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Abstract. We give necessary and sufficient regularity conditions under which the curve
reconstruction problem is solved by a traveling salesman tour or path, respectively. For the
proof we have to generalize a theorem of Menger [12], [13] on arc length.

1. Introduction

In 1930 Menger [12] proposed a new definition of arc length:

The length of an arc be defined as the least upper bound of the set of all numbers that
could be obtained by taking each finite set of points of the curve and determining
the length of the shortest polygonal graph joining all the points.
. . .

We call this the messenger problem (because in practice the problem has to be
solved by every postman, and also by many travelers): finding the shortest path
joining all of a finite set of points, whose pairwise distances are known.

This statement is one of the first references to the Traveling Salesman Problem.
Arc length is commonly defined as the least upper bound of the set of numbers

obtained by taking each finite set of points of the curve and determining the length of
the polygonal graph joining all the points in their order along the arc. In [13] Menger
proves the equivalence of his definition and the common one (Menger’s theorem).

It seems natural to think that this equivalence holds due to the fact that the shortest
polygonal graph coincides with the polygonal graph joining the points in their order along
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the arc, provided the set of points is sufficiently dense. In other words, for sufficiently
dense point sets a traveling salesman path solves the polygonal reconstruction problem
for arcs. This problem was stated by Amenta et al. [4] as follows:

Given a curveγ ∈ Rd and a finite set of sample pointsS ⊂ γ . A polygonal
reconstruction ofγ from S is a graph that connects every pair of samples adjacent
alongγ , and no others.

However, Menger’s proof does not show this at all. So we want to study the question
whether the polygonal reconstruction problem is solved by a traveling salesman path,
provided the sample points are sufficiently dense in the curve. Since a traveling salesman
path is always simple, we cannot expect that it solves the reconstruction problem for
curves with intersections. Even worse, the traveling salesman path may not coincide with
the polygonal reconstruction for arbitrarily dense samples of simple curves. Consider
the following example:

Let γ be the simple arc which consists of the unit interval on thex-axis and the graph
of y = x2 on this interval. That is,

γ : [0,1]→ R2, t 7→
{
(1− 2t,0), t ≤ 1

2,

(2t − 1, (2t − 1)2), t > 1
2.
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become arbitrarily dense inγ . However, the traveling salesman path throughSn is dif-
ferent from the polygonal reconstruction fromSn (see Fig. 1) because

|p1
n − p2

n| + |p2
n − p3

n| + |p3
n − p4

n| > |p1
n − p3

n| + |p3
n − p2

n| + |p2
n − p4

n|.
In this example, the arcγ has finite length and finite total absolute curvature. Thus, even
finite curvature, which is a stronger property than finite length, see [1], is not sufficient
for the polygonal reconstruction problem to be solved by a traveling salesman path,
provided the points are sampled densely enough. The crucial point is thatγ behaves
quite well, but is not regular at(0,0) ∈ γ . The regularity conditions necessary turn out
to be only slightly stronger.

In this paper we prove:

Suppose that for every point of a simple curve:

1. The left and the right tangents exist and are nonzero.
2. The smaller angle between these tangents is less thanπ .

Under these conditions there exists a finite sampling density such that the traveling
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Fig. 1. 1-3-2-4 is shorter than 1-2-3-4.

salesman path solves the polygonal reconstruction problem for all samples with larger
sample density.

Regularity is a local property. In contrast to that, it is a global property for a path to be
a shortest polygonal path through a finite point set. One of the most interesting aspects of
our work is this transition from a local to a global property and the methods used therein.
We first prove a local version of our global theorem by using a projection technique
from integral geometry. We believe that this technique could be useful in many other
contexts, even in the study of higher-dimensional objects than curves. At a first glance
it is not obvious how to derive the global version from the local one. This extension is
achieved by an application of two corollaries of Menger’s theorem. As a by-product we
generalize Menger’s theorem to simple closed curves in Euclidean space.

2. Basic Definitions

In this section we give definitions and cite theorems that we need for our proofs. The
results that we present are only valid for connected simple curves in Euclidean space.
Hence in the followingγ : [0,1]→ Rd is always a connected simple curve. We use the
symbolγ either to denote a mapping or to denote the image of the mapping. It should
always be clear from the context whatγ denotes.

We call a curveγ s(emi)-regular if in every point onγ nonzero left and right tangents
exist. This is expressed in the following definition:

Definition 2.1. Let

T = {(t1, t2): t1 < t2, t1, t2 ∈ [0,1]}
and

τ : T → Sd−1, (t1, t2) 7→ γ (t2)− γ (t1)
|γ (t2)− γ (t1)| .
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The curveγ is called left (right) regular atγ (t0)with left tangent 1(γ (t0)) or right tangent
r(γ (t0)) if for every sequence(ξn) in T which converges from the left (right) to(t0, t0)
in closure(T) the sequenceτ(ξn) converges to 1(γ (t0)) or r(γ (t0)), respectively. We call
γ s-regular if it is left and right regular in all pointsγ (t), t ∈ [0,1]. A curve is called
regular if it is s-regular and in every point left and right tangent coincide.

The relationship between s-regularity and two of the most interesting geometric prop-
erties of curves, length and total absolute curvature, was shown by Aleksandrov and
Reshetnyak [1].

Theorem 2.1. Every curveγ of finite total absolute curvature C(γ ) is s-regular and
every s-regular curve has finite length L(γ ).

Both length and total absolute curvature are defined via inscribed polygons. For the
definition of inscribed polygons we need the definition of a sample, which we give next.

Definition 2.2. A sampleSof γ is a finite sequence

S= {p1, . . . , p|S|}
of points wherepi ∈ γ . We assume that the sample pointspi are ordered according
to the order of theγ−1(pi ) ∈ [0,1]. To every sampleS its density is defined to be the
inverse of the following number:

ε(S) = sup
x∈γ

min{|pi − x|: i = 0, . . . ,n}.

In the following we sometimes make use of the conventionp|S|+1 = p|S| if γ is open
and p|S|+1 = p1 if γ closed.

Sometimes, especially for closed curves, it is more appropriate to make use of an ordering
of the sample points that is independent of a specific parameterization.

Definition 2.3. Let S= {p1, . . . , p|S|} be a sample ofγ . If γ is open one writesi G j
if γ−1(pi ) < γ−1(pj ). This notion is independent of an orientation preserving change
of parameterization. Ifγ is closed and has finite length choose an orientation alongγ

and writei G j if i 6= j andL(γ (pi : pj )) ≤ L(γ (pj : pi )), whereγ (pi : pj ) ⊂ γ is the
arc connectingpi and pj in the orientation alongγ . One writesiG j if the possibility
that i = j is included.

Now we are prepared to give the definition of length and total absolute curvature. Let
P(S) denote the polygon that connects a sampleS in the right order.

Definition 2.4.

1. The (Jordan) lengthL(γ ) of a curveγ is the following number:

sup{L(P(S)): S is a sample ofγ },
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where

L(P(S)) =
|S|∑
i=1

|pi+1− pi |.

2. The curvatureC(γ ) of a curveγ is defined as the number

sup{C(P(S)): S is a sample ofγ },
where

C(P(S)) =
|S|−2∑
i=1

|∠(pi+1− pi , pi+2− pi+1)|,

if γ is open, and

C(P(S)) =
|S|−1∑
i=1

|∠(pi+1− pi , pi+2− pi+1)|,

wherep|S|+1 = p1, if γ is closed.

In the following we make use of a theorem of Reshetnyak [14], which states how one gets
the length of a curve by integration over the length of the orthogonal projections of the
curve on all one-dimensional subspaces` ∈ Rd+1. The collection of all one-dimensional
subspaces ofRd+1 forms thed-dimensional projective spacePd. In the following the
elements ofPd are sometimes called lines. From a standard construction in integral
geometry one gets a probability measureµd onPd from the surface area measure on the
d-dimensional sphereSd:

The continuous and locally homeomorphic mapping

ϕ: Sd = {x ∈ Rd+1: |x| = 1} → Pd, x 7→ {λx: λ ∈ R},
is a double cover. Sinceϕ is continuous, it is also measurable. That is the inverse image
ϕ−1(B) of a Borel setB ∈ Pd is a Borel set inSd. OnSd we have the usual surface area
measureνd. Therefore we get a measureµ′d onPd asµ′d(B) = νd(ϕ

−1(B)) for all Borel
setsB ⊆ Pd. We have ∫

Pd

dµ′d = vol(Sd) = 2π(d+1)/2

0((d + 1)/2)
,

which we use to normalizeµ′d. That is, we set

µd(B) = 1

vol(Sd)
µ′d(B) (1)

for all Borel setsB ⊂ Pd.
The theorem of Reshetnyak now reads as follows:

Theorem 2.2. For any s-regular curveγ one finds∫
Pd

L(π`(γ )) dµd(`) = cd L(γ ) with cd = 0((d + 1)/2)√
π0((d + 2)/2)

.
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3. A Local Analysis

In this section we give several reformulations of our notion of regularity. We end up with
a reformulation which is a local version of the theorem we want to prove in this paper.
The main tool to prove this version is Theorem 2.2. To apply this theorem we have to
study projections of sample points on one-dimensional subspaces.

The first reformulation of regularity in the following lemma is a pure metric interpre-
tation of our definition of regularity.

Lemma 3.1. Let γ be a simple closed curve, which is left(right) regular in p ∈ γ .
Let (pn), (qn), and(rn) be sequences of points fromγ , that converge to p from the left
(right), such that pn < qn < rn for all n ∈ N in an order locally around p alongγ . Let
αn be the angle at qn of the triangle with corner points pn,qn, and rn. Then the sequence
of angles(αn) converges toπ .

Proof. Sinceγ seen as a mapping from an interval is locally a homeomorphism the
sequences(γ−1(pn)), (γ

−1(qn)), and(γ−1(rn)) converge toγ−1(p). Thus by our defi-
nition of left (right) regularity asymptotically the three oriented segments

conv{pn,qn}, conv{qn, rn}, and conv{pn, rn}
have to point in the direction of the left (right) tangent l(p) or r(p), respectively. That
is, limn→∞ αn = π .

We believe that this metric aspect of regularity is the most important one for our
theorem to hold, but in the following we have to make use of the linear structure of
Rd+1. We exploit this linear structure by studying projections of a set of sample points
on one-dimensional subspaces ofRd+1.

In the following letγ be s-regular and letp ∈ γ be a fixed point. We want to introduce
the following notions. Letη > 0. The connected component of

{q ∈ γ : |p− q| < η}
which containsp is denoted byBη(p). We assume that every one-dimensional subspace
` of Rd+1 not perpendicular to l(p) is oriented according to the orientation induced by
the orthogonal projectionπ`(l(p)) of l(p) on` and that every one-dimensional subspace
` perpendicular to l(p) carries an arbitrary orientation.

We want to compare the ordering of a set of sample points close top on γ with
the ordering of the projections of these points on one-dimensional subspaces ofRd+1.
The following reformulation of regularity states to which extent these orderings can be
different:

Lemma 3.2. Assume there exists a sequence(`n) of one-dimensional subspaces of
Rd+1 and sequences(pn), (qn), (rn) ∈ B1/n(p) with pn < qn < rn ≤ p in the order
alongγ , but

π`n(qn) < π`n(pn) < π`n(rn) or π`n(pn) < π`n(rn) < π`n(qn)
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in the order on`n. Then the limit of every convergent subsequence of(`n) has to be
perpendicular tol(p).

Proof. We want to do the proof by contradiction. That is, we can assume that(`n)

converges in the topology ofPd and that

0≤ β := lim
n→∞∠(l(p), `n) <

π

2
,

where∠(l(p), `n) denotes the smaller of the two angles defined by the subspace`n and
the subspace spanned by l(p). For the proof we assume without loss of generality that
π`n(qn) < π`n(pn) < π`n(rn). Furthermore, we can assume by movingqn or rn a little
bit onγ that there exists 0< λ < 1 (independent ofn) such that

|π`n(pn)− π`n(rn)| = λ cos(β)|π`n(qn)− π`n(rn)|.
Why can we do so? By our assumption we have

|π`n(qn)− π`n(rn)| = |π`n(qn)− π`n(pn)| + |π`n(pn)− π`n(rn)|,
and hence

|π`n(pn)− π`n(rn)| = λn|π`n(qn)− π`n(rn)|
with 0< λn < 1. From the continuity ofγ and the continuity of the projection mapsπ`n

we find that movingpn towardqn onγ can make|π`n(qn)− π`n(pn)| arbitrarily small.
Similarly, movingrn towardqn onγ can make|π`n(pn)−π`n(rn)| arbitrarily small. Now
move pn towardqn on γ if λn < λ cos(β) or movern towardqn on γ if λn > λ cos(β)
as long asλn 6= λ cos(β).

From the regularity ofγ we find that

lim
n→∞∠(conv{qn, rn}, l(p)) = lim

n→∞∠(conv{pn, rn}, l(p)) = 0

and together with the triangle inequality for spherical triangles

lim
n→∞∠(conv{qn, rn}, π`n(conv{qn, rn}))

≤ lim
n→∞

(
∠(conv{qn, rn}, l(p))+ ∠(l(p), π`n(conv{qn, rn}))

)
= lim

n→∞∠(conv{qn, rn}, l(p))+ lim
n→∞∠(l(p), π`n(conv{qn, rn}))

= 0+ lim
n→∞∠(l(p), `n)

= β < π

2
.

Analogously we find

lim
n→∞∠(conv{pn, rn}, π`n(conv{pn, rn})) ≤ β < π

2
.

Hence

0< cos(β) ≤ lim
n→∞
|π`n(qn)− π`n(rn)|
|qn − rn| ≤ 1
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and

0< cos(β) ≤ lim
n→∞
|π`n(pn)− π`n(rn)|
|pn − rn| ≤ 1.

Therefrom we find

1

cos(β)
≥ lim

n→∞
|π`n(qn)− π`n(rn)|
|qn − rn|

|pn − rn|
|π`n(pn)− π`n(rn)|

= lim
n→∞

|π`n(qn)− π`n(rn)|
|π`n(pn)− π`n(rn)|

|pn − rn|
|qn − rn|

= lim
n→∞

|π`n(qn)− π`n(rn)|
|π`n(pn)− π`n(rn)| lim

n→∞
|pn − rn|
|qn − rn|

= 1

λ cos(β)
lim

n→∞
|pn − rn|
|qn − rn|

and thus

lim
n→∞
|pn − rn|
|qn − rn| ≤ λ < 1.

Hence there existsN ∈ N such that|pn−rn| ≤ |qn−rn| for all n ≥ N. Now we consider
the triangles with corner pointspn,qn, andrn. Let αn be the angle atqn. From the law
of cosines together with|pn − rn| ≤ |qn − rn| we find

cos(αn) = −|pn − rn|2− |pn − qn|2− |qn − rn|2
2|pn − qn||qn − rn| > 0.

Thusαn has to be smaller than or equal toπ/2 for all n ≥ N. Sinceγ is left regular in
p that is a contradiction to Lemma 3.1.

From this lemma we can derive another one that states the measureµd of the set of
lines on which the sample points in a small neighborhood left fromp are not projected
in the right order turns to zero as the neighborhood shrinks top.

Lemma 3.3. For all n ∈ N let pn,qn, rn ∈ B1/n(p) with pn < qn < rn ≤ p in the
order alongγ . Let

Nn = {` ∈ Pd: π`(qn) < π`(pn) < π`(rn) or π`(pn) < π`(rn)

< π`(qn) in the order oǹ },

whereπ` denotes the orthogonal projection on the line`. Thenlimn→∞ µd(Nn) = 0.

Proof. In [14] Reshetnyak shows: LetV be ad-dimensional subspace ofRd+1 and let
E ⊂ Pd be the set of all one-dimensional subspaces contained inV . Thenµd(E) =
0. The proof of the lemma follows directly from this theorem of Reshetnyak and
Lemma 3.2.
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Obviously an analogous result for sample points larger thanp in the order alongγ
also holds.

Now we are prepared to prove a local version of our theorem. For a given sampleSof a
neighborhood ofp we fix the smallest and the largest sample point alongγ and consider
paths throughSwhich connect these points. One such path is the polygonal reconstruction
P(S)which connects the sample points in their order alongγ . We distinguish three types
of lines` ∈ Pd:

1. There exists a path through the sample points different fromP(S) which has a
shorter projection oǹ thanP(S).

2. Every path through the sample points different fromP(S) has a larger projection
on` thanP(S).

3. There exist paths through the sample points different fromP(S) which has pro-
jections oǹ with the same length as the projection ofP(S), but there is no path
with a shorter projection.

The proof is subdivided into three steps. First, we show that the measure of the first set
of lines tends to zero as the neighborhood ofp shrinks top itself. Second, there exists
a constant larger than zero such that the measure of the second set of lines is larger than
this constant for arbitrary small neighborhoods ofp. In the third step we want to apply
Theorem 2.2. We use this theorem and the results of the first two steps to show that for
small neighborhoods ofp the polygonal reconstructionP(S) has to be the shortest path
through the sample points.

Theorem 3.1. Assume

α = sup{∠(l(q), r(q)): q ∈ γ } < π

and let(Sn) be a sequence of samples of B1/n(p). Let TSP∗(Sn) be a path of minimal
length through the sample points Sn with fixed startpointmin Sn and fixed endpoint
maxSn. Heremin andmaxare taken with respect to the order induced on Sn byγ . Then
there exists N∈ N such that

TSP∗(Sn) = P(Sn),

for all n ≥ N. Furthermore, TSP∗(Sn) is unique for all n≥ N.

Proof. First Step. Let Ln ⊂ Pd be the set of lines for which the projectionπ`(P(Sn))

is not a shortest path through the projected sample pointsπ`(Sn) and letµd be the
probability measure onPd introduced in (1).

We show that

lim
n→∞µd(Ln) = 0.

For the proof we use the following abbreviations (min and max denote the minimum
and the maximum alongγ and miǹ and max̀ denote the minimum and the maximum
along`):

m1 = π`(min Sn), m2 = min
`
π`(Sn), m3 = max

`
π`(Sn), m4 = π`(maxSn).
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Fig. 2. Path of minimal length.

Take` ∈ Pd together with its orientation. A path of minimal length through the points
π`(Sn) which connectsm1 with m4 (see Fig. 2) consists of

conv{m1,m2} ∪ conv{m2,m3} ∪ conv{m3,m4}.
That is, the points of̀ betweenm1 andm2 are covered twice by a path of minimal
length through the pointsπ`(Sn), the points betweenm1 andm4 are covered once, and
the points betweenm3 andm4 are covered twice again. Ifπ`(P(Sn)) is not a path of
minimal length through the pointsπ`(Sn), then there has to exist an interval

I =
[
min
`
{π`(pi

n), π`(p
i+1
n )},max

`
{π`(pi

n), π`(p
i+1
n )}

]
on` with pi

n, pi+1
n ∈ Sn, which is covered byπ`(P(Sn))

1. 2+ 2k times,k ≥ 1, if

m2 ≤ min
`
{π`(pi

n), π`(p
i+1
n )} < max

`
{π`(pi

n), π`(p
i+1
n )} ≤ m1

or

m4 ≤ min
`
{π`(pi

n), π`(p
i+1
n )} < max

`
{π`(pi

n), π`(p
i+1
n )} ≤ m3,

2. 1+ 2k times,k ≥ 1, if

m1 ≤ min
`
{π`(pi

n), π`(p
i+1
n )} < max

`
{π`(pi

n), π`(p
i+1
n )} ≤ m4.

For all pj
n ∈ Sn, j ∈ {2, . . . , |Sn| − 2}, we call the interval

I j =
[
min
`
{π`(pj

n), π`(p
j+1
n )},max

`
{π`(pj

n), π`(p
j+1
n )}

]
positive if π`(p

j
n) < π`(p

j+1
n ) in the order oǹ and negative otherwise. The intervals

I j which cover the intervalI must have alternating signs. That is, ifπ`(P(Sn)) is not a
shortest path through the pointsπ`(Sn) we find, using thatP(Sn) connects thepj

n ∈ Sn

in their order alongγ and using the continuity ofγ and of the projection mapπ`, three
points pn,qn, rn ∈ B1/n(p) with pn < qn < rn ≤ p in the order alongγ , but

π`(qn) < π`(pn) < π`(rn) or π`(pn) < π`(rn) < π`(qn) in the order oǹ ;
or we find three pointspn,qn, rn ∈ B1/n(p) with pn > qn > rn ≥ p in the order along
γ , but

π`(qn) > π`(pn) > π`(rn) or π`(pn) > π`(rn) > π`(qn) in the order oǹ .

See Fig. 3 for an example.
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Fig. 3. Example: 4,5,6> p are not projected in the right order.

In general the pointspn,qn, andrn need not be sample points. From Lemma 3.3 we
can conclude that

lim
n→∞µd(Ln) = 0.

Second Step. Let Mn ⊂ Pd be the set of lines̀ for which we have:

1. The order ofSn alongγ and the order ofSn induced by the order ofπ`(Sn) on `
coincide.

2. For all conv{pi , pi+1} ⊂ P(Sn) with pi , pi+1 ∈ Sn we have

|π`(pi+1)− π`(pi )| ≥ 1

2
cos

(
π + α

4

)
|pi+1− pi |.

We show that there existc > 0 andN ′ ∈ N such that for alln ≥ N ′ we have

µd(Mn) ≥ c.

For the proof we construct a set of linesC ⊂ Pd with µd(C) > 0 and show that there
existsN ′ ∈ N such thatC ⊂ Mn for all n ≥ N ′. The setC is defined as follows: Let
`0 be the line,̀ 0 ⊂ span{l(p), r(p)} such that̀ ⊥0 ⊂ span{l(p), r(p)} halves the angle
∠(l(p),−r(p)) between the lines determined by l(p) and r(p). Now we define

C = {` ∈ Pd: ∠(`, `0) ≤ 1
4(π − α)}.

By ∠(`, `′) for `, `′ ∈ Pd we denote the value of the minimum of the two angles
determined bỳ and`′. The set

⋃
`∈C{x ∈ `} ⊂ Rd+1 is a double cone (see Fig. 4).

By constructionπ`(l(p)) andπ`(r(p)) point in the same direction on every` ∈ C.
Sinceα < π we haveµd(C) > 0. It remains to check conditions 1 and 2 to prove that
for sufficiently largen we haveC ⊂ Mn.

Fig. 4. The double cone C.
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1. Assume that for arbitrary largen we find`n ∈ C such that the first condition is
violated. Then we can find three pointspn,qn, rn ∈ B1/n(p) with pn < qn < rn ≤ p in
the order alongγ , but

π`n(qn) < π`n(pn) < π`n(rn) or π`n(pn) < π`n(rn) < π`n(qn)

in the order oǹ n; or we find three pointspn,qn, rn ∈ B1/n(p) with pn > qn > rn ≥ p
in the order alongγ , but

π`n(qn) > π`n(pn) > π`n(rn) or π`n(pn) > π`n(rn) > π`n(qn)

in the order oǹ n. By Lemma 3.1 the limit of every convergent subsequence of(`n) has
to be perpendicular to either l(p) or r(p). SinceC is compact we find̀ ∈ C as the limit
of a convergent subsequence of(`n) which is perpendicular to either l(p) or r(p). On
the other hand we find for all̀∈ C using the triangle inequality for spherical triangles,

∠(`, l(p)) ≤ ∠(`, `0)+ ∠(`0, l(p))

< 1
4(π − α)+

(
π

2
− π − α

2

)
= π + α

4
<
π

2

and analogously

∠(`, r(p)) < π

2
.

That is, everỳ ∈ C is neither perpendicular to l(p) nor to r(p). So we have a contra-
diction. That means, for all sufficiently largen the first condition cannot be violated.

2. From the s-regularity ofγ and the continuity of∠we have, forpi
n, pi+1

n ∈ Sn with
pi

n < pi+1
n ≤ p and all` ∈ C,

lim
n→∞∠(`, conv{pi

n, pi+1
n }) = ∠

(
`, lim

n→∞ conv{pi
n, pi+1

n }
)

= ∠(`, l(p)) ≤ π + α
4

.

That is, for all sufficiently largen and all` ∈ C we have

|π`(pi )− π`(pi+1)| ≥ 1

2
cos

(
π + α

4

)
|pi − pi+1|.

For pi
n, pi+1

n ∈ Sn with p ≤ pi
n < pi+1

n we get the same result using r(p) instead of
l(p) in the triangle inequality for spherical triangles. It remains to consider the case that
pi

n < p < pi+1
n . We chooseη > 0 such that

cos

(
π + α

4
+ η

)
>

1

2
cos

(
π + α

4

)
and show that, for all̀ ∈ C and all sufficiently largen,

∠(`, conv{pi
n, pi+1

n }) ≤
π + α

4
+ η.
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To do so letπ be the projection on span{l(p), r(p)}. The s-regularity ofγ implies

lim sup(∠(`0, π(conv{pi
n, pi+1

n }))) ≤ ∠(`0, l(p)) = ∠(`0, r(p)). (2)

We define the distance between two two-dimensional subspaces ofRd+1 by the smaller
of the two dihedral angles defined by them. With this metric the span seen as a map-
ping becomes continuous. From the continuity of∠ and the continuity of span we
get

0 = lim
n→∞∠

(
span

{
pi

n − p

|pi
n − p| ,

p− pi+1
n

|p− pi+1
n |

}
, conv{pi

n, pi+1
n }

)
= ∠

(
lim

n→∞ span

{
pi

n − p

|pi
n − p| ,

p− pi+1
n

|p− pi+1
n |

}
, lim

n→∞ conv{pi
n, pi+1

n }
)

= ∠
(
span{l(p), r(p)}, lim

n→∞ conv{pi
n, pi+1

n }
)

= lim
n→∞∠(span{l(p), r(p)}, conv{pi

n, pi+1
n }).

That is, for all sufficiently largen we have

∠(π(conv{pi
n, pi+1

n }), conv{pi
n, pi+1

n }) ≤ η. (3)

Finally we get, for all sufficiently largen using the inequalities (2), (3) and the triangle
inequality for spherical triangles,

∠(`, conv{pi
n, pi+1

n }) ≤ ∠(`, `0)+ ∠(`0, conv{pi
n, pi+1

n })
≤ ∠(`, `0)+ ∠(`0, π(conv{pi

n, pi+1
n }))

+∠(π(conv{pi
n, pi+1

n }), conv{pi
n, pi+1

n })
≤ ∠(`, `0)+ ∠(`0, l(p))+ η
≤ π − α

4
+ α

2
+ η

= π + α
4
+ η.

Hence for all sufficiently largen, all ` ∈ C, and allpi
n, pi+1

n ∈ Sn we have

|π`(pi )− π`(pi+1)| ≥ 1

2
cos

(
π + α

4

)
|pi − pi+1|.

That is, there existsN ′ ∈ N such that for alln ≥ N ′ we haveC ⊂ Mn. Hence

µd(Mn) ≥ µd(C) > 0.

Third Step. In the first two steps we considered the measures of the subspacesLn

and Mn of Pd, the space on which we want to integrate. In this step we compare
integrands.
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Fig. 5. Example: Projections oǹ∈ Ln (left) and oǹ ∈ Mn (right).

Let P̃(Sn) be a path different fromP(Sn) through the pointsSn, which connectsp1
n

with p|Sn|
n . We define the rank rk(pi

n, P̃(Sn)) of a sample pointpi
n ∈ Sn in the pathP̃(Sn)

as the number of sample points the pathP̃(Sn)meets on its way fromp1
n to p|Sn|

n before
it meetspi

n.
Let In be the following set of indices:

Pn = {i ∈ {2, . . . , |Sn| − 2}: rk(pi
n, P̃(Sn)) > rk(pi+1

n , P̃(Sn))}.
If we compare the length of the projectionsπ`(P(Sn)) andπ`(P̃(Sn)) on ` ∈ Ln (see
Fig. 5) we find

L(π`(P(Sn)))− L(π`(P̃(Sn))) ≤ 2
∑
i∈In

|π`(pi
n)− π`(pi+1

n )|. (4)

On the other hand we find, for the length of projections on` ∈ Mn (see Fig. 5),

L(π`(P̃(Sn)))− L(π`(P(Sn))) ≥ 2
∑
i∈In

|π`(pi
n)− π`(pi+1

n )|. (5)

Furthermore, we have, for allpi
n ∈ Sn, i ∈ {1, . . . , |Sn| − 1} and all` ∈ Mn,

|π`(pi+1)− π`(pi+1)| ≥ 1

2
cos

(
π + α

4

)
|pi+1− pi |.

From this inequality we get another inequality which is valid for all` ∈ Mn and all
`′ ∈ Ln,∑

i∈In

|π`(pi
n)− π`(pi+1

n )| ≥ 1

2
cos

(
π + α

4

)∑
i∈In

|π`′(pi
n)− π`′(pi+1

n )|

which implies, together with (4) and (5),

L(π`(P̃(Sn)))− L(π`(P(Sn))) ≥ 1

2
cos

(
π + α

4

)(
L(π`′(P(Sn)))− L(π`′(P̃(Sn)))

)
.

Since this inequality is valid for all̀ ∈ Mn and all`′ ∈ Ln we get for the increase of
length onMn∫

Mn

(
L(π`(P̃(Sn)))− L(π`(P(Sn)))

)
dµd(`)

≥ µd(Mn)
1

2
cos

(
π + α

4

)
sup
`∈Ln

(
L(π`(P(Sn)))− L(π`(P̃(Sn)))

)
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and for the decrease of length onLn∫
Ln

(
L(π`(P(Sn)))− L(π`(P̃(Sn)))

)
dµd(`)

≤ µd(Ln) sup
`∈Ln

(
L(π`(P(Sn)))− L(π`(P̃(Sn)))

)
.

Because of limn→∞ µd(Ln) = 0 there existsN ≥ N ′ such for alln ≥ N we have

µd(Ln) < µd(C)
1

2
cos

(
π + α

4

)
≤ µd(Mn)

1

2
cos

(
π + α

4

)
.

Using Theorem 2.2 we find that for alln ≥ N there is no shortcut possible and that
P(Sn) is the unique path of minimal length through the pointsSn with fixed start- and
endpoints, because the polygon connecting the points in the order induced byγ has a
shorter projection on all̀ ∈ C than every other polygon through the pointsSn with fixed
start- and endpoints.

4. Menger’s Theorem

We need Menger’s theorem and some corollaries to achieve the transition from the local
results of the last section to the global.

Menger’s elementary proof of his theorem is only valid for simple open curves. Here
we give a new proof that also holds for simple closed curves. For this proof, which in
contrast to the original proof of Menger is restricted to curves in Euclidean spaces, we
need the following lemma.

Lemma 4.1. Letγ be a simple curve and let(Sn) be a sequence of samples ofγ with
limn→∞ ε(Sn) = 0 and lim supL(TSP(Sn)) <∞. Let

γn: [0, L(TSP(Sn))] → Rd

be the parameterization by length of TSP(Sn). Then the sequence(γn) has a Fŕechet
convergent subsequence.

Proof. By turning to an appropriate subsequence we can assume that

L(TSP(Sn)) < 2 lim supL(TSP(Sn)) =: c <∞

for all n ∈ N. To prove the lemma it is sufficient to check that the premises of the theorem
of Ascoli [9] are fulfilled.

1. The sequence of reduced parameterizations

γ ′n: [0,1]→ Rd, t 7→ γn(t L(TSP(Sn)))
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is equicontinuous, because

|γ ′n(t ′)− γ ′n(t)| ≤ (t ′ − t)L(γ ′n)
= (t ′ − t)L(TSP(Sn))

≤ c(t ′ − t)

for all 0≤ t < t ′ ≤ 1 and alln ∈ N.
2. We have supn∈N sup{|γ ′n(t)|: t ∈ [0,1]} <∞, becauseγ is compact.

Now the theorem of Ascoli states that the sequence(γ ′n) has a convergent subsequence
(γ ′m) which converges to a continuous function

γ ′: [0,1]→ Rd.

Note that the condition lim supL(TSP(Sn)) < ∞ is always fulfilled ifγ has finite
length. Now we are prepared to prove Menger’s theorem. In this proof we make use of
the one-dimensional Hausdorff measureH1, see [8] for the definition and its relation to
the geometry of curves.

Theorem 4.1. Every simple curveγ satisfies

L(γ ) = sup{L(TSP(S)): S is a sample ofγ },

where TSP(S) denotes a shortest path through the sample points S ifγ is an open curve
and a shortest tour otherwise.

Proof. Assume the contrary. That is, we can assume that

sup{L(TSP(S)): S is a sample ofγ } < L(γ ),

becauseTSP(S) ≤ P(S) ≤ L(γ ) for every sampleS of γ . Take any sequence(Sn) of
samples fromγ with limn→∞ ε(Sn) = 0. By our assumption we have

lim supL(TSP(Sn)) < L(γ ).

Let γn: [0,1] → Rd be the reduced parameterization ofTSP(Sn). From Lemma 4.1
we know that there exists a Fr´echet convergent subsequence(γm) of (γn). Let the con-
tinuous functionγ ′: [0,1] → Rd be the limit of (γm). We have, for the convergent
subsequence,

lim supL(TSP(Sm)) ≤ lim supL(TSP(Sn)) < L(γ ).

Next we show thatγ ⊂ γ ′([0,1]): Take p ∈ γ . Since limn→∞ ε(Sn) = 0, one finds a
sequence(pn)with pn ∈ Sn which converges top. Of course the subsequence(pm)with
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pm ∈ γm also converges top. For allk ∈ N there existsm(k) ∈ N andp′m(k) ∈ γ ′([0,1])
such that

|p′m(k) − pm(k)| < 1

2k
and |pm(k) − p| < 1

2k
.

Hence by the triangle inequality we have|p′m(k) − p| < 1/k. From the compactness of
γ ′([0,1]) we getp ∈ γ ′([0,1]).

Bothγ andγ ′([0,1]) are as compact setsH1 measurable. Using the properties of the
one-dimensional Hausdorff measureH1, see [8], and our assumption we find

L(γ ) = H1(γ )

≤ H1(γ ′([0,1]))

≤ lim inf H1(TSP(Sm))

= lim inf L(TSP(Sm))

≤ lim supL(TSP(Sm))

< L(γ ).

That is a contradiction.

The following corollary states that the length of the traveling salesman path (tour)
through a sequence of sample points converges to the length of the curve when the density
of the sample goes to infinity. To avoid confusion we remark here that in the following
π andπn always denote permutations and no longer projections.

Corollary 4.1. Let γ be a curve and let(Sn) be a sequence of samples ofγ , with
limn→∞ ε(Sn) = 0. Then

L(γ ) = lim
n→∞ L(TSP(Sn)),

where TSP(Sn) denotes a shortest path through the sample points Sn if γ is an open
curve and a shortest tour otherwise.

Proof. AssumeL(γ ) <∞. For a givenη > 0 consider three sets:

1. From Menger’s theorem we know that there exists a sample

S= {q1, . . . ,q|S|} with L(TSP(S)) > L(γ )− η
2
.

2. Let S′ = {p1, . . . , p|S
′|} ∈ {Sn: n ∈ N} be such thatε(S′) < η/4|S|.

3. Let S′′ = {r 1, . . . , r |S|} ⊂ S′ be a multiset with|r i − qi | ≤ ε(S′) for all i =
1, . . . , |S|.

In the following we make use of the conventions for|S| + 1 and|S′| + 1 introduced in
Definition 2.2. Letπ be a permutation of{1, . . . , |S|} such that

|S|∑
i=1

|qπ(i+1) − qπ(i )| = L(TSP(S)),
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let π ′ be a permutation of{1, . . . , |S′|} such that

|S′|∑
i=1

|pπ ′(i+1) − pπ
′(i )| = L(TSP(S′)),

and letπ ′′ be a permutation of{1, . . . , |S|} such that

|S|∑
i=1

|r π ′′(i+1) − r π
′′(i )| is minimal.

Then it follows that:

1.
|S|∑
i=1

|r π ′′(i+1) − r π
′′(i )| ≤

|S′|∑
i=1

|pπ ′(i+1) − pπ
′(i )|

by construction.
2.

|S|∑
i=1

|qπ(i+1) − qπ(i )| ≤
|S|∑
i=1

|qπ ′′(i+1) − qπ
′′(i )|

by the definition ofπ .
3. From|r π ′′( j ) − qπ

′′( j )| < ε(S′) for all j = 1, . . . , |S| and the triangle inequality it
follows that ∣∣∣|r π ′′(i+1) − r π

′′(i )| − |qπ ′′(i+1) − qπ
′′(i )|

∣∣∣ < 2ε(S′).

Combining these inequalities leads to

L(TSP(S′)) =
|S′|∑
i=1

|pπ ′(i+1) − pπ
′(i )|

≥
|S|∑
i=1

|r π ′′(i+1) − r π
′′(i )|

≥
|S|∑
i=1

|qπ ′′(i+1) − qπ
′′(i )| − 2|S|ε(S′)

≥
|S|∑
i=1

|qπ(i+1) − qπ(i )| − 2|S|ε(S′)

= L(TSP(S))− 2|S|ε(S′)
> L(TSP(S))− η

2
> L(γ )− η.

Sinceη can be arbitrary small, we are done. The proof in the caseL(γ ) = ∞ is quite
similar.
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The next lemma states that the maximal length of a segment in a traveling salesman
path (tour) of a sequence of sample points from a curve of finite length tends to zero as the
density of the sample goes to infinity. The proof again makes use of the one-dimensional
Hausdorff measureH1.

Lemma 4.2. Assume that the curveγ has finite length and let(Sn) be a sequence
of samples ofγ with limn→∞ ε(Sn) = 0. For all n ∈ N let πn be the permutation of
{1, . . . , |Sn|} induced by TSP(Sn). Then

lim
n→∞max{|pπn(i+1) − pπn(i )|: i = 1, . . . , |Sn|} = 0,

whereπn(|Sn + 1|) = πn(|Sn|) if γ is an open curve andπn(|Sn + 1|) = πn(1) if γ is
closed.

Proof. Assume the contrary. That is, by choosing an appropriate subsequence one can
assume that there existsc > 0 such that for everyn ∈ N it holds that

max{|pπn(i+1) − pπn(i )|: i = 1, . . . , |Sn|} > c.

Let pn = pπn(i ) ∈ Sn andqn = pπn(i+1) ∈ Sn be such that|pn − qn| > c. By the
compactness ofγ we can turn to an appropriate subsequence such that(pn) converges
to p ∈ γ and(qn) converges toq ∈ γ . Of course it holds that|p− q| ≥ c. Remove the
interior of conv{pn,qn} from TSP(Sn). We consider two cases:

First, if γ is an open curve, thenTSP(Sn) decomposes into two pathsP1
n which

connectspπn(1) with pπn(i ) and P2
n which connectspπn(i+1) with pπn(|Sn|). Let Pn de-

note P1
n ∪ P2

n and letγ j
n : [0,1] → Rd, j = 1,2, be the reduced parameterization

of P j
n . As in Lemma 4.1 one can use the theorem of Ascoli to show that(γ

j
n ) has a

Fréchet convergent subsequence. That is, we can assume by considering a common sub-
sequence that(γ 1

n ) and (γ 2
n ) converge to continuous functionsγ 1: [0,1] → Rd and

γ 2: [0,1] → Rd. Let γ ′ be γ 1([0,1]) ∪ γ 2([0,1]). Second, ifγ is a closed curve,
thenTSP(Sn) becomes after the removal of the interior of conv{pn,qn} a path denoted
by Pn which connectspπn(i ) with pπn(i+1). Let γn be the reduced parameterization of
Pn. As in Lemma 4.1 one can show that(γn) has a Fr´echet convergent subsequence.
That is, we can assume by taking an appropriate subsequence that(γn) converges to
a continuous functionγ ′: [0,1] → Rd. We use the symbolγ ′ also to denote the set
γ ′([0,1]).

Next we show thatγ ⊂ γ ′: Take r ∈ γ . Since limn→∞ ε(Sn) = 0, one finds a
sequence(rn) with rn ∈ Sn which converges tor . For all k ∈ N there existsn(k) ∈ N
andr ′n(k) ∈ γ ′ such that

|r ′n(k) − rn(k)| < 1

2k
and |rn(k) − r | < 1

2k
.

Hence by the triangle inequality|r ′n(k) − r | < 1/k. From the compactness ofγ ′ we get
r ∈ γ ′.
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The setsγ, γ ′, Pn, and conv{pn,qn} are all as compact setsH1 measurable. Using the
properties of the one-dimensional Hausdorff measureH1, see [8], we find

H1(γ ′) ≥ H1(γ ∪ conv{pn,qn})
= H1(γ )+ H1(conv{p,q})
> H1(γ )

= L(γ )

≥ supL(Pn)

= supH1(Pn)

≥ H1(γ ′).

That is a contradiction.

5. From Local to Global

In this section we finally want to prove the promised theorem. That is, here we achieve
the transition from the local version of the theorem to the global. To do so we need
another definition.

Definition 5.1. Given a curveγ and a sampleS from γ . We callr ∈ Sa return point,
if r is connected top,q ∈ S in a traveling salesman path (tour) ofS andr G p,q or
r > p,q in the order alongγ . In the first case we call the return point positive and in
the second case we call it negative. For open curves we also call the start- and endpoints
of TSP(S) the return points.

For example in Fig. 1 points 2 and 3 are return points. In the traveling salesman path,
point 2 is connected to points 3 and 4, which are both larger than point 2 in the order
along the curve. Point 3 is connected to points 1 and 2, which are both smaller than
point 3 in the order along the curve. Hence point 2 is a negative return point and point 3
is a positive return point.

First we prove the global result for closed curves. The proof is again subdivided into
three steps.

Theorem 5.1. Letγ be a closed curve. Assume

α = sup{∠(l(q), r(q)): q ∈ γ } < π

and let(Sn) be a sequence of samples ofγ with limn→∞ ε(Sn) = 0. Then there exists
N ∈ N such that TSP(Sn) = P(Sn) for all n ≥ N. Here TSP(Sn) is a shortest tour
through the points Sn. Furthermore, TSP(Sn) is unique for all n≥ N.

Proof. The proof is done by contradiction. Assume without loss of generality that
TSP(Sn) 6= P(Sn) for all n ∈ N.
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First Step. We show that for largen there exist at least four return points. First we
show that there exists at least one return point for largen. Assume the contrary. That is,
there does not exist a return point inSn for arbitrary largen. By turning to a subsequence
one can assume without loss of generality that there does not exist a return point for all
n ∈ N. SinceTSP(Sn) 6= P(Sn) there existspi

n ∈ Sn which is not connected topi−1
n in

TSP(Sn). CutTSP(Sn) in two polygonal arcsP1
n , with startpointpi

n and endpointpi−1
n ,

and P2
n , with startpointpi−1

n and endpointpi
n. By our assumption that there does not

exist a return point inSn the sample points in both polygonal arcs are connected in their
order alongγ .

From Lemma 4.2 and Definition 2.4 of the Jordan length we can conclude that

lim
n→∞ L(P1

n ), lim
n→∞ L(P2

n ) = L(γ ).

That is, limn→∞ L(TSP(Sn)) = 2L(γ ). Which is a contradiction. Hence there has to
exist a return point for largen.

Observe that the signs, see Definition 5.1, of the return points inSn always sum to zero
and that return points incident alongTSP(Sn) always have different signs. So one can
conclude that for sufficiently largen there exist at least two return points. Now assume
that we have only two return pointspn andqn for arbitrary largen. CutTSP(Sn) into two
polygonal arcsP1

n andP2
n that connectpn with qn. The points along these arcs, running

from pn toqn, are ordered in the same way as they are ordered alongγ . From Lemma 4.2
and Definition 2.4 of the Jordan length we can conclude that

lim
n→∞ L(P1

n ), lim
n→∞ L(P2

n ) = L(γ ).

That is, limn→∞ L(TSP(Sn)) = 2L(γ ). Which is a contradiction to Corollary 4.1. Hence
for largen there are at least four return points inSn.

Second Step. We show that for largen there must exist two return pointsr 1
n G r 2

n neigh-
borly alongTSP(Sn), i.e., r 1

n andr 2
n are consequent return points alongTSP(Sn), such

that the other return points̃r 1
n neighborly tor 1

n and r̃ 2
n neighborly tor 2

n alongTSP(Sn)

are not in betweenr 1
n andr 2

n . That is, one cannot find the following situation:

r 1
n G r̃ 1

n G r 2
n or r 1

n G r̃ 2
n G r 2

n . (6)

However, it is possible that̃r 1
n = r 2

n andr̃ 2
n = r 1

n .
Assume that for all neighborly return points one finds situation (6) then all return

points have to accumulate in between two return points (see Fig. 6). That is impossible
sinceTSP(Sn) is closed.

Fig. 6. Accumulating return points.
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Fig. 7. Shortcut through return points.

Third Step. In this step the transition from the local version of the theorem to the global
one is achieved. In this transition use is made of the return pointsr 1

n andr 2
n found in

the second step. Choose the orientation ofTSP(Sn) such thatr 2
n G r 1

nalongTSP(Sn). Let
r 0

n ∈ Sn be the last sample point one encounters running throughTSP(Sn) with

r 0
n G r 1

n alongγ andr 0
n G r 2

n alongTSP(Sn)

and letr 3
n ∈ Sn be the first sample point one encounters running throughTSP(Sn) with

r 2
n G r 3

n alongγ andr 1
n G r 3

n alongTSP(Sn).

That is, one finds the situation shown in Fig. 7.
By the compactness ofγ we can assume by turning to convergent subsequences that

(r 0
n), (r

1
n), (r

2
n), and(r 3

n) converge tor 0, r 1, r 2, r 3 ∈ γ . Let sn ∈ Sn be the successor of
r 0

n and letpn ∈ Sn be the predecessor ofr 3
n alongTSP(Sn). By construction we have

r 0
n G r 1

n G sn and pn G r 2
n G r 3

n alongγ.

From Lemma 4.2 we can conclude that

lim
n→∞ |r

0
n − sn| = lim

n→∞ |pn − r 3
n | = 0.

That is,r 0 = r 1 andr 2 = r 3. Now assumer 1 G r 2. Consider three sets of sample points

M1
n = {p ∈ Sn: p≤ r 2

n alongTSP(Sn)},
M2

n = {p ∈ Sn: r 2
n ≤ p≤ r 1

n alongTSP(Sn)},
M3

n = {p ∈ Sn: p ≥ r 1
n alongTSP(Sn)}.

Using Corollary 4.1 and Theorem 4.1 one has

lim
n→∞ L(TSP(Sn))

≥ lim
n→∞

(
L(TSP(M1

n))+ L(TSP(M2
n))+ L(TSP(M3

n))
)

= lim
n→∞ L(TSP(M1

n))+ lim
n→∞ L(TSP(M2

n))+ lim
n→∞ L(TSP(M3

n))

= L(γ |[0,γ−1(r 2)])+ L(γ |[γ−1(r 1),γ−1(r 2)])+ L(γ |[γ−1(r 1),1])

= L(γ )+ 2L(γ |[γ−1(r 1),γ−1(r 2)])

> L(γ ).

That is a contradiction to Corollary 4.1. Hence we have

r 0 = r 1 = r 2 = r 3 =: r ∈ γ.
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Fig. 8. Two cases in the induction.

By turning to an appropriate subsequence of(Sn) we can assume without loss of gener-
ality that

r 0
n, r

1
n, r

2
n, r

3
n ∈ Sn ∩ B1/n(r ).

That is a contradiction to Theorem 3.1, which is the local version of this theorem.

Next we want prove the global result for open curves. To do so we start with three
lemmas.

Lemma 5.1. Let S be a sample of an open curveγ , let E(S) be the set of edges of
P(S), and let E′(S) be the set of edges of P′(S), where P′(S) is another polygonal path
on S. Let π be the permutation of{1, . . . , |S|} induced by P′(S). Then there exists a
bijection f: E′(S)→ E(S) with

1. f : conv{pπ(i ), pπ(i+1)} 7→ conv{pj , pj+1} with π(i ) ≤ j and j + 1≤ π(i + 1).
2. f |E(S)∩E′(S) = id.

Proof. The proof is done by induction on the cardinality ofS. If |S| = 2 we must have
P(S) = P′(S) and setf = id. Assume the lemma is proven for|S| < n. Now assume
that|S| = n. We distinguish two cases, which are depicted graphically in Fig. 8. The lines
in this figure denote edges ofPmin(S). In both cases map the edgee to conv{p1, p2}.
Now removep1 and consider the induced polygonTSP(S− {p1}) on the vertex set
{p2, . . . , pn}. In the second case add conv{pi , pj } to the induced polygonTSP(S−{p1}).
We are left with the problem of finding a suitable bijection on edge sets withn − 1
elements. That is, we have reduced the problem to finding an appropriate bijection to the
case|S| = n− 1.

The next two lemmas are about regular curves. Nevertheless we can make use of
them, since an open s-regular curve is regular in its endpoints.

Lemma 5.2. Letγ be a regular curve. Then there exists anε > 0 such that

1. |pi − pi−1| < |pi − pk| if pk G pi−1,
2. |pi − pi+1| < |pi − pk| if pk > pi+1

for all samples S= {p1, . . . , p|S|} with ε(S) < ε and all i ∈ {1, . . . , |S|}.



600 J. Giesen

Proof. Assume the contrary. Then there exists a sequence(Sn) of samples with
limn→∞ ε(Sn) = 0 andpi

n, pk
n ∈ Sn such that

pk G pi−1 and|pi
n − pi−1

n | ≥ |pi
n − pk

n|
or

pk > pi+1 and|pi
n − pi+1

n | ≥ |pi
n − pk

n|.

By choosing a subsequence one can always assume that for alln ∈ N one of the above
possibilities holds. Without loss of generality assume that this is the first one. Sinceγ is
compact, one can also assume by choosing a subsequence that(pi

n) converges top ∈ γ .
From limn→∞ ε(Sn) = 0 it follows that

lim
n→∞ |p

i
n − pk

n| ≤ lim
n→∞ |p

i
n − pi−1

n | = 0.

Hence(pi−1
n )and(pk

n)also converge top. Now look at the triangle with verticespi−1
n , pi

n,
and pk

n. From the law of cosines together with|pi
n − pi−1

n | ≥ |pi
n − pk

n|, it follows for
the angleαn at pi−1

n that

cos(αn) = −|p
i
n − pk

n|2− |pi
n − pi−1

n |2− |pi−1
n − pk

n|2
2|pi

n − pi−1
n ||pi−1

n − pk
n|

≥ 0.

Thusαn has to be smaller than or equal toπ/2, but that is a contradiction to Lemma 3.1.

The proof of the third lemma is similar to the proof of the second one, so we omit it
here.

Lemma 5.3. Letγ be a regular curve. Then there exists anε > 0 such that

1. |pi − pm| < |pi − pk| for pk G pm G pi , if pk G pi−1 and|pi − pk| ≤ |pl − pl+1|
for some l∈ {1, . . . , |S|},

2. |pi − pm| < |pi − pk| for pi G pm < Gpk, if pk > pi+1 and|pi − pk| ≤ |pl − pl+1|
for some l∈ {1, . . . , |S|}

for all samples S= {p1, . . . , p|S|} with ε(S) < ε and all i ∈ {1, . . . , |S|}.

Now we are prepared to prove the global result for open curves.

Theorem 5.2. Letγ be an open curve. Assume

α = sup{∠(l(q), r(q)): q ∈ γ } < π

and let(Sn) be a sequence of samples ofγ with limn→∞ ε(Sn) = 0. Then there exists
N ∈ N such that TSP(Sn) = P(Sn) for all n ≥ N. Here TSP(Sn) is a shortest path
through the points Sn. Furthermore, TSP(Sn) is unique for all n≥ N.
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Proof. The proof is done by contradiction. Assume without loss of generality that
TSP(Sn) 6= P(Sn) for all n ∈ N.

First Step. We show that for largen there exist at least four return points. Because
TSP(Sn) 6= P(Sn) there have to exist at least three return points. If inSn there is only one
return point besides the start- and endpoints ofTSP(Sn), then this point is either minSn

or maxSn alongγ . Assume that there existsN ∈ N such that the number of return points
in Sn is three for alln ≥ N. Without loss of generality we can assume that the only
return point besides the endpoints ofTSP(Sn) is p1

n = min Sn.
In TSP(Sn) we also have thatp1

n is connected top2
n, because otherwiseSn has more

than three return points. CutTSP(Sn) into two polygonal arcsP1
n andP2

n with endpoint
p1

n. SinceScontains only three return points one of these arcs has as its second endpoint
p|Sn|

n . Assume without loss of generality that this arc is alwaysP1
n . From Lemma 4.2

and the definition of Jordan length we can conclude that limn→∞ L(P1
n ) = L(γ ). This

implies

lim
n→∞ L(P2

n ) = 0.

Let pi
n, i ∈ {3, . . . , |Sn|}, be the second endpoint ofP2

n . We observe two things:

1. limn→∞ |p1
n − pi

n| = 0, because|p1
n − pi

n| ≤ L(P2
n ) for largen.

2. conv{pj
n, pj+1

n } ⊂ TSP(Sn) for all i < j < |Sn| and largen. That is, the shortcuts
take place on the firsti indices. Using thatTSP(Sn) 6= P(Sn) and the statement
and notions of Lemma 5.1, withP′(S) = TSP(S), we find that there exists

conv{pπ( j )
n , pπ( j+1)

n } ∈ E′(Sn) and conv{pk
n, pk+1

n } ∈ E(Sn)

with

|pπ( j )
n − pπ( j+1)

n | ≤ |pk
n − pk+1

n |,
j, k < i, π( j ) ≤ k, k+1≤ π( j+1), and π( j ) 6= k ork+1 6= π( j+1).

From limn→∞ ε(Sn) = 0 we can conclude thatp1
n converges toγ (0). Sinceγ (0) is a

regular point ofγ we can apply here Lemmas 5.2 and 5.3. Now Lemma 5.3 tells us that
there existsn ∈ N with:

1. |pk
n − pπ( j+1)

n | ≤ |pπ( j )
n − pπ( j+1)

n | for all n ≥ N. That means

|pk
n − pπ( j+1)

n | < |pk
n − pk+1

n | for all n ≥ N.

2. |pk+1
n − pπ( j )

n | ≤ |pπ( j )
n − pπ( j+1)

n | for all n ≥ N. That means

|pk+1
n − pπ( j )

n | ≤ |pk
n − pk+1

n | for all n ≥ N.

That is a contradiction to Lemma 5.2. Hence for largen there are at least four return
points inSn.

Second Step. We show that for largen there must exist two return pointsr 1
n Gr 2

n incident
alongTSP(Sn) such that the other return pointsr̃ 1

n incident tor 1
n and r̃ 2

n incident tor 2
n
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along TSP(Sn) are not in betweenr 1
n and r 2

n . That is, one cannot find the following
situation:

r 1
n G r̃ 1

n G r 2
n or r 1

n G r̃ 2
n G r 2

n . (7)

However, it is possible that̃r 1
n = r 2

n andr̃ 2
n = r 1

n .
The pathP1

n ⊂ TSP(Sn) connectingp1
n with p|Sn|

n either contains two return points,
as we are looking for, or it does not contain any return point besidesp1

n and p|Sn|
n . So

assume thatP1
n does not contain any return point besidesp1

n andp|Sn|
n . CutTSP(Sn) into

three pathsP1
n , P2

n with endpointp1
n andP3

n with endpointp|Sn|
n . At least one of the the

pathsP2
n , P3

n cannot be empty sinceSn has at least four return points. From Lemma 4.2
and the definition of Jordan length we can conclude that limn→∞ L(P1

n ) = L(γ ). This
implies

lim
n→∞ L(P2

n ) = lim
n→∞ L(P3

n ) = 0.

Without loss of generality we can assume thatP2
n is not empty for all sufficiently large

n ∈ N. The same reasoning as at the end of the first step shows that this leads to a
contradiction. Hence for largen the setsSn have to contain two return points, as we are
looking for.

Third Step. In this step the transition from the local version of the theorem to the global
one is done. This step is the same as the third step in the proof of Theorem 5.1.

The example in the Introduction shows that the regularity conditions required to prove
this theorem are necessary. That is, this theorem is best possible.

6. Concluding Remarks

Finally we want to put our work in perspective to related recent work on curve recon-
struction. We showed that there exists a global bound on the sampling density such that
the curve reconstruction problem is solved by a traveling salesman path or tour, respec-
tively. Obviously this bound is much too demanding for many smooth regions of the
curve. That is, locally a much lower sampling density should be sufficient. Amenta et
al. [4] concretize the idea of a locally dense sampling using the concept of feature size.
The medial axis of a plane curveγ is the set of points in the plane which have more
than one closest point onγ . The feature sizef (p) of a point p ∈ γ is the distance of
p to the closest point on the medial axis. Amenta et al. define sampling density based
on a parameterε by requiring that each pointp ∈ γ has a sample point within distance
ε f (p). Several algorithm with this assumption of sampling density have been developed
that provably can reconstruct simple, closed, smooth curves [4]–[6], [11]. There is also
an experimental study by Althaus et al. [3] that compares several of these algorithms.
For nonsmooth curves this notion of sampling density breaks down, since the medial
axis passes through the corner points of the curve. Thus one is required to sample the
curve infinitely near the corners to satisfy the sampling condition.
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Many curve reconstruction algorithm are based on picking edges from the Delaunay
triangulation. In [10] we show that the same regularity assumptions on the curve are
necessary to find the correct reconstruction as a subgraph of the one-skeleton Delaunay
triangulation. Dey and Wenger [7] present another algorithm that can reconstruct curves
with sharp corners.

We showed that the traveling salesman path can reconstruct simple open curves and
the traveling salesman tour can reconstruct simple closed curves. However, we do not
give a method to detect only from a sample if a curve is open or closed. Dey et al. [6]
give an algorithm that does so in the case of simple smooth curves.

Finally, in general it is NP-hard to compute a traveling salesman path or tour, re-
spectively. Althaus and Mehlhorn [2] show that the traveling salesman path/tour can
be computed in polynomial time for dense samples from plane curves, satisfying the
regularity conditions we specified in this paper.
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