-cuttings to be found. Ifgn
red andgm blue points in general position do not admit 2-cutting, then there exists an
equitable 3-cutting with a prescribed direction of one of the rays and the order of groups
around apex. It is interesting that the sequence of signss(1), . . . , s(g− 1) is the source
of various triples for the equitable 3-cuttings, for example, Theorems 7 and 9.

Finally it should be mentioned that our proof of the continuous version of 3-cutting
(Theorem 11) can be used to produce an approximate algorithm for finding an equitable
subdivision of two mass distributions in the plane using the 3-cutting algorithm (discrete
version) and an approximate algorithm for 2-cutting.
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