Discrete Comput Geom 24:577-603 (2000)

Discrete & Computational
DOI: 10.10075004540010061 G e O m et ry

© 2000 Springer-Verlag New York Inc.

Curve Reconstruction, the Traveling Salesman Problem,
and Menger’s Theorem on Length

J. Giesen

Institut fir Theoretische Informatik, ETHWich,
CH-8092 Zirich, Switzerland
giesen@inf.eth2.ch

Abstract. We give necessary and sufficient regularity conditions under which the curve
reconstruction problem is solved by a traveling salesman tour or path, respectively. For the
proof we have to generalize a theorem of Menger [12], [13] on arc length.

1. Introduction

In 1930 Menger [12] proposed a new definition of arc length:

The length of an arc be defined as the least upper bound of the set of all numbers that
could be obtained by taking each finite set of points of the curve and determining
the length of the shortest polygonal graph joining all the points.

We call this the messenger problem (because in practice the problem has to be
solved by every postman, and also by many travelers): finding the shortest path
joining all of a finite set of points, whose pairwise distances are known.

This statement is one of the first references to the Traveling Salesman Problem.

Arc length is commonly defined as the least upper bound of the set of nhumbers
obtained by taking each finite set of points of the curve and determining the length of
the polygonal graph joining all the points in their order along the arc. In [13] Menger
proves the equivalence of his definition and the common one (Menger's theorem).

It seems natural to think that this equivalence holds due to the fact that the shortest
polygonal graph coincides with the polygonal graph joining the points in their order along
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the arc, provided the set of points is sufficiently dense. In other words, for sufficiently
dense point sets a traveling salesman path solves the polygonal reconstruction problem
for arcs. This problem was stated by Amenta et al. [4] as follows:

Given a curvey € RY and a finite set of sample poin® c y. A polygonal
reconstruction of from Sis a graph that connects every pair of samples adjacent
alongy, and no others.

However, Menger’s proof does not show this at all. So we want to study the question
whether the polygonal reconstruction problem is solved by a traveling salesman path,
provided the sample points are sufficiently dense in the curve. Since a traveling salesman
path is always simple, we cannot expect that it solves the reconstruction problem for
curves with intersections. Even worse, the traveling salesman path may not coincide with
the polygonal reconstruction for arbitrarily dense samples of simple curves. Consider
the following example:

Lety be the simple arc which consists of the unit interval onttaxis and the graph
of y = x? on this interval. That is,

(1-2t,0), t
2t —1, (2t — 1)), t >
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become arbitrarily dense im. However, the traveling salesman path thro&his dif-
ferent from the polygonal reconstruction frdgy (see Fig. 1) because

with

It — P2l + P2 — P2+ IpE — Pl > IpS — p3l+ P2 — P2l + P2 — phl.

In this example, the arg has finite length and finite total absolute curvature. Thus, even
finite curvature, which is a stronger property than finite length, see [1], is not sufficient
for the polygonal reconstruction problem to be solved by a traveling salesman path,
provided the points are sampled densely enough. The crucial point iy thabhaves
quite well, but is not regular &0, 0) € y. The regularity conditions necessary turn out
to be only slightly stronger.

In this paper we prove:

Suppose that for every point of a simple curve:

1. The left and the right tangents exist and are nonzero.
2. The smaller angle between these tangents is lesstthan

Under these conditions there exists a finite sampling density such that the traveling
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Fig. 1. 1-3-2-4is shorter than 1-2-3-4.

salesman path solves the polygonal reconstruction problem for all samples with larger
sample density.

Regularity is a local property. In contrast to that, it is a global property for a path to be
a shortest polygonal path through a finite point set. One of the most interesting aspects of
our work is this transition from a local to a global property and the methods used therein.
We first prove a local version of our global theorem by using a projection technique
from integral geometry. We believe that this technique could be useful in many other
contexts, even in the study of higher-dimensional objects than curves. At a first glance
it is not obvious how to derive the global version from the local one. This extension is
achieved by an application of two corollaries of Menger’s theorem. As a by-product we
generalize Menger's theorem to simple closed curves in Euclidean space.

2. Basic Definitions

In this section we give definitions and cite theorems that we need for our proofs. The
results that we present are only valid for connected simple curves in Euclidean space.
Hence in the following/: [0, 1] — R is always a connected simple curve. We use the
symboly either to denote a mapping or to denote the image of the mapping. It should
always be clear from the context whatenotes.

We call a curvey s(emi)-regular if in every point op nonzero left and right tangents
exist. This is expressed in the following definition:

Definition 2.1. Let
T={(t, ): t1 <tr,t1,t, €0, 1]}

and
y(t2) — y(ty)

T — St tp) > — T2
VT vt — vty
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The curvey is called left (right) regular at (tp) with left tangent 1y (tp)) or right tangent
r(y (to)) if for every sequenceésy,) in T which converges from the left (right) tdy, to)
in closur&T) the sequence(,) converges to (v (tp)) or r(y (to)), respectively. We call
y s-regular if it is left and right regular in all poings(t), t € [0, 1]. A curve is called
regular if it is s-regular and in every point left and right tangent coincide.

The relationship between s-regularity and two of the most interesting geometric prop-
erties of curves, length and total absolute curvature, was shown by Aleksandrov and
Reshetnyak [1].

Theorem 2.1. Every curvey of finite total absolute curvature @) is s-regular and
every s-regular curve has finite lengtt)b).

Both length and total absolute curvature are defined via inscribed polygons. For the
definition of inscribed polygons we need the definition of a sample, which we give next.

Definition 2.2. A sampleSof y is a finite sequence

S={p% ..., p'Sy

of points wherep' e y. We assume that the sample poiptsare ordered according
to the order of thes ~1(p') € [0, 1]. To every sampléS its density is defined to be the
inverse of the following number:
e(S) = supmin{|p' = x|: i =0,...,n}.
Xey
In the following we sometimes make use of the convenibit! = p!S if y is open
and p'S+1 = plif y closed.

Sometimes, especially for closed curves, itis more appropriate to make use of an ordering
of the sample points that is independent of a specific parameterization.

Definition 2.3. LetS= {pl,..., p'S} be a sample of . If y is open one writes < |

if y~1(p') < y~L(ph). This notion is independent of an orientation preserving change
of parameterization. If is closed and has finite length choose an orientation ajong
andwritei < j if i # j andL(y(p': p))) < L(y(p': p')), wherey(p': p!) c yisthe

arc connecting' and p! in the orientation along. One writesi < j if the possibility
thati = j is included.

Now we are prepared to give the definition of length and total absolute curvature. Let
P (S) denote the polygon that connects a sangpie the right order.

Definition 2.4.
1. The (Jordan) length(y) of a curvey is the following number:

supL(P(S)): Sis a sample of},
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where
El

L(P(S) = Ip*t—pl|.
i=1

2. The curvatur€(y) of a curvey is defined as the number
supgC(P(S)): Sis asample o},

where
|S|=2

C(P(9) =) 1Z(p* —p', p*2—p'*h),
i=1

if y is open, and
[S-1 ) o ]
C(P(S) =Y £+ —p, pt?—p ™,
i=1

wherep!S+1 = pl, if y is closed.

In the following we make use of a theorem of Reshetnyak [14], which states how one gets
the length of a curve by integration over the length of the orthogonal projections of the
curve on all one-dimensional subspaéesR94+1. The collection of all one-dimensional
subspaces dR%+! forms thed-dimensional projective spad@'. In the following the
elements ofP! are sometimes called lines. From a standard construction in integral
geometry one gets a probability measugeonP? from the surface area measure on the
d-dimensional spherg*:

The continuous and locally homeomorphic mapping

¢: SY = {x e R%*: x| =1} — P4, X > {AX: A € R},

is a double cover. Singgis continuous, it is also measurable. That is the inverse image
¢~1(B) of a Borel seB € P! is a Borel set ir§Y. OnS? we have the usual surface area
measureyy. Therefore we get a measyig on pd aspg(B) = vg (¢~1(B)) for all Borel
setsB € PY. We have

2 (d+1)/2
rqd+1/2’
which we use to normalize. That is, we set

/ duy = vol(s%) =
]pd

nd(B) = g (B) @

vol(S9)

for all Borel setsB c PY.
The theorem of Reshetnyak now reads as follows:

Theorem 2.2. For any s-regular curver one finds
r'(d+1)/2

/Pdww» duat) =cal () with o = —— g o
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3. AlLocal Analysis

In this section we give several reformulations of our notion of regularity. We end up with
a reformulation which is a local version of the theorem we want to prove in this paper.
The main tool to prove this version is Theorem 2.2. To apply this theorem we have to
study projections of sample points on one-dimensional subspaces.

The first reformulation of regularity in the following lemma is a pure metric interpre-
tation of our definition of regularity.

Lemma 3.1. Lety be a simple closed curyehich is left(right) regular in p € y.
Let (pn), (dn), and (r,) be sequences of points frgmthat converge to p from the left
(right), such that p < g, < r, foralln € N in an order locally around p along . Let
an be the angle atgof the triangle with corner pointspq,, and r,,. Then the sequence
of angles(a,) converges tor.

Proof. Sincey seen as a mapping from an interval is locally a homeomorphism the
sequencesy 1(pn)), (¥ ~1(th)), and(y ~(r,)) converge toy ~1(p). Thus by our defi-
nition of left (right) regularity asymptotically the three oriented segments

conv{ pn, Gn}, CON{Qn, In}, and conypn, rn}

have to point in the direction of the left (right) tangetp) or r(p), respectively. That
iS, Ilmn_>oo Opn =T. O

We believe that this metric aspect of regularity is the most important one for our
theorem to hold, but in the following we have to make use of the linear structure of
R9+1, We exploit this linear structure by studying projections of a set of sample points
on one-dimensional subspacesRSf.

In the following lety be s-regular and lgi € y be afixed point. We want to introduce
the following notions. Let) > 0. The connected component of

ey lp—dl<n}

which containsp is denoted byB, (p). We assume that every one-dimensional subspace
¢ of R%t1 not perpendicular ta(p) is oriented according to the orientation induced by
the orthogonal projection, (I(p)) of [(p) on¢ and that every one-dimensional subspace
¢ perpendicular to(p) carries an arbitrary orientation.

We want to compare the ordering of a set of sample points clogedn y with
the ordering of the projections of these points on one-dimensional subspaRé&s'of
The following reformulation of regularity states to which extent these orderings can be
different:

Lemma 3.2. Assume there exists a sequeri¢g) of one-dimensional subspaces of
RI+1 and sequence&p,), (), () € Bi/n(p) With ph < On < rp < p in the order
alongy, but

70, (On) < e, (Pn) < e, (Fn)  OF 7, (Pn) < 7, (Mn) < 704, (Cn)
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in the order on¢,,. Then the limit of every convergent subsequencé 9f has to be
perpendicular td(p).

Proof. We want to do the proof by contradiction. That is, we can assume(that
converges in the topology & and that

0<f:= lim Z((p), tn) < %

whereZ(I(p), £,) denotes the smaller of the two angles defined by the subgpacel

the subspace spanned l§p). For the proof we assume without loss of generality that
77, (On) < 7, (Pn) < 7, (rn). Furthermore, we can assume by movipgor r, a little

bit on y that there exists & A < 1 (independent af) such that

|7¢, (Pn) — ¢, (Tn)| = A COSB) |7, (On) — 774, (M)

Why can we do so? By our assumption we have

|76, (On) — e, (Fn)| = I7¢, (On) — 7o, (Pn)| + |7e, (Pn) — 7, (Fn) 1,
and hence

[7e, (Pn) — e, (Fn)| = Anl7Te, (On) — 7w¢, (Fn)

with 0 < Ap < 1. From the continuity of and the continuity of the projection mapg,
we find that movingp, towardg, ony can makgm,, (qn) — ¢, (Pn)| arbitrarily small.
Similarly, movingr,, towardg, ony can makesw,, (pn) — 7, (rn)| arbitrarily small. Now
move p, towardg, ony if A, < A cogpB) or mover, towardq, ony if A, > A cogB)
as long as.,, # A co9p).

From the regularity ofs we find that

n'LmOOZ(COI’lV{Qn, ), 1(P) = n'LmOOZ(COI’W{ Pn, M}, 1(p)) =0
and together with the triangle inequality for spherical triangles
lim_Z(convan, ra}, ¢, (CONVGhn, Tn}))
< lim (Z(con(dn. ra}. 1(p)) + £((p). ¢, (CONVGn. Tn})))
= lim Z(com(an, rn}, 1(p) + lim Z(I(p), 7r¢, (CONChn, n}))
=0+ nIim Z((p), £n)
,3 b/
=0 < —.
2
Analogously we find
nILmOO Z(CONV{ Pn, 'n}, 71¢, (CONVY P, ) < B < %

Hence
|7T£n (an) — Ty, (rn)|

<1
|On — Il

0 <cogp) < nIim
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and

[7re,(Pn) — 7, ()|
[Pn —Inl

0 <cogp) < nIim <1

Therefrom we find
1 > lim |77, (On) — e, (n)| [Pn — Inl
cogB) n—oco |On — Il |72, (Pn) — e, ()|

|77, (On) — e, (Fn)| [ Pn — Tl
n—oo |7t (Pn) — ¢, ()| 1Gn — Il

|7Te, (Qn) — 7, ()| im [Pn —Inl
n—oo |77y (Pn) — ¢, ()| =00 |Qn — Iy

1 lim [Pn —Inl

ACOgB) n—oc |Qy — Ip]

and thus

. —-r
jim Pn = "nl <i<l
n—oo |qn—rn|

Hence there existd € N suchthatp, —r,| < |g,—rn| foralln > N. Now we consider

the triangles with corner points,, g,, andr,. Let «, be the angle a,. From the law
of cosines together witfp, — rn| < |gn — rn| we find

|Pn — Inl2 = [Pn — Onl? = [0 — I'n]? _

0.
2| Pn — 0nl|Cn — I

coqan) = —

Thusay, has to be smaller than or equalsitg2 for alln > N. Sincey is left regular in
p that is a contradiction to Lemma 3.1. O

From this lemma we can derive another one that states the measofdhe set of
lines on which the sample points in a small neighborhood left fpane not projected
in the right order turns to zero as the neighborhood shrinks to

Lemma 3.3. Foralln € Nlet p, O, 'n € Byn(p) with py < gn < 1y < pinthe
order alongy. Let

No = {€ € P% m(n) < me(Pn) < me(rn) OF e (Pn) < 7¢(Fn)
< 1¢(gn) in the order on¢},

wherer, denotes the orthogonal projection on the lierhenlim,_, o, q(Np) = O.

Proof. In [14] Reshetnyak shows: L&t be ad-dimensional subspace Bf*! and let
E c PY be the set of all one-dimensional subspaces contain&t ifhen uq(E) =
0. The proof of the lemma follows directly from this theorem of Reshetnyak and
Lemma 3.2. |
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Obviously an analogous result for sample points larger fhémthe order along
also holds.

Now we are prepared to prove a local version of our theorem. For a given sSwofide
neighborhood op we fix the smallest and the largest sample point aleagd consider
paths througl®which connectthese points. One such pathis the polygonal reconstruction
P (S) which connects the sample points in their order alpn@/e distinguish three types
of lines¢ e PY:

1. There exists a path through the sample points different fegi®) which has a
shorter projection oii thanP(S).

2. Every path through the sample points different frBif8) has a larger projection
ont thanP(S).

3. There exist paths through the sample points different fR8) which has pro-
jections on¢ with the same length as the projection®fS), but there is no path
with a shorter projection.

The proof is subdivided into three steps. First, we show that the measure of the first set
of lines tends to zero as the neighborhoodathrinks top itself. Second, there exists

a constant larger than zero such that the measure of the second set of lines is larger than
this constant for arbitrary small neighborhoodspoin the third step we want to apply
Theorem 2.2. We use this theorem and the results of the first two steps to show that for
small neighborhoods gb the polygonal reconstructioR(S) has to be the shortest path
through the sample points.

Theorem 3.1. Assume

o =supZd@),r@): gey}<m

and let(S,) be a sequence of samples aofBp). Let TSP(S,) be a path of minimal
length through the sample points, @ith fixed startpointmin §, and fixed endpoint
max$,. Heremin andmaxare taken with respect to the order induced grb8y . Then
there exists Ne N such that

TSP (S) = P(S,
foralln > N. Furthermore TSP (S,) is unique for all n> N.

Proof. First Step Let L, ¢ P9 be the set of lines for which the projectian(P(S$,))
is not a shortest path through the projected sample pain(S,) and letuy be the
probability measure oR? introduced in (1).

We show that

n|Im nq(Ly) =0.

For the proof we use the following abbreviations (min and max denote the minimum
and the maximum along and min and max denote the minimum and the maximum
along?):

m; =m7(Ming,), my= m[in (&), Mg= mgaxw(sq), my = m,(Maxsy).
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m2 ml m4 m3

Fig. 2. Path of minimal length.

Taket e PY together with its orientation. A path of minimal length through the points
¢(S) which connectsn; with m, (see Fig. 2) consists of

conv{mg, my} U conv{my, mz} U conv{ms, my}.

That is, the points of betweenm; andm, are covered twice by a path of minimal
length through the points,($,), the points betweem; andm, are covered once, and
the points betweem; andm, are covered twice again. #f,(P(S;)) is not a path of
minimal length through the points (S,), then there has to exist an interval

| = [m{in{m(p‘n), 7 ()}, max(ze (p)). m(p‘n“»]
on¢ with pi, pitt € S,, which is covered byr,(P(S,))
1. 2+ 2k times,k > 1, if
mp < min{r,(p). 7o (PR} < maxme(py). me(Py} < my
or
M < minfe (p}). 7e(Py™)) < maxtze (ph). 7e(Py™)) < ms,
2. 1+ 2ktimes,k > 1, if

my < min{(pp). e (Py ™)) < maxim,(py). we(ppH) < ma.
For all p,% €S, jef2...,1S] — 2}, we call the interval
lj = [rnzin{ne(pb, (™)}, maxim (ph). m(pa'“)}]

positive if mg(pr%) < mg(p,"]“) in the order ory and negative otherwise. The intervals
I; which cover the interval must have alternating signs. That iszif(P(S,)) is not a

shortest path through the points(S,) we find, using thaP(S,) connects thep,j1 €S
in their order alongs and using the continuity of and of the projection mag,, three
poiNts pn, On, 'n € By/n(p) With p, < gy < ry < pinthe order along, but

7e(Gn) < 7we(Pn) < 7e(fn)  OF 74 (Pn) < 7e(rn) < 7¢(Cn) in the order orY;

or we find three pointgn, n, rn € Bi/n(p) with py > g > ry > pin the order along
y, but

Te(On) > me(Pn) > me(rn)  OF  mwe(Pn) > e (rn) > 70 (Gn) in the order ort.

See Fig. 3 for an example.
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.........

Fig. 3. Example: 45,6 > p are not projected in the right order.

In general the pointgy, g,, andr, need not be sample points. From Lemma 3.3 we
can conclude that

nIim nq(Ly) =0.
Second Stef.et M,, ¢ P9 be the set of lineg for which we have:

1. The order of5, alongy and the order o8, induced by the order of,(S,) on¢
coincide. o o
2. Forall conyp', p't1} c P(S)) with p', p'+! € S, we have

_ . 1 + , _
e ('Y — e (pH] > > cm(%) Ip'*t—p'l.

We show that there exist> 0 andN’ € N such that for alh > N’ we have
nd(Mp) > c.

For the proof we construct a set of lin€sc P¢ with uq(C) > 0 and show that there
existsN’ € N such thatC c M, for alln > N’. The setC is defined as follows: Let
£o be the linety C sparl(p), r(p)} such thatg C sparil(p), r(p)} halves the angle
Z((p), —r(p)) between the lines determined ) and 1(p). Now we define

C={teP" £l < i(x —a)}.

By Z(¢,¢) for ¢,¢ e PY we denote the value of the minimum of the two angles
determined by and¢’. The sel J,.o{X € £} C RY*+ is a double cone (see Fig. 4).

By constructionr, (I(p)) andw,(r(p)) point in the same direction on evetye C.
Sincea < m we haveuq(C) > 0. It remains to check conditions 1 and 2 to prove that
for sufficiently largen we haveC c M.

-1(p) 1(p)

Fig. 4. The double cone C.
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1. Assume that for arbitrary largewe find ¢,, € C such that the first condition is
violated. Then we can find three poirs, dn, rn € By/n(p) With py < g < rn < pin
the order along, but

”én(Qn) < ﬂén(pn) < ﬂén(rn) or Nln(pn) < ﬂzn(rn) < ”@n(qn)
in the order orZ,,; or we find three pointn, On, r'n € Biyn(P) With pn > 0n > 1 > p
in the order along, but

7, (Gn) > ¢, (Pn) > ¢, () OF 704, (Pn) > 7¢, (Fn) > 74, (On)

in the order or?,,. By Lemma 3.1 the limit of every convergent subsequendépfhas
to be perpendicular to eithefp) or r(p). SinceC is compact we find € C as the limit
of a convergent subsequence(éf) which is perpendicular to eithe¢p) or r(p). On
the other hand we find for all € C using the triangle inequality for spherical triangles,

2, 1(p)) < Z(L, Lo) + L(Lo, [(p))
1 <]T T —a>
< zm-o)+|5 -

2 2

T+ a T
= < —
4 2

and analogously
T
4 =.
€, r(p) < >

That is, everyt € C is neither perpendicular t@p) nor to rp). So we have a contra-
diction. That means, for all sufficiently largethe first condition cannot be violated.

2. From the s-regularity gf and the continuity of we have, forp},, pit! € S, with
p, < pif! < pandall¢ € C,

lim Z(¢, convpl, pitt)) = é(ﬁ,nlim conv{p},, piﬁl})
T+ o

2 1(p) =

That is, for all sufficiently large and all¢ € C we have

. 4 1 + o
me(p) — (P = Ecos(” " “) Ip— pitly.

For pl,, pitt € S with p < pl, < p.*! we get the same result usingpy instead of
I(p) in the triangle inequality for spherical triangles. It remains to consider the case that
p, < p < pitl. We choose) > 0 such that

CcOoSs 7T+Ol+ 1COS wto
1
a2 "7 3 4

and show that, for alt € C and all sufficiently large,

T+«
4

Z(¢, convpl, pitp < + 1.



Curve Reconstruction 589
To do so letr be the projection on spéiip), r(p)}. The s-regularity ofy implies

lim sup(£ (€0, w(conv{pl, p)) < Z(&o, 1(P)) = Z(Lo, F(P)). )

We define the distance between two two-dimensional subspads bby the smaller

of the two dihedral angles defined by them. With this metric the span seen as a map-
ping becomes continuous. From the continuity6fand the continuity of span we

get

i _ npi+l i .
0 = lim L(span{ P=P P pi”+1 },Con\/{p:v P:fl})

n—o0 Iph = PI" |p— pr™|
. pL—p p—pﬁ;‘l} : i i+1)
= /| lim spany — , d , lim con ,
(Mo P {Ip'n—pl [p— ]| O P P

Z (sparil(p), r(p)}. lim conv(p}, ph"1})
lim_Z(sparfl(p), r(p)}, conv pj, P

That is, for all sufficiently large we have

Z(rw(conviply, piTh, conviph, ph™h < . €)

Finally we get, for all sufficiently larga using the inequalities (2), (3) and the triangle
inequality for spherical triangles,

Z(€, convipl, P < (. Lo) + Z(to, coniph, Pl
< (¢, o) + Z(ko, w(conv{pl, PiTi))
+ Z(m(conv{ ph, p™h. convp},. ph™)

2, Lo) + Z(Lo, 1(P)) + 1

T—a +a n

=< ] 2 n

T+ o
4

IA

+ 7.

Hence for all sufficiently large, all ¢ € C, and allp},, pi;t* € S, we have

e (p') — me(p' ™| > 5c05< 2 a) Ip' — p'*h.

That is, there existdl’ € N such that for alh > N’ we haveC c M,. Hence
pd(Mn) > 4(C) > 0.
Third Step In the first two steps we considered the measures of the subshaces

and M, of P4, the space on which we want to integrate. In this step we compare
integrands.
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I s 4 7 2 6 3 I 2 3 4 5 6 7

@& &— * ———o—0—0—0—90
. o ]

Pl o P

Fig. 5. Example: Projections ot e Ly (left) and on¢ € My, (right).

Let P(S,) be a path different fron(S,) through the points,, which connectgp}
with ph™. We define the rank dpi,, P(S,)) of a sample poinp!, € S, in the pathP(S,)
as the number of sample points the pBt,) meets on its way fronpt to pi™' before
it meetspy,.

Let I, be the following set of indices:

Po={i €{2,...,1S — 2}: tk(p}, P(S)) > rk(p;t, P(S))).

If we compare the length of the projectiong(P(S,)) andz,(P(S)) on¢ € L, (see
Fig. 5) we find

L (P(S))) — L(me(P(S))) <2 |me(ph) — me(py I @)

iely

On the other hand we find, for the length of projectiond @ah M, (see Fig. 5),

L (P(S))) — L(me(P(S)) = 2 Ime(ph) — me(ph™- (5)
iely
Furthermore, we have, for aqﬂi1 €S,ie{l,..., |S| — 1} and all£ € M,
. . 1 . .
(Pt — me(p' Y] > ECOS’(?) 1Pt —p'.

From this inequality we get another inequality which is valid forfak My and all
€ Ly,

_ _ 1 . _
> (P — (PR = 5 cos(” Z“) > I (ph) = e (P

icly iely
which implies, together with (4) and (5),

T +o

< 1 -
L@me(P(S) — Lm(P(S)) = 5 COS( ) (L(W(P(%))) - L(mz'(P(SO))).

Since this inequality is valid for al € M, and all¢’ € L, we get for the increase of
length onM

[ (LenBsm - L)) duate

1 ~
> wa(Mn) 5 cos(” Io‘) sup (L (me(P(S)) — L (P(S)))

teln
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and for the decrease of length bR

| (L) - LonPs) duato

n

< na(Lo) sUp(LCn(P(S) ~ Lew(P(S)))

Because of lim_, o iq(Ln) = 0 there existdN > N’ such for alin > N we have

pa(Ln) < 1a(C) %COS<” Za> < 116(Mn) %cosc :a> .
Using Theorem 2.2 we find that for all > N there is no shortcut possible and that
P(S,) is the unique path of minimal length through the poi§tawith fixed start- and
endpoints, because the polygon connecting the points in the order indugetids/a
shorter projection on all € C than every other polygon through the poigtswith fixed
start- and endpoints. O

4. Menger's Theorem

We need Menger's theorem and some corollaries to achieve the transition from the local
results of the last section to the global.

Menger’s elementary proof of his theorem is only valid for simple open curves. Here
we give a new proof that also holds for simple closed curves. For this proof, which in
contrast to the original proof of Menger is restricted to curves in Euclidean spaces, we
need the following lemma.

Lemma4.1. Lety be a simple curve and I€&,) be a sequence of samplesyofvith
liMy_ o e(S) = 0andlimsupL(TSRS))) < oo. Let

¥ [0, L(TSRS))] — R

be the parameterization by length of T&. Then the sequende,) has a Féchet
convergent subsequence

Proof. By turning to an appropriate subsequence we can assume that
L(TSRS)) < 2limsupL(TSRS))) =: ¢ < 00

foralln € N. To prove the lemmaitis sufficient to check that the premises of the theorem
of Ascoli [9] are fulfilled.

1. The sequence of reduced parameterizations

v [0,1] = RY, t > y(tL(TSRS)))
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is equicontinuous, because

A

Va) — v < ' =L
(t'—t)L(TSRS))
ct' —1)

IA

forall0<t <t'<1landalln e N.
2. We have supy sug]y,(t)]: t € [0, 1]} < oo, because is compact.

Now the theorem of Ascoli states that the sequepngehas a convergent subsequence
(yy,) which converges to a continuous function

vy [0,1] — RY. O

Note that the condition limsup(TSRS,)) < oo is always fulfilled ify has finite
length. Now we are prepared to prove Menger's theorem. In this proof we make use of
the one-dimensional Hausdorff meastirg see [8] for the definition and its relation to
the geometry of curves.

Theorem 4.1. Every simple curve satisfies
L(y) =supgL(TSRY)): Sis asample of},

where TSIPS) denotes a shortest path through the sample pointg/Ssifan open curve
and a shortest tour otherwise

Proof. Assume the contrary. That is, we can assume that
SUpL(TSRYS)): Sisa sample of/} < L(y),

becausdSRS) < P(S) < L(y) for every samples of y. Take any sequend&,) of
samples frony with lim,_, , (S,) = 0. By our assumption we have

limsupL(TSRS))) < L(y).

Let yn: [0, 1] — RY be the reduced parameterizationT®R S,). From Lemma 4.1
we know that there exists aéahet convergent subsequerigg) of (34,). Let the con-
tinuous functiony’: [0,1] — RY be the limit of (). We have, for the convergent
subsequence,

limsupL(TSRSy)) < limsupL(TSRS,))) < L(y).

Next we show thay c y’(J0, 1]): Takep € y. Since lim_ () = 0, one finds a
sequenceép,) with p, € S, which converges t. Of course the subsequengs,) with
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Pm € ym also converges tp. For allk € Nthere existsn(k) € Nandpy,,, € y'([0, 1])
such that

/ 1 1
|pm(k) - pm(k)| < E and |pm(k) - pl < ﬂ

Hence by the triangle inequality we hayg,,, — p| < 1/k. From the compactness of
y'([0, 1]) we getp € y'([0, 1]).

Bothy andy’([0, 1)) are as compact sefg- measurable. Using the properties of the
one-dimensional Hausdorff meastisé, see [8], and our assumption we find

L) = 94)

9'(y'((0. 1])
liminf HX(TSRSy))
liminf L(TSRSy))
limsupL(TSRSy))
L(y).

That is a contradiction. O

IA I IA IA

A

The following corollary states that the length of the traveling salesman path (tour)
through a sequence of sample points converges to the length of the curve when the density
of the sample goes to infinity. To avoid confusion we remark here that in the following
7 andry, always denote permutations and no longer projections.

Corollary 4.1. Lety be a curve and letS,) be a sequence of samplesjgfwith
iMoo (S) = 0.Then
L(y) = lim L(TSRS)),
n—oo
where TSIPS,) denotes a shortest path through the sample poiptd $ is an open
curve and a shortest tour otherwise
Proof. Assumel (y) < oco. For a giveryy > 0 consider three sets:

1. From Menger’s theorem we know that there exists a sample
_ 1l S| ; Ui
S={q,...,9™} with L(TSRS)) > L(y)_i'

2. LetS ={p',..., p’®} € {S;: n € N} be such that(S) < n/4|S|.
3. LetS’ = {rt, ..., r!S} ¢ S be a multiset withr' — qg'| < &(S) foralli =
1,....19.

In the following we make use of the conventions f8f + 1 and|S| + 1 introduced in
Definition 2.2. Letr be a permutation ofl, .. ., | S|} such that

1Sl

Z |qn(i+l) _ q”(i)| = L(TSRS))s
i=1
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let 7’ be a permutation ofl, .. ., |S|} such that

IS] ) p
|pn’(|+1) —p” (|)| — L(TSRS’)),
i=1

and letr” be a permutation ofi, ..., |S|} such that

IS| . _
DI — 7O is minimal.
i—1
Then it follows that:
1.
ENE s y
Z |rJT i+ _ r (I)l < Z|pﬂ i+ _ pﬂ (I)|
i—1 i=1
by construction.
2.
Is - _ s
Z |q7T(I+ ) _ q?T(l)| < Z |qrr i+ _ qﬂ (l)|
i—1 i—1
by the definition ofr.
3. From|r™")) — g7 | < g(S) forall j =1, ...,|S| and the triangle inequality it

follows that

7 D O] g D qn”(i”’ <2(S).

Combining these inequalities leads to

|S|
L(TSF{S’)) — Z|pn’(i+l) _ pn’(i)|
i=1
IS
> [P (+D 7))
i=1
IS
D olgm D — g7 O]~ 2 Sje(S)
i=1

£ ) :
Z 1g701+D — g™ | — 2|9e(S)
i=1

= L(TSRS)) — 2/S/&(S)
~ L(TSRS) —g

IV

v

> L(y)—n.

Sincen can be arbitrary small, we are done. The proof in the ¢a50 = oo is quite
similar. |
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The next lemma states that the maximal length of a segment in a traveling salesman
path (tour) of a sequence of sample points from a curve of finite length tends to zero as the
density of the sample goes to infinity. The proof again makes use of the one-dimensional
Hausdorff measurg?.

Lemma 4.2. Assume that the curve has finite length and letS,) be a sequence
of samples o/ with lim,_, ., ¢(S,) = 0. For all n € N let =, be the permutation of
{1,...,]|S|} induced by TSES,). Then

nILmooma>q|p”"(‘+1) —pmOi=1,...,1S} =0,

wherem, (1S, + 1)) = 7 (1S, if y is an open curve and, (IS, + 1) = 7n(D) if y is
closed

Proof. Assume the contrary. That is, by choosing an appropriate subsequence one can
assume that there exists> 0 such that for every € N it holds that

max{|p7fn(i+1) _ pNn(i)|: i = 1’ . |S]|} > C.

Let p, = p™® € S, andqg, = p™i+Y e S, be such thatp, — g,| > c. By the
compactness of we can turn to an appropriate subsequence such fhatonverges
to p € y and(g,) converges t@ € y. Of course it holds thatp — q| > c. Remove the
interior of con\ p,, gn} from TSR S,). We consider two cases:

First, if y is an open curve, theMSR'S,) decomposes into two patta! which
connectsp™® with p™® and P2 which connectgp™+ with p™($D. Let P, de-
note P} U P2 and letyd: [0,1] — RY, j = 1,2, be the reduced parameterization
of PJ. As in Lemma 4.1 one can use the theorem of Ascoli to show(thb)t has a
Fréchet convergent subsequence. That is, we can assume by considering a common sub-
sequence thaty}) and (y,2) converge to continuous functions-: [0, 1] — RY and
y% [0,1] — RY. Let y’ be y1([0, 1]) U y2([0, 1]). Second, ify is a closed curve,
thenTSR S,) becomes after the removal of the interior of copy, g} a path denoted
by P, which connectp™® with p™@+D . Let y, be the reduced parameterization of
P.. As in Lemma 4.1 one can show th@t,) has a Fechet convergent subsequence.
That is, we can assume by taking an appropriate subsequencg/thabnverges to
a continuous function’: [0, 1] — RY. We use the symba}’ also to denote the set
y'([0, 1]).

Next we show thaty c y’: Taker € y. Since lim_ . e($) = 0, one finds a
sequencéry,) with r, € S, which converges to. For allk € N there existsi(k) € N
andrg,, € y' such that

|rr/1(k) —TI'ngol < i and | —rl < i
2k 2k

Hence by the triangle inequality;,, — r| < 1/k. From the compactness pf we get
rey.
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The sety, y’, Py, and conypy, g,} are all as compact sefg- measurable. Using the
properties of the one-dimensional Hausdorff measitiesee [8], we find

9ty = 91y Uconvpy, tn})
= H'(y) + H'(convp, q})

H(y)

= L(y)

supL (P,)

= sup$H*(Pn)

> 9.

\

v

That is a contradiction. O

5. From Local to Global

In this section we finally want to prove the promised theorem. That is, here we achieve
the transition from the local version of the theorem to the global. To do so we need
another definition.

Definition 5.1. Given a curvey and a sampl& from . We callr € Sa return point,

if r is connected t, q € Sin a traveling salesman path (tour) 8fandr < p, q or

r & p,q inthe order along . In the first case we call the return point positive and in

the second case we call it negative. For open curves we also call the start- and endpoints
of TSR'S) the return points.

For example in Fig. 1 points 2 and 3 are return points. In the traveling salesman path,
point 2 is connected to points 3 and 4, which are both larger than point 2 in the order
along the curve. Point 3 is connected to points 1 and 2, which are both smaller than
point 3 in the order along the curve. Hence point 2 is a negative return point and point 3
is a positive return point.

First we prove the global result for closed curves. The proof is again subdivided into
three steps.

Theorem 5.1. Lety be a closed curveAssume
a=sugZd(@),r@): qgey}<m
and let(S,) be a sequence of samplesjyofvith lim,_. , () = 0. Then there exists

N € N such that TSPS,) = P(S,)) for all n > N. Here TSRS, is a shortest tour
through the points S Furthermore TSR S,) is unique for all n> N.

Proof. The proof is done by contradiction. Assume without loss of generality that
TSRS, # P(S) foralln e N,
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First Step We show that for larg@ there exist at least four return points. First we
show that there exists at least one return point for latgessume the contrary. That is,
there does not exist a return point$afor arbitrary largen. By turning to a subsequence
one can assume without loss of generality that there does not exist a return point for all
n e N. SinceTSRS,) # P(S,) there existg], € S, which is not connected tp.~ in
TSRS,). CutTSRS,) in two polygonal arcs?, with startpointp), and endpoinp} 1,
and P2, with startpointp~* and endpointp!,. By our assumption that there does not
exist a return point irg, the sample points in both polygonal arcs are connected in their
order alongy .

From Lemma 4.2 and Definition 2.4 of the Jordan length we can conclude that

H 1 H 2y
nIl_)mOO L(P))., nI|_>mOO L(PY) = L(y).

That is, lim_» L(TSRS,)) = 2L(y). Which is a contradiction. Hence there has to
exist a return point for large.

Observe that the signs, see Definition 5.1, of the return poirgsahways sum to zero
and that return points incident aloA®GR S,) always have different signs. So one can
conclude that for sufficiently large there exist at least two return points. Now assume
that we have only two return poinfs, andg, for arbitrary largen. CutTSR &,) into two
polygonal arc! and P? that connecp, with g,. The points along these arcs, running
from p, tog,, are ordered in the same way as they are ordered gloRgpm Lemma 4.2
and Definition 2.4 of the Jordan length we can conclude that

lim L(PY), lim L(P?) = L(y).

Thatis, limy_. . L(TSR'S,)) = 2L (y). Which is a contradiction to Corollary 4.1. Hence
for largen there are at least four return points3n

Second Step We show that for larga there must exist two return point$ «r 2 neigh-
borly alongTSRS,), i.e.,r} andr? are consequent return points aloR§RS,), such
that the other return poinfg neighborly tor} andf? neighborly tor? along TSR'S,)
are not in between? andr?2. That is, one cannot find the following situation:

1
n

2
n

rlaftar? or rlrarZar?, (6)
However, it is possible thdf = r2 andi2 =r}.

Assume that for all neighborly return points one finds situation (6) then all return
points have to accumulate in between two return points (see Fig. 6). That is impossible

sinceTSR S,) is closed.

o ]

o

Fig. 6. Accumulating return points.
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r3

rl 2
0

Fig. 7. Shortcut through return points.

Third Step Inthis step the transition from the local version of the theorem to the global
one is achieved. In this transition use is made of the return poframdr 2 found in

the second step. Choose the orientatiom®8R S,) such tharﬁ <rlalongTSRS,)). Let

r € S be the last sample point one encounters running thr@&ftS,) with

rdar}alongy andr? «r2 alongTSRS,)
and letr 3 € S, be the first sample point one encounters running thral®R S,) with
r2<r3alongy andr} <r?alongTSRS,).

That is, one finds the situation shown in Fig. 7.

By the compactness ¢f we can assume by turning to convergent subsequences that
9, (rh), (r2), and(r®) converge ta® rt, r2r3 c y. Lets, € S, be the successor of
rand letp, € S, be the predecessor gf alongTSR'S,). By construction we have

rdarl<as,andp, <r?<ralongy.
From Lemma 4.2 we can conclude that
lim [rf —s| = lim |p, —r3] = 0.
Thatis,r® = r* andr? = r3. Now assume? «r?2. Consider three sets of sample points
My = {pe S: p<r?alongTSRS)},

MZ = {pe S:r2< p<ryalongTSRS)},
M3 = {pe S p 1) alongTSRS)).

Using Corollary 4.1 and Theorem 4.1 one has
lim L(TSRS,))
n—oo
> lim (L(TSRMY) + L(TSRMZ)) + L(TSRMY)))
— 00
= lim L(TSRMY) + lim L(TSRM?)) + lim L(TSRM3))
n—o00 n—oo n—o0
= Lloyr02) + L& Iy p202) + L& 10,1

= L)+ 2L Ip1e1),-102)
> L(y).

That is a contradiction to Corollary 4.1. Hence we have

3

=r°=rey.
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Fig. 8. Two cases in the induction.

By turning to an appropriate subsequencé®) we can assume without loss of gener-
ality that

0
n»

pTa TS € SN Byn(r).

That is a contradiction to Theorem 3.1, which is the local version of this theoren.

ry,r

Next we want prove the global result for open curves. To do so we start with three
lemmas.

Lemma5.1. Let S be a sample of an open curvelet E(S) be the set of edges of
P(S), and let E(S) be the set of edges of ), where P(S) is another polygonal path
on S Letxw be the permutation ofd, ..., |S|} induced by P(S). Then there exists a
bijection f: E'(S) — E(S) with

1. f: conp™®, p70+D} > convp!, p/*ywithz(i) < jand j+1 < (i + 1).
2. flegne =id.

Proof. The proofis done by induction on the cardinality®fif |S| = 2 we must have

P(S) = P/(S) and setf = id. Assume the lemma is proven f# < n. Now assume
that|S| = n. We distinguish two cases, which are depicted graphically in Fig. 8. The lines
in this figure denote edges &,i,(S). In both cases map the edgeo cony pt, p?}.

Now removep! and consider the induced polygd@8R'S — {p'}) on the vertex set

{p?, ..., p"}. Inthe second case add cépV, p’} to the induced polygomSR S—{p?}).

We are left with the problem of finding a suitable bijection on edge sets nvithl
elements. That is, we have reduced the problem to finding an appropriate bijection to the
casel§ =n-—1. O

The next two lemmas are about regular curves. Nevertheless we can make use of
them, since an open s-regular curve is regular in its endpoints.

Lemma5.2. Lety be aregular curveThen there exists an> 0 such that

1L1p —p < |p —p4if ptap'
2. |pl _ pl+1| < |pl _ pk| if pk > pl+1

for all samples S= {p?, ..., p'S} withe(S) <sandallie {1,...,|S]}.
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Proof. Assume the contrary. Then there exists a sequége of samples with
limn_« &(S) = 0andpl, pk € S, such that

p* < p'~tand|p, — pi 7t = P, — Pkl

or

P > p' "t andip, — pi" = Ip — Pyl

By choosing a subsequence one can always assume thatifioe &l one of the above
possibilities holds. Without loss of generality assume that this is the first one. Sisce
compact, one can also assume by choosing a subsequengg rainverges te € y.

From lim_ « (&) = 0 it follows that
lim |p}, — pX < lim |p}, — pi-t =0.
n—oo n—o0

Hence(p,~1) and(pf) also converge tp. Now look at the triangle with vertices, ™, pf,,
and pX. From the law of cosines together withy, — p.=t > |p, — pX|, it follows for
the anglex, at p,~* that

BTl ol 1 el i el el

- - : > 0.
2/p, — phIpht — pK|

coSanp) =

Thusay has to be smaller than or equabt@2, but that is a contradiction to Lemma 3.1.
O

The proof of the third lemma is similar to the proof of the second one, so we omit it
here.

Lemma5.3. Lety be aregular curveThen there exists an> 0 such that

1. |p' = p™ < |p' — pX| for pk < pM<p',if pk<p'~tand|p' — p¥| < |p' — p'*

for some le {L....18l}, ' .
2. |p'—p" < |p'— p¥| for p' < p™ < <p, if p* 1 p' Tt and|p' — p¥| < |p' - p'*
forsomele {1,...,|9|}

for all samples S= {pt, ..., p'S} withe(S) <eandallie {1,...,|S]}.
Now we are prepared to prove the global result for open curves.
Theorem 5.2. Lety be an open curvédAssume

a=sugZl(,r@): gey}<m

and let(S,) be a sequence of samplesyofvith lim,_, . £($,) = 0. Then there exists
N € N such that TSPS,) = P(S,) for all n > N. Here TSRS,) is a shortest path

through the points S Furthermore TSR S,) is unique for all n> N.
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Proof. The proof is done by contradiction. Assume without loss of generality that
TSRS) # P(S) foralln e N.

First Step We show that for larg@ there exist at least four return points. Because
TSR S,) # P(S) there have to exist at least three return points. &ithere is only one
return point besides the start- and endpoint§®R S,), then this point is either mi§,
or max$, alongy. Assume that there exisk$ € N such that the number of return points
in §, is three for alln > N. Without loss of generality we can assume that the only
return point besides the endpointsT8R S,) is p: = min S,.

In TSR'S,) we also have thap} is connected t@32, because otherwis® has more
than three return points. CISR S,) into two polygonal arc®?! and P2 with endpoint
pl. SinceScontains only three return points one of these arcs has as its second endpoint
pLS“‘. Assume without loss of generality that this arc is alw#{s From Lemma 4.2
and the definition of Jordan length we can conclude that liL(P}) = L(y). This
implies

lim- L(P? =0.

Let pL, i €{3,...,|Sl}, be the second endpoint Qﬁ We observe two things:

1. limy_ o |PE — pl| = 0, becausept — pl| < L(P?) for largen.

2. conyph, pi™ c TSRS, foralli < j < || and largen. That is, the shortcuts
take place on the firgtindices. Using thaTSRS,) # P(S,) and the statement
and notions of Lemma 5.1, witR’'(S) = TSR'S), we find that there exists

conpr @, prd*P} e E'(S,) and  conypf, pkt} e E(S)
with
PR = PP < 1Pk - P,
i,k<i, m(j)<k, k+l<zm(j+1), and n(j)#kork+1=+#z(j+1).

From limh_~ £(S$) = 0 we can conclude thap% converges tg/(0). Sincey (0) is a
regular point ofy we can apply here Lemmas 5.2 and 5.3. Now Lemma 5.3 tells us that
there exist® € N with:

1. 1pk— prt*P) < 1pr® — iU for alln > N. That means
IpK— prU+Y)| < |pk — pk*Y forall n>N.

2. 1pk — pi @) < i@ — prU* Y| for all n > N. That means
Pkt — pr@| < |pk — pk*tl|  forall n>N.

That is a contradiction to Lemma 5.2. Hence for largthere are at least four return
points inS,.

Second Step We show that for large there must exist two return points<r 2 incident
alongTSR'S,) such that the other return poirfts incident tor ! andf? incident tor?2
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along TSR'S,) are not in between! andr2. That is, one cannot find the following
situation:

1
n

2
n

rraflar? or rlar?ar?, 7
However, it is possible th@f =r2 andf2 =r}.

The pathP} ¢ TSRS,) connectingp? with pLS" either contains two return points,
as we are looking for, or it does not contain any return point begdesnd p'. So
assume thaP?! does not contain any return point besiggsand pl,s". CutTSRS)) into
three path?, P2 with endpointp? and P3 with endpointp}™'. At least one of the the
pathsP?2, P2 cannot be empty sinc®, has at least four return points. From Lemma 4.2
and the definition of Jordan length we can conclude that liL(P}) = L(y). This

implies
lim L(P? = lim L(P3 =0.
n—oo n—o0

Without loss of generality we can assume tRatis not empty for all sufficiently large

n € N. The same reasoning as at the end of the first step shows that this leads to a
contradiction. Hence for largethe setsS, have to contain two return points, as we are
looking for.

Third Step In this step the transition from the local version of the theorem to the global
one is done. This step is the same as the third step in the proof of Theorem 5.11

The example in the Introduction shows that the regularity conditions required to prove
this theorem are necessary. That is, this theorem is best possible.

6. Concluding Remarks

Finally we want to put our work in perspective to related recent work on curve recon-
struction. We showed that there exists a global bound on the sampling density such that
the curve reconstruction problem is solved by a traveling salesman path or tour, respec-
tively. Obviously this bound is much too demanding for many smooth regions of the
curve. That is, locally a much lower sampling density should be sufficient. Amenta et
al. [4] concretize the idea of a locally dense sampling using the concept of feature size.
The medial axis of a plane curyeis the set of points in the plane which have more
than one closest point gn. The feature sizd (p) of a pointp € y is the distance of

p to the closest point on the medial axis. Amenta et al. define sampling density based
on a parametet by requiring that each poimt € y has a sample point within distance

ef (p). Several algorithm with this assumption of sampling density have been developed
that provably can reconstruct simple, closed, smooth curves [4]-[6], [11]. There is also
an experimental study by Althaus et al. [3] that compares several of these algorithms.
For nonsmooth curves this notion of sampling density breaks down, since the medial
axis passes through the corner points of the curve. Thus one is required to sample the
curve infinitely near the corners to satisfy the sampling condition.
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Many curve reconstruction algorithm are based on picking edges from the Delaunay
triangulation. In [10] we show that the same regularity assumptions on the curve are
necessary to find the correct reconstruction as a subgraph of the one-skeleton Delaunay
triangulation. Dey and Wenger [7] present another algorithm that can reconstruct curves
with sharp corners.

We showed that the traveling salesman path can reconstruct simple open curves and
the traveling salesman tour can reconstruct simple closed curves. However, we do not
give a method to detect only from a sample if a curve is open or closed. Dey et al. [6]
give an algorithm that does so in the case of simple smooth curves.

Finally, in general it is NP-hard to compute a traveling salesman path or tour, re-
spectively. Althaus and Mehlhorn [2] show that the traveling salesmarytpathcan
be computed in polynomial time for dense samples from plane curves, satisfying the
regularity conditions we specified in this paper.
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