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1. Introduction

Problem Statement. LetÄ be a collection of pairwise-disjoint polyhedral obstacles in
R3 with a total ofn vertices, edges, and faces, and letB be a ball inR3. With no loss
of generality, we assume that the faces ofÄ are triangles and that the radius ofB is
1. We consider the motion-planning problem in whichB is allowed to move (translate)
freely inR3 without intersecting any obstacle. Thefree configuration spaceF of B with
respect toÄ is the space of all pointsp ∈ R3 so that ifB is placed centered atp, then
it does not intersect any obstacle. We wish to bound the combinatorial complexity ofF
(defined below) and present an efficient algorithm for computing the boundary ofF .

Let B0 be the placement ofB with its center at the origin.F can be expressed in the
following standard manner (see, e.g., [20]). For each obstacleω ∈ Ä, let Kω denote the
Minkowski sum1

Kω = ω ⊕ B0 = {x + y | x ∈ ω, y ∈ B0}.

The setKω, referred to as theexpanded obstacleof ω, is the set of all centers ofB at
placements where it intersectsω. HenceF = R3\⋃ω∈Ä Kω. See Fig. 1.

Let S be the set of triangular faces ofÄ. For each triangles ∈ S, we can define
Ks = s⊕ B0. If s is bounded, thenKs is the (nondisjoint) union of (i) a triangular prism
of height 2 withs as a middle cross section, (ii) three bounded cylinders of radius 1
whose axes are the edges ofs, and (iii) three balls of radius 1 centered at the vertices
of s. If s is unbounded, the structure ofKs changes accordingly. We refer toKs as an
expanded triangle(or akrepl).

A face ofF is a maximal connected closed portion of∂F contained in a single
triangular, cylindrical, or spherical portion of some∂Ks. An edge ofF is a maximal

Fig. 1. The union of Minkowski sums of triangles and a ball.

.

1 Strictly speaking, we should form the sum ofω with −B0, the reflection ofB0 through the origin; of
course, we obtain the same set sinceB0 is symmetric.
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connected portion of∂F lying in the intersection of two distinct faces; the two faces
may lie on the boundary of the same krepl or on the boundaries of different kreplach. A
vertex ofF is the intersection of three distinct faces, not necessarily of distinct kreplach,
that lies in∂F . Thecombinatorial complexityof F , denoted by|F |, is the number of
vertices, edges, and two-dimensional faces of∂F .

SetU = ⋃s∈S Ks. Each connected component ofF is also a connected component
of R3\U , but the latter may have some connected components that do not belong to
F . These components represent placements at which the ball moves inside an obstacle
without touching its boundary.|F | is thus upper bounded by|U |, andF can be computed
by first constructingU and then discarding the connected components ofR3\U that do
not belong toF . The main problems we are concerned with are thus to estimate the
combinatorial complexity ofU and to compute efficiently its boundary∂U .

Besides this motion-planning application, the problem of bounding the complexity
of U is a precursor to the harder problem of obtaining a near-quadratic, or even just
subcubic, bound on the complexity of the Euclidean Voronoi diagram ofS. Indeed, if
the radius ofB is r , then∂U is the locus of all points whose Euclidean distance from
their nearest triangle inS is exactlyr . In this sense,∂U is a cross section of the Voronoi
diagram ofS.

Previous Results. Motivated by the motion-planning application, there has been much
work on bounding the combinatorial complexity of the union of the Minkowski sums of
a geometric object (“robot”) with a family of geometric objects (“obstacles”), or more
generally, the complexity of the union of a set of geometric objects. See the book [24]
and the survey paper [5] by the authors for a summary of known results on this topic.
Boissonnat et al. [12] proved that the maximum complexity of the union ofn axis-parallel
hypercubes inRd is2(ndd/2e); the bound improves to2(nbd/2c) if all hypercubes have
the same size. Aronov et al. [9] proved that the complexity of the union ofn convex
polyhedra inR3 with a total ofs faces isO(n3+nslogn). Aronov and Sharir [8] proved
that the complexity of the union of the Minkowski sums of a convex polyhedronP with
a collectionS of n pairwise-disjoint convex polyhedra inR3 is O(nslogn), wheres is
the total number of faces of the polyhedra in the set{P⊕ Q | Q ∈ S}. All these bounds
are either optimal or near optimal in the worst case. These recent results concern unions
in higher dimensions, and extend the work on unions of objects in the plane. Among
the two-dimensional results, we mention the early result of Kedem et al. [20] that shows
that the complexity of the union ofn disks (or “pseudodisks”) isO(n), and the results
of Matoušek et al. [22] and Efrat and Sharir [17] that prove near-linear bounds on the
complexity of the union of “fat” triangles and general “fat” convex regions in the plane.
See also [7], [16], and [21]. In a sense, our results are extensions of the analysis of [20]
to three dimensions.

It is conjectured that Voronoi diagrams in three dimensions, under fairly general
assumptions concerning the sites and the distance function, have near-quadratic com-
plexity. A near-cubic bound on the complexity of such diagrams follows from the results
on lower envelopes [23]. The maximum complexity of Voronoi diagrams ofn point sites
under the Euclidean distance is known to be2(n2) [15]. The same bound has recently
been established for point sites under theL1 andL∞ metrics, or under any simplicial
distance function [12]. Near-quadratic bounds have also been recently established for
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the case of line sites and any polyhedral convex distance function [13], where the bound
is O(n2α(n) logn), and for the case of point sites and any polyhedral convex distance
function [26], where the bound isO(n2 logn). In both cases the distance function is
induced by a convex polytope with a constant number of facets. No example with a
substantially superquadratic complexity (i.e.,Ä(n2+c), for any fixedc > 0) is known.
As noted above, any of these results also yields near-quadratic bounds on the complexity
of the corresponding union of the Minkowski sums of the sites with the unit ball under
the given distance function.

Our Results. If the conjecture on the complexity of the Voronoi diagram is true for
the case of triangle sites and Euclidean distance, then the complexity ofU will be near-
quadratic. Although a subcubic bound on the complexity of the Voronoi diagram still
remains elusive, we prove that the complexity ofU is O(n2+ε), for anyε > 0. Using this
bound, we also derive a near-quadratic algorithm for constructing the complement of
the unionU , and thereby obtain a motion-planning algorithm for a ball amid polyhedral
obstacles.

Our results extend and improve a previous initial attack on the problem by the authors
[4], where we only managed to handle the cases in whichS is a collection of lines or
segments and to obtain a weaker bound ofO(n5/2+ε), for anyε > 0. The new analysis
borrows ideas from the previous paper, but has many new ingredients.

The paper is organized as follows. In Section 2 we study the special case in whichS
is a set of lines, soU is the union of congruent cylinders (pipes). We extend the previous
result to segments in Section 3; hereU is the union ofcigars. In Section 4 we prove the
main result of the paper—a near-quadratic bound on the complexity ofU for the case
of pairwise-disjoint triangles, soU is the union ofkreplach. In Section 5 we discuss
two generalizations of our results. The first result proves a near-quadratic bound on the
complexity of the union of convex objects of bounded curvature and of roughly the same
size. The second result proves a near-quadratic bound on the number of changes in the
combinatorial structure of a set of congruent disks in the plane, each moving with a
fixed velocity. We also present a near-quadratic algorithm for constructingU andF . We
conclude the paper in Section 6 with a few open problems.

2. The Case of Pipes

Preliminaries and Overview. We first solve the problem, in whichS = {s1, . . . , sn}
is a set ofn lines inR3. For i = 1, . . . ,n, let Ki = Ksi = si ⊕ B andci = ∂Ki ;
Ki is an infinite cylinder (orpipe) of radius 1. SetK = {K1, . . . , Kn}, U = ⋃n

i=1 Ki ,
andC = {c1, . . . , cn}. Whenever there is no ambiguity, we will also refer to theci ’s as
cylinders; otherwise we will refer to them as cylindrical surfaces. See Fig. 2. We assume
that the lines inS are in general position, which means that every pair of lines is skew,
that no twoKi ’s are tangent to each other, that no curve of intersection of the boundaries
of any two Ki ’s is tangent to a third one, and that no four boundaries meet at a point.
An argument based on random perturbation, similar to the one given in [23], shows that
this assumption can be made with no loss of generality. The main result of this section
is the following.
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Fig. 2. Two arrangements of cylinders.

Theorem 2.1. The combinatorial complexity of the union of n congruent cylinders in
R3 is O(n2+ε), for anyε > 0, where the constant of proportionality depends onε.

For a subsetR⊆ C, letU (R) denote the union of cylinders bounded by the cylindrical
surfaces inR. Let V(R) denote the set ofverticesof U (R), namely, intersection points
of triples of boundaries of cylindrical surfaces inR that lie on∂U (R). By our general
position assumption, each vertex lies on exactly three cylindrical surfaces, and is thus
incident upon only a constant number of edges and faces. The number of edges or 2-
faces of∂U that are not incident upon any vertex isO(n2). Therefore the combinatorial
complexity ofU is O(n2+ |V(C)|). In the rest of this section we prove the following:

Proposition 2.2. For any setC of n congruent cylinders inR3 and for anyε > 0,

|V(C)| = O(n2+ε).

Overview of the Proof. The proof consists of several main steps, each presented in a
separate subsection, and proceeds through a sequence of technical lemmas. To aid the
reader in following the proof, we have written it from a certain point on in a “backward”
manner: each step relies on a future key lemma and shows how Proposition 2.2 follows
from the analysis so far and from that future lemma.

In the first step, for technical reasons, we choose a subset of cylinders inK whose
union boundary contains at least half of the vertices ofV . We also choose the orientation
of thez-axis (by rotating the coordinate frame) carefully so that the acute angle between
thez-axis and the axes of every chosen cylinder is at most cos−1( 1

6).
In the second step we derive a recurrence relation to bound the number of vertices.

The overhead term in the recurrence counts the number of vertices lying on cylinders
whose axis directions are “well separated” in a certain sense.

In order to bound the overhead term, the third step introduces a key notion of “divergent
pairs” of cylinders, relative to some directionu, where the angle between the axes of
such a pair is not much smaller than the angles that the axes form withu. We show the
existence of a directionu so that many verticesv ∈ V have the following property: all
three pairs of the cylinders that are incident uponv are divergent with respect tou.
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In the fourth step we partitionR3 into a carefully chosen infinite grid of square prisms
whose infinite axes are in the directionu, and count the number of vertices within each
prism. We show that there are onlyO(1) prismsQ that can be crossed by a fixed paira,b
of divergent cylinders so that the projections ofa ∩ Q andb∩ Q on a line in direction
u overlap.

In the fifth step we show that, within a prismQ, we can bound the number of vertices
of U by regarding them as vertices of a “sandwich” region enclosed between an upper
envelope of a collection of portions of the given cylinders and a lower envelope of another
such collection. Using the results of [3] on the complexity of such a sandwich region, we
get a near-quadratic bound for the number of vertices ofU within a prism. We interpret
this bound as counting the number of pairs of cylinders that cross the same prism.

Finally, in the sixth step, we sharpen the bound obtained in the fifth step so that it is
proportional to the number of pairs of divergent cylinders that have “nearby” crossings
with Q, in the sense of step 4. Hence, when we sum these improved bounds over all prisms
we still get an overall near-quadratic bound. This is accomplished (a) by improving the
bound of [3], and (b) by using a divide-and-conquer method that effectively decomposes
a prism into a tree of boxes and counts the number of vertices within each box separately.

We now describe each step in detail.

2.1. Choosing the z-Direction

LetS2 denote the unit sphere of directions inR3. For eachc ∈ C, letnc ∈ S2 denote a unit
vector in the direction of the axis ofc that points into the upper halfspace; if the axis ofc
is parallel to thexy-plane, we setnc to be any of the two unit vectors in the direction of
the axis ofc. There is a technical problem (e.g., in Lemma 2.7 below) with the definition
of the directionsnc, for c ∈ C, which depend on the choice of thez-direction. Informally,
we may have a paira,b of cylinders whose directionsna, nb are almost antipodal. In
the foregoing analysis we treat this pair as having a large angle (close toπ ) between
their axes, whereas the “real” angle between the axes is close to zero. We circumvent
this problem by choosing a random point onS2 and by regarding it as the direction of
the(+z)-axis. The following claim holds.

Lemma 2.3. Letβ0 be the acute angle satisfyingcosβ0 = 1
6. Letv be a vertex in V(C)

incident upon three cylinders a,b, c ∈ C. The probability that all three acute angles
between the z-direction and the axes of a,b, c are at mostβ0 is at least1

2.

Proof. Indeed, for the acute angle between thez-axis and the axis of, say,a to be
greater thanβ0, thez-direction has to lie in the spherical band consisting of all directions
at spherical distance at mostπ/2− β0 from the great circle orthogonal to the axis ofa.
The area of this band is 4π cosβ0. Hence the probability that at least one of the above
three acute angles is larger thanβ0 is at most

12π cosβ0

4π
= 1

2
.
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Fig. 3. (a) A set of relevant directions, and (b) their projection onh.

We thus obtain the following:

Lemma 2.4. We can choose a subsetC ′ ⊆ C and a directionu0 ∈ S2 so that the axes
of all cylinders inC ′ form acute angles at mostβ0 = cos−1( 1

6) with u0 and |V(C ′)| ≥
|V(C)|/2.

We rotate the coordinate system so thatu0 becomes the(+z)-axis and remove from
C all the cylinders whose axes have an acute angle larger thanβ0 with the(+z)-axis. At
least half of the vertices ofV(C) still show up in the new union. Abusing the notation
slightly, we useC to denote the set of remaining cylinders.

LetS be the spherical cap consisting of all points inS2 that form an angle of at most
β0 with the (+z)-axis; see Fig. 3(a). We projectS onto the horizontal planeh : z = 1
using the central projection. The resulting projection is a diskD of radius tanβ0 =

√
35

centered at(0,0,1). For a pointu ∈ S2, we denote its projection onh by u∗. For a
cylindera, we refer ton∗a as itsdirection image. For a vertexv ∈ V(C), incident on three
cylindersa,b, c ∈ C, we associate withv the triple1v = {n∗a,n∗b,n∗c}.1v is referred to
as the set of direction images ofv.

2.2. Deriving the Main Recurrence

Let ψ(n) = max|V(C)|, where the maximum is taken over all setsC of n cylinders of
radius 1 whose axes make acute angles of at mostβ0 with the z-axis. Fix a constant
integer parameterξ > 2 whose value depends onε and will be specified later. Partition
the planeh into a collectionW = {W1, . . . ,Wξ } of ξ horizontal strips by lines parallel
to thex-axis, so that each strip contains direction images of at mostn/ξ cylinders. See
Fig. 3(b). For each pair of stripsWi ,Wj ∈ W, let Ci j denote the set of cylinders whose
direction images lie inWi ∪Wj . By definition,

|V(Ci j )| ≤ ψ
(

2n

ξ

)
for 1≤ i < j ≤ ξ.

Next, we partition the plane into a collectionH = {H1, . . . , Hξ } of ξ vertical strips by
lines parallel to they-axis, so that each strip contains at mostn/ξ direction images.
For each pairHk, Hl ∈ H, we also bound byψ(2n/ξ) the number of vertices in the
union of cylinders whose direction images lie inHk ∪ Hl . These 2

(
ξ

2

)
< ξ2 subproblems
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have accounted for all those verticesv of V(C) whose direction images1v lie in at
most two horizontal or two vertical strips, and the number of these vertices is at most
ξ2ψ(2n/ξ). We thus have to count the number of vertices for which1v lies in three
different horizontal strips and in three different vertical strips.

The strips inH andW divide the planeh into a setR = {R1, . . . , Rξ2}of ξ2 rectangles.
For a rectangleRi ∈ R let Ci be the set of cylinders whose direction images lie inRi .
For a triple i, j, k, let Vi, j,k = V(Ci , Cj , Ck) ⊆ V(C) denote the set of verticesv of
U (Ci ∪ Cj ∪ Ck) lying on three cylindersa,b, csuch thata ∈ Ci ,b ∈ Cj , andc ∈ Ck. Then
ψ(C) = ∑i≤ j≤k |Vi, j,k|. In view of the preceding discussion, it suffices to boundVi, j,k

for each triplei 6= j 6= k for which the rectanglesRi , Rj , Rk lie in different horizontal
and vertical strips, i.e., theirx- andy-projections are pairwise disjoint. We show below
in Lemma 2.5 that for such a triple of rectangles|Vi, j,k| = O(|Ci ∪ Cj ∪ Ck|2 · nε) =
O(n2+ε/ξ2), for anyε > 0. Since there areO(ξ6) such triples of rectangles, we obtain
the following recurrence:

ψ(n) ≤ ξ2ψ

(
2n

ξ

)
+ O(n2+εξ4).

For anyε′ > ε, by choosingξ = ξ(ε′) a sufficiently large constant, one can prove that
the solution to the above recurrence isψ(n) = O(n2+ε′) (see, e.g., [23]), thereby proving
Theorem 2.1.

2.3. Bounding|V1,2,3| and Divergent Pairs

Let R1, R2, R3 be three rectangles inRwhosex- andy-projections are pairwise disjoint;
see Fig. 4. LetC1, C2, C3 be the corresponding subsets of cylinders, as above. We want
to bound the size ofV1,2,3 = V(C1, C2, C3). We will prove the following:

Lemma 2.5. Let R1, R2, R3 be three rectangles as defined above, and letε > 0 be an
arbitrarily small constant. Then

|V1,2,3| = O(|C1 ∪ C2 ∪ C3|2 · nε).

Definition 2.6. We call a pair of cylindersa,b ∈ C λ-divergentwith respect to a
directionu (assumed to lie inS) if

min{|n∗au∗|, |n∗bu∗|} ≤ λ|n∗an∗b|.

Roughly speaking, two cylindersa andb being divergent with respect to a direction
u means that the slopes of the projections of the axes ofa andb on a plane normal to
u are not “very close” to each other. The significance of divergent pairs is illustrated in
Lemma 2.8.

Lemma 2.7. There exist a directionu and three pairwise-disjoint subsetsC ′1 ⊆ C1,
C ′2 ⊆ C2, C ′3 ⊆ C3 so that

(i) |V(C ′1, C ′2, C ′3)| ≥ |V1,2,3|/2, and
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Fig. 4. The two cases in the proof of Lemma 2.7: (a) theRi ’s form a monotone sequence; (b) theRi ’s do not
form a monotone sequence.

(ii) all pairs of cylinders inC ′1× C ′2, C ′1× C ′3, andC ′2× C ′3 are
√

17-divergent relative
to u.

Proof. For i = 1,2, we assume that thex-projection ofRi lies to the left of thex-
projection ofRi+1. We say that a pointp separatesRi andRj if its x-coordinate separates
thex-projections ofRi andRj , and itsy-coordinate separates they-projection ofRi and
Rj . There are two basic cases to consider (other cases can be reduced to them by reversing
the direction of the(+y) and/or the(+x)-axis).

Case(a):The y-projection of Ri lies below that of Ri+1, for i = 1,2. See Fig. 4(a). Let
w ∈ D be a point that separatesR1 andR2, and letz ∈ D be a point that separatesR2 and
R3. The perpendicular bisector ofw andz splits R2 into two subpolygons (one of which
might be empty). Denote the one nearer tow by R′2 and the one nearer toz by R′′2. With
no loss of generality, we may assume that at least half of the vertices inV1,2,3 have one of
their direction images inR′2. We setC ′1 = C1, C ′3 = C3, andC ′2 to be the set of cylinders
whose direction images lie inR′2. By construction,|V(C ′1, C ′2, C ′3)| ≥ |V1,2,3|/2. We take
the directionu ∈ S2 to be the pre-image ofw, i.e., the intersection point of−→ow with S2.

Property (ii) is proved as follows. Leta,bbe cylinders such thatn∗a ∈ R1 andn∗b ∈ R′2.
Then clearly

|n∗an∗b| ≥ max{|n∗aw|, |n∗bw|},
implying that (a,b) are 1-divergent with respect tou. An identical argument implies
that all pairs inC1× C3 are also 1-divergent. Letb, c be cylinders such thatn∗b ∈ R′2 and
n∗c ∈ R3. Then

|n∗bn∗c| > |n∗bz| ≥ |n∗bw|,
implying that(b, c) are also 1-divergent with respect tou. Hence the lemma holds for
this case.

Case(b): The y-projection of R2 lies above the y-projections of R1, which lies above the
y-projection of R3. See Fig. 4(b). Letw ∈ D be a point that separatesR1 andR2, and
let z ∈ D be a point that separatesR2 andR3. Let R0 be the axis-parallel rectangle whose
opposite vertices arew andz. Let dx anddy denote the lengths of the horizontal and
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vertical edges ofR0, respectively. Assume, without loss of generality, thatdx ≥ dy. If
dy > dx, then we reverse the roles ofR1 andR2 in the following analysis. Lets denote
the third vertex ofR0 whosex-coordinate is that ofz and whosey-coordinate is that
of w.

The perpendicular bisector ofw, which is parallel to they-axis, ands splits R2 into
two subrectangles (one of which might be empty). Denote the one nearer tow by R′2 and
the one nearer tos by R′′2. Clearly, one of the following two situations arise:

Case(b.i): At least half of the vertices in V1,2,3 have a direction image in R′2. In this
case we takeV ′ to be this subset of vertices; the directionu is the pre-image ofw. The
setC ′1 (resp.C ′2, C ′3) consists of those cylinders whose direction images lie inR1 (resp.
in R′2, R3).

Property (i) is obvious. Arguing as in case (a), all pairs of cylinders inC1 × C2 are
1-divergent. Leta, c be cylinders such thatn∗a ∈ R1 andn∗c ∈ R3. Then

|n∗an∗c| > |n∗az| ≥ |n∗aw|,

where the last inequality follows from the easy observation that the perpendicular bisector
of wz does not intersectR1, which in turn is a consequence of the assumptiondx ≥ dy.
Hence, the pair(a, c) are 1-divergent with respect tou. Similarly, letb, c be cylinders
such thatn∗b ∈ R′2 andn∗c ∈ R3. Then

|n∗bn∗c| > |n∗bs| ≥ |n∗bw|,

implying that(b, c) are also 1-divergent. Hence, the lemma holds for this subcase too.

Case(b.ii): At least half of the vertices have one of their direction images in R′′
2. In this

case we setC ′1 = C1, C ′3 = C3, andC ′2 to be the set of cylinders whose direction images
lie in R′′2, and setu to be the pre-image ofz. Again, property (i) is obvious. Arguing as
above, all pairs of cylinders inC1× C3 and inC ′2× C3 are 1-divergent with respect tou.
Let a,b be cylinders such thatn∗a ∈ R1 andn∗b ∈ R′′2. Let R̃0 denote the reflection ofR0

about its edgews. Suppose first thatn∗b lies outsideR̃0. Then

|n∗an∗b| > |n∗bw| ≥ |n∗bs|.

On the other hand,

2|n∗bs| > |n∗bs| + |sz| > |n∗bz|,
implying that(a,b) are 2-divergent with respect tou.

Suppose next thatn∗b lies in R̃0. Let t denote the midpoint of the edge ofR̃0 opposite
tows. Then

|n∗an∗b| > |n∗bw| >
dx

2
.

On the other hand,

|n∗bz| < |tz| =
√

4d2
y +

1

4
d2

x ≤
√

17

2
dx.
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Hence, we have|n∗bz| < √17|n∗an∗b|, implying that(a,b) are
√

17-divergent with respect
to u.

This completes the proof of the lemma.

In view of Lemma 2.7, it suffices to bound the size ofV ′ = V(C ′1, C ′2, C ′3). Set
C ′ = C ′1 ∪ C ′2 ∪ C ′3. All the vertices ofV ′ appear on the boundary ofU (C ′).

2.4. Subdivision into Prisms and the Importance of Being Divergent

Let C ′ be the set of cylinders as above, and letu be a direction such that all pairs of
cylinders inC ′ are

√
17-divergent with respect tou. We place inR3 a gridQ of infinite

square prisms whose axes are parallel to the directionu; see Fig. 5. For simplicity of
presentation, we rotate the coordinate system to makeu the positivez-direction. The
prisms are thus of the formQi j = [t i, t (i +1)]× [t j, t ( j +1)]×R, for i, j ∈ Z, where
t is a sufficiently small constant. We bound the size ofVQ = V ′ ∩ Q for eachQ ∈ Q
separately and then sum these quantities. LetCQ ⊆ C ′ be the set of cylinders inC ′ that
intersectQ. We call a pair of cylindersa,b ∈ CQ near insideQ if the z-projections of
a∩Q andb∩Q overlap. LetµQ be the number of pairs of cylinders inCQ×CQ that are√

17-divergent with respect tou and are near insideQ. We show below in Lemma 2.15
that|VQ| = O(µQ · nε), for anyε > 0. Hence,

|V ′| =
∑
Q∈Q
|VQ| = O

(
nε
∑
Q∈Q

µQ

)
. (2.1)

Lemma 2.8. If a and b are a pair ofλ-divergent cylinders with respect tou (which
is assumed to be the same as the z-axis), then(a,b) is near inside at most O(λ2/t2)

prisms ofQ.

u

Fig. 5. A system of prisms in directionu.
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Fig. 6. Illustration of the proof of Lemma 2.8

.

Proof. Suppose to the contrary that there are more thanζ 2λ2/t2 prisms with the property
in the lemma, whereζ is a sufficiently large constant that will be specified later. Then there
are two prisms,Q andQ′, whose vertical center lines are at distanced > (ζλ/t) · t = ζλ
apart and the pair(a,b) is near in bothQ andQ′. Consequently, there exist four points
pa ∈ a ∩ Q, p′a ∈ a ∩ Q′, pb ∈ b ∩ Q, andp′b ∈ b ∩ Q′, such thatpa andpb have the
samez-coordinate, say 0, andp′a andp′b also have the samez-coordinate, sayh > 0; see
Fig. 6.

We first claim that the angleδ = ∠(na,nb) is small. Indeed, draw two ballsB, B′

of radiusr = 1+ t
√

2/2 about the intersection of the center line ofQ with z = 0 and
about the intersection of the center line ofQ′ with z= h. Then the axes ofa andb cross
both balls. Translateb so that its axis touches the axis ofa at some pointP ∈ B, and so
that it moves laterally no more than 2r .

The distance between any point inB and any point inB′ is at least√
d2+ h2− 2r ≥ d − 2r > ζλ− 2r.

We obtain a triangleP Z R, whereZ lies on the axis ofa insideB′ andR lies on the axis of
b at distance at most 3r from the center ofB′. Hence we have|P Z| ≥ d−2r ≥ ζλ−2r
and|Z R| ≤ 4r . Hence, by the sine theorem,

sinδ

|Z R| =
sin∠P RZ

|P Z| ≤ 1

|P Z| ,

or

sinδ ≤ |Z R|
|P Z| ≤

4r

d − 2r
≤ 4r

ζλ− 2r
,

which can be made as small as we wish by choosingζ large enough.
Next we estimate|n∗an∗b|. Using the sine theorem once again, we have

|n∗an∗b|
sinδ

= |n
∗
a|

sinθ
,
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whereθ is the angle opposite ton∗a in the triangle formed byn∗a andn∗b. By the properties
ofD, we have|n∗a| ≤ 6 andπ/2−β0 ≤ θ ≤ π/2+β0. Hence sinθ ≥ cosβ0 = 1

6. Thus

|n∗an∗b| ≤ 36 sinδ ≤ 144r

d − 2r
≤ 144r

ζλ− 2r
.

Since the pair(a,b) areλ-divergent with respect tou, we have, without loss of generality,

|n∗au∗| ≤ λ|n∗an∗b| ≤
144rλ

d − 2r
≤ 144rλ

ζλ− 2r
,

which again can be made arbitrarily small ifζ is sufficiently large. This is easily seen to
imply that the angleγ = ∠(na,u) is also small. Specifically, using the sine theorem yet
another time, we have

sinγ = |n
∗
au∗| sinϕ

|n∗a|
≤ |n∗au∗| ≤ 144rλ

d − 2r
,

whereϕ is the angle opposite ton∗a in the triangle formed byn∗a andu∗; we use here the
fact that|n∗a| ≥ 1.

On the other hand, we have tanγ = H/V , where H (resp.V) is the horizontal
(resp. vertical) distance betweenP andZ. We haveH ≥ ζλ− 2r andV ≤ h+ 2r , so
that, for sufficiently smallγ (that is, for sufficiently largeζ ),

2 sinγ > tanγ ≥ ζλ− 2r

h+ 2r
.

Note that sinceγ is small,h must be large, in fact much larger thanζλ, say.
Combining the last two inequalities, we obtain

ζλ− 2r

h+ 2r
≤ 288rλ

d − 2r
≤ 288rλ

h− 2r
,

which is a contradiction ifζ is sufficiently large.

Hence, a pair of cylinders inC ′ that are
√

17-divergent with respect tou are near
inside only O(1) prisms. Putting Lemmas 2.7 and 2.8 together and using (2.1), we
obtain that

|V1,2,3| ≤ 2|V ′| = O(nε) ·
∑

a,b∈C′
# prisms in which(a,b) is a near pair= O(|C ′|2 · nε).

This completes the proof of Lemma 2.5.

2.5. A Weaker Bound on|VQ|

Let Q = Qi j be one of the prisms inQ, and put, as above,VQ = V ′ ∩ Q. The next
stretches of the analysis culminate in Lemma 2.15, which shows that|VQ| = O(µQ ·nε),
whereµQ is, as above, the number of pairs of cylinders inC ′ ×C ′ that are

√
17-divergent
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with respect tou and are near inQ. (Recall that we rotated the coordinate axis so
that the orientation of the(+z)-axis isu.) This is achieved in two stages. First, in this
subsection, we establish a weaker bound on|VQ| that does not exploit the nearness and
divergence of cylinders. Then we sharpen the analysis to obtain the above improved
bound.

The main idea in this subsection is to reduce the analysis to the problem of estimating
the complexity of a region enclosed between a lower envelope of a collection of surfaces
and an upper envelope of another collection, and then to apply the results of [3] that
yield a near-quadratic bound on the complexity of such a region.

Let M be a sufficiently large constant, whose value will be chosen below. We partition
each of the cylindrical surfaces inC into M canonical strips (parallel to the axis of the
cylinder), each having an angular span of 2π/M (in the cylindrical coordinate frame
induced by the cylinder). We say that a directionρ is agood directionfor a stripτ if the
following two conditions hold:

(C1) ∠(ρ,u) ≥ π/M , and
(C2) each line tangent to (the relative interior of)τ forms an angle of at leastπ/M

with ρ.

We say thatρ ∈ S2 is agood directionfor a vertexv incident upon three canonical
stripsτa, τb, andτc if it is a good direction for all three strips; see Fig. 7. Recalling that
u is the positivez-direction, it is easily checked that the setBτ of bad directions for a
fixed stripτ , contained in a cylindrical surfacec ∈ C, is the unionB1 ∪ B2, where we
have:

• B1 is the union of the two caps about the north and south poles ofS2 of opening
anglesπ/M . The area ofB1 is 4π(1− cos(π/M)).
• Let n1 andn2 be the normals to the planes tangent toc at the two lines delimiting

the boundary ofτ . By construction, the angle betweenn1 andn2 is at most 2π/M .
The (thinner) spherical double wedge defined by the two great circles normal to
n1 andn2 is the set of directions of the lines tangent toτ . B2 is the set of all points
onS2 that lie at spherical distance at mostπ/M from this double wedge. ThusB2

is contained in a spherical band consisting of all points lying at spherical distance
at most 2π/M from a great circle onS2 (namely, from the circle “bisecting” the
double wedge). The area ofB2 is 4π sin(2π/M).

Fig. 7. A vertex of the union incident upon three stripsτa, τb, andτc, along with a good directionρ.
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Fig. 8. The set of bad directions for a vertex is contained in the union of two caps and three spherical bands.

It follows that the area ofBτ is at most

4π

(
1− cos

π

M
+ sin

2π

M

)
.

This implies that the set of good directions forv contains the complement of the union of
two caps with opening anglesπ/M and of three “great bands,” as above, each of width
4π/M (see Fig. 8). Hence, the area of this set is at least

4π

[
1−

(
1− cos

π

M

)
− 3 sin

2π

M

]
.

By choosingM sufficiently large, the area of the set of good directions can be made
close to the area of the entire sphere. Moreover, it is easy to verify that this set contains
a spherical cap of some constant opening angle, say,δ, if M is sufficiently large (see
Fig. 8).

Let Z be a set ofO(1/δ2) points onS2, with the property that any cap onS2 of
opening angleδ contains at least one of these points. For eachρ ∈ Z and a prismQ, we
defineVQ(ρ) to be the subset of all vertices inVQ for whichρ is a good direction. The
preceding analysis implies that each vertex ofV has at least one good direction inZ.

Lemma 2.9. Suppose the horizontal side-length t of a prism Q is less than√
2 sin2(π/M). Letρ ∈ Z, and letv be any vertex in VQ, incident upon stripsτa, τb, τc,

for whichρ is a good direction. Then any line parallel toρ intersectsτa in at most one
point. Moreover, if we go from any pointw ∈ τa ∩ Q inside the cylinder a bounded by
τa in the direction parallel toρ, we reach∂Q before exiting a. Similar properties hold
for τb andτc.

Proof. If τa were not monotone in the above sense, it would have to contain a pointv

so that a line parallel toρ is tangent toτa atv, which is impossible by the definition of a
good direction. As to the second assertion, letw be a point inτa ∩ Q, and letw′ be the
other intersection between∂a and the line passing throughw and parallel toρ. It is easily
verified that|ww′| is minimized (relative to the constraints on good directions) when
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ww′ is orthogonal to the axis ofa and forms an angleπ/M with the tangent plane toa
atw. In this case|ww′| = 2 sin(π/M). On the other hand, sinceww′ forms an angle of
at leastπ/M with thez-direction (that is, withu), it follows that the horizontal distance
betweenw andw′ is at least|ww′| sin(π/M) ≥ 2 sin2(π/M). If t , the horizontal side
length of prisms inQ, is chosen such thatt <

√
2 sin2(π/M), thenw′ does not lie inQ,

which completes the proof of the lemma.

Remark 2.10.

(i) The second part of the lemma crucially uses the fact that the cylinders are infinitely
long. Otherwise we may exita (through its base) before leaving the prismQ. See
also Remark 2.16 below.

(ii) The proof also uses the fact that the radius of the cylinder is 1. It, however,
works as long as one can argue that the length of the segmentww′ is bounded
from below by a constant. For example, the lemma holds even if the radii of the
cylinders are different but vary betweenα and 1, whereα < 1 is a constant; or if
each cylinder is obtained by sweeping a smooth convex planar shape of diameter
1 and of bounded curvature normal to a line inR3.

For a prismQ ∈ Q and a directionρ ∈ Z, let TQ(ρ) denote the set of canonical
stripsτ that crossQ and contain at least one vertex inVQ(ρ). In particular,ρ is a good
direction for anyτ ∈ TQ(ρ). Let nQ(ρ) = |TQ(ρ)|. We clip each strip inTQ(ρ) within
Q. We partitionTQ(ρ) into two subsetsT+Q (ρ) andT−Q (ρ) as follows. A (clipped) strip
τ contained in a cylinderc belongs toT+Q (ρ) (resp.T−Q (ρ)) if for any pointw ∈ τ , the
pointw+αρ lies in the exterior (resp. interior) ofc for sufficiently small positive values
of α. We define theρ-upper envelopeof T+Q (ρ) to be the set of pointsw on the strips in
T+Q (ρ) so that a ray fromw in the (+ρ)-direction does not intersect any other clipped
strip in T+Q (ρ). Similarly, we define theρ-lower envelopeof T−Q (ρ).

Let τ be a strip inT+Q (ρ). Lemma 2.9 implies that any line parallel toρ that passes
through a point inτ ∩ Q meets the interior of the cylinderc in an interval whose other
endpoint lies outsideQ; the same property applies whenτ ∈ T−Q (ρ). Let v be a vertex
in VQ(ρ). The preceding analysis implies thatv is a vertex of the regionRQ enclosed
between theρ-upper envelope of the surfaces inT+Q (ρ) and theρ-lower envelope of
the surfaces inT−Q (ρ). By the result of Agarwal et al. [3], the number of vertices inRQ

is O(nQ(ρ)
2+ε), for anyε > 0, with the constant of proportionality depending onε.

Repeating this step for all directionsρ ∈ Z, we obtain the following result.

Lemma 2.11. Let Q be a prism, and letCQ be any set of cylinders intersecting Q.
Then the number of vertices of the union of(the interiors of the cylinders in) CQ lying
inside Q is O(|CQ|2+ε), for anyε > 0.

In what follows we will need the following stronger version of the above lemma.

Lemma 2.12. Let Q be a prism, let AQ be any set of cylinders intersecting Q, and let
BQ be a subset of AQ of size b. Then the number of vertices of the union of(the interiors
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of the cylinders in) AQ that lie inside Q and that are incident upon at least two surfaces
of BQ is O(a · b1+ε), for anyε > 0.

Proof. PartitionAQ into ξ = da/be subsetsA1, . . . , Aξ , each of size at mostb. Each
vertex of the union ofA that lies inQ and is incident upon two surfaces ofBQ is a
vertex of the union ofBQ ∪ Ai , for some 1≤ i ≤ ξ . By Lemma 2.11, the number of
vertices in the union ofBQ ∪ Ai is O(b2+ε). Hence, the total number of such vertices is
O((a/b) · b2+ε) = O(ab1+ε), for anyε > 0.

Remark 2.13. The technique used in the proof of the above lemma applies to the
general setup in [3], which yields the following enhancement of the analysis of that
paper: LetF andG be two sets ofn bivariate functions, satisfying the assumptions stated
in [3], let M be the “sandwich” region lying between the upper envelope ofF and the
lower envelope ofG, and letH ⊆ F∪G be a subset of sizem. Then the number of vertices
of M that are incident upon the graphs of at least two functions inH is O(nm1+ε), for
anyε > 0.

2.6. A Stronger Bound on|VQ|

One might interpret Lemma 2.11 as bounding the size ofVQ by O(µ̃Q · nε), whereµ̃Q

is the number of pairs of cylinders inC ′ that both intersectQ. Unfortunately,µ̃Q is too
large, and

∑
Q µ̃Q may be infinite. There are two “weaknesses” in usingµ̃Q: it does

not take into account divergence and nearness of pairs of cylinders. Both properties are
essential for our analysis, as suggested by Lemma 2.8. The purpose of this subsection
is to obtain an improved bound on|VQ| using these properties. This is achieved by
combining Lemma 2.12 with a recursive divide-and-conquer analysis that allows us to
consider only near (and divergent) pairs of cylinders. Recall that we are assuming thatu
is thez-axis and thatQ = Qi j .

For a cylindera ∈ CQ, let Za denote thez-projection ofa ∩ Q. SetZQ = {Za | a ∈
CQ}. At each recursive step we have a box5 = [t i, t (i + 1)] × [t j, t ( j + 1)] × [z1, z2],
for somez1, z2 ∈ R (a “slice” of Q). Let C5 ⊆ CQ be the set of cylinders that intersect
5. A cylindera ∈ C5 is calledlong in5 if a intersects both the top and bottom faces of
5 (i.e., [z1, z2] ⊆ Za), otherwise it is calledshortin5. Let L5, S5 ⊆ C5 denote the sets
of long and short cylinders in5, respectively. LetE5 be the set of those endpoints of
intervals inZQ which lie in the open interval(z1, z2). By the general position assumption
and by shifting slightly the grid of prisms, we may assume that all endpoints inE5 are
distinct. We have|S5| ≤ |E5| ≤ 2|S5|. Let V(L5, S5) ⊆ VQ denote the subset of
vertices ofVQ that lie in5 and that are incident upon at least two (short) cylinders of
S5. Initially, 5 = Q, L Q = ∅, SQ = CQ, V(L Q, SQ) = VQ. The recursive process will
bound the sizes of the subsetsV(L5, S5).

If S5 = ∅, |V(L5, S5)| = 0. Otherwise, we partition5 into two subprisms51,52

by a horizontal plane so that the relative interior of thez-projections of each of the two
subprisms contains at most half of the endpoints ofE5. SetL1 = L51, L2 = L52, S1 =
S51, andS2 = S52. For i = 1,2, let S′i ⊆ Li be the set of cylinders that are long in
5i but short in5. Note thatSi ∪ S′i is the set of all cylinders ofS5 that meet5i . Let
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v ∈ V(L5, S5) be a vertex lying in51. If v is incident upon at least two cylinders of
S1, thenv ∈ V(L1, S1). Otherwise, it is incident upon at most one cylinder ofS1, at
most one cylinder ofL1\S′1, and at least one cylinder ofS′1. Let V ′1 denote the set of
such vertices;V ′2 is defined analogously for52. It suffices to bound the sizes ofV ′1,V ′2.
We define65 ⊆ E5 × C5 to be a set of pairs as follows. A pair(p,b) ∈ 65, where
p is an endpoint of an intervalZa ∈ ZQ, if the cylindersa andb satisfy the following
conditions: (i)a,b ∈ C5, (ii) they are

√
17-divergent relative tou, and (iii) they are near

in Q. Setσ5 = |65|. Since each
√

17-divergent pair of cylinders that is near insideQ
contributes at most two pairs to6Q, we haveσQ ≤ 2µQ, whereµQ is, as above, the
number of

√
17-divergent pairs inCQ that are near inQ.

Lemma 2.14. |V ′1| + |V ′2| = O(σ5 · nε).

Proof. Let v ∈ V ′1 be a vertex lying on the boundary of three cylindersa,b, c. By
definition, up to a permutation of{a,b, c}, we havea ∈ L1, b ∈ S′1, andc ∈ S1∪ S′1. On
the other hand, by definition ofVQ, some permutation of{a,b, c} appears inC ′1×C ′2×C ′3
(whereC ′1, C ′2, and C ′3 are as in Lemma 2.7). For specificity, we bound the size of
V(X1, X2, X3)∩V ′1, whereX1 = L1∩ C ′1, X2 = S′1∩ C ′2, andX3 = (S1∪ S′1)∩ C ′3. The
other vertices ofV ′1 can be counted in a similar manner.

Suppose, without loss of generality, that|X1| ≥ |X2| ≥ |X3|. Then, applying
Lemma 2.12 withAQ = X1∪ X2∪ X3 andBQ = X2∪ X3, we obtain that the number of
vertices ofV(X1, X2, X3) that lie in51 is at mostO(nε|X1| · |X2|). Hence, in general,
the number of such vertices is at mostO(nε ·∑i 6= j |Xi ||Xj |). Let a ∈ Xi ,b ∈ Xj , for

i 6= j . Then, by Lemma 2.7,(a,b) is
√

17-divergent pair. We charge(a,b) to a pair in
65. By examining all possible combinations, it suffices to consider only two cases: (i)
a ∈ L1\S′1 andb ∈ S′1∪S1; (ii) a ∈ S′1 andb ∈ S′1∪S1. In case (i), one of the endpointsp
of Zb lies in (z1, z2) andp ∈ Za (sincea is long in5), so(a,b) is a

√
17-divergent pair

that is near inQ. In case (ii), sincea is long in51, Za ∩ Zb 6= ∅. Moreover,a andb are
both short in5, so at least one of the endpoints, sayp, of Za∩Zb lies in(z1, z2). If p is an
endpoint ofZa, then(p,b) ∈ 65; otherwise,(p,a) ∈ 65. Hence, in both cases(a,b)
can be charged to a unique pair of65, thereby implying that

∑
i 6= j |Xi ||Xj | = O(σ5).

This completes the proof of Lemma 2.14.

Let ϕ(m, σ ) = max|V(L5, S5)|, where the maximum is taken over all pairsL5, S5
such that|E5| = m andσ5 = σ . Then we obtain the following recurrence:

ϕ(m, σ ) =
{

0 if σ = 0,
ϕ(m/2, σ1)+ ϕ(m/2, σ2)+ O(σnε) if σ > 0.

SinceE51 ∩ E52 = ∅, σ1+ σ2 ≤ σ . The solution to the above recurrence is

ϕ(m, σ ) = O(σ logm · nε) = O(σ · nε′)

for anyε′ > ε. Hence, we obtain the following.

Lemma 2.15. Let Q be a prism inQ. If there areµQ pairs of cylinders inCQ that are
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√
17-divergent with respect tou and are near inside Q, then|VQ| = O(µQ · nε), for

anyε > 0.

This completes the proof of Theorem 2.1.

Remark 2.16.

(i) The only place where we need the fact that the cylinders are infinitely long is in
Lemma 2.9. The rest of the proof works for bounded cylinders as well. However,
if we take a set ofn bounded cylinders, each of radius 1 and of sufficiently small
height, the complexity of their union can beÄ(n3).

(ii) The current proof does not extend to cylinders with different radii because, as
noted in Remark 2.10, Lemma 2.9 uses the fact that the radius of each of the
cylinders is 1. However, the above proof, combined with the limited flexibility of
Lemma 2.9 (as noted in Remark 2.10) gives anO(n2+ε) bound on the complexity
of the union ofn cylinders if the ratio of the largest to the smallest radii is bounded
by a constant. See also Section 5.

3. The Case of Cigars

We now extend Theorem 2.1 to the case of segments. LetS= {s1, . . . , sn} now denote
a set ofn segments inR3. For eachi , put Ki = Ksi ; eachKi is referred to as acigar;
see Fig. 9. Letci denote the cylindrical portion of∂Ki , and letσ+i , σ−i denote the
two hemispherical portions of∂Ki ; the whole boundary is thusci ∪ σ+i ∪ σ−i . Let
K = {K1, . . . , Kn} andU = ⋃n

i=1 Ki . Let C = {c1, . . . , cn} denote the collection of
the ∂Ki ’s, let 6 = {σ+1 , σ−1 , . . . , σ+n , σ−n } denote the collection of the corresponding
hemispherical portions, and letB denote the set of 2n balls whose boundaries contain
the hemispheres in6.

Again letV denote the set ofverticesof U , namely, intersection points of triples of
boundaries of regions inK that lie on∂U . We assume general position of the segments in

Fig. 9. The union of cigars, the Minkowski sums of line segments and a ball.
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(a) (b) (c) (d)

Fig. 10. Different types of vertices: (a)ccc-vertex, (b)ccs-vertex, (c)css-vertex, and (d)sss-vertex.

S, which now means that every pair of them is skew, that no twoKi ’s are tangent to each
other, that no curve of intersection of the boundaries of any twoKi ’s is tangent to a third
one, that no triple intersection of the boundaries of theKi ’s lie on any circle separating
the cylindrical and spherical portions of one of them, and that no four boundaries meet
at a point. Each vertex ofV is an intersection point of three cylindrical surfaces, of two
cylindrical surfaces and one spherical surface, of a cylindrical surface and two spherical
surfaces, or of three spherical surfaces; see Fig. 10. We denote these vertices mnemon-
ically asccc-, ccs-, css-, andsss-vertices, respectively. We denote the corresponding
subsets ofV asVccc, Vccs, Vcss, andVsss. We bound each of them separately.

3.1. Handling Easy Cases

Any sss-vertexv of the union is also a vertex of the union of the 2n balls inB. It is well
known that the complexity of the union ofm balls inR3 is O(m2) (this follows trivially
from [20]), so the number ofsss-vertices ofU is O(n2).

Lemma 3.1. The number of css-vertices of U is O(n2+ε), for anyε > 0.

Proof. We place inR3 the same gridQ of infinite square prisms, as in the previous
section, whose axes are parallel to thez-axis. That is,

Q = {[t i, t (i + 1)] × [t j, t ( j + 1)] × R | i, j ∈ Z},

wheret is a sufficiently small constant, as above. ForQ ∈ Q, letCQ ⊆ C,6Q ⊆ 6 be the
set of cylindrical and spherical surfaces that intersectQ. PutmQ = |6Q| andnQ = |CQ|.
Let M be the same constant as in Section 2. We partition each of the cylindrical surfaces
in CQ into M canonical strips as before, and we cover each sphere in6Q by O(M2)

spherical caps, each of opening angles at mostπ/M , so that no point lies in more than
a constant number of caps. We define a good direction for a spherical cap in the same
manner as we did for a strip (see (C1) and (C2) in Section 2.5). The set of bad directions
for such a spherical capτ is again the union ofB1∪ B2, whereB1 is the same as earlier,
andB2 is defined as follows. Letβτ be the great circle onS2 parallel to the tangent plane
of the capτ at its center. We defineB2 to be the spherical band consisting of all points
at spherical distance at most 2π/M from βτ .
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Following the same argument as in Section 2.5, we can again choose a setZ of O(1)
directions so that at least one direction inZ is good for every vertex ofVQ = Vcss∩ Q.
It is now easy to check that both Lemmas 2.9 and 2.11 continue to hold in the extended
case. That is, we can decompose the set of cylindrical strips and spherical caps into
u = O(1) pairs of subsets(A1, B1), . . . , (Au, Bu), where eachAi , Bi is a subset of strips
and/or caps, so that each vertex ofVQ appears in the sandwich region lying between
the upper envelope ofAi and the lower envelope ofBi , for somei ≤ u. This implies
that|VQ| = O((mQ + nQ)

2+ε). However, we want to count the number ofcss-vertices.
The argument in the proof of Lemma 2.12 implies that the number ofcss-vertices in
Q is O(m1+ε

Q (mQ + nQ)). Summing over all prisms, the total number ofcss-vertices

is
∑

Q O(m1+ε
Q (mQ + nQ)). Since each hemisphere in6 intersectsO(1/t2) = O(1)

prisms, the total number ofcss-vertices isO(m1+ε(m+ n)) = O(n2+ε), as claimed.

It thus suffices to bound the number ofccc- andccs-vertices ofU . Using the same
argument as in Lemma 2.3, we can again prove that we can choose a subsetC′ ⊆ C
and a directionρ0 so that the axes of cylinders inC ′ form an acute angle of at most
β0 = cos−1( 1

6)with ρ0 and the number ofccc- andccs-vertices in the union ofC ′ ∪6 is
at least half of the number of such vertices inU . We rotate the coordinate system so that
ρ0 becomes the(+z)-axis and remove fromC all the cylinders whose axes have an acute
angle larger thanβ0 with the(+z)-axis. When such a cylinderCi is removed, we retain
the two corresponding ballsσ+i , σ

−
i . We useC to denote the remaining set of cylindrical

surfaces.
As mentioned in Remark 2.16, only Lemma 2.9 uses the fact that the cylinders inC

are unbounded. Nevertheless, the lemma still holds because of the half-balls attached at
the endpoints of the segments inS. In other words, a line parallel to a good direction, as
in the proof of Lemma 2.9, will exit the whole cigar after exitingQ. Hence, the number
of ccc-vertices inU is O(n2+ε), for anyε > 0.

3.2. Bounding the Number of ccs-Vertices

We next prove that the number ofccs-vertices is alsoO(n2+ε). The proof is very similar
to the one described in the previous section, but is considerably simpler, so we mainly
focus on the modifications needed to make the proof work for this case.

LetC be a set ofn bounded cylinders of unit radius and let6 be a set ofm unit-radius
spheres such that the axes ofC make an acute angle of at mostβ0 with thez-axis and the
unit spheres centered at the endpoints of the axis of any cylinder inC are contained in6.
Let V = V(C, 6) denote the set ofccs-vertices on the boundary of the union ofC ∪6.
Setϕ(n,m) = max|V(C, 6)|, where the maximum is taken over all sets ofn bounded
cylinders and over all sets ofm spheres that satisfy the axes and containment conditions.
We will derive a recurrence forϕ(n,m) similar to the one in the previous section.

Fix a constant integer parameterξ > 2, whose value depends onε and will be specified
later. Partition the planeh into a collectionW = {W1, . . . ,Wξ } of ξ horizontal strips
by lines parallel to thex-axis so that each strip contains direction images of at most
n/ξ cylinders. For each stripWi ∈W, letCi denote the set of cylinders whose direction



666 P. K. Agarwal and M. Sharir

images lie inWi . By construction,|V(Ci , 6)| ≤ ϕ(n/ξ,m). Next, we partition the plane
into a collectionH = {H1, . . . , Hξ } of ξ vertical strips by lines parallel to they-axis, so
that each strip contains at mostn/ξ direction images. For each stripHk ∈ H, we also
bound byϕ(n/ξ,m) the number ofccs-verticesv so that the direction images of the two
cylindrical surfaces containingv lie in Hk. These 2ξ subproblems account for all those
verticesv of V(C, 6) that lie on two cylinders whose direction images lie in at most
one horizontal or one vertical strip. LetR be the set ofξ2 rectangles induced byH and
W. For a rectangleRi ∈ R, let Ci be the set of cylinders whose direction images lie in
Ri . For a pairi 6= j , let Vi, j = V(Ci , Cj , 6) ⊆ V(C, 6) denote the set of verticesv of
U (Ci ∪ Cj ∪6) lying on two cylindersa,b such thata ∈ Ci andb ∈ Cj .

Lemma 3.2. Let R1, R2 be two rectangles inRwhose x- and y-projections are disjoint,
then|V1,2| = O((n/ξ)1+εm).

Before proving this lemma, we bound the number of theccs-vertices inU using
the lemma. Since there areO(ξ4) such pairs of rectangles, we obtain the following
recurrence:

ϕ(n,m) ≤ 2ξ · ϕ
(

n

ξ
,m

)
+ O(n1+εξ3m).

For anyε′ > ε, by choosingξ = ξ(ε′) a sufficiently large constant, one can prove that the
solution to the above recurrence isϕ(n,m) = O(n1+ε′m) (see, e.g., [23]). This implies
that the number ofccs-vertices inU is O(n2+ε).

We now prove Lemma 3.2. Letw ∈ h be a point whosex- andy-coordinates separate,
respectively, thex-ranges and they-ranges ofR1 andR2, and letu be the pre-image of
w. Then, arguing as in Case (a) of the proof of Lemma 2.7, it follows that all pairs of
cylinders inC1× C2 are 1-divergent with respect tou.

In order to bound the size ofV(C1, C2, 6), we place inR3 the gridQ of infinite
square prisms, as defined above. We bound the size ofVQ = V(C1, C2, 6)∩ Q for each
Q ∈ Q separately and then sum these quantities over all prismsQ. Let Q ∈ Q be
fixed, and letC(1)Q ⊆ C1, C(2)Q ⊆ C2, be the subsets of these sets of cylinders that intersect

Q, and let6Q ⊆ 6 be the set of spheres that intersectQ; setnQ = |C(1)Q ∪ C(2)Q | and

mQ = |6Q|. Let νQ be the number of pairs of cylinders inC(1)Q × C(2)Q that are near
insideQ, where nearness is defined as in Section 2 (all these pairs are also 1-divergent
with respect tou). The proof of Lemma 2.11 implies that|VQ| = O((nQ + mQ)

2+ε)
for any ε > 0. Since we are counting only the number ofccs-vertices, Lemma 2.12
imples that|VQ| = O(n1+ε

Q (nQ +mQ)). Finally, using the same recursive argument as
in Section 2.6, we can show that|VQ| = O((νQ + nQmQ) · nεQ), for anyε > 0. Hence,

|V1,2| ≤
∑
Q∈Q
|VQ| =

∑
Q

O((νQ + nQmQ) · nεQ).

By Lemma 2.8,
∑

Q νQ = O((n/ξ)2+ε). Since a sphere in6 intersects onlyO(t2) =
O(1) prisms, we have

∑
Q mQ = O(m). Finally, m ≥ n ≥ n/ξ , therefore|V1,2| =

O((n/ξ)1+εm). This completes the proof of Lemma 3.2.
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Putting everything together we conclude the following.

Theorem 3.3. Let S be a set of n segments inR3 and let B be a ball. The complexity of
the union of the Minkowski sums of B and the segments in S is O(n2+ε), for anyε > 0.

A result by Clarkson and Shor [14] implies the following corollary which will be
useful in the analysis of the next section.

Corollary 3.4. Let S be a set of n segments inR3 and let B be a ball. SetK = {s⊕ B |
s ∈ S}. The number of vertices of the arrangement ofK that lie in the interior of at most
k regions ofK is O(n2+εk1−ε).

4. The Case of Kreplach

Armed with the bound in Theorem 3.3, we now turn to the general case in whichSconsists
of n pairwise disjoint triangles. For eachs ∈ S, let Ks = s⊕ B0. LetK = {Ks | s ∈ S}
andU = ⋃s∈S Ks. We also defineK(0) = {Ke | e is an edge of a triangle inS}. Let T
denote the set of triangular faces of the kreplach inK, let C be the set of cylindrical
surfaces of cigars inKe, and letB be the set of balls bounding the spherical surfaces
of Ke. A point lying in k regions ofK lies in at most 3k regions ofK(0). Let A(K)
(resp.A(K(0))) be the arrangement defined by the boundary surfaces of the regions of
K (resp.K(0)), and define thelevel of a point p in R3 in either arrangement to be the
number of regionsKs of the arrangement that containp in their interior. The closure
of the complement ofU is the set of points of level 0 inA(K). The main result of this
section is the following.

Theorem 4.1. Let S be a set of n pairwise disjoint triangles inR3, and let B be a ball.
The combinatorial complexity of the union of the Minkowski sums of B with the triangles
of S is O(n2+ε), for anyε > 0.

As in the previous sections, it suffices to bound the number of vertices ofU . Moreover,
we can assume general position of the triangles inS, which now means that no pair
of triangles inS are parallel or intersect; that no two edges of distinct triangles inS
are parallel or coplanar; that no twoKi ’s are tangent to each other; that no curve of
intersection of the boundaries of any twoKi ’s is tangent to a third one; that no triple
intersection of the boundaries of theKi ’s lie on any circle or segment separating the
triangular, cylindrical and spherical portions of one of them; and that no four boundaries
meet at a point. Using a standard argument based on a slight perturbation of the triangles
(as in [24]), one can show that this assumption involves no loss of generality.

4.1. Preliminaries and Overview

We use the shorthand notation of referring to a triangular, cylindrical, or spherical surface
as at-surface,c-surface, ands-surface, respectively. We also use the notationn-surface to
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refer to a (“nontriangle”) surface that is either a cylinder or a sphere. As in the preceding
section, we call a vertex ofA(K) anxyz-vertex, forx, y, z ∈ {t, c, s,n}, if it is incident
upon anx-surface, ay-surface, and az-surface.

Our analysis relies crucially on the following two lemmas. The first lemma, known
as thepseudosphere property, is an extension of a two-dimensional result by Kedem et
al. [20].

Lemma 4.2(Pseudosphere Property).Let A1, A2 be two disjoint compact, convex
bodies inR3, and let B be another compact, convex body with nonempty interior.
Let K1 = A1 ⊕ B, K2 = A2 ⊕ B be the Minkowski sums of A1 and A2 with B.
Then the intersection∂K1 ∩ ∂K2 is connected.

This lemma was originally obtained by J´anos Pach in the early 1980s. Since this result
has never been published, we present in an appendix the proof for the special case in
which A1 and A2 are triangles andB is a ball (i.e.,K1 andK2 are kreplach). Recently,
another proof, for the polyhedral case, has been given by Hernandez-Barrera et al. [19].

Next, we prove a simple property of kreplach that is used repeatedly in our analysis.
We note that this is the only place where the disjointness of the triangles ofS is used in
the analysis.

Lemma 4.3. Let s be a triangle in S, and let a,a′ be the two triangular portions of
∂Ks. Let t be another triangle in S, and letγ be an arc along∂Kt that is contained in
Ks and connects a pointv ∈ a to a pointv′ ∈ a′. Thenγ must intersect a cylinder or a
sphere induced by an edge or a vertex of s; in other words, the distance ofγ from ∂s is
smaller than1. (See Fig. 11.)

Proof. (We are indebted to Boris Aronov for the following simplification of an earlier
more complicated proof.) Suppose to the contrary that this is not the case. For simplicity,
assume thats lies in thexy-plane, and thata,a′ lie in the planesz = 1 andz = −1,
respectively. For each pointu ∈ γ , letψ(u) denote the point int closest tou (obviously,
‖u − ψ(u)‖ = 1). It is easily seen thatψ is continuous. Letδ = {ψ(u) | u ∈ γ } ⊂ t

u

q

v γa

a’

γ
v

v’
v’

s

t

δ

w

p

(a) (b) (c)

Fig. 11. Illustration to the proof of Lemma 4.3: (a) triangless andt and the imageδ of γ on t ; (b) Kt and
the pathγ lying on∂Kt ; and (c) the cylindrical and spherical surfaces corresponding to the edges and vertices
of s and an intersection ofγ with a cylindrical surface ofKs.
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denote the (connected) image ofγ ; see Fig. 11(a). Putw = ψ(v) andw′ = ψ(v′).
Clearly,w lies in the halfspacez ≥ 0 andw′ in the halfspacez ≤ 0. Sincew,w′ ∈ δ
andδ is connected,δ must intersect the planez = 0. Hence, there existsu ∈ γ such
that p = ψ(u) ∈ t ∩ {z = 0}. Sinces andt are disjoint,p /∈ s. Let q be the vertical
projection ofu on the planez= 0. If q /∈ s, i.e.,u does not lie vertically aboves, thenu
lies insideKe, for one of the edgese ∈ s, which implies that the pathγ [v,u] intersects
∂Ke, as claimed. So assume thatq ∈ int(s). Then pq must cross the boundary ofs at
some pointb. Since|uq| < 1 and|up| = 1, it follows that|ub| < 1, which establishes
the lemma.

Remark 4.4. The above proof relies on the fact thats is planar, but it does not use the
fact thats is polygonal. The proof works as long asS is a family of pairwise-disjoint
convex planar objects, e.g., a family of pairwise-disjoint disks.

We derive a recurrence similar to the ones used in the analysis of the complexity of
lower envelopes and other substructures in arrangements (see, e.g., [24] for details), but
we use a simple enhancement of it, as follows. Letχ denote the (constant) maximum
possible number of intersections between any three boundary surfaces of regions inK.
For three trianglesa,b, c ∈ S, let v be a vertex incident upon the boundaries of three
regionsKa, Kb, Kc. Let N denote the network formed by the vertices and edges (i.e.,
1-skeleton) ofKabc = Ka ∩ Kb ∩ Kc. By Lemma 4.2, any pair of boundaries∂Ka and
∂Kb intersect in a connected curve, which implies thatN is connected. Letm≤ χ be the
number of vertices inN. Let Nv be the set of vertices inN, includingv, that do not lie
in the interior of any krepl and that can be reached fromv along the edges ofN without
intersecting any other krepl. We define theindexof v, denotedind(v), to bem− |Nv|.
ind(v) = m is equivalent tov /∈ ∂U ; ind(v) = m − 1 is equivalent tov ∈ ∂U but
each of the three edges ofKabc adjacent tov is intersected by at least one other region;
ind(v) = 0 is equivalent to the entire networkN not being intersected by any other krepl.
For 0< j < m, we call a vertexv of index j a frontier vertex if an edge ofN adjacent
to v crosses the boundary of a krepl; by definition, ifv is a vertex of index 0< j < m,
then Nv contains at least one frontier vertex. If we remove some of the triangles from
S, excluding the three whose expansion boundaries are incident uponv, the index ofv
can only decrease or remain unchanged. Note that the notion of an index used here is
different from the one used in the previous works (as presented in [24]).

Let F ( j )(S) denote the number of vertices ofA of index at mostj that lie on∂U , and
let

F ( j )(n) = max
|S|=n

F ( j )(S).

Let F(S) = F (χ−1)(S) denote the overall number of vertices of∂U ; set

F(n) = max
|S|=n

F(S).

We now derive the recurrence forF ( j )(n), for j > 0. For j = 0 we need a special
analysis of the structure of the setsKabc, which lies at the heart of our proof.

We choose some threshold parameterξ = ξj that we will fix later. Letv be a vertex of
index j > 0, lying on the boundaries ofKa, Kb, andKc. If v is not a frontier vertex, we
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chargev to a frontier vertex ofNv; each frontier vertex is charged at mostχ times. Ifv is a
frontier vertex, then letebe an edge ofKabc adjacent tov that is crossed by the boundary
of another kreplKd. If e is crossed by at leastξ other boundary surfaces, we charge
v (and the nonfrontier vertices charged tov) to the firstξ vertices ofA encountered
alonge. These vertices are at level at mostξ in A(K) and each can be charged this way
only O(1) times. Hence, applying the Clarkson–Shor probabilistic analysis technique
[14] and arguing as in earlier proofs (see [24]), the number of verticesv at level at most
ξ is O(ξ2F(n/ξ)). Otherwise, if we remove the at mostξ triangles whose expansion
boundaries meete (but retaina, b, andc), then the index ofv decreases by at least one.
Hence, applying again the Clarkson–Shor technique, the number of verticesv of this
kind is O(ξ3F ( j−1)(n/ξ)).

We thus obtain the following recurrences, forj = 1, . . . , χ − 1:

F ( j )(n) = O

(
ξ2

j F

(
n

ξj

)
+ ξ3

j F ( j−1)

(
n

ξj

))
. (4.1)

We next derive a recurrence forF (0)(n).

Lemma 4.5. Let F(tnn)(n) be the maximum number of tnn-vertices of index0 on the
union, maximized over all sets of n pairwise-disjoint triangles. Then, for any parameters
ξ0, ζ0, andε > 0, we have

F (0)(n) = O(ξ3−ε
0 n2+ε)+ O

(
ξ2

0 F

(
n

ξ0

)
+ ξ3

0 F (tnn)

(
n

ξ0

))
,

F (tnn)(n) = O(ζ 3−ε
0 n2+ε)+ O

(
ζ 2

0 F

(
n

ζ0

))
.

(4.2)

Following an argument similar to the one in [23], one can show that the combined
solution of the recurrences (4.1) and (4.2) satisfiesF(n) = O(n2+ε), for anyε > 0. In
the remainder of the section we prove the above lemma.

4.2. Bounding F(0)(n)

Letv be a vertex of index 0 lying on three kreplachKa, Kb, Kc. Then all vertices ofKabc

lie on ∂U and none of the edges ofKabc meets any other kreplach. We refer to such a
vertexv as afreevertex and to such aKabc as afree triple intersection. We charge all free
vertices ofKabc to some specific representative vertex onKabc and count the number of
representative vertices. This counting is done in several stages, depending on the type of
representative vertices. The overall analysis will lead to the recurrences (4.2).

Handling Easy Cases. The definition of a free triple intersectionKabc only implies
that its edges do not intersect the other kreplach, but it still allows the 2-faces ofKabc

to meet other regions. If a 2-facef of Kabc lying, say, on∂Ka intersects another krepl
Kd but no edge ofKabc intersectsKd, then a whole connected componentγ of the
intersection curve∂Ka ∩ ∂Kd lies entirely in f . Lemma 4.2 implies that∂Ka ∩ ∂Kd
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is connected, thereforeγ = ∂Ka ∩ ∂Kd. We chargef to γ . Hence, the number of
free triple intersections that intersect other kreplach is onlyO(n2). We can thus as-
sume that the entireKabc does not intersect any krepl. (It is easily seen that noKd

can be fully contained in the interior ofKabc.) If any of the edges ofKabc has atran-
sition point, namely, a point on a seam of at-, c- or s-surface of a krepl, then we
can chargeKabc to that transition point. Since there are onlyO(n2) transition points,
the number of such free triple intersections is alsoO(n2). This also implies that there
are O(n2) free triple intersectionsKabc that containt t t-vertices. Indeed, letv be a
t t t-vertex incident upon three triangular faces ofKabc. Sincev is the only intersec-
tion point of the corresponding three triangles, at least one of the edges ofKabc adja-
cent tov contains a transition point, thereby implying that there areO(n2) such triple
intersections.

Next, if Kabc has annnn-vertexv (a vertex that does not lie on any displaced triangle),
we choosev as its representative vertex;v is also a vertex of the union ofK(0). By
Theorem 3.3, the number of such vertices isO(n2+ε), for any ε > 0. Suppose next
that Kabc has atss-vertex. Leta′ be a triangular face ofKa. Since everytss-vertex of
U lying on a′ is a vertex of the union of a set of at most 3n disks, within the plane
containinga′, the number of such vertices isO(n) [20]. Hence, there areO(n2+ε) free
triple intersections that contain annnn- or atss-vertex.

In view of the above discussion, we can thus assume that each vertex ofKabc lies on
at least one triangular face, thatKabc has not t t- or tss-vertex, thatKabc is disjoint from
any other krepl, and that none of the edges ofKabc contains a transition point. Then all
vertices ofKabc aretcn- or t tn-vertices. We call such triple intersectionsinteresting. We
call a vertexinterestingif it is a vertex of an interesting triple intersection.

The rest of the proof, which bounds the number of interesting free triple intersections,
consists of two parts. The first part bounds the number of interesting triple intersections
that contain at least onetcn-vertex. We show that the number of interestingtcs-vertices is
proportional to the number of certain degree-2 faces, calledbubbles, in the arrangement
of K andK(0). Following an approach similar to the one used in [17], we obtain a
recurrence that bounds the number of these bubbles. The same recurrence can be derived
to bound the number of interestingtcc-vertices. The second part of the proof bounds
the number of interesting triple intersections that contain onlyt tn-vertices. Roughly
speaking, we choose a parameterξ and charge eacht tn-vertex either toξ t tn-vertices
of level at mostξ or to onetcn-vertex of level at mostξ .

4.3. Bounding the Number of Interesting tcn-Vertices

We derive a recurrence for the number of interestingtcs-vertices. Letv be atcs-vertex
lying on someKabc. Supposev lies on thet-surface of the trianglea, and lete and
p be the original edge (say ofb) and vertex (ofc) whose expanded cylinder and ball,
respectively, containv on their boundaries. We replaceb byeandc by p and consider the
triple intersectionKaep. This set is contained inKabc but is otherwise free of intersections
with any other regionKd (becauseKabc avoids all these regions). We callv a regular
tcs-vertex if all vertices ofKaep lie on one of the triangular facesa′ of Ka and on the
cylindrical surface ofKe. Otherwise, it is calledirregular.
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Lemma 4.6. There are O(n2+ε) irregular vertices on interesting triple intersections.

Proof. If an interestingKaepcontains an irregular vertex, then either it contains annnn-
vertex, or one of the edges ofKaep contains a transition point, or the vertices ofKaep lie
on two distinct triangular faces of one of the kreplach. By the previous discussion, there
areO(n2+ε) triple intersections of the first two types.

Suppose there exist two vertices ofKaep that lie on two distinct triangular faces of
Ka. Sinceγ = ∂Ke ∩ ∂Kp is connected (as already noted, this is a consequence of
Lemma 4.2, but can also be verified explicitly), it follows that there is a portion ofγ

that lies on∂Kaep and connects between two points that lie in the two displaced copies
of a. By Lemma 4.3, this portion ofγ must intersect one of the expanded edgesKe′ of
a, at accs- or css-vertex that lies on the union ofK(0). The number of such vertices is
O(n2+ε). Hence, there areO(n2+ε) irregular vertices.

It thus suffices to bound the number of regulartcs-vertices.

Bounding the Number of Regular tcs-Vertices. Let v be a regular vertex onKaep,
i.e., all vertices ofKaep lie on a displaced copya′ of a, on the cylindrical surfaceCe

of Ke, and on the sphere∂Kp. As we follow the boundary ofR = a′ ∩ Ce ∩ ∂Kp

from v, we encounter only those vertices at which the intersection ellipse ofa′ and
the cylindrical surfaceCe crosses the intersection circle ofa′ and∂Kp, implying that
R has either two or four vertices. Since all vertices ofKaep lie on a′, it follows that
Kaep has only two or four vertices. We first consider the case in whichKaep has exactly
four vertices, all lying on the trianglea′. We consider∂Kaep as a spherical map, and
apply to it Euler’s formula, as follows. The map hasV = 4 vertices and each vertex
is of degree 3. Moreover, as is easily seen, each face of the map has even degree,
namely, either 2 or 4. Suppose there areE edges,F2 faces of degree 2, andF4 faces
of degree 4. Since each vertex has degree 3, we haveE = 6. Then Euler’s formula
yields

V + F2+ F4 = E + 2 or F2+ F4 = 4.

We also have 2E = 2F2+4F4, or F2+2F4 = 6, thereby implying thatF2 = F4 = 2. It
is easily verified thatKa contributes to∂Kaep one face of degree 4 (ona′), that another
surface contributes another face of degree 4, and that the third surface contributes two
faces of degree 2. See Fig. 12. On the other hand, ifV = 2, thenE = 3, andF2+F4 = 3.
Moreover, 2F2 + 4F4 = 6, which implies thatF4 = 0 andF2 = 3. That is, each ofa′,
Ke, andKp contributes a 2-face toKaep.

a0

@Ke

@Kp

Fig. 12. An example of a regulartcs-vertex.
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Lemma 4.7. For any parameterξ ≥ 1, there are O(ξ2F(n/ξ) + ξ3−εn2+ε) regular
tcs-verticesv on free interesting Kaep’s, such that

(i) either Kaep has two vertices, or
(ii) Kaep has four vertices and its two degree-2 faces lie on∂Ke.

Proof. As defined earlier, letC be the set of cylindrical surfaces of the∂Ke’s, wheree
is an edge of a triangle inS. We bound the number of desired vertices that lie on each
surfaceC ∈ C and sum these bounds up over all surfaces inC. Assume that the axis of
C is parallel to thez-axis. LetKC = {Ka ∩ C | a ∈ S} andK(0)C = {Kg ∩ C | Kg ∈
K(0)}. Let A = A(KC), A(0) = A(K(0)C ), UC =

⋃
KC, andU (0)

C = ⋃
K(0)C . Clearly,

U (0)
C ⊆ UC. Let νC denote the combinatorial complexity ofU (0)

C . By Theorem 3.3, we
have

∑
C νC = O(n2+ε), where the sum ranges over all surfaces inC. The level of a

point q ∈ C with respect toA (resp.A(0)) is the number of regions inKC (resp.K(0)C )
that containq in their interior. The closure of the complement ofUC (resp.U (0)

C ) is the
set of points at level 0 with respect toA (resp.A(0)).

The intersection ofC with a triangular facea′ of Ka, for a ∈ S, is an elliptic arc. Any
pair C ∩ a′, C ∩ b′ of these elliptic arcs intersect in at most two points becausea′ ∩ b′

is a line segment and it intersectsC in at most two points. Moreover, anygenerator
line onC, a line parallel to its axis, intersects any of these elliptic arcs in at most one
point, which is the intersection of the generator with the respective displaced triangle.
Finally, an endpoint of any elliptic arc is a transition point that lies on the boundary of the
corresponding displaced trianglea′. Let v be a regulartcs-vertex of one of the degree-2
faces induced onC by Kaep (i.e., a vertex ofKaep). Note thatv lies on an elliptic arcγ (a
portion of the intersection ofa′ with C) and on a portion of a sphere-cylinder intersection
curveδ. SinceKaep is free, by definition, the degree-2 faces of∂Kaep on C appear as
faces (which we refer to asbubbles) of the arrangementA. Moreover,γ andδ appear
in a fixed vertical order alongC outside these bubbles (i.e., any generator that crosses
both curves crosses them in the same order); see Fig. 13. We call the bubbleupward if
the elliptic arcγ is the top edge of the bubble; otherwise we call itdownward. If γ andδ
form upward bubbles, thenδ lies aboveγ outside these bubbles. We bound the number
of upward bubbles that do not lie inside any region ofKC. By reversing the direction, we

C

E

γ

δ

Fig. 13. Bubbles ofA and quasi-regular vertices onC.
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obtain a similar bound on the number of downward “free” bubbles. Together, this yields
a bound on the overall number of desired vertices.

Let ξ be a parameter. LetQ(ξ)

C denote the closure of the points onC whose level
is at mostξ with respect toK(0)C . We take theθ -extremal pointsw (in the cylindrical
coordinate system attached toC) of every edge ofA(0) that lies insideQ(ξ)

C and draw
throughw a maximal vertical segment contained inQ(ξ)

C and crossing at mostξ arcs
of A(0) on either side ofw. The edges ofA(0) and these segments decomposeQ(ξ)

C
into “pseudotrapezoidal” cells, and we denote the collection of these cells byV. Using
the Clarkson–Shor analysis technique, the total number of vertices ofA(0) within Q(ξ)

C ,
summed over all cylindersC, is O(ξ3(n/ξ)2+ε) = O(ξ1−εn2+ε). Hence the total number
of cells and edges in the decompositionsV, summed over all cylindersC, isO(ξ2−εn2+ε),
for anyε > 0.

Note that the new vertical segments may split some of the “bubbles” into two faces,
but the number of such bubbles, summed over all cylinders, is onlyO(ξ2−εn2+ε) since
each vertical segment splits at mostξ bubbles. We thus count only those upward bubbles
whose vertices both lie on the same edge of a cell ofV.

For each edgeδ in V whose level is 0 with respect toK(0)C , we count the number of
upward bubbles formed byδ that were not split by the vertical segments and sum this
quantity over all such edges. LetEδ be the set of elliptic arcs that form upward bubbles
with δ; setmδ = |Eδ|. Each arc inEδ intersectsδ in either two or four points and all these
intersection points are the vertices of the bubbles; otherwise the corresponding bubble is
not a face of a regular triple intersection. Ifmδ ≤ ξ , the number of upward bubbles that
lie on δ is at most 2ξ . We charge them toδ. The total number of such bubbles charged
to arcs ofV, summed over all cylindersC, is O(ξ3−εn2+ε).

Suppose next thatmδ > ξ . Let γ be an elliptic arc that forms a bubblef with δ. Let
vL, vR be the left and right vertices off . First assume thatγ intersectsδ at two points.
We traceγ from vL (resp.vR) leftward (resp. rightward) until we reach a pointwL (resp.
wR) for which one of the following conditions holds:

(C1) we have reached an endpoint ofγ ;
(C2) we have encounteredξ vertices ofA;
(C3) we have reached a point that lies below an endpoint ofδ.

By construction,γ [wL, vL] andγ [vR, wR] lie below δ.

Claim 4.8. The relative interiors of the traced arcsγ [wL, vL] andγ [vR, wR] do not
contain a vertex of an upward bubble.

Proof. Let w′L be the point onδ lying vertically abovewL, and letρL be the region
bounded by the arcsδ[w′L, vL], γ [wL, vL] and the vertical segmentwLw

′
L (e.g., the left

shaded region in Fig. 14). Similarly we define the regionρR lying betweenγ [vR, wR]
andδ. Suppose the relative interior ofγ [wL, vL] contains a vertexv′ ∈ δ′ ∩ γ of an
upward bubble formed by some curveδ′ andγ . We assume thatv′ is the rightmost such
vertex. We claim that the right endpoint ofδ′ lies inρL. First, we observe that the bubble
β containingv′ lies to the left ofv′. Indeed, ifv′ were the left vertex ofβ, then the right
vertex ofβ would have to lie to the right ofvL becauseγ (v′, vL) does not contain the
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Fig. 14. Tracing an elliptic arcγ .

vertex of any upward bubble. But thenβ contains the arcδ[vL, vR], implying thatβ is
not a face ofA, a contradiction. Hencev′ is the right vertex ofβ. Sinceβ lies to the left
of v′, the arcδ′ lies aboveγ to the right ofv′. All intersection points ofγ andδ′ are
vertices of the upward bubbles formed by them, soδ′ cannot intersectγ [v′, vL]. Sinceδ
is an edge ofV, δ′ does not intersectδ. This implies that the right endpoint ofδ′ has to
lie in the regionρL, as claimed above.

Let σ be the rightmost endpoint of an arc inK(0)C that lies insideρL, and letσ ′ ∈ δ be
the point lying vertically aboveσ . Any arc ofK(0)C intersecting the segmentσσ ′ has to
intersectγ [wL, vL] because it can neither intersectδ nor end insideρL. Sinceγ [wL, vL]
contains at mostξ vertices ofA, the vertical segmentσσ ′ intersects at mostξ arcs of
K(0)C . However, then the vertical segment erected throughσ would have to intersectδ,
thereby implying thatσ ′ is the left endpoint ofδ, a contradiction. Hence,v′ does not
exist. The same argument applies toρR.

Actually, the preceding argument shows that no arc inK(0)C (or inKC) has an endpoint
insideρL or ρR.

If wL or wR is an endpoint of the elliptic arcγ , we chargef to γ . Since no other
upward bubble can be charged to the same endpoint ofγ , each elliptic arc is charged at
most twice. Hence, the total number of such bubbles over all cylindrical surfaces inC
is O(n2). If the traced portion ofγ (i.e.,γ [wL, vL] ∪ γ [vR, wR]) containsξ vertices of
A, we chargef to ξ of these vertices whose levels are at mostξ . Each such intersection
point is charged byO(1) upward bubbles, over all cylindersC.

If we are not able to chargef to an endpoint ofγ or to the vertices ofA, thenwL

lies below the left endpoint ofδ andwR lies below the right endpoint ofδ. SinceρL and
ρR do not contain the endpoints of any elliptic arcγ ′ ∈ Eδ andγ ′ does not intersect
γ [vL, vR], γ ′ has to intersect the traced portion ofγ . Repeating this argument for all arcs
of Eδ and recalling that we have assumedmδ > m, we conclude that the traced portion of
γ contains at leastξ vertices ofA, a contradiction. Hence, we are always able to charge
an upward bubble.

Next, ifγ andδ form two upward bubbles (as in Fig. 13), then letv1 = vL, v2, v3, v4 =
vR be the four intersection points ofδ andγ , sorted from left to right. We traceγ from
vL andvR as earlier and stop as soon as one of conditions (C1)–(C3) holds. In addition,
we also traceγ from v2 rightward until we either collectξ vertices ofA or we reach
v3. If γ [v2, v3] contains less thanξ vertices ofA, the above argument implies that the
region formed byγ [v2, v3] and δ[v2, v3] does not contain the endpoints of any arc in
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Eδ. Hence, even in this case each arc ofEδ intersects the traced portion ofγ and we can
charge both upward bubbles toξ vertices ofA whose levels are at mostξ .

Repeating the same argument for downward bubbles and summing over all arcsδ

of level 0 inV and over all cylindersC, we conclude that the number of quasi-regular
vertices incident upon upward or downward bubbles formed by those edges ofV (of
level 0) for whichmδ > ξ is O(n2+ F≤ξ (n)/ξ), whereF≤ξ (n) is the number of vertices
of level at mostξ in an arrangement ofn kreplach. By a result of Clarkson and Shor [14],
F≤ξ (n) = O(ξ3F(n/ξ)). Adding the number of bubbles that lie on edgesδ of V for
whichmδ ≤ ξ , we conclude that the total number of bubbles isO(ξ2F(n/ξ)+ξ3−εn2+ε).
This completes the proof of the lemma.

Next, the case in which the degree-2 faces ofKaep lie on the sphere∂Kp can be
handled in a similar manner. We take∂Kp and draw on it the arrangementsA, formed
by its intersections with the regionsKs ∈ K, andA(0), formed by its intersection with
the regionsKe ∈ K(0). The degree-2 faces of a regular triple intersectionKaep appear
as two faces ofA. We draw a(θ, ϕ)-coordinate system of longitudes and latitudes on
∂Kp and regard the longitudes of∂Kp as the generator lines. If a circular arcγ is not
θ -monotone, then we splitγ at the points that are tangent to longitudes. We now proceed
exactly as in the previous case. A similar argument shows that the overall number of
regulartcs-vertices that lie on free interestingKaep’s in which the two degree-2 faces lie
on∂Kp is alsoO(ξ2F(n/ξ)+ ξ3−εn2+ε).We leave it to the reader to verify the details.

To conclude, we have shown the following.

Lemma 4.9. The number of free triple intersections Kabc that contain a regular tcs-
vertex is at most

O

(
ξ3−εn2+ε + ξ2F

(
n

ξ

))
. (4.3)

Bounding the Number of tcc-Vertices. Next suppose thatKabc has notss-vertex and
no tcs-vertex but has atcc-vertexv. The analysis of this case is very similar to that of a
tcs-vertex, with the following modification. In full analogy, we consider the intersection
Kaee′ , wheree ande′ are edges ofb andc, respectively, on whose expanded cylindersv

lies. We may assume thatKaee′ does not have atcs-vertex,tss-vertex,nnn-vertex, or a
transition point on any intersection curve because then we can apply the same analysis
as above to conclude that (4.3) bounds the number of such free triple intersections. We
defineγ = a′ ∩ ∂Ke, δ = a′ ∩ ∂Ke′ , and R = a′ ∩ Ke ∩ Ke′ . Arguing as above, the
preceding assumptions imply that all vertices ofKaee′ lie on E ∩ E′, whereE and E′

are the elliptic intersection curves ofa′ with the cylindrical portions of∂Ke and∂Ke′ ,
respectively; in particular, there are only two or four such vertices. The rest of the analysis
proceeds exactly as above, and implies that the overall number of free triple intersections
Kabc of the above type is bounded by the bound in (4.3).

4.4. Bounding the Number of ttn-Vertices

We now bound the number of interesting triple intersections that contain onlyt tn-vertices
(Fig. 15). LetKabc be such a triple intersection. The preceding analysis implies that all
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Fig. 15. An example of at tn-vertex.

vertices ofKabc lie on a single displaced copya′ of a and on a single displaced copyb′

of b. However, then all vertices lie on the line segmenta′ ∩b′, and the convexity ofKabc

implies that it has only two verticesv, v′.
We first assume that one of them, sayv, is at tc-vertex, lying on the cylindrical portion

C of ∂Ke, for some edgee of c. Since we assume the edges ofKabc do not contain any
transition point, the edges adjacent tov and lying onKe lie fully in C. Thereforev′ also
lies onC and∂Kabc has three (free) edges, one of which is the straight segmentvv′ and
the other two are elliptic arcs contained ina′ ∩C andb′ ∩C, respectively. We only study
this case; the case in whichv is a t ts-vertex is treated in essentially the same manner,
replacingC by an appropriate sphere and the elliptic arcs by circular arcs along that
sphere.

As in the proof of Lemma 4.7, we assume that the axis ofC is vertical, and we form
two arrangements onC. LetKC,K(0)C ,A,A(0),UC,U

(0)
C , andνC be the same as defined

in that proof; recall thatA,A(0) are the arrangements ofKC andK(0)C , respectively. Let
E be the set of at most 2n elliptic arcs inKC, formed by the intersection ofC with
the triangular faces of kreplach inK. We take the complement ofU (0)

C within C and
decompose it into pseudotrapezoidal cells, by extending a vertical segment from each
vertex orθ -extreme point on∂U (0)

C until it hits this boundary again. The total number of
cells, over all cylindrical surfaces inC, is O(n2+ε). Let V denote the resulting vertical
decomposition.

Fix a cellτ of this vertical decomposition, and consider the setEτ ⊆ E of all elliptic
arcs that crossτ and that contain at least onet tc-vertex; setmτ = |Eτ |. Any t tc-vertexv
that lies inτ is an intersection of two elliptic arcs inEτ . Since each endpoint of an elliptic
arc lies on the boundary of a region inK(0)C , none of the arcs inEτ can have an endpoint
insideτ . Let E ∈ Eτ be an elliptic arc and let̀ be a generator line onC that intersects
E. If we follow ` from E ∩ ` (recall that there is a unique such point) into the regionKa

bounded byE and apply Lemma 4.3, we conclude that we will meet some cylindrical
surface inC or some sphere inB before exitingKa, and therefore we will exitτ before
exiting Ka. Let E+τ (resp.E−τ ) be the set of elliptic arcsE ∈ Eτ so that a ray emanating
from a point on the arc (withinτ ) in the(+z)-direction (resp.(−z)-direction) enters the
correspondingKa.

It follows that anyt tc-vertexv under consideration is a vertex of the region lying
between the lower envelope ofE+τ and the upper envelope ofE−τ . Since any pair of arcs in
Eτ intersect in at most two points, it follows that the complexity of this sandwich region,
and thus also the number oft tc-vertices under consideration withinτ , is O(mτ ). It thus
suffices to bound the value of

∑
C∈C

∑
τ∈V mτ .
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Fig. 16. Counting the number of arcs inEτ .

We fix a threshold parameterξ > 0. The overall number oft tc-vertices under con-
sideration that lie in cellsτ with mτ ≤ ξ , over all cylindersC, is O(ξn2+ε), so assume
thatmτ > ξ .

Since each arcE ∈ Eτ intersects the boundary ofτ , letwE be any such intersection
point; see Fig. 16. If the level ofwE with respect toA is at mostξ , we chargeE towE.
There are at mostξ such intersection points lying on each of the vertical edges ofτ .
Summed over all cells inVC and over all cylindrical surfaces inC, the number of such
intersection points isO(ξn2+ε). If wE lies on the top or bottom boundary ofτ , wE is
a tcc- or a tcs-vertex ofA. Using the Clarkson–Shor analysis technique, we conclude
that the number oftcc- or tcs-vertices at level at mostξ in A, summed over all cells
τ ∈ U (0)

C and over all cylindrical surfacesC, is O(ξ3F (tnn)(n/ξ)), whereF (tnn)(m) is
the maximum possible number of freetnn-vertices on the boundary of the union of the
expansionsKs, for s in a set of at mostm pairwise-disjoint triangles.

Next, suppose that the level ofwE with respect toA is greater thanξ . This means
that as we walk from a freet tc-vertexvE on E within τ towE alongE, we visit at least
ξ vertices ofA, each of which has level at mostξ . We chargeE to theseξ vertices of
A. Since each such vertex is charged onlyO(1) times in this manner (because we only
want to countmτ ), the total number of such elliptic arcsE is O(ξ2F(n/ξ)).

We have thus proved that the number oft tc-vertices that appear on interesting free
triple intersections is

O

(
ξn2+ε + ξ3F (tnn)

(
n

ξ

)
+ ξ2F

(
n

ξ

))
. (4.4)

A similar analysis proves the same bound on the number oft ts-vertices that appear on
interesting free triple intersections. We thus conclude the following.

Lemma 4.10. For any parameterξ > 1 and anyε > 0,

O

(
ξn2+ε + ξ3F (tnn)

(
n

ξ

)
+ ξ2F

(
n

ξ

))

t tn-vertices appear on free interesting triple intersections.
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Wrapping Up. Putting Lemmas 4.6, 4.7, and 4.10 together, we obtain the following
recurrence, which is the same as in (4.2):

F (0)(n) = O

(
ξ3−εn2+ε + ξ2F

(
n

ξ

)
+ ξ3F (tnn)

(
n

ξ

))
, (4.5)

F (tnn)(n) = O

(
ξ3−εn2+ε + ξ2F

(
n

ξ

))
. (4.6)

As argued above, this completes the proof of Theorem 4.1.

5. Extensions

In this section we extend Theorem 2.1 to prove a near-quadratic bound on the complexity
of the union of objects with bounded curvature inR3 and on the number of combinatorial
changes in the union of moving congruent disks in the plane. We also discuss algorithms
for computing the union of cylinders.

5.1. Objects with Bounded Curvature

LetK = {K1, . . . , Kn} be a collection ofn compact convex objects inR3 satisfying the
following properties:

(i) The objects inK haveconstant description complexity, meaning that each object
is a semialgebraic set defined by a constant number of polynomial equalities and
inequalities of constant maximum degree.

(ii) The objects inK are of roughly the same size, meaning that the ratio between
the diameters of any pair of objects is at most some fixed constantα.

(iii) The objects inK areC2-continuous and themeancurvature of any object at all
points is at most some fixed constantκ.

In this case we have the following:

Theorem 5.1. The complexity of the union of a collectionK as above is O(n2+ε), for
anyε > 0,where the constant of proportionality depends onε,α,κ, and on the maximum
algebraic complexity of an object inK.

Proof (Sketch). We assume that the diameter of each objectKi is between 1 andα. Let
V be the set of vertices on the union ofK. Choose a sufficiently small constantδ whose
value will be specified later. We partitionR3 into a gridC of cubes, each of sizeδ (see
Fig. 17), i.e.,

C = {[i δ, (i + 1)δ] × [ j δ, ( j + 1)δ] × [kδ, (k+ 1)δ] | i, j, k ∈ Z}.

For each cubeC ∈ C, letKC ⊆ K be the set of objects that intersectC. EachKi intersects
O(α3/δ3) cubes ofC, so

∑
C KC = O(n). It is easily seen that onlyO(n2) vertices appear
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Fig. 17. PartitioningR3 into a grid of cubes.

on the boundary of any cube inC, therefore it suffices to bound the number of vertices
that lie in the interior of a cube.

Fix a cubeC ∈ C. Let VC ⊆ V be the set of vertices that lie in the interior ofC. Let
6C = {σ1, . . . , σu}, whereu = O(n), be the set of connected components of(∂Ki )∩C,
for i = 1, . . . ,n; eachσi is a two-dimensional surface patch lying in the interior ofC.
Every vertex ofVC lies on three surface patches. Since eachσi is C2-continuous and its
curvature is bounded byκ, the normals ofσi vary continuously and their directions lie
inside a spherical cap ofS2 of radiuscκδ, for some constantc > 0.

We say that a directionρ ∈ S2 is goodfor σi if each tangent line toσi makes an angle
of at leastβκδ with ρ, for some constantβ > 0; ρ is bad for a vertexv ∈ VC if it is bad
for any of the three surfaces containingv. Since the normals ofσi lie inside a spherical
cap of radiuscδκ, the bad directions forσi lie inside a spherical band consisting of all
points inS2 that lie within distance(β + c)κδ from a great circle. Hence, if we chooseδ
such thatκδ ¿ 1, then we can show, as in Section 2.5, that there exists a setZ ⊆ S2 of
O(1) points with the property that, for any vertexv ∈ VC, there exists a directionρ ∈ Z
that is good forv.

Let w,w′ be two points on∂Ki . SinceKi is convex and its mean curvature is at
mostκ, it follows that the sphereBw of radius 1/κ and tangent toKi at w from the

inside is contained inKi . If the direction
−→
ww′ is good forσi , then

−→
ww′ makes an angle

of at leastβκδ with any line tangent toBw atw. Sincew′ does not lie in the interior
of Bw, |ww′| ≥ (2/κ) sin(βδκ/2) ≥ βδ/2, assuming thatδ is a sufficiently small. If
|ww′| > √3δ, then bothw andw′ cannot lie in the same cube ofC. By choosing
β > 2

√
3 we can guarantee that, for any pointw ∈ C ∩ Ki , the other intersection of

the ray in a good direction fromw does not lie inC. Now, following the same argument
as in Section 2.5, one can reduce the problem of bounding|VC| to that of counting the
number of vertices in the region lying between theρ-upper and theρ-lower envelopes
of two respective subsets of6C, summed over allρ ∈ Z. Hence,|VC| = O(n2+ε). This
completes the proof of the theorem.

Remark 5.2. We can relax condition (iii) onC2-continuity. What we really need
is that each object inK intersectsO(1) cubes ofC and that, for each pairC ∈ C,
Ki ∈ K, the normals ofC ∩ Ki lie in a sufficiently small cap ofS2. For example, we
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can obtain a quadratic bound on the union of convex polytopes that satisfy these two
conditions.

5.2. Union of Moving Disks

LetD = {D1, . . . , Dn} be a set ofn unit-radius disks in the plane, each moving with a
fixed velocity. That is, the position of the centerci of Di is a linear functionci (t) = ai+tbi

of the timet , for some pairai ,bi ∈ R2. LetU (t) =⋃i Di (t) denote the unionD at time
t . We want to bound the number of changes in the combinatorial structure ofU (t) ast
varies from−∞ to+∞.

For each 1≤ i ≤ n, let Ki denote theslantedcylinder

Ki = {(x, t) | x ∈ R2 andd(x, ci (t)) ≤ 1}.
(See Fig. 18.) The intersection ofKi with a plane normal to the axis ofKi , i.e., normal
to the line(ai + tbi , t) is an ellipseEi whose major and minor semiaxes are 1 and
1/
√

1+ ‖bi ‖2, respectively. SetU =⋃n
i=1 Ki .U (t) is the cross section ofU at the plane

z = t . The number of changes in the combinatorial structure ofU (t) is proportional to
the combinatorial complexity ofU .

Note thatU (t) is the cross section of the Euclidean Voronoi diagram of the point
set{ci (t) | 1 ≤ i ≤ n} in the sense discussed in the Introduction. Hence, the number
of changes inU (t) bounds the number of changes in the combinatorial structure of a
cross section of the Voronoi diagram as the points move. The best known bound on the
number of changes in the entire Voronoi diagram of a set ofn points, each moving with
fixed velocity, is near-cubic [6], [18], [24]. De Berg et al. [11] showed that if eachKi is a
convex polygonal pseudodisk (i.e., eachKi is a convex polygon such that the boundaries
of any pair always intersect in at most two points) moving with a fixed velocity, then the
number of changes in their union isO(n2α(n)).

Without loss of generality, we can assume that the speed of all disks is at most 1. Then
the minor semiaxis of each ellipseEi is at least 1/

√
2, and therefore the diameter and

curvature ofEi are at most 2. By Remark 2.10, we can extend the proof of Theorem 2.1
to show that the combinatorial complexity ofU is O(n2+ε). Hence, we can conclude the
following.

Fig. 18. The “space–time” tracing of a set of moving disks.
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Theorem 5.3. LetD be a set of n congruent disks in the plane, each moving with a
fixed velocity. Then the number of combinatorial changes in their union is O(n2+ε), for
anyε > 0.

5.3. Computing the Union

Let S be a set ofn triangles inR3 with pairwise-disjoint interiors, and letB be a ball.
The vertices, edges, and two-dimensional faces of the union of{s⊕ B | s ∈ S} can be
computed using the randomized incremental algorithm described by Agarwal et al. [1].
Basically, for each kreplKi , their algorithm will compute the vertices, edges, and faces
of U that lie on∂Ki , by a straightforward incremental construction that inserts all the
other Kj ’s in a random order. Omitting all the details, which can be found in [1] (see
also [2]), we conclude the following.

Theorem 5.4. Let S be a set of n triangles inR3 with pairwise-disjoint interiors, and
let B be a ball. The boundary of the union of the Minkowski sums{s⊕ B | s ∈ S}, can
be computed in randomized expected O(n2+ε) time, for anyε > 0.

As mentioned in the Introduction, once the boundary∂U is available, we can also
compute the boundary of the free configuration spaceF of B. We can then add artificial
edges and vertices intoF so that all connected components of the boundary of any
connected component ofF are connected. This can be done, using, for example, the
technique by Sifrony and Sharir [25]. This step addsO(n) additional vertices and edges.
Then, given any two free placementsZ1, Z2 of B, we can compute inO(n) time, the
placementsW1,W2 that lie on∂U immediately below (in thez-direction) Z1 and Z2,
respectively; here we are assuming that all connected components ofF are bounded. By
locatingW1 andW2 in the appropriate faces of∂F , we can then determine whetherZ1

andZ2 lie in the same connected component ofF . That is, we can determine inO(n)
time whetherB can be moved fromZ1 to Z2 without intersecting any obstacle. IfZ1 and
Z2 lie in the same connected component, we can also compute a path fromZ1 to Z2 that
lies withinF . We do not know whether such a motion-planning query can be answered
more efficiently, e.g., in polylogarithmic time.

6. Conclusion

In this paper we proved near-optimal (i.e., near-quadratic) bounds on the complexity of
the free configuration spaceF of a ball moving amid a set of polyhedral obstacles inR3.
We conclude by mentioning a few open combinatorial problems in this area. In each case
the best known bound is cubic, and we conjecture the right bound to be near-quadratic.

(i) What is the complexity of the Euclidean Voronoi diagram of a set of pairwise-
disjoint polyhedral sites inR3? Even the case of line sites is still open.

(ii) What is the complexity of the union ofn cylinders of different radii?
(iii) What is the complexity of the union ofn congruent cubes inR3? What aboutn

arbitrary cubes?
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(iv) What is the complexity of the union ofn donuts, each being the Minkowski sum
of a fixed ball with a circle, where the disks bounding the circles are assumed
to be pairwise disjoint? (This problem was raised by Emo Welzl.)

(v) In general, what is the complexity of the union of the Minkowski sums of a
compact convex setB with n pairwise-disjoint compact convex setsA1, . . . , An,
under the assumption that the setsA1, . . . , An, B all have “constant description
complexity” (as defined, e.g., in [24])?

(vi) What is the complexity of the dynamic Voronoi diagram ofn moving points in
the plane, where each point is moving at some fixed velocity?

(vii) What is the complexity of the union ofn “fat” tetrahedra? A tetrahedron is fat
if the maximum aspect ratio of a face is a constant and the minimum dihedral
angle is a constant.
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Appendix. Proof of Lemma 4.2

We prove the lemma for the special case in whichA1 and A2 are triangles andB is a
ball. We assume thatA1 andA2 are in general position as described in the beginning of
Section 4.

Pick arbitrary pointsp1 andp2 in the relative interiors of trianglesA1 andA2, respec-
tively, and assume, without loss of generality, that the center ofB lies at the origin. For
a parametert ∈ [0,1], put

A1(t) = t A1+ (1− t)p1, A2(t) = t A2+ (1− t)p2, B(t) = t B,

and

K1(t) = A1(t)⊕ B(t), K2(t) = A2(t)⊕ B(t).

Note thatK1(t) andK2(t) are smooth for eacht > 0.
We varyt from 0 to 1, and watch for topological changes inC(t) = ∂K1(t)∩∂K2(t).

Initially, C(t) = C(0) is empty.C(t) changes continuously as we varyt , so the number
of connected components ofC(t) can change only whenK1(t) and K2(t) are tangent
to each other at some point. When this happens, either some component ofC(t) is a
singleton point (when a new component has just appeared or an old component is about to
vanish), or some component ofC(t) is not a simple closed curve (when two components
of C(t) are about to split or have just merged). It can be checked that if a component of
C(t) is not a singleton, then it is a simple closed curve. Therefore a connected component
of C(t) cannot split, or two components cannot merge. Hence, only a new component
may appear or an existing component may disappear, ast varies.
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SinceC(0) is empty, lett0 be the minimum value oft at which C(t) becomes a
singleton. As is easily checked,K1(t0) andK2(t0) lie on the opposite sides of the (unique)
plane supporting them atC(t0), and thus they have disjoint interiors. For anyt > t0, the
interiors ofK1(t) andK2(t) intersect. Suppose thatC(t ′), for somet ′ > t0, has a new
singleton component, call this pointw. Let π be the common tangent plane toK1(t ′)
and K2(t ′) atw. Without loss of generality, assume thatπ is parallel to thexy-plane.
Since the interiors ofK1(t ′) andK2(t ′) intersect, both of them lie on the same side ofπ ,
say belowπ . Then we can writew as

w = t ′a1+ (1− t ′)p1+ t ′b,

wherea1 is a point onA1 with the maximumz-coordinate, andb is the unique point on
B with the maximumz-coordinate, and also as

w = t ′a2+ (1− t ′)p2+ t ′b,

wherea2 is a point onA2 with the maximumz-coordinate. We thus obtain

t ′a1+ (1− t ′)p1 = t ′a2+ (1− t ′)p2.

This however is impossible sincet ′a1 + (1− t ′)p1 lies in A1 andt ′a2 + (1− t ′)p2 lies
in A2, and they are disjoint. This contradiction completes the proof of the lemma.
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