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1. Introduction

Problem Statement Let Q2 be a collection of pairwise-disjoint polyhedral obstacles in

R® with a total ofn vertices, edges, and faces, andBebe a ball inR3. With no loss

of generality, we assume that the facesohre triangles and that the radius Bfis

1. We consider the motion-planning problem in whighs allowed to move (translate)

freely inR® without intersecting any obstacle. Tfiee configuration spacg of B with

respect ta is the space of all pointp € R? so that if B is placed centered at, then

it does not intersect any obstacle. We wish to bound the combinatorial complegity of

(defined below) and present an efficient algorithm for computing the bounddry of
Let By be the placement d8 with its center at the originF can be expressed in the

following standard manner (see, e.g., [20]). For each obstael&?, let K, denote the

Minkowski surh

Ko=w0®By={X+Yy|Xew,ye B}

The setK,,, referred to as thexpanded obstaclef w, is the set of all centers d8 at
placements where it interseets HenceF = R3\ | J,,_, K. See Fig. 1.

Let S be the set of triangular faces 6f. For each triangles € S, we can define
Ks = s By. If sis bounded, theKs is the (nondisjoint) union of (i) a triangular prism
of height 2 withs as a middle cross section, (ii) three bounded cylinders of radius 1
whose axes are the edgesspfind (iii) three balls of radius 1 centered at the vertices
of s. If sis unbounded, the structure &f; changes accordingly. We refer ko, as an
expanded triangléor akrepl).

A face of F is a maximal connected closed portion &f contained in a single
triangular, cylindrical, or spherical portion of soi&s. An edge ofF is a maximal

Fig. 1. The union of Minkowski sums of triangles and a ball.

1 strictly speaking, we should form the sum®fwith — By, the reflection ofBg through the origin; of
course, we obtain the same set silBgds symmetric.
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connected portion o F lying in the intersection of two distinct faces; the two faces
may lie on the boundary of the same krepl or on the boundaries of different kreplach. A
vertex of F is the intersection of three distinct faces, not necessarily of distinct kreplach,
that lies indF. The combinatorial complexitpf 7, denoted by 7|, is the number of
vertices, edges, and two-dimensional face8.6f

SetU = (.5 Ks. Each connected componentBfis also a connected component
of R3\U, but the latter may have some connected components that do not belong to
F. These components represent placements at which the ball moves inside an obstacle
without touching its boundaryZ| is thus upper bounded Y |, andF can be computed
by first constructind) and then discarding the connected componeni&gt) that do
not belong toF. The main problems we are concerned with are thus to estimate the
combinatorial complexity of) and to compute efficiently its bounda) .

Besides this motion-planning application, the problem of bounding the complexity
of U is a precursor to the harder problem of obtaining a near-quadratic, or even just
subcubic, bound on the complexity of the Euclidean Voronoi diagrai® drideed, if
the radius ofB isr, thenaU is the locus of all points whose Euclidean distance from
their nearest triangle iBis exactlyr . In this sensejU is a cross section of the Voronoi
diagram ofS.

Previous Results Motivated by the motion-planning application, there has been much
work on bounding the combinatorial complexity of the union of the Minkowski sums of

a geometric object (“robot”) with a family of geometric objects (“obstacles”), or more
generally, the complexity of the union of a set of geometric objects. See the book [24]
and the survey paper [5] by the authors for a summary of known results on this topic.
Boissonnat et al. [12] proved that the maximum complexity of the unioreafs-parallel
hypercubes ifR? is ©(n/4/21); the bound improves t® (n'%/2) if all hypercubes have

the same size. Aronov et al. [9] proved that the complexity of the uniam afnvex
polyhedra inR® with a total ofs faces isO(n® 4 nslogn). Aronov and Sharir [8] proved

that the complexity of the union of the Minkowski sums of a convex polyhe&avith

a collectionS of n pairwise-disjoint convex polyhedra &% is O(nslogn), wheres is

the total number of faces of the polyhedra in the{ge® Q | Q € S}. All these bounds

are either optimal or near optimal in the worst case. These recent results concern unions
in higher dimensions, and extend the work on unions of objects in the plane. Among
the two-dimensional results, we mention the early result of Kedem et al. [20] that shows
that the complexity of the union of disks (or “pseudodisks”) i©(n), and the results

of Matowsek et al. [22] and Efrat and Sharir [17] that prove near-linear bounds on the
complexity of the union of “fat” triangles and general “fat” convex regions in the plane.
See also [7], [16], and [21]. In a sense, our results are extensions of the analysis of [20]
to three dimensions.

It is conjectured that Voronoi diagrams in three dimensions, under fairly general
assumptions concerning the sites and the distance function, have near-quadratic com-
plexity. A near-cubic bound on the complexity of such diagrams follows from the results
on lower envelopes [23]. The maximum complexity of Voronoi diagranrspdint sites
under the Euclidean distance is known tot@?) [15]. The same bound has recently
been established for point sites under theand L ., metrics, or under any simplicial
distance function [12]. Near-quadratic bounds have also been recently established for
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the case of line sites and any polyhedral convex distance function [13], where the bound
is O(na(n) logn), and for the case of point sites and any polyhedral convex distance
function [26], where the bound i©(n?logn). In both cases the distance function is
induced by a convex polytope with a constant number of facets. No example with a
substantially superquadratic complexity (i.2(n?+°), for any fixedc > 0) is known.

As noted above, any of these results also yields near-quadratic bounds on the complexity
of the corresponding union of the Minkowski sums of the sites with the unit ball under
the given distance function.

Our Results If the conjecture on the complexity of the Voronoi diagram is true for
the case of triangle sites and Euclidean distance, then the complekityviif be near-
quadratic. Although a subcubic bound on the complexity of the Voronoi diagram still
remains elusive, we prove that the complexityois O(n>¢), for anye > 0. Using this
bound, we also derive a near-quadratic algorithm for constructing the complement of
the unionU, and thereby obtain a motion-planning algorithm for a ball amid polyhedral
obstacles.

Our results extend and improve a previous initial attack on the problem by the authors
[4], where we only managed to handle the cases in wRicha collection of lines or
segments and to obtain a weaker boun®oh®?+¢), for anye > 0. The new analysis
borrows ideas from the previous paper, but has many new ingredients.

The paper is organized as follows. In Section 2 we study the special case in8vhich
is a set of lines, st is the union of congruent cylindergipeg. We extend the previous
result to segments in Section 3; héras the union oftigars In Section 4 we prove the
main result of the paper—a near-quadratic bound on the complexityfof the case
of pairwise-disjoint triangles, sb is the union ofkreplach In Section 5 we discuss
two generalizations of our results. The first result proves a near-quadratic bound on the
complexity of the union of convex objects of bounded curvature and of roughly the same
size. The second result proves a near-quadratic bound on the number of changes in the
combinatorial structure of a set of congruent disks in the plane, each moving with a
fixed velocity. We also present a near-quadratic algorithm for construgdtizugd 7. We
conclude the paper in Section 6 with a few open problems.

2. The Case of Pipes

Preliminaries and Overview We first solve the problem, in whicB = {s;, ..., s}

is a set ofn lines inR3. Fori = 1,...,n,letK; = K = § @ B andg = 9Kj;

Ki is an infinite cylinder (opipe) of radius 1. SetC = {Ky, ..., Kp}, U = UL Ki,

andC = {cy, ..., ¢cn}. Whenever there is no ambiguity, we will also refer to tiie as
cylinders; otherwise we will refer to them as cylindrical surfaces. See Fig. 2. We assume
that the lines inS are in general position, which means that every pair of lines is skew,
that no twoK;’s are tangent to each other, that no curve of intersection of the boundaries
of any twoKj’s is tangent to a third one, and that no four boundaries meet at a point.
An argument based on random perturbation, similar to the one given in [23], shows that
this assumption can be made with no loss of generality. The main result of this section
is the following.
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Fig. 2. Two arrangements of cylinders.

Theorem 2.1. The combinatorial complexity of the union of n congruent cylinders in
R3is O(n?**), for anye > 0, where the constant of proportionality dependsson

ForasubseR C C, letU (R) denote the union of cylinders bounded by the cylindrical
surfaces irR. Let V (R) denote the set oferticesof U (R), namely, intersection points
of triples of boundaries of cylindrical surfaces kthat lie ondU (R). By our general
position assumption, each vertex lies on exactly three cylindrical surfaces, and is thus
incident upon only a constant number of edges and faces. The number of edges or 2-
faces ofdU that are not incident upon any vertex@sn?). Therefore the combinatorial
complexity ofU is O(n? + [V (C)]). In the rest of this section we prove the following:

Proposition 2.2. For any selC of n congruent cylinders iiR® and for anys > 0,

IV(C)| = O(n?*).

Overview of the Proof The proof consists of several main steps, each presented in a
separate subsection, and proceeds through a sequence of technical lemmas. To aid the
reader in following the proof, we have written it from a certain point on in a “backward”
manner: each step relies on a future key lemma and shows how Proposition 2.2 follows
from the analysis so far and from that future lemma.

In the first step, for technical reasons, we choose a subset of cylind&rsvimose
union boundary contains at least half of the verticeg dfVe also choose the orientation
of thez-axis (by rotating the coordinate frame) carefully so that the acute angle between
the z-axis and the axes of every chosen cylinder is at most]ctés.

In the second step we derive a recurrence relation to bound the number of vertices.
The overhead term in the recurrence counts the number of vertices lying on cylinders
whose axis directions are “well separated” in a certain sense.

Inorderto boundthe overhead term, the third step introduces a key notion of “divergent
pairs” of cylinders, relative to some directian where the angle between the axes of
such a pair is not much smaller than the angles that the axes fornuwitle show the
existence of a direction so that many vertices € V have the following property: all
three pairs of the cylinders that are incident upaare divergent with respect to
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In the fourth step we partitioR? into a carefully chosen infinite grid of square prisms
whose infinite axes are in the directianand count the number of vertices within each
prism. We show that there are orl(1) prismsQ that can be crossed by a fixed paib
of divergent cylinders so that the projectionsagfh Q andb N Q on a line in direction
u overlap.

In the fifth step we show that, within a pris@, we can bound the number of vertices
of U by regarding them as vertices of a “sandwich” region enclosed between an upper
envelope of a collection of portions of the given cylinders and a lower envelope of another
such collection. Using the results of [3] on the complexity of such a sandwich region, we
get a near-quadratic bound for the number of verticad wfithin a prism. We interpret
this bound as counting the number of pairs of cylinders that cross the same prism.

Finally, in the sixth step, we sharpen the bound obtained in the fifth step so that it is
proportional to the number of pairs of divergent cylinders that have “nearby” crossings
with Q, inthe sense of step 4. Hence, when we sum these improved bounds over all prisms
we still get an overall near-quadratic bound. This is accomplished (a) by improving the
bound of [3], and (b) by using a divide-and-conquer method that effectively decomposes
a prism into a tree of boxes and counts the number of vertices within each box separately.

We now describe each step in detail.

2.1. Choosing the z-Direction

LetS? denote the unit sphere of directionsiA. For eaclt e C, letn, € S? denote a unit
vector in the direction of the axis ofthat points into the upper halfspace; if the axig of

is parallel to thexy-plane, we sei to be any of the two unit vectors in the direction of

the axis oft. There is a technical problem (e.g., in Lemma 2.7 below) with the definition

of the directions, for c € C, which depend on the choice of tealirection. Informally,

we may have a paig, b of cylinders whose directions,, n, are almost antipodal. In

the foregoing analysis we treat this pair as having a large angle (closglietween

their axes, whereas the “real” angle between the axes is close to zero. We circumvent
this problem by choosing a random point 8 and by regarding it as the direction of

the (+2)-axis. The following claim holds.

Lemma 2.3. LetpBy be the acute angle satisfyingsgy = % Letv be avertex in \(C)
incident upon three cylinders, &, c € C. The probability that all three acute angles
between the z-direction and the axes gbac are at mosp is at Ieast%.

Proof. Indeed, for the acute angle between thaxis and the axis of, sag to be
greater thamy, thez-direction has to lie in the spherical band consisting of all directions
at spherical distance at most2 — 8, from the great circle orthogonal to the axisaf
The area of this band is#cosfy. Hence the probability that at least one of the above
three acute angles is larger théhis at most

127 cospo . 1
4 T2
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Fig. 3. (a) A set of relevant directions, and (b) their projectionhon

We thus obtain the following:

Lemma 2.4. We can choose a subs&tC C and a directionup € S? so that the axes
of all cylinders inC’ form acute angles at mogp = cosl(%) with up and |V (C")| >
V(©O)I/2.

We rotate the coordinate system so thgbecomes thé+z)-axis and remove from
C all the cylinders whose axes have an acute angle largeBgaith the (+2z)-axis. At
least half of the vertices of (C) still show up in the new union. Abusing the notation
slightly, we use&C to denote the set of remaining cylinders.

Let S be the spherical cap consisting of all point$frthat form an angle of at most
Bo with the (+2)-axis; see Fig. 3(a). We projestonto the horizontal plank : z =1
using the central projection. The resulting projection is a @s¥ radius targy, = /35
centered at0, 0, 1). For a pointu € S?, we denote its projection oh by u*. For a
cylindera, we refer ton}; as itsdirection imageFor a vertexw € V(C), incident on three
cylindersa, b, ¢ € C, we associate with the tripleA, = {n}, n§, n%}. A, is referred to
as the set of direction images of

2.2. Deriving the Main Recurrence

Let ¥ (n) = maxV (C)|, where the maximum is taken over all sétsf n cylinders of
radius 1 whose axes make acute angles of at iBgstith the z-axis. Fix a constant
integer parametey > 2 whose value depends erand will be specified later. Partition
the planeh into a collectionW = {W4, ..., W} of £ horizontal strips by lines parallel
to thex-axis, so that each strip contains direction images of at m@stylinders. See
Fig. 3(b). For each pair of strip/, W; € W, letC;; denote the set of cylinders whose
direction images lie i, U W;. By definition,

IV (Cij)l 51&(?) for 1<i<j<é&.

Next, we partition the plane into a collectibh= {Hg, ..., H:} of & vertical strips by
lines parallel to they-axis, so that each strip contains at mog¢ direction images.
For each paiHy, H, € H, we also bound by (2n/&) the number of vertices in the
union of cylinders whose direction images liehia U H,. These 22) < &2 subproblems
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have accounted for all those verticeof V (C) whose direction imagea, lie in at

most two horizontal or two vertical strips, and the number of these vertices is at most
£2y(2n/€). We thus have to count the number of vertices for whighlies in three
different horizontal strips and in three different vertical strips.

The stripsirH andw divide the plandiintoaseR = {Ry, ..., Rz} of £2rectangles.
For a rectangld® € R let C; be the set of cylinders whose direction images li€in
For a triplei, j, k, let V; j« = V(Ci, Cj,C) S V(C) denote the set of verticas of
U (G UCj U Cy) lying onthree cylindera, b, csuchthat € G, b € Cj,andc € Cx. Then
v (C) = Ziijgk [Vi j.l. In view of the preceding discussion, it suffices to bodgl
for each triplei # j # k for which the rectangle®, R;, R lie in different horizontal
and vertical strips, i.e., thek- andy-projections are pairwise disjoint. We show below
in Lemma 2.5 that for such a triple of rectang|&; | = O(|C; UCj U Cel? - n®) =
O(n?+¢/£2), for anye > 0. Since there ar® (&%) such triples of rectangles, we obtain
the following recurrence:

Y(n) < &%y (25—”) + O(n**eg%).

For anys’ > ¢, by choosings = £(¢’) a sufficiently large constant, one can prove that
the solution to the above recurrenceig) = O(n**¢) (see, e.g., [23]), thereby proving
Theorem 2.1.

2.3. Bounding|V; 2 3| and Divergent Pairs

Let Ry, Ry, Rs be three rectangles iR whosex- andy-projections are pairwise disjoint;
see Fig. 4. Let, C,, C3 be the corresponding subsets of cylinders, as above. We want
to bound the size o ;3 = V(C1, C2, C3). We will prove the following:

Lemma2.5. Let R, Ry, Rz be three rectangles as defined aboaed lete > 0 be an
arbitrarily small constantThen

V123l = O(ICL U C2 U Cal? - ).
Definition 2.6. We call a pair of cylinders, b € C A-divergentwith respect to a
directionu (assumed to lie i) if
min{|nju*|, [nju™[} < Aning|.
Roughly speaking, two cylindeesandb being divergent with respect to a direction
u means that the slopes of the projections of the axesarfdb on a plane normal to

u are not “very close” to each other. The significance of divergent pairs is illustrated in
Lemma 2.8.

Lemma 2.7. There exist a directiom and three pairwise-disjoint subsefs < C1,
Cé C Cy, Cé C C3 so that

() IV(Cy,C5 Cy)l = V123]/2,and
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R, R’Z R

R3
(@) (b)

Fig. 4. The two cases in the proof of Lemma 2.7: (a) & form a monotone sequence; (b) tRes do not
form a monotone sequence.

(i) all pairs of cylinders irC; x C;, C; x C3, andC; x Cg are V17-divergent relative
tou.

Proof. Fori = 1,2, we assume that the-projection of R lies to the left of thex-
projection ofR; ;1. We say that a poirp separate®; andR,; if its x-coordinate separates
thex-projections ofR andR;, and itsy-coordinate separates tlgrojection ofR and

R;. There are two basic cases to consider (other cases can be reduced to them by reversing
the direction of th&+y) and/or the (4-x)-axis).

Case(a): The y-projection of Ries below thatof R 1, fori =1,2. SeeFig. 4(a). Let
w € D be a point that separat& andR;, and letz € D be a point that separaté&s and
Rs. The perpendicular bisector af andz splits R, into two subpolygons (one of which
might be empty). Denote the one nearentby R, and the one nearer by R;. With
no loss of generality, we may assume that at least half of the vertitgs inhave one of
their direction images iR,. We setC; = C1, C3 = C3, and(; to be the set of cylinders
whose direction images lie iR;. By construction|V (C, C, C5)| > V1 23]/2. We take
the directioru € S? to be the pre-image ab, i.e., the intersection point @ with S2.

Property (i) is proved as follows. Let b be cylinders such that; € R, andnj € R..
Then clearly

Ining| = maxingwl, Infwl},

implying that (a, b) are 1-divergent with respect to An identical argument implies
that all pairs inC; x Cs are also 1-divergent. L& c be cylinders such tha; € R, and
n; € Rs. Then

Ingngl > gzl > Ingw,
implying that(b, c) are also 1-divergent with respectuoHence the lemma holds for
this case.

Case(b): The y-projection of Rlies above the y-projections of, Rvhich lies above the
y-projection of B. See Fig. 4(b). Letv € D be a point that separat& andR,, and
letz € D be a point that separat&s andR;. Let Ry be the axis-parallel rectangle whose
opposite vertices are andz. Let dy andd, denote the lengths of the horizontal and
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vertical edges oRy, respectively. Assume, without loss of generality, tiiat- dy. If
dy > dy, then we reverse the roles Bf andR; in the following analysis. Le$ denote
the third vertex ofRy whosex-coordinate is that of and whosey-coordinate is that
of w.

The perpendicular bisector af, which is parallel to the/-axis, ands splits R into
two subrectangles (one of which might be empty). Denote the one neardaytér, and
the one nearer teby Rj. Clearly, one of the following two situations arise:

Case(b.i): At least half of the vertices ini\ 3 have a direction image in R In this
case we tak®'’ to be this subset of vertices; the directiois the pre-image ofv. The
setC; (resp.C,, C3) consists of those cylinders whose direction images liRirfresp.
in Ry, Ry).

Property (i) is obvious. Arguing as in case (a), all pairs of cylinderg,ixx C, are
1-divergent. Let, ¢ be cylinders such that} € R; andn} € Rs. Then

Inzng| > [n3z| > [njwl,

where the lastinequality follows from the easy observation that the perpendicular bisector
of wz does not intersed®, which in turn is a consequence of the assumptior- d .
Hence, the paita, c) are 1-divergent with respect to Similarly, letb, c be cylinders

such thanj € R, andnf € Rs. Then

[ngng| > Ings| > [nfwl,

implying that(b, c) are also 1-divergent. Hence, the lemma holds for this subcase too.

Case(b.ii): At least half of the vertices have one of their direction imagesjiniiRthis
case we sef; = C1, C; = C3, andC; to be the set of cylinders whose direction images
lie in R), and seu to be the pre-image af. Again, property (i) is obvious. Arguing as
above, all pairs of cylinders i, x Cz and inC, x Cz are 1-divergent with respect to
Leta, b be cylinders such that} € R, andn§ € R;. Let Ro denote the reflection dRy
about its edgevs. Suppose first that] lies outsideR,. Then

ningl > INfw| > |ngs|.
On the other hand,
2Infs| > Injs| + |s4 > |njz],

implying that(a, b) are 2-divergent with respect to 5
Suppose next that} lies in Ry. Lett denote the midpoint of the edge Bf opposite
to ws. Then

Ininé| > nfw| > EX

/ 1, 17

On the other hand,
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Hence, we havinjz| < \/1_7|n;n;;|, implying that(a, b) are+/17-divergent with respect
tou.

This completes the proof of the lemma. O

In view of Lemma 2.7, it suffices to bound the size \6f = V(Cy, C;, C3). Set
C' = C] UC, U Cy. All the vertices ofV’ appear on the boundary bf(C").

2.4. Subdivision into Prisms and the Importance of Being Divergent

Let C’ be the set of cylinders as above, andudbe a direction such that all pairs of
cylinders inC’ are+/17-divergent with respect to. We place inR® a grid Q of infinite
square prisms whose axes are parallel to the directiaee Fig. 5. For simplicity of
presentation, we rotate the coordinate system to nuatktee positivez-direction. The
prisms are thus of the for@Q;; = [ti, t(i +1)] x [tj, t(j + D] x R, fori, j € Z, where

t is a sufficiently small constant. We bound the sizé&/gf= V' N Q for eachQ € Q
separately and then sum these quantitiesClgetC C’ be the set of cylinders i@’ that
intersectQ. We call a pair of cylinders, b € Cq nearinside Q if the z-projections of
an QandbnN Q overlap. Letug be the number of pairs of cylindersdiy x Cq that are
V/17-divergent with respect toand are near insid®. We show below in Lemma 2.15
that|Vg| = O(ug - n®), for anye > 0. Hence,

V| = Z Vol =0 (ns Z MQ> ) (2.1)

QeQ QeQ

Lemma 2.8. If a and b are a pair ofi-divergent cylinders with respect to (which
is assumed to be the same as the zjaxi®n (a, b) is near inside at most Q.2/t?)
prisms ofQ.

Fig. 5. A system of prisms in direction.
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Fig. 6. lllustration of the proof of Lemma 2.8

Proof. Suppose tothe contrary thatthere are more#Rafy t2 prisms with the property
inthe lemma, whereis a sufficiently large constant that will be specified later. Then there
are two prismsQ andQ’, whose vertical center lines are at distadce (¢A/t)-t = ¢A
apart and the paifa, b) is near in bothQ andQ’. Consequently, there exist four points
pacanQ,pyeanQ,py, e bnNQ,andp, € bN Q’, such thap, andpy, have the
samez-coordinate, say 0, arl, andpy, also have the sanecoordinate, sap > 0; see
Fig. 6.

We first claim that the anglé = Z(n,, ny) is small. Indeed, draw two ballB, B’
of radiusr = 1 + t4/2/2 about the intersection of the center line@fwith z = 0 and
about the intersection of the center line@fwith z = h. Then the axes & andb cross
both balls. Translatb so that its axis touches the axisaat some poinP € B, and so
that it moves laterally no more thamn.2

The distance between any pointBhand any point irB’ is at least

Vd24+h2—2r>d—2r > ¢r—2r.

We obtain atriangl® Z R whereZ lies on the axis o&insideB’ andR lies on the axis of
b at distance at most3rom the center oB’. Hencewe haveP Z| > d—2r > ¢A —2r
and|ZR| < 4r. Hence, by the sine theorem,

sins_sinAPRZ< 1
IZR ~ |PZ| T |PZ

or

. |ZR| 4 4r
sing < < < )
IPZ —d—2r — ¢a—2r

which can be made as small as we wish by choositayge enough.
Next we estimat¢n;n;|. Using the sine theorem once again, we have

Inzngl Il
siné sing’




Pipes, Cigars, and Kreplach 657

whereg is the angle opposite t@; in the triangle formed by} andn§. By the properties
of D, we haveini| < 6 andr/2— B < 6 < /24 Bo. Hence si® > cospo = . Thus

14 - 144
d—2r —za—2r°

[ning| < 36sins <

Since the paifa, b) arex-divergent with respect o, we have, without loss of generality,

144 ) 144 )
< < s
—d-2r T A—2

[nju*| < Alning|

which again can be made arbitrarily smalfifs sufficiently large. This is easily seen to
imply that the angler = Z(n,, u) is also small. Specifically, using the sine theorem yet
another time, we have

_Inju*|sing 144 )

siny = 22— < |nfu’| < ,
v ngl  — ° |_d—2r

wherey is the angle opposite 1t in the triangle formed by} andu*; we use here the
fact that/nz| > 1.

On the other hand, we have tan= H/V, whereH (resp.V) is the horizontal
(resp. vertical) distance betwe®handZ. We haveH > ¢A — 2r andV <h + 2r, so
that, for sufficiently smaly (that is, for sufficiently large),

. A—2r
2sin tany > .
v= y= h+2r

Note that since’ is small,h must be large, in fact much larger than, say.
Combining the last two inequalities, we obtain

A—2r - 288 L - 288 L
h+2r —d—2r — h=2r’

which is a contradiction if is sufficiently large. O

Hence, a pair of cylinders i’ that are+/17-divergent with respect to are near
inside only O(1) prisms. Putting Lemmas 2.7 and 2.8 together and using (2.1), we
obtain that

V123 <2|V'| = 0O(n°) - Z # prisms in which(a, b) is a near paie= O(|C'|? - n°).
a,beC’

This completes the proof of Lemma 2.5.

2.5. A Weaker Bound ofVg|

Let Q = Q;; be one of the prisms i@, and put, as abové/g = V' N Q. The next
stretches of the analysis culminate in Lemma 2.15, which showpgat O (g - n®),
wherepq is, as above, the number of pairs of cylinder€'ix C’ that arey/17-divergent
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with respect tou and are near irQ. (Recall that we rotated the coordinate axis so
that the orientation of thé+z)-axis isu.) This is achieved in two stages. First, in this
subsection, we establish a weaker bound\asi that does not exploit the nearness and
divergence of cylinders. Then we sharpen the analysis to obtain the above improved
bound.

The main idea in this subsection is to reduce the analysis to the problem of estimating
the complexity of a region enclosed between a lower envelope of a collection of surfaces
and an upper envelope of another collection, and then to apply the results of [3] that
yield a near-quadratic bound on the complexity of such a region.

Let M be a sufficiently large constant, whose value will be chosen below. We partition
each of the cylindrical surfaces ¢hinto M canonical strips (parallel to the axis of the
cylinder), each having an angular span af/®1 (in the cylindrical coordinate frame
induced by the cylinder). We say that a directis agood directiorfor a stripz if the
following two conditions hold:

(C1) 4L(p,u) = /M, and
(C2) each line tangent to (the relative interior offjorms an angle of at leaat/ M
with p.

We say thajp e S? is agood directionfor a vertexv incident upon three canonical
stripst,, T, andz. if it is a good direction for all three strips; see Fig. 7. Recalling that
u is the positivez-direction, it is easily checked that the &t of bad directions for a
fixed stript, contained in a cylindrical surfagee C, is the unionB; U B,, where we
have:

e B is the union of the two caps about the north and south pol&8 of opening
anglesr /M. The area oB; is 47 (1 — cogx/M)).

e Letn; andn; be the normals to the planes tangent &t the two lines delimiting
the boundary of. By construction, the angle betweepandn, is at most Z /M.
The (thinner) spherical double wedge defined by the two great circles normal to
n; andn; is the set of directions of the lines tangenttd; is the set of all points
on$? that lie at spherical distance at mastM from this double wedge. Thug,
is contained in a spherical band consisting of all points lying at spherical distance
at most 2r/M from a great circle o$? (namely, from the circle “bisecting” the
double wedge). The area B} is 4r sin(2z/M).

Ta

b

Tc

Fig. 7. A vertex of the union incident upon three stris t,, andzc, along with a good directiop.
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Fig. 8. The set of bad directions for a vertex is contained in the union of two caps and three spherical bands.

It follows that the area oB; is at most

2
47 (1 - cos +sin—n .
M M
This implies that the set of good directions forontains the complement of the union of
two caps with opening angles/ M and of three “great bands,” as above, each of width
47 /M (see Fig. 8). Hence, the area of this set is at least

T 2
41— ({1—cos— | —3sin— |.
”[ ( M) M}

By choosingM sufficiently large, the area of the set of good directions can be made
close to the area of the entire sphere. Moreover, it is easy to verify that this set contains
a spherical cap of some constant opening angle,ssaf,M is sufficiently large (see

Fig. 8).

Let Z be a set ofO(1/8%) points onS?, with the property that any cap d#f of
opening anglé contains at least one of these points. For gaehZ and a prisnQ, we
defineVq(p) to be the subset of all vertices Wy for which p is a good direction. The
preceding analysis implies that each verteX/dfias at least one good directiondn

Lemma 2.9. Suppose the horizontal side-length t of a prism Q is less than
V2sirf(r/M). Letp € Z, and letv be any vertex in Y, incident upon stripsa, o, Tc,

for which p is a good directionThen any line parallel tg intersectsr, in at most one
point Moreovey if we go from any pointv € 7, N Q inside the cylinder a bounded by
75 in the direction parallel top, we reachd Q before exiting aSimilar properties hold

for 7, and z..

Proof. If t, were not monotone in the above sense, it would have to contain awpoint
so that a line parallel tp is tangent ta, atv, which is impossible by the definition of a
good direction. As to the second assertionuldie a point int; N Q, and letw’ be the
other intersection betweeéa and the line passing throughand parallel tg. Itis easily
verified thatjww’| is minimized (relative to the constraints on good directions) when
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ww’ is orthogonal to the axis @ and forms an angle/M with the tangent plane ta
atw. In this caséww’| = 2 sin(x/M). On the other hand, sinaew’ forms an angle of
at leastr /M with the z-direction (that is, withu), it follows that the horizontal distance
betweernw andw’ is at leasfww’| sin(r/M) > 2sirf(zr/M). If t, the horizontal side
length of prisms inQ, is chosen such that< +/2 sirf(r/M), thenw’ does not lie inQ,
which completes the proof of the lemma. O

Remark 2.10.

(i) Thesecond partofthelemma crucially usesthe factthatthe cylinders are infinitely
long. Otherwise we may exdt (through its base) before leaving the pri€nSee
also Remark 2.16 below.

(i) The proof also uses the fact that the radius of the cylinder is 1. It, however,
works as long as one can argue that the length of the segmehis bounded
from below by a constant. For example, the lemma holds even if the radii of the
cylinders are different but vary betweerand 1, wherex < 1 is a constant; or if
each cylinder is obtained by sweeping a smooth convex planar shape of diameter
1 and of bounded curvature normal to a linéRif

For a prismQ € Q and a directiorp € Z, let To(p) denote the set of canonical
stripst that crossQ and contain at least one vertex\ig (p). In particular,p is a good
direction for anyr € To(p). Letng(p) = |To(p)|. We clip each strip ifq(p) within
Q. We partitionTg(p) into two subsetﬂ'g(p) andTg (p) as follows. A (clipped) strip
7 contained in a cylindec belongs tOTS'(p) (resp.Tq (p)) if for any pointw € 7, the
pointw + ap lies in the exterior (resp. interior) affor sufficiently small positive values
of «. We define thep-upper envelopef Tg (p) to be the set of points on the strips in
Tér(,o) so that a ray fromw in the (4p)-direction does not intersect any other clipped
strip in Tg (p). Similarly, we define the-lower envelop®f Tg (p).

Let t be a strip inTg (p). Lemma 2.9 implies that any line parallel gothat passes
through a point irc N Q meets the interior of the cylinderin an interval whose other
endpoint lies outsid€; the same property applies where Ty (p). Letv be a vertex
in Vo(p). The preceding analysis implies thats a vertex of the regiofRg enclosed
between thep-upper envelope of the surfacesTg(p) and thep-lower envelope of
the surfaces i (p). By the result of Agarwal et al. [3], the number of verticesRig
is O(ng(p)?**), for anye > 0, with the constant of proportionality depending an
Repeating this step for all directiopse Z, we obtain the following result.

Lemma 2.11. Let Q be a prismand letCq be any set of cylinders intersecting. Q
Then the number of vertices of the unior(ibie interiors of the cylinders jinCq lying
inside Q is Q|Cq|?"*), for anye > 0.

In what follows we will need the following stronger version of the above lemma.

Lemma 2.12. Let Q be a prismlet Ag be any set of cylinders intersecting gnd let
Bo be a subset of Aof size b Then the number of vertices of the uniorgtbe interiors
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of the cylinders in Aq that lie inside Q and that are incident upon at least two surfaces
of Bg is O(a - b**®), for anye > 0.

Proof. PartitionAq into & = [a/b] subsetsAy, ..., As, each of size at most Each
vertex of the union ofA that lies inQ and is incident upon two surfaces B, is a
vertex of the union oBg U A;, for some 1< i < &. By Lemma 2.11, the number of
vertices in the union oBq U A; is O(b%*%). Hence, the total number of such vertices is
O((a/b) - b***) = O(ab't?), for anye > 0. O

Remark 2.13. The technique used in the proof of the above lemma applies to the
general setup in [3], which yields the following enhancement of the analysis of that
paper: LetF andg be two sets of bivariate functions, satisfying the assumptions stated
in [3], let M be the “sandwich” region lying between the upper envelop# @ind the
lower envelope ofj, and letH € FUG be a subset of siza. Then the number of vertices

of M that are incident upon the graphs of at least two functiortg is O(nmt*+¢), for

anye > 0.

2.6. A Stronger Bound ofVg|

One might interpret Lemma 2.11 as bounding the siZé®by O(jiq - n®), wherefig
is the number of pairs of cylinders @1 that both intersec®. Unfortunately,fiq is too
large, and)_q fiq may be infinite. There are two “weaknesses” in using it does
not take into account divergence and nearness of pairs of cylinders. Both properties are
essential for our analysis, as suggested by Lemma 2.8. The purpose of this subsection
is to obtain an improved bound divg| using these properties. This is achieved by
combining Lemma 2.12 with a recursive divide-and-conquer analysis that allows us to
consider only near (and divergent) pairs of cylinders. Recall that we are assuming that
is thez-axis and thaQ = Q;;.

For a cylindera € Cq, let Z, denote thez-projection ofan Q. SetZq = {Za |a e
Col. At each recursive step we have a Hox= [ti, t(i + 1)] x [tj, t(j + 1] x [z1, z7],
for somezy, z; € R (a “slice” of Q). LetCn < Cq be the set of cylinders that intersect
I1. A cylindera e Cy is calledlongin IT if a intersects both the top and bottom faces of
I1(i.e., [z1, 2] C Z,), otherwise itis calleghortin I1. Let L, Sy € Cp denote the sets
of long and short cylinders ifl, respectively. LeEp be the set of those endpoints of
intervals inZq which lie in the open intervak;, z,). By the general position assumption
and by shifting slightly the grid of prisms, we may assume that all endpoirig; iare
distinct. We havgSy| < |En| < 2|Sq]. Let V(Lp, Sy) € Vo denote the subset of
vertices ofVq that lie inIT and that are incident upon at least two (short) cylinders of
Sy Initially, IT= Q, Lo =¥, Sg = Cq, V(Lq, Sg) = Vg. The recursive process will
bound the sizes of the subs&téL 1, Sy).

If St =@, |V(Ln, Sq)| = 0. Otherwise, we partitiofil into two subprismg1;, I,
by a horizontal plane so that the relative interior of therojections of each of the two
subprisms contains at most half of the endpointEgef SetL; = Lp,, Lo =Lp,, S =
Si,, andS = Sg,. Fori = 1,2, let§ < L; be the set of cylinders that are long in
IT; but short inI1. Note that§ U § is the set of all cylinders of that meefT;. Let
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v € V(Lp, Sq) be a vertex lying in1;. If v is incident upon at least two cylinders of
S, thenv € V (L4, §). Otherwise, it is incident upon at most one cylinderSpf at
most one cylinder of.1\ S, and at least one cylinder &,. Let V; denote the set of
such verticesY, is defined analogously fdi,. It suffices to bound the sizes ¥f, V.
We defineZy € Ep x Cp to be a set of pairs as follows. A pdip, b) € X, where

p is an endpoint of an interval, € Zq, if the cylindersa andb satisfy the following
conditions: (i)a, b € Cp, (i) they arev/17-divergent relative ta, and (iii) they are near
in Q. Setoy; = |Zn|. Since each/17-divergent pair of cylinders that is near inside
contributes at most two pairs Bg, we havesg < 2uqg, whereug is, as above, the
number ofy/17-divergent pairs iq that are near irQ.

Lemma 2.14. V]| + |V,| = O(op - n°).

Proof. Letv € V] be a vertex lying on the boundary of three cylindar®, c. By
definition, up to a permutation ¢&, b, c}, we havea € L1,b € S,andc e S US. On

the other hand, by definition &g, some permutation d&, b, ¢} appears it€; x C; x Cq
(where(j, C;, andCy are as in Lemma 2.7). For specificity, we bound the size of
V(Xq, X5, X3)NV/,whereX; =L, NC}, Xo = Si ﬂCé, andX3 = (S U Si) ﬂCé The
other vertices oV, can be counted in a similar manner.

Suppose, without loss of generality, tha€;| > |X,| > |X3]. Then, applying
Lemma 2.12 withAg = X1 U XU Xz andBg = X, U X3, we obtain that the number of
vertices ofV (X1, Xz, X3) that lie inT1; is at mostO(n?| X;| - | X2]). Hence, in general,
the number of such vertices is at m@¢n° - Zi# IXilIXj]). Leta € X, b e X;, for
i # j. Then, by Lemma 2.7a, b) is +/17-divergent pair. We charge, b) to a pair in
>n. By examining all possible combinations, it suffices to consider only two cases: (i)
aeL;\S andb e SUS; (i) a e S andb € S US. Incase (i), one of the endpoinps
of Zy liesin(z1, z2) andp € Z, (sinceais long inTI), so(a, b) is a+/17-divergent pair
thatis near imQ. In case (ii), sincais long inT11, Z; N Zy, # ¥. Moreover,a andb are
both shortirl1, so at least one of the endpoints, gapf Z,NZ, liesin(zy, z,). If pisan
endpoint ofZ,, then(p, b) € Xp; otherwise(p, a) € . Hence, in both cases, b)
can be charged to a unique pairXf;, thereby implying thaEi7éj IXi[IXj] = O(on).
This completes the proof of Lemma 2.14. O

Leto(m, o) = maxV (L, Sy)|, where the maximum is taken over all palirg, S
such thatEn| = mandop = o. Then we obtain the following recurrence:

_ 0 if U:O,
p(m, o) = o(M/2, o1) + ¢(M/2, 55) + O(on®) if o>0.

SinceEp, N Ep, = @, 01 + 02 < 0. The solution to the above recurrence is
@(m, o) = O(o logm-n®) = O(o - n%)
foranye’ > . Hence, we obtain the following.

Lemma 2.15. Let Q be a prism irQ. If there arewq pairs of cylinders irCq that are
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V/17-divergent with respect ta and are near inside Qthen|Vg| = O(uq - n°), for
anye > 0.

This completes the proof of Theorem 2.1.

Remark 2.16.

(i) The only place where we need the fact that the cylinders are infinitely long is in
Lemma 2.9. The rest of the proof works for bounded cylinders as well. However,
if we take a set oh bounded cylinders, each of radius 1 and of sufficiently small
height, the complexity of their union can B&n3).

(i) The current proof does not extend to cylinders with different radii because, as
noted in Remark 2.10, Lemma 2.9 uses the fact that the radius of each of the
cylinders is 1. However, the above proof, combined with the limited flexibility of
Lemma 2.9 (as noted in Remark 2.10) givesaam?+¢) bound on the complexity
of the union oi cylinders if the ratio of the largest to the smallest radiiis bounded
by a constant. See also Section 5.

3. The Case of Cigars

We now extend Theorem 2.1 to the case of segmentsSket(s,, ..., s,} now denote
a set ofn segments iR3. For eachi, putK; = Kg; eachk; is referred to as aigar;
see Fig. 9. Let; denote the cylindrical portion ofK;, and leto;*, o~ denote the
two hemispherical portions afK;; the whole boundary is thus U o, U o;". Let
K ={Kq...,Ky}andU = Uin=1 Ki. LetC = {c4, ..., cy} denote the collection of
thedKi's, let = = {o,", 07, ..., 07, 05} denote the collection of the corresponding
hemispherical portions, and I8tdenote the set ofr2balls whose boundaries contain
the hemispheres iR.

Again letV denote the set oferticesof U, namely, intersection points of triples of
boundaries of regions ik that lie ondU . We assume general position of the segments in

Fig. 9. The union of cigars, the Minkowski sums of line segments and a ball.
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Fig. 10. Different types of vertices: (a)ccvertex, (b)ccsvertex, (c)cssvertex, and (dgssvertex.

S, which now means that every pair of them is skew, that noKe are tangent to each

other, that no curve of intersection of the boundaries of anyKy®is tangent to a third

one, that no triple intersection of the boundaries ofkhs lie on any circle separating

the cylindrical and spherical portions of one of them, and that no four boundaries meet
at a point. Each vertex of is an intersection point of three cylindrical surfaces, of two
cylindrical surfaces and one spherical surface, of a cylindrical surface and two spherical
surfaces, or of three spherical surfaces; see Fig. 10. We denote these vertices mnemon-
ically asccc, ccs, css, andsssvertices, respectively. We denote the corresponding
subsets oV asVece, Vees: Vess @ndVsss We bound each of them separately.

3.1. Handling Easy Cases

Any sssvertexv of the union is also a vertex of the union of thel2alls inB. It is well
known that the complexity of the union of balls inR3 is O(m?) (this follows trivially
from [20]), so the number afssvertices ofU is O(n?).

Lemma 3.1. The number of css-vertices of U igi$3), for anye > 0.

Proof. We place inR® the same gridQ of infinite square prisms, as in the previous
section, whose axes are parallel to thaxis. That is,

Q={[ti,t(d +D] x[tj,t(j + D] xR |i, j € Z},

wheret is a sufficiently small constant, as above. Ebe Q,letCqo € C, Zq C X bethe

set of cylindrical and spherical surfaces that inter§gd®utmg = |Zg| andng = |Cql.

Let M be the same constant as in Section 2. We patrtition each of the cylindrical surfaces
in Cq into M canonical strips as before, and we cover each spheBiiy O(M?)
spherical caps, each of opening angles at mg#t, so that no point lies in more than

a constant number of caps. We define a good direction for a spherical cap in the same
manner as we did for a strip (see (C1) and (C2) in Section 2.5). The set of bad directions
for such a spherical capis again the union oB; U B,, whereB; is the same as earlier,
andB, is defined as follows. Leg, be the great circle of? parallel to the tangent plane

of the capr at its center. We definB, to be the spherical band consisting of all points

at spherical distance at most 2M from g;.
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Following the same argument as in Section 2.5, we can again choosg afsét(1)
directions so that at least one directiordris good for every vertex ofg = VessN Q.
It is now easy to check that both Lemmas 2.9 and 2.11 continue to hold in the extended
case. That is, we can decompose the set of cylindrical strips and spherical caps into
u = O(1) pairs of subset&As, By), ..., (Ay, By), where each, B; is a subset of strips
and/or caps, so that each vertex g appears in the sandwich region lying between
the upper envelope of; and the lower envelope @, for somei < u. This implies
that|Vg| = O((mg + nQ)2+’3). However, we want to count the numberosfsvertices.
The argument in the proof of Lemma 2.12 implies that the numbesef/ertices in
Qis O(mga(mQ + ng)). Summing over all prisms, the total numberasfsvertices

is ZQ O(m}jg(mq + ng)). Since each hemisphere | intersectsO(1/t?) = O(1)
prisms, the total number aksvertices isO(m*(m 4+ n)) = O(n?**), as claimedd

It thus suffices to bound the numberafc andccsvertices ofU. Using the same
argument as in Lemma 2.3, we can again prove that we can choose a@ubsét
and a directiorpg so that the axes of cylinders @ form an acute angle of at most
Bo = 005‘1(%3) with pg and the number afcc- andccsvertices in the unionof’ U X is
at least half of the number of such verticesdinWe rotate the coordinate system so that
po becomes thé+2z)-axis and remove fror@ all the cylinders whose axes have an acute
angle larger thamy with the (+2)-axis. When such a cylind€; is removed, we retain
the two corresponding balls™, o,”. We useC to denote the remaining set of cylindrical
surfaces.

As mentioned in Remark 2.16, only Lemma 2.9 uses the fact that the cylindérs in
are unbounded. Nevertheless, the lemma still holds because of the half-balls attached at
the endpoints of the segments3nin other words, a line parallel to a good direction, as
in the proof of Lemma 2.9, will exit the whole cigar after exitiQg Hence, the number
of ccevertices inU is O(n?*%), for anye > 0.

3.2. Bounding the Number of ccs-Vertices

We next prove that the number oés-vertices is als® (n?*¢). The proof is very similar
to the one described in the previous section, but is considerably simpler, so we mainly
focus on the modifications needed to make the proof work for this case.

LetC be a set oh bounded cylinders of unit radius and Etbe a set ofm unit-radius
spheres such that the axe<’ahake an acute angle of at mghtwith the z-axis and the
unit spheres centered at the endpoints of the axis of any cylindestia contained irx.
LetV = V(C, 2) denote the set afcsvertices on the boundary of the union®t X.
Setp(n, m) = maxV (C, X)|, where the maximum is taken over all setsxdiounded
cylinders and over all sets af spheres that satisfy the axes and containment conditions.
We will derive a recurrence fap(n, m) similar to the one in the previous section.

Fix aconstantinteger paramefet 2, whose value depends eand will be specified
later. Partition the plank into a collectionW = {W, ..., W:} of £ horizontal strips
by lines parallel to thex-axis so that each strip contains direction images of at most
n/& cylinders. For each strig € W, letC; denote the set of cylinders whose direction
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images lie in; . By construction|V (C;, X)| < ¢(n/&, m). Next, we partition the plane
into a collectiorH = {Hs, ..., He} of & vertical strips by lines parallel to theaxis, so
that each strip contains at mast¢ direction images. For each striy € H, we also
bound byp(n/&, m) the number oEcsverticesv so that the direction images of the two
cylindrical surfaces containinglie in Hy. These 2 subproblems account for all those
verticesv of V(C, X) that lie on two cylinders whose direction images lie in at most
one horizontal or one vertical strip. L& be the set 0f? rectangles induced by and

W. For arectangldR; € R, letC; be the set of cylinders whose direction images lie in
R.. Forapair # j,letVi; = V(G,(j, X) € V(C, X) denote the set of verticesof

U (G UCj U %) lying on two cylindersa, b such that € C; andb € C;.

Lemma 3.2. LetR;, R;betworectanglesi® whose x-and y-projections are disjajint
then|Viz| = O((n/&)*+*m).

Before proving this lemma, we bound the number of tles-vertices inU using
the lemma. Since there a@(£%) such pairs of rectangles, we obtain the following
recurrence:

e(n,m) <2t -¢ <§ m) + O(n***£3m).

Foranys’ > ¢, by choosing = &£(¢) a sufficiently large constant, one can prove that the
solution to the above recurrenceggn, m) = O(n***'m) (see, e.g., [23]). This implies
that the number ofcsvertices inU is O(n%t¢).

We now prove Lemma 3.2. Lat € h be a point whosg- andy-coordinates separate,
respectively, thex-ranges and thg-ranges ofR; andR;, and letu be the pre-image of
w. Then, arguing as in Case (a) of the proof of Lemma 2.7, it follows that all pairs of
cylinders inC; x C; are 1-divergent with respect to

In order to bound the size &f (C1, C2, =), we place inR3 the grid Q of infinite
square prisms, as defined above. We bound the si¥g &f V (C1, C2, £) N Q for each
Q € Q separately and then sum these quantities over all pridmkset Q € Q be
fixed, and leCy’ < €1, C§’ < Cz, be the subsets of these sets of cylinders that intersect
Q. and letZq € T be the set of spheres that inters€xtsetng = |CY’ US| and
Mg = |Xgl. Let vg be the number of pairs of cylinders '&g) X Cg) that are near
inside Q, where nearness is defined as in Section 2 (all these pairs are also 1-divergent
with respect tau). The proof of Lemma 2.11 implies thitg| = O((ng + Mg)?™)
for anye > 0. Since we are counting only the numbercas-vertices, Lemma 2.12
imples thatVg| = O(ngs(nQ + mg)). Finally, using the same recursive argument as
in Section 2.6, we can show thiddg| = O((vg + NgMmg) - ng), for anye > 0. Hence,

IVizl < ) Vol = Y O((vq + NgMg) - ny).
QeQ Q

By Lemma2.8) 5 vq = O((n/&)%®). Since a sphere il intersects onlyD(t?) =
O(1) prisms, we haveZQ mg = O(m). Finally, m > n > n/g, therefore|Vy | =
O((n/&)Y**m). This completes the proof of Lemma 3.2.
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Putting everything together we conclude the following.

Theorem 3.3. Let S be a set of n segment&ifhand let B be a ballThe complexity of
the union of the Minkowski sums of B and the segments in $ri%Q, for anye > 0.

A result by Clarkson and Shor [14] implies the following corollary which will be
useful in the analysis of the next section.

Corollary 3.4. Let S be a set of n segment&ifiand let B be a ballSetlC = {s® B |
s € S}. The number of vertices of the arrangement’dhat lie in the interior of at most
k regions ofkC is O(n?tek~*).

4. The Case of Kreplach

Armed with the bound in Theorem 3.3, we now turn to the general case in Bimhsists

of n pairwise disjoint triangles. For eache S, letKs = s@ Bp. Let K = {Ks | s € S}
andU = (J, s Ks. We also defin&C® = {K. | eis an edge of a triangle i8}. Let T
denote the set of triangular faces of the kreplaclCinet C be the set of cylindrical
surfaces of cigars ifCe, and letB be the set of balls bounding the spherical surfaces
of Ke. A point lying in k regions ofC lies in at most 8 regions ofK©. Let A(K)
(resp.A(K©®)) be the arrangement defined by the boundary surfaces of the regions of
K (resp.£©), and define théevel of a point p in R? in either arrangement to be the
number of region¥Ks of the arrangement that contapnin their interior. The closure

of the complement o) is the set of points of level 0 il (). The main result of this
section is the following.

Theorem 4.1. Let S be a set of n pairwise disjoint trianglesRA, and let B be a ball
The combinatorial complexity of the union of the Minkowski sums of B with the triangles
of S is Qn?*), for anye > 0.

As inthe previous sections, it suffices to bound the number of vertidésidbreover,
we can assume general position of the triangle§,imvhich now means that no pair
of triangles inS are parallel or intersect; that no two edges of distinct triangleS in
are parallel or coplanar; that no tw’s are tangent to each other; that no curve of
intersection of the boundaries of any tWg's is tangent to a third one; that no triple
intersection of the boundaries of thg’s lie on any circle or segment separating the
triangular, cylindrical and spherical portions of one of them; and that no four boundaries
meet at a point. Using a standard argument based on a slight perturbation of the triangles
(as in [24]), one can show that this assumption involves no loss of generality.

4.1. Preliminaries and Overview

We use the shorthand notation of referring to a triangular, cylindrical, or spherical surface
as a-surfaceg-surface, and-surface, respectively. We also use the notaticurface to
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refer to a (“nontriangle”) surface that is either a cylinder or a sphere. As in the preceding
section, we call a vertex od(K) anxyzvertex, forx, y, z € {t, c, s, n}, ifitis incident
upon anx-surface, ay-surface, and a-surface.

Our analysis relies crucially on the following two lemmas. The first lemma, known
as thepseudosphere propettis an extension of a two-dimensional result by Kedem et
al. [20].

Lemma 4.2(Pseudosphere Property)Let A, A, be two disjoint compagctconvex
bodies inR3, and let B be another compaatonvex body with nonempty interior
Let K1 = A1 & B, K, = A, & B be the Minkowski sums of; Aand A with B.
Then the intersectiofK; N K5 is connected

This lemma was originally obtained bsudés Pach in the early 1980s. Since this result
has never been published, we present in an appendix the proof for the special case in
which A; and A; are triangles an® is a ball (i.e.,K; andK; are kreplach). Recently,
another proof, for the polyhedral case, has been given by Hernandez-Barrera et al. [19].

Next, we prove a simple property of kreplach that is used repeatedly in our analysis.
We note that this is the only place where the disjointness of the triangessafsed in
the analysis.

Lemma 4.3. Lets be a triangle in Sand let @ &’ be the two triangular portions of
dKs. Let t be another triangle in Sand lety be an arc alongK; that is contained in
Ks and connects a point € a to a pointv’ € a’. Theny must intersect a cylinder or a
sphere induced by an edge or a vertex ahsother wordsthe distance of from ds is
smaller thanl. (See Fig11.)

Proof. (We are indebted to Boris Aronov for the following simplification of an earlier
more complicated proof.) Suppose to the contrary that this is not the case. For simplicity,
assume thas lies in thexy-plane, and thaa, &’ lie in the planez = 1 andz = —1,
respectively. For each pointe y, lety (u) denote the point it closest tau (obviously,

lu— )| = 1). Itis easily seen thaf is continuous. Les = {/(u) |ue y} Ct

@ (b) (©

Fig. 11. lllustration to the proof of Lemma 4.3: (a) trianglesndt and the imagé of y ont; (b) Ky and
the pathy lying ondK¢; and (c) the cylindrical and spherical surfaces corresponding to the edges and vertices
of sand an intersection gf with a cylindrical surface oKs.
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denote the (connected) image pf see Fig. 11(a). Pub = ¢ (v) andw’ = ¢ (V).
Clearly, w lies in the halfspace > 0 andw’ in the halfspace < 0. Sincew, w’ € §
ands is connecteds must intersect the plane= 0. Hence, there exists € y such
thatp = ¥ (u) € t N {z = 0}. Sinces andt are disjoint,p ¢ s. Letq be the vertical
projection ofu on the planeg = 0. If g ¢ s, i.e.,u does not lie vertically abovg thenu
lies insideKe, for one of the edges € s, which implies that the path[v, u] intersects
9Ke, as claimed. So assume tlepk int(s). Then pg must cross the boundary sfat
some poinb. Sinceluq| < 1 andjup| = 1, it follows that|ub] < 1, which establishes
the lemma. O

Remark 4.4. The above proof relies on the fact ttsas planar, but it does not use the
fact thats is polygonal. The proof works as long &is a family of pairwise-disjoint
convex planar objects, e.g., a family of pairwise-disjoint disks.

We derive a recurrence similar to the ones used in the analysis of the complexity of
lower envelopes and other substructures in arrangements (see, e.g., [24] for details), but
we use a simple enhancement of it, as follows. katenote the (constant) maximum
possible number of intersections between any three boundary surfaces of redions in
For three triangles, b, ¢ € S, let v be a vertex incident upon the boundaries of three
regionsK,, Ky, K¢. Let N denote the network formed by the vertices and edges (i.e.,
1-skeleton) oK, = Ka N Ky N K. By Lemma 4.2, any pair of boundarie&, and
0Ky intersect in a connected curve, which implies tNas connected. Lah < x be the
number of vertices iMN. Let N, be the set of vertices iN, includingv, that do not lie
in the interior of any krepl and that can be reached fioatong the edges dfl without
intersecting any other krepl. We define theexof v, denotednd(v), to bem — |N,|.
ind(v) = mis equivalent tov ¢ dU; ind(v) = m — 1 is equivalent taw € dU but
each of the three edges Kf,,c adjacent ta is intersected by at least one other region;
ind(v) = Ois equivalent to the entire netwokknot being intersected by any other krepl.
For 0 < j < m, we call a vertex of index j afrontier vertex if an edge oN adjacent
to v crosses the boundary of a krepl; by definitiony i6 a vertex of index O< j < m,
thenN, contains at least one frontier vertex. If we remove some of the triangles from
S, excluding the three whose expansion boundaries are incidentwploa index ofv
can only decrease or remain unchanged. Note that the notion of an index used here is
different from the one used in the previous works (as presented in [24]).

Let FU)(S) denote the number of vertices dfof index at mosj that lie ondU, and
let

FU(n) = maxFY(9).
|S|=n

Let F(S) = F*~D(S) denote the overall number of verticesadf ; set

F(n) = maxF(S).
|S|=n

We now derive the recurrence fér)(n), for j > 0. Forj = 0 we need a special
analysis of the structure of the sétgy,c, which lies at the heart of our proof.

We choose some threshold paraméter &; that we will fix later. Letv be a vertex of
indexj > 0, lying on the boundaries &, Ky, andK.. If v is not a frontier vertex, we
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chargev to a frontier vertex oN, ; each frontier vertex is charged at mggimes. Ifv is a
frontier vertex, then let be an edge oK ;e adjacent ta that is crossed by the boundary
of another kreplKy. If e is crossed by at least other boundary surfaces, we charge
v (and the nonfrontier vertices chargedupto the firsté vertices of A encountered
alonge. These vertices are at level at mésh A(K) and each can be charged this way
only O(1) times. Hence, applying the Clarkson—Shor probabilistic analysis technique
[14] and arguing as in earlier proofs (see [24]), the number of vertiegdevel at most
£ is O(£2F (n/&)). Otherwise, if we remove the at mastriangles whose expansion
boundaries meet (but retaina, b, andc), then the index of decreases by at least one.
Hence, applying again the Clarkson—Shor technique, the number of vartfethis
kind is O(£3FU-D(n/¢)).

We thus obtain the following recurrences, fo= 1, ..., x — 1:

FPm) =0 (gsz (g) +g2F0-D <§)) . (4.1)

We next derive a recurrence 619 (n).

Lemma4.5. Let F™™(n) be the maximum number of tnn-vertices of in@@n the
union, maximized over all sets of n pairwise-disjoint triangl€sen for any parameters
&o, Lo, ande > 0, we have

Fom = ot + 0 (8 () +@F (1),
€0 €0
(4.2)

F(tnn)(n) — O(é‘g—ﬁnzﬁ'é‘) +0 (C(?F (;)) .
0

Following an argument similar to the one in [23], one can show that the combined
solution of the recurrences (4.1) and (4.2) satisfi¢s) = O(n>*®), for anye > 0. In
the remainder of the section we prove the above lemma.

4.2. Bounding F?(n)

Letv be a vertex of index 0 lying on three kreplakkh, Ky, K¢. Then all vertices oK gp¢

lie on dU and none of the edges &f,,c meets any other kreplach. We refer to such a
vertexv as dreevertex and to such ,pc as afree triple intersectionWe charge all free
vertices ofK ;pc to some specific representative vertexikon. and count the number of
representative vertices. This counting is done in several stages, depending on the type of
representative vertices. The overall analysis will lead to the recurrences (4.2).

Handling Easy Cases The definition of a free triple intersectidian. only implies
that its edges do not intersect the other kreplach, but it still allows the 2-fadeg,of
to meet other regions. If a 2-fadeof Ky lying, say, ondKj, intersects another krepl
Kg but no edge ofK,y intersectsKy, then a whole connected componenof the
intersection curvé K, N dKy lies entirely in f. Lemma 4.2 implies thad K, N 9Ky
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is connected, thereforg = 9K, N 9Ky. We chargef to y. Hence, the number of
free triple intersections that intersect other kreplach is ddiy?). We can thus as-
sume that the entir&,,. does not intersect any krepl. (It is easily seen thatko
can be fully contained in the interior d€,pc.) If any of the edges oK,y has atran-
sition point namely, a point on a seam ofta c- or s-surface of a krepl, then we
can chargeK,pc to that transition point. Since there are oryn?) transition points,
the number of such free triple intersections is a@?). This also implies that there
are O(n?) free triple intersection&K sy that containttt-vertices. Indeed, let be a
ttt-vertex incident upon three triangular faceskf,.. Sincev is the only intersec-
tion point of the corresponding three triangles, at least one of the edd€g oadja-
cent tov contains a transition point, thereby implying that there @@?) such triple
intersections.

Next, if Kape has amnn-vertexv (a vertex that does not lie on any displaced triangle),
we choosev as its representative vertex;is also a vertex of the union d€©. By
Theorem 3.3, the number of such verticegOgn?*¢), for anye > 0. Suppose next
that K, pc has atssvertex. Leta’ be a triangular face dk,. Since evernjtssvertex of
U lying on & is a vertex of the union of a set of at most 8isks, within the plane
containinga’, the number of such vertices @(n) [20]. Hence, there ar®(n?**) free
triple intersections that contain amn- or atssvertex.

In view of the above discussion, we can thus assume that each vegxydies on
at least one triangular face, thag,c has natt- ortssvertex, thatK 5 is disjoint from
any other krepl, and that none of the edge&gjf. contains a transition point. Then all
vertices ofK ypc aretcn- or ttn-vertices. We call such triple intersectiangeresting We
call a vertexinterestingif it is a vertex of an interesting triple intersection.

The rest of the proof, which bounds the number of interesting free triple intersections,
consists of two parts. The first part bounds the number of interesting triple intersections
that contain at least oien-vertex. We show that the number of interesting vertices is
proportional to the number of certain degree-2 faces, calldtblesin the arrangement
of K and K©. Following an approach similar to the one used in [17], we obtain a
recurrence that bounds the number of these bubbles. The same recurrence can be derived
to bound the number of interestingc-vertices. The second part of the proof bounds
the number of interesting triple intersections that contain d¢tiyvertices. Roughly
speaking, we choose a parameteand charge eactin-vertex either tat ttn-vertices
of level at mosg or to onetcn-vertex of level at most.

4.3. Bounding the Number of Interesting tcn-Vertices

We derive a recurrence for the number of interesticggvertices. Letv be atcs-vertex
lying on someK . Supposev lies on thet-surface of the triangl@, and lete and

p be the original edge (say &) and vertex (ofc) whose expanded cylinder and ball,
respectively, contain on their boundaries. We replabéy eandc by p and consider the
triple intersectior ;¢p. This setis contained iapc butis otherwise free of intersections
with any other regiorKy (becauseK . avoids all these regions). We cailla regular
tcs-vertex if all vertices ofK5¢p lie on one of the triangular faces of K, and on the
cylindrical surface oK. Otherwise, it is calledtrregular.
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Lemma 4.6. There are Qn?+*) irregular vertices on interesting triple intersectians

Proof. Ifaninteresting<aepcontains an irregular vertex, then either it containean
vertex, or one of the edges Bf.ep contains a transition point, or the verticeskofe, lie

on two distinct triangular faces of one of the kreplach. By the previous discussion, there
are O(n?*®) triple intersections of the first two types.

Suppose there exist two vertices fep that lie on two distinct triangular faces of
Ka. Sincey = dKe N 0K, is connected (as already noted, this is a consequence of
Lemma 4.2, but can also be verified explicitly), it follows that there is a portiop of
that lies 0nd Kaep and connects between two points that lie in the two displaced copies
of a. By Lemma 4.3, this portion of must intersect one of the expanded edi§gsof
a, at accs or cssvertex that lies on the union &€©. The number of such vertices is
O(n?*%). Hence, there ar®(n®**) irregular vertices. O

It thus suffices to bound the number of regules-vertices.

Bounding the Number of Regular tcs-Verticeset v be a regular vertex ofaep,
i.e., all vertices ofK ¢ lie on a displaced copg’ of a, on the cylindrical surfac€,
of Ke, and on the sphergK,. As we follow the boundary oR = & N Ce N dK
from v, we encounter only those vertices at which the intersection ellipg afd
the cylindrical surfaceC, crosses the intersection circle @fanddK,, implying that
R has either two or four vertices. Since all verticeskafe,, lie on @, it follows that
Kaep has only two or four vertices. We first consider the case in whigd, has exactly
four vertices, all lying on the triangla’. We consided Kaep as a spherical map, and
apply to it Euler's formula, as follows. The map h¥s= 4 vertices and each vertex
is of degree 3. Moreover, as is easily seen, each face of the map has even degree,
namely, either 2 or 4. Suppose there &edges,F, faces of degree 2, ani, faces
of degree 4. Since each vertex has degree 3, we Bave 6. Then Euler’s formula
yields

V+F+FR=E+2 o F+F=4

We also have B = 2F, + 4F,, or F, + 2F, = 6, thereby implying thaF, = F4 = 2. It

is easily verified thaK, contributes td Kaep 0ne face of degree 4 (a), that another
surface contributes another face of degree 4, and that the third surface contributes two
faces of degree 2. See Fig. 12. On the other hadi4f 2, thenE = 3, andF, + F4, = 3.
Moreover, F, + 4F, = 6, which implies that, = 0 andF, = 3. That is, each of,

Ke, andK, contributes a 2-face tBaep.

0K,

Fig. 12. An example of a regularcs-vertex.
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Lemma 4.7. For any parameteg > 1, there are Q&2F(n/£) + £3-¢n?*®) regular
tcs-vertices on free interesting Kep's, such that

(i) either Kaep has two verticesor
(i) Kaep has four vertices and its two degr@daces lie oroKe.

Proof. As defined earlier, lef be the set of cylindrical surfaces of th&.'s, wheree
is an edge of a triangle i8. We bound the number of desired vertices that lie on each
surfaceC € C and sum these bounds up over all surfaces.iAssume that the axis of
C is parallel to thez-axis. LetKc = {KoNC |a € S} andlcg” ={KgNC | Kg €
KO@). Let A = A(Kc), AQ = AKY), Uc = UKc, andu? = UKE. Clearly,
UL < Uc. Let uc denote the combinatorial complexity bfY”. By Theorem 3.3, we
have) -vc = O(n?*¢), where the sum ranges over all surfaceg ifThe level of a
pointq e C with respect ta4 (resp..A©) is the number of regions iftc (resp.IC(CO))
that contairg in their interior. The closure of the complementlad (resp.UéO)) is the
set of points at level 0 with respect # (resp.A©).

The intersection of with a triangular fac@’ of K,, fora € S, is an elliptic arc. Any
pairC na’, C N b’ of these elliptic arcs intersect in at most two points becaliseb’
is a line segment and it intersed@sin at most two points. Moreover, argenerator
line onC, a line parallel to its axis, intersects any of these elliptic arcs in at most one
point, which is the intersection of the generator with the respective displaced triangle.
Finally, an endpoint of any elliptic arc is a transition point that lies on the boundary of the
corresponding displaced trianglé Let v be a regulatcs-vertex of one of the degree-2
faces induced o€ by Kaep (i.€., a vertex oK ep). Note thaw lies on an elliptic arg (a
portion of the intersection & with C) and on a portion of a sphere-cylinder intersection
curves. SinceKaep is free, by definition, the degree-2 facesod ., on C appear as
faces (which we refer to asubble$ of the arrangementl. Moreover,y ands§ appear
in a fixed vertical order alon@ outside these bubbles (i.e., any generator that crosses
both curves crosses them in the same order); see Fig. 13. We call the bpllaled if
the elliptic arcy is the top edge of the bubble; otherwise we calldtvnward If y ands
form upward bubbles, thehlies abovey outside these bubbles. We bound the number
of upward bubbles that do not lie inside any regioigf. By reversing the direction, we

Fig. 13. Bubbles ofA and quasi-regular vertices @h
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obtain a similar bound on the number of downward “free” bubbles. Together, this yields
a bound on the overall number of desired vertices.

Let & be a parameter. Lettgg) denote the closure of the points @hwhose level
is at mostt with respect to’CE:O). We take th&-extremal pointaw (in the cylindrical
coordinate system attached®) of every edge ofA© that lies insidng) and draw
throughw a maximal vertical segment containedG)f) and crossing at mosgt arcs
of A© on either side ofw. The edges ofA® and these segments decomp@;@
into “pseudotrapezoidal” cells, and we denote the collection of these cells bging
the Clarkson—Shor analysis technique, the total number of verticd€oWithin Q(CE),
summed over all cylindesB, is O(£3(n/£)%*) = O(&1¢n?*). Hence the total number
of cells and edges in the decompositidhsummed over all cylindef3, is O (626 n?**),
foranye > 0.

Note that the new vertical segments may split some of the “bubbles” into two faces,
but the number of such bubbles, summed over all cylinders, is@#*n%+¢) since
each vertical segment splits at mésiubbles. We thus count only those upward bubbles
whose vertices both lie on the same edge of a céll.of

For each edgé in V whose level is 0 with respect VG(CO), we count the number of
upward bubbles formed by that were not split by the vertical segments and sum this
guantity over all such edges. L&t be the set of elliptic arcs that form upward bubbles
with §; setms = |&;|. Each arc ir€; intersects in either two or four points and all these
intersection points are the vertices of the bubbles; otherwise the corresponding bubble is
not a face of a regular triple intersectionntf < &, the number of upward bubbles that
lie oné is at most 2. We charge them té. The total number of such bubbles charged
to arcs ofY, summed over all cylinder8, is O(£3-¢nt¢).

Suppose next thahs > £. Lety be an elliptic arc that forms a bubbfewith §. Let
v, vr be the left and right vertices df. First assume that intersectss at two points.

We tracey from v (resp.vg) leftward (resp. rightward) until we reach a point (resp.
wg) for which one of the following conditions holds:

(C1) we have reached an endpointof
(C2) we have encounterédvertices of4;
(C3) we have reached a point that lies below an endpoifit of

By constructiony[w,, v ] andy[vr, wg] lie below .

Claim 4.8. The relative interiors of the traced argqw, , v.] and y[vr, wgr] do not
contain a vertex of an upward bubble

Proof. Letw| be the point or$ lying vertically abovew,, and letp_ be the region
bounded by the arc{wy , v_], y[wL, v ] and the vertical segmeni, w, (e.g., the left
shaded region in Fig. 14). Similarly we define the regignlying betweeny[vg, wg]
andé. Suppose the relative interior ¢ffw_, v_] contains a vertex’ € § Ny of an
upward bubble formed by some curd/eandy . We assume that is the rightmost such
vertex. We claim that the right endpoint&flies in o . First, we observe that the bubble
B containingv’ lies to the left ofv’. Indeed, ifv” were the left vertex of, then the right
vertex of 8 would have to lie to the right ofi becausey (v’, v.) does not contain the
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Fig. 14. Tracing an elliptic arg.

vertex of any upward bubble. But thghcontains the aré[v,, vg], implying thatg is

not a face of4, a contradiction. Hence is the right vertex of3. Sinceg lies to the left
of v', the arcs’ lies abovey to the right ofv’. All intersection points ofy andé$’ are
vertices of the upward bubbles formed by them§’stannot intersect[v’, v_]. Sincesd

is an edge o¥, §’ does not intersed@. This implies that the right endpoint éf has to
lie in the regionp, , as claimed above.

Leto be the rightmost endpoint of an arc/ﬁf) that lies insidep , and leto’ € § be
the point lying vertically above . Any arc ofICéo) intersecting the segmeat’ has to
intersecty[w, v_ ] because it can neither interséator end insidep, . Sincey[w, v ]
contains at mosg vertices ofA, the vertical segments’ intersects at most arcs of
Icg’). However, then the vertical segment erected thramgtould have to intersed,
thereby implying that’ is the left endpoint of, a contradiction. Hence)’ does not
exist. The same argument appliesoto O

Actually, the preceding argument shows that no aﬂé((ﬁ)i (orin K¢) has an endpoint
insidep, or pgr.

If w_ or wg is an endpoint of the elliptic arg, we chargef to y. Since no other
upward bubble can be charged to the same endpoint eéch elliptic arc is charged at
most twice. Hence, the total number of such bubbles over all cylindrical surfaces in
is O(n?). If the traced portion of (i.e., y[w, v.] U y[vr, wg]) containsé vertices of
A, we chargef to & of these vertices whose levels are at nfodtach such intersection
point is charged byD (1) upward bubbles, over all cylinde@.

If we are not able to chargé to an endpoint ofs or to the vertices of4, thenw,
lies below the left endpoint &f andwg, lies below the right endpoint &f. Sincep_ and
pr do not contain the endpoints of any elliptic arc € & andy’ does not intersect
y[vL, vr], ¥’ has to intersect the traced portiomafRepeating this argument for all arcs
of & and recalling that we have assunmegd> m, we conclude that the traced portion of
y contains at least vertices ofA, a contradiction. Hence, we are always able to charge
an upward bubble.

Next, if y ands form two upward bubbles (asin Fig. 13), thémlet= vy, vo, vz, v4 =
vr be the four intersection points éfandy, sorted from left to right. We trace from
v andug as earlier and stop as soon as one of conditions (C1)—(C3) holds. In addition,
we also tracey from v, rightward until we either collect vertices of.A or we reach
vs. If y[vz, v3] contains less tha#é vertices ofA4, the above argument implies that the
region formed byy[v2, v3] and §[v,, vs] does not contain the endpoints of any arc in



676 P. K. Agarwal and M. Sharir

&s. Hence, even in this case each ar€pintersects the traced portion pfand we can
charge both upward bubblesgovertices of A whose levels are at most

Repeating the same argument for downward bubbles and summing over all arcs
of level 0 inV and over all cylinder€, we conclude that the number of quasi-regular
vertices incident upon upward or downward bubbles formed by those edgégodf
level 0) for whichms > & is O(n? + F-¢ (n) /&), whereF, (n) is the number of vertices
of level at most in an arrangement afkreplach. By a result of Clarkson and Shor [14],
Fe:(n) = O(£3F (n/£)). Adding the number of bubbles that lie on eddesf V for
whichm; < &, we conclude that the total number of bubble®i§ 2F (n/&)+&£3-¢n?te).
This completes the proof of the lemma. O

Next, the case in which the degree-2 faceKgf,, lie on the spher@K, can be
handled in a similar manner. We tab&, and draw on it the arrangements formed
by its intersections with the region; € K, and.A©, formed by its intersection with
the regionsKe € K©. The degree-2 faces of a regular triple intersectaa, appear
as two faces ofAd. We draw a(6, ¢)-coordinate system of longitudes and latitudes on
9K, and regard the longitudes 8K, as the generator lines. If a circular grds not
#-monotone, then we splhit at the points that are tangent to longitudes. We now proceed
exactly as in the previous case. A similar argument shows that the overall number of
regulartcs-vertices that lie on free interestitGep's in which the two degree-2 faces lie
ondK, is alsoO(£2F (n/&) + £37¢n?*¢). We leave it to the reader to verify the details.
To conclude, we have shown the following.

Lemma 4.9. The number of free triple intersectiong¥ that contain a regular tcs-
vertex is at most
n
o} (g“n”f + £2F <§)> ) (4.3)

Bounding the Number of tcc-VerticesNext suppose tha ;5 has notssvertex and
notcs-vertex but has &cc-vertexv. The analysis of this case is very similar to that of a
tcs-vertex, with the following modification. In full analogy, we consider the intersection
Kaee, Wheree ande’ are edges db andc, respectively, on whose expanded cylinders

lies. We may assume th#t,.« does not have &cs-vertex,tssvertex,nnn-vertex, or a
transition point on any intersection curve because then we can apply the same analysis
as above to conclude that (4.3) bounds the number of such free triple intersections. We
definey = a NdKg 6 = @ NdKg, andR = a' N K N Kg. Arguing as above, the
preceding assumptions imply that all verticeskqke lie on E N E’, whereE and E’

are the elliptic intersection curves afwith the cylindrical portions 0B K. anddKy,
respectively; in particular, there are only two or four such vertices. The rest of the analysis
proceeds exactly as above, and implies that the overall number of free triple intersections
Kanc Of the above type is bounded by the bound in (4.3).

4.4, Bounding the Number of ttn-Vertices

We now bound the number of interesting triple intersections that containtoniyertices
(Fig. 15). LetK4pc be such a triple intersection. The preceding analysis implies that all
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v

Fig. 15. An example of atn-vertex.

vertices ofK lie on a single displaced copy of a and on a single displaced copy
of b. However, then all vertices lie on the line segma&mt by, and the convexity oK 4pc
implies that it has only two verticas v'.

We first assume that one of them, sajs attc-vertex, lying on the cylindrical portion
C of 3Kg, for some edge of c. Since we assume the edgesqf,c do not contain any
transition point, the edges adjacenutand lying onKe lie fully in C. Thereforev’ also
lies onC anddaKype has three (free) edges, one of which is the straight segméand
the other two are elliptic arcs containedam C andb’ N C, respectively. We only study
this case; the case in whichis atts-vertex is treated in essentially the same manner,
replacingC by an appropriate sphere and the elliptic arcs by circular arcs along that
sphere.

As in the proof of Lemma 4.7, we assume that the axi€ ¢ vertical, and we form
two arrangements d@. LetKc, K2, A, AQ, Uc, UL, andvc be the same as defined

in that proof; recall thatd, A© are the arrangements ki andlcéo), respectively. Let
& be the set of at mostr2elliptic arcs inKCc, formed by the intersection & with
the triangular faces of kreplach . We take the complement dn‘éo) within C and
decompose it into pseudotrapezoidal cells, by extending a vertical segment from each
vertex org-extreme point orauéo) until it hits this boundary again. The total number of
cells, over all cylindrical surfaces i, is O(n?**). Let V denote the resulting vertical
decomposition.

Fix a cellr of this vertical decomposition, and consider the&eg € of all elliptic
arcs that cross and that contain at least otig-vertex; sem, = |&;|. Any ttc-vertexv
that lies int is an intersection of two elligtic arcs #y. Since each endpoint of an elliptic
arc lies on the boundary of a regionlﬁi), none of the arcs i&; can have an endpoint
insider. Let E € &, be an elliptic arc and let be a generator line o8 that intersects
E. If we follow ¢ from E N £ (recall that there is a unique such point) into the redf@n
bounded byE and apply Lemma 4.3, we conclude that we will meet some cylindrical
surface inC or some sphere i8 before exitingK,, and therefore we will exit before
exiting K,. Let & (resp.€.7) be the set of elliptic arcE € &; sp that a ray emanating
from a point on the arc (within) in the (+2)-direction (resp(—z)-direction) enters the
corresponding,.

It follows that anyttc-vertexv under consideration is a vertex of the region lying
between the lower envelope&f and the upper envelope &f . Since any pair of arcs in
&, intersect in at most two points, it follows that the complexity of this sandwich region,
and thus also the number t-vertices under consideration withinis O(m,). It thus
suffices to bound the value 8f . > .., m..
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Fig. 16. Counting the number of arcs & .

We fix a threshold parametér> 0. The overall number dftc-vertices under con-
sideration that lie in cells with m, < &, over all cylindersC, is O(£n?*¢), so assume
thatm, > &.

Since each ar& < &, intersects the boundary of let wg be any such intersection
point; see Fig. 16. If the level abg with respect tad is at most, we chargeE to we.
There are at mosf such intersection points lying on each of the vertical edges. of
Summed over all cells itvc and over all cylindrical surfaces i, the number of such
intersection points i©(£n?t¢). If we lies on the top or bottom boundary of we is
atcc- or atcsvertex of A. Using the Clarkson—-Shor analysis technique, we conclude
that the number ofcc- or tcs-vertices at level at mogt in A, summed over all cells
7 € UL and over all cylindrical surface8, is O(£3F ™" (n/)), whereF ™ (m) is
the maximum possible number of freen-vertices on the boundary of the union of the
expansion¥g, for sin a set of at mostn pairwise-disjoint triangles.

Next, suppose that the level afg with respect taA is greater tha§. This means
that as we walk from a fregc-vertexve on E within t to wg alongE, we visit at least
& vertices of A, each of which has level at most We chargekE to theset vertices of
A. Since each such vertex is charged oBlgl) times in this manner (because we only
want to counim, ), the total number of such elliptic arésis O(£2F (n/£)).

We have thus proved that the numbertaf-vertices that appear on interesting free
triple intersections is

o (sr v v (T) veor (7). 44

A similar analysis proves the same bound on the numb#rsefertices that appear on
interesting free triple intersections. We thus conclude the following.

Lemma 4.10. For any parametet > 1 and anys > 0,

0] 2+e 3F(tnn) <E) 2F <E>>
<§n +§ £ +£ £

ttn-vertices appear on free interesting triple intersections
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Wrapping Up Putting Lemmas 4.6, 4.7, and 4.10 together, we obtain the following
recurrence, which is the same as in (4.2):

F(O)(n) -0 <§3—6n2+8 +§2F (g) +§3F(tnn) (g)) , (45)
F"(n) = O (§3£n2+8 +&°F (g)) : (4.6)

As argued above, this completes the proof of Theorem 4.1.

5. Extensions

In this section we extend Theorem 2.1 to prove a near-quadratic bound on the complexity
of the union of objects with bounded curvaturé&ihand on the number of combinatorial
changes in the union of moving congruent disks in the plane. We also discuss algorithms
for computing the union of cylinders.

5.1. Objects with Bounded Curvature

Let £ = {K4, ..., K} be a collection oh compact convex objects IR® satisfying the
following properties:

(i) The objects inC haveconstant description complexjtyjeaning that each object
is a semialgebraic set defined by a constant number of polynomial equalities and
inequalities of constant maximum degree.
(ii) The objects inkC are of roughly the same size, meaning that the ratio between
the diameters of any pair of objects is at most some fixed congtant
(iii) The objects inkC areC?-continuous and thmeancurvature of any object at all
points is at most some fixed constant

In this case we have the following:

Theorem 5.1. The complexity of the union of a collectidhas above is @?**), for
anye > 0,where the constant of proportionality dependsom, «, and on the maximum
algebraic complexity of an object iq.

Proof (Sketch. We assume that the diameter of each oblfgds between 1 and. Let
V be the set of vertices on the union/6f Choose a sufficiently small constanivhose
value will be specified later. We partitidk® into a gridC of cubes, each of siz&(see
Fig. 17), i.e.,

C={[i8, (i + 5] x [j6. (j +1)8] x [k8, (K + 1)8] | i, j.k € Z}.

Foreach cub€ € C,letKc C K be the set of objects that inters€cEachK; intersects
O(a®/8%) cubesof’, sod . Kc = O(n). Itis easily seen that oni (n?) vertices appear
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Fig. 17. PartitioningR® into a grid of cubes.

on the boundary of any cube (h therefore it suffices to bound the number of vertices
that lie in the interior of a cube.

Fix a cubeC € C. Let V¢ C V be the set of vertices that lie in the interior©f Let
Yc = {01, ..., 04}, whereu = O(n), be the set of connected componentsad{;) NC,
fori =1,...,n; eacho; is a two-dimensional surface patch lying in the interioiCof
Every vertex of\¢ lies on three surface patches. Since eadB C?-continuous and its
curvature is bounded by, the normals ob; vary continuously and their directions lie
inside a spherical cap 6 of radiusck 8, for some constart > 0.

We say that a directiop € S? is goodfor o; if each tangent line te; makes an angle
of at leastB« s with p, for some constam > 0; p is badfor a vertexv € V¢ ifitis bad
for any of the three surfaces containingSince the normals af; lie inside a spherical
cap of radiuss«x, the bad directions faos; lie inside a spherical band consisting of all
points inS? that lie within distancég + c)« 8 from a great circle. Hence, if we choose
such thak s « 1, then we can show, as in Section 2.5, that there existsz sef? of
O(2) points with the property that, for any vertexe V¢, there exists a direction € Z
that is good fomw.

Let w, w’ be two points o K;. SinceK; is convex and its mean curvature is at
mostx, it follows that the spher®,, of radius ¥« and tangent t&; at w from the

inside is contained if;. If the directionwﬁ is good forai, thenw? makes an angle
of at leastfx§ with any line tangent t@,, at w. Sincew’ does not lie in the interior
of By, lww'| > (2/k)sin(Békx/2) = B5/2, assuming thal is a sufficiently small. If
lww’| > /38, then bothw andw’ cannot lie in the same cube 6f By choosing
B > 2+/3 we can guarantee that, for any pointe C N K;, the other intersection of
the ray in a good direction froma does not lie inC. Now, following the same argument
as in Section 2.5, one can reduce the problem of boundagto that of counting the
number of vertices in the region lying between thepper and the-lower envelopes
of two respective subsets &k, summed over alp € Z. Hence|Vc| = O(n?**). This
completes the proof of the theorem. |

Remark 5.2. We can relax condition (i) orC2-continuity. What we really need
is that each object iilC intersectsO(1) cubes ofC and that, for each pa€ < C,
Ki € K, the normals ofC N K; lie in a sufficiently small cap o?. For example, we
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can obtain a quadratic bound on the union of convex polytopes that satisfy these two
conditions.

5.2. Union of Moving Disks

LetD = {Dg, ..., Dy} be a set of unit-radius disks in the plane, each moving with a
fixed velocity. Thatis, the position of the centeof D; is alinear functiom; (t) = & +tb;
of the timet, for some paig;, b; € R?. LetU (t) = (U; Di(t) denote the unio® at time
t. We want to bound the number of changes in the combinatorial structlré¢tpfist
varies from—oo to +o00.

For each 1= i < n, let K; denote theslantedcylinder

Ki = {(x,t) | x € R? andd(x, ¢ (t)) < 1}.

(See Fig. 18.) The intersection &f with a plane normal to the axis &f;, i.e., normal

to the line(g + th;, t) is an ellipseE; whose major and minor semiaxes are 1 and
1/y/1+ |bi |12, respectively. Sé8 = | J_, K;. U (t) isthe cross section &f atthe plane

z = t. The number of changes in the combinatorial structurd @ is proportional to
the combinatorial complexity df .

Note thatU (t) is the cross section of the Euclidean Voronoi diagram of the point
set{ci(t) | 1 < i < n} in the sense discussed in the Introduction. Hence, the number
of changes irJ (t) bounds the number of changes in the combinatorial structure of a
cross section of the Voronoi diagram as the points move. The best known bound on the
number of changes in the entire Voronoi diagram of a setdints, each moving with
fixed velocity, is near-cubic [6], [18], [24]. De Berg et al. [11] showed that if dacls a
convex polygonal pseudodisk (i.e., ed€his a convex polygon such that the boundaries
of any pair always intersect in at most two points) moving with a fixed velocity, then the
number of changes in their union@(n%a(n)).

Without loss of generality, we can assume that the speed of all disks is at most 1. Then
the minor semiaxis of each ellipdg is at least 1+/2, and therefore the diameter and
curvature ofE; are at most 2. By Remark 2.10, we can extend the proof of Theorem 2.1
to show that the combinatorial complexityldfis O(n?+¢). Hence, we can conclude the
following.

Fig. 18. The “space-time” tracing of a set of moving disks.
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Theorem 5.3. LetD be a set of n congruent disks in the plapach moving with a
fixed velocityThen the number of combinatorial changes in their union {®%¥), for
anye > 0.

5.3. Computing the Union

Let Sbe a set oh triangles inR? with pairwise-disjoint interiors, and léB be a ball.

The vertices, edges, and two-dimensional faces of the uni¢ga®fB | s € S} can be
computed using the randomized incremental algorithm described by Agarwal et al. [1].
Basically, for each krepK;, their algorithm will compute the vertices, edges, and faces
of U that lie ondK;j, by a straightforward incremental construction that inserts all the
otherKj’s in a random order. Omitting all the details, which can be found in [1] (see
also [2]), we conclude the following.

Theorem 5.4. Let S be a set of n triangles R® with pairwise-disjoint interiorsand
let B be a ball The boundary of the union of the Minkowski sys\@ B | s € S}, can
be computed in randomized expecteth®*) time, for anye > 0.

As mentioned in the Introduction, once the boundaldy is available, we can also
compute the boundary of the free configuration sgaad B. We can then add artificial
edges and vertices int® so that all connected components of the boundary of any
connected component ¢f are connected. This can be done, using, for example, the
technique by Sifrony and Sharir [25]. This step adi{®) additional vertices and edges.
Then, given any two free placemerds, Z, of B, we can compute i©(n) time, the
placementdV;, W, that lie onoU immediately below (in the-direction) Z; and Z,,
respectively; here we are assuming that all connected componeftgrefbounded. By
locatingW,; andW, in the appropriate faces 6fF, we can then determine whethéy
and Z; lie in the same connected componentffThat is, we can determine i@(n)
time whetheB can be moved fronZ; to Z, without intersecting any obstacle.4f and
Z, lie in the same connected component, we can also compute a paté franz, that
lies within 7. We do not know whether such a motion-planning query can be answered
more efficiently, e.g., in polylogarithmic time.

6. Conclusion

In this paper we proved near-optimal (i.e., near-quadratic) bounds on the complexity of
the free configuration spadeof a ball moving amid a set of polyhedral obstacleRin

We conclude by mentioning a few open combinatorial problems in this area. In each case
the best known bound is cubic, and we conjecture the right bound to be near-quadratic.

(i) What is the complexity of the Euclidean Voronoi diagram of a set of pairwise-
disjoint polyhedral sites ii®3? Even the case of line sites is still open.
(ii) What is the complexity of the union af cylinders of different radii?
(iiiy What is the complexity of the union af congruent cubes iR3? What abouh
arbitrary cubes?
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(iv) What is the complexity of the union of donuts each being the Minkowski sum
of a fixed ball with a circle, where the disks bounding the circles are assumed
to be pairwise disjoint? (This problem was raised by Emo Welzl.)

(v) In general, what is the complexity of the union of the Minkowski sums of a
compact convex s& with n pairwise-disjoint compact convex sés, ..., A,
under the assumption that the séts. . ., A,, B all have “constant description
complexity” (as defined, e.g., in [24])?

(vi) What is the complexity of the dynamic Voronoi diagrammofoving points in
the plane, where each point is moving at some fixed velocity?

(vii) What is the complexity of the union of “fat” tetrahedra? A tetrahedron is fat
if the maximum aspect ratio of a face is a constant and the minimum dihedral
angle is a constant.
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Appendix. Proof of Lemma 4.2

We prove the lemma for the special case in whighand A; are triangles an® is a
ball. We assume thak; and A; are in general position as described in the beginning of
Section 4.

Pick arbitrary point; andp; in the relative interiors of triangle&; and A, respec-
tively, and assume, without loss of generality, that the centé& ltés at the origin. For
a parameter < [0, 1], put

A(t) =tA + (A —-t)py, A(t) =tAr + (1 —t)po, B(t) = tB,

and
Ki(t) = As(t) @ B(1), Kao(t) = Ax(t) @ B(D).

Note thatK(t) andK5(t) are smooth for each> 0.

We varyt from 0 to 1, and watch for topological change€i(t) = aK(t) NaKx(t).
Initially, C(t) = C(0) is empty.C(t) changes continuously as we varso the number
of connected components 6f(t) can change only wheK;(t) andKy(t) are tangent
to each other at some point. When this happens, either some compor@(t a$ a
singleton point (when a new component has just appeared or an old componentis about to
vanish), or some component@ft) is not a simple closed curve (when two components
of C(t) are about to split or have just merged). It can be checked that if a component of
C(t) isnotasingleton, thenitis a simple closed curve. Therefore a connected component
of C(t) cannot split, or two components cannot merge. Hence, only a new component
may appear or an existing component may disappearases.
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SinceC(0) is empty, letty be the minimum value of at which C(t) becomes a
singleton. As is easily checkeld; (t) andK (1) lie on the opposite sides of the (unique)
plane supporting them &i(tp), and thus they have disjoint interiors. For dny to, the
interiors of K1 (t) andK,(t) intersect. Suppose th&t(t"), for somet’ > t, has a new
singleton component, call this point. Let 7 be the common tangent plane kq (t)
and K(t") at w. Without loss of generality, assume thatis parallel to thexy-plane.
Since the interiors oK1 (t") andK(t) intersect, both of them lie on the same sider of
say belowr. Then we can writev as

w=tay+1-1) P11+ t'b,

wherea; is a point onA; with the maximune-coordinate, and is the unique point on
B with the maximune-coordinate, and also as

w = t/az + 11— t,) P2 + t/b,
wherea, is a point onA, with the maximune-coordinate. We thus obtain
tay+ (1 -t) p1= tay+ (1 -t) p2.

This however is impossible sint&; + (1 —t’)p; lies in A; andt’a, + (1 —t') p, lies
in Az, and they are disjoint. This contradiction completes the proof of the lemma.
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