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Abstract. We determine and completely describe all pure realizations of the finite toroidal
maps of types4, 4} .0, and{4, 4},.n), b > 2. For large values df, most such realizations
are eight-dimensional.

1. Introduction

The theory of regular polytopes, and other regular figures with kindred structures, has a
long and rich history [7, pp. 97—100]. A recent contribution of great significance in this
story was Branko Guribaum’s “Regular polyhedra—old and new” [5], with its startling
exhortation to abandon membranes. We vividly recall experiencing this wonderful insight
in person, when Branko lectured at the University of Toronto, just over 20 years ago.

From these investigations (see [4] as well), and the work of many others, we now have
available the highly distilled notion eégular abstract polytopavhich is a combinatorial
structure having the essential features of such diverse objects as the classical regular
convex and star-polytopes, regular honeycombs, and regular maps on surfaces. Now
while an abstract approach clarifies the general properties and construction of polytopes,
itis nevertheless stillinteresting and useful to consider concrete realizations, for example,
as symmetric objects in Euclidean space (see [6]). For example, in [1], Burgiel and
Stanton describe the pure realizations of the finite, regular toroidal maps ofy@e
essentially by examining the action of the group on a unitary space whose basis is
identified with the vertex set of the map.

Here we investigate maps of tygé, 4} from a somewhat different point of view,
which allows us to describe real representations of the group explicitly.

* This research was supported by the NSERC of Canada
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2. Regular Toroidal Maps of Type {4, 4}

Let us begin with an overview of the basic theory, referring to the survey article [7] and
monograph [9] for details. Anafstrac) n-polytopeP is a partially ordered set with a
strictly monotone rank function having rangel, 0, ..., n}. An elementF € P with
rank(F) = j is called aj-face naturally, faces of rank O ami— 1 are calledrertices
andfacets respectively. We also require thathave two improper faces: a unique least
face F_; and a unique greatest faég. Furthermore, each maximal chainftagin P

must contaim + 2 faces, an should be strongly flag-connected. Finalymust have

a homogeneity property: whenever< G with rank(F) = j —1 and rankG) = j +1,
there are exactly twg-facesH with F < H < G.

The symmetry ofP is, of course, exhibited by itautomorphism groug (P). In
particular,P is regularif I'(P) is transitive on flags, as we henceforth assume. Now fix
abaseflagb = {F_1, Fo, ..., Fn_1, Fn}, with rank(Fj) = j. ForO< j < n—1, there
is a unique flagb’ differing from @ in just the rankj face; so leto; be the (unique)
automorphism with(®)p; = @l In this case['(P) is generated by the involutions

00, P1, - - - » Pn—1, Which satisfy at least the relations
(oip) P =1, 0<i,j=n-1, D
wherep;i = 1,2 < pj <oofori # j,andp; = 2for|i — j| > 2. Furthermore, an

intersection conditiomn standard subgroups holds:
(piriel)N{pi:iedy=(p:ielnd) (2

forall 1,J € {0,...,n—1}. In short,['(P) is a certain quotient of a Coxeter group
with linear diagram, and we cdll(P) astring C-group

Conversely, given any group = (oo, ..., pn—1) generated by involutions and sat-
isfying (1) and (2), one may construct a polytopewith I'(P) = I' (see Theorem 2.9
of [7]).

As aconcrete example, consider the regular tessellgdiah of the plane (by identical
squares). Indeed4, 4} is an infinite regular 3-polytope; and the full symmetry group
[4, 4] is generated by the reflectiops, p1, p2 indicated in Fig. 1. The perpendicular,
unit translationgy, = p1020100 andty = pp100p01 gENErate an abelian subgroup; and
we may regarck)?ryC as translating the origit0, 0) to the point(b, ¢). For a fixed pair
of integers(b, c), consider the translation subgrou;j’r§, r;cr)’,’), whose fundamental
region is the square with vertices

(0,0), (b,c),(b—c,b+0¢), (—c, b).

Identifying opposite edges of this square, we obtain the finite toroidafmap 4, 4} p.c).
havingv = b+ c? vertices, 2 edges, and faces. In factP is also a regular 3-polytope
whenb > 2, ¢ = 0 (and vice versa), or wheén= c > 2 [3, Section 8.3]. Moreover, for
{4, 4} .0), the automorphism group, of ordeb® has the presentation

P& = p? = pZ = (pop)* = (p1p2)* = (pop2)? = 1, 3)
(p1P2p1P0)° = 1.
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Fig. 1. The tessellatiort4, 4}.

The automorphism group fd4, 4} ¢, has order 1€” and the presentation

= p3 = (pop)* = (p1p2)* = (pop2)® = 1,

(p2p100)% = 1. @

(For simplicity we also usg; to indicate the generators of these finite groups; and it is
convenient, though not geometrically accurate, to still speak,af, as “translations.”)
Although it is fruitful, even necessary at times, to abandon concrete geometric figures
(such as a torus) when thinking of an abstract polytBpé is nevertheless interesting
to modelP in a natural way in Euclidean-spaceE, as is done in McMullen’s theory
of realizationsof P. (We assume tha® is finite and thus modify slightly the discussion
in Section 3 of [7].
Fixing an origino € E, we consider any homomorphism

f: T'(P) - O(E)
(into the orthogonal group). Taking; := (o) f, we define thé\Vythoff spacéor f as
W:={peE: pR=p 1<j=n-1}
A realization P:= [ f, p] is now defined by the homomorphisim together with a base
vertexp € Wp :=W.
Now consider the vertex set &f, namelyP, := {Foy: y € I'(P)}. Then the map

,3: Po — E,
Foy = pyf)

iswell defined, and eagh € " (P) therebyinduces an isometric permutationti) :=
(Po)B (the vertex set of the realization). B = aff(V (P)), then thedimensiorof the
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realization is dinfP) = dim(E’). Note that the linear grou@(P) := (I'(P)) f leaves
E’ invariant.

We naturally say that two realizations &, say P, = [fj, pj] in E; (j = 1, 2),
arecongruentf there is an isometrg: E; — E, such that(p;)g = p; and(yf1)g =
g(y f2),Vy € I'. ltis known that the congruence classes of realizations have the structure
of a convexr-dimensional cone, wheneis the number of diagonal classes7n[7,
Theorem 3.8]. (Adiagonalis an unordered pair of distinct vertices#y.) If the jth
diagonal class is representedfyg; € V(P), and||p—g; % = 8j, thenP is determined
by the diagonal vectan(P) = (84, ..., & ).

Now if G(P) acts reducibly orE’, then in a natural waf is congruent to dlendof
lower dimensional realizations, s§yandR, and we writeP = Q#R (see Section 3.1.4
of [7]). On the other hand, if this does not happen, i.eG(P) acts irreducibly ort’,
thenP is said to be @urerealization. The fact that diagonal vectors of pure realizations
span the extreme rays in the realization cone is crucial to McMullen’s proof of the
fundamental numerical results outlined below.

Forv = |Po|, let E be (v — 1)-dimensional Euclidean space. Cleafhas asimplex
realization Tin E, obtained by letting”(P) act in a natural way on the vertex 3&¢T)
of a regular simplex irE. Letw = dim(W).

Take dg to be the degree andg to be the Wythoff space dimension for each of
the (finitely many) distinct, irreducible representati@sf I'(P), excluding cases with
wg =0, and letlg = (p1, ..., pn—1) INT(P).

Theorem 2.1[7, Section 3.2]. With the notation above and summing over distinct ir-
reducible represenations &f(P), we have

(a) ZG wglg =v—1= {Too: o € I'\I'p}.
(b) Y6 swe(we +1) =r = [{TooToUTeo o o € M\To}l.
(©) Y gwid =w=|{TooTo: o € "'\I'o}|.

These character-like results are extremely useful in classifying the full range of pure
realizations for a finite regular polytofe.

3. General Pure Realizations for{4, 4}, o,

Throughout this sectiory > 2 is a fixed positive integer arl@ = {4, 4},0). ThusP
has automorphism group = (oo, p1, p2), Whose “translation” subgroup is generated
by 7« = p1p20100 @aNdty = p2010001.

We begin our construction with the Coxeter grokipwhose diagram is shown in
Fig. 2. (The generators, rq, ..., r7 of K correspond to the nodes as labeled. As usual,
whenb = 2 the branches in the diagram are removed.) TKus a direct product of
dihedral groups. We also require two outer automorphism for K, as suggested in
Fig. 2: u interchangesy andr,, etc., whileA interchangesy andrg, etc. By adjoining
A, 1 to K we obtain a grougK’ of order 64*. Evidently, this extension t&’ is an
example oftwisting (see pp. 205-206 of [8]). To motivate our construction, it is helpful
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Fig. 2. The groupK.

to note that the group fd#, 4},0) can be defined by applying the twisting operation

(ro,r1,r2,r3; u) = (o, 4, r3)

to a subdiagram in Fig. 2. (We thank the referee for this comment.)

We can faithfully represer’ as a group of orthogonal transformations on the Eu-
clidean spac& = R8, endowed with the usual inner product. In fackgf. . . , e; is the
usual basis, we may suppose for= 0, 2, 4, 6 thatr; has rootg; and forj = 1, 3,5, 7
thatr; has root cogr/b)e;_1 + sin(rr /b)e; . It follows thaty is the linear map permuting
€ andey, e; andes, &4 andeg, €5 andey; A acts similarly on basis vectors.

We can now define the group of main interest to us, which we found after a consid-
erable amount of experimentation involving some well-known four-dimensional tori [2,
Section 4.5] and certain computationsGAP.

Definition. For integere, m satisfying 0< ¢, m < b—1, letG, , be the subgroup of
K’ generated by

Jo = w(rors)ro(rara)‘ra(rars)™ra(rer7)™rs,
01 = Aurora,
02 = u.

Noting that we compose linear mappings left to right, it is easy to verify that
% =0 =05 = (G0)" = (0102)" = (Q%2)* = (G1020100)° = I.
wherel denotestheidentity of. HenceG, m istheimage of" underthe homomorphism
f:T — Ginm

which sends each; — g;. Sincer;_1rj has period (j = 1, 3,5, 7), we may treaf, m
as residues (mo).
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We require the basic “translationgyx = 91929190 andgy = g2019od:. Now for any
integersj, k, we may writeg,, 95 as a matrix (with respect to the usual basis):

. 2 2
ik _— Y2 . H .
09y = [R(—b (je km)>,R<—b (J£+km)>,

R<%(]m—k£)>;R(%(]m+k£)>]. (5)

In this 8 x 8 block diagonal matrixR(#) denotes the rotation matrix

R@®) = [sine cosd

cosf - sine]
Since the relations in (3) imply thaj andz, commute, it follows that everg € G, m
can be written as

g = hgl gy,
whereh € (g1, g2). It is now readily verified thaall elements ofG,n other than
“translations” have trace 0, whereas

- 2 2 2 2

J k _ . .
trace(gxgy) =4 [cos(—b JZ) CO<_b km) + cos(—b Jm) cos(—b (kZ))} . (6
Next, it is easy to verify that the Wythoff spa®@é ,, for G, m is spanned by

Pp=eé+6&+6e+¢6r (N

We, therefore, have the ingredients necessary to define a realiztipn= [f, p]
(depending ori¢, m)) for the toroidal mapP = {4, 4}.0)-

Notice thatgy fixes p only if £ = m = 0, in which case/ (P0) = {p}, so thatPg o
is a trivial realization forP. Hence diniPy o) = O, although it is still useful to consider
Go,0 as a trivial linear group of degree d&p o) = 1 acting irreducibly orE’ = Rp
(the linear subspace & spanned byp).

Otherwise, when G< £ or 0 < m, o0 € E is the unigue point fixed b, , and so
V (P..m) affinely spans a linear subspa€éof E. In this case, dirtP, m) = dim(E’) =
degG,m) > 0. (The dimension of the realization coincides with the degree of the
inducedrepresentation o&’.)

In summary, in all casekE’ denotes the linear subspacebispanned by (P ),
and we usually considés, , as acting orE’.

We assemble several properties of this realization into

Theorem 3.1. ForintegersO < ¢,m<b—1(b > 2),let P, be the realizationin E
described above fo, 4} 0. Then R, has the following properties

(@) Pem = Pneand B = P_ym. (Recall that¢, m can be takefmod b.)
(b) Assumgas we mayby (a)) that0 < m < £ < b/2. Then each Py, is a pure
realization with
(i) dim(P,m) = 8,if 0 < m < £ < b/2. Each g has trace0 (acting on E=
E".
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(i) dim(P,m) =4,if 0=m < £ < b/2. Here @), g, act as reflections andig
as a half-turn on theél-space E.
(iii)y dim(Pmm) = 4,if 0 < m= ¢ < b/2. Here @, g act as half-turns and g
as a reflection on thé-space E
(iv) dim(Py/o,m) = 4,if0 < m < £ = b/2 (forb even. Here g acts as a rotatory
reflection(trace(go) = —2), 01 as a half-turn and g as a reflection on
the4-space E
(v) dim(Py/2, 0) = 2 (for b even. In this collapse to a squayay, g; act as
reflections and gas the identity on th&-space E.
(vi) dim(Py2b/2) = 1 (for b even. In this collapse to a segmeno acts as a
reflection and g, g, as the identity on th&-space E
(vii) dim(Po,0) = O (the trivial realizatior).
(c) The realizations enumerated in pdk) are mutually incongruent
(d) For (¢, m) # (0, 0), letd = gcd(¢, m, b) and let

I A if b/d is evenand both¢/d and nyd are odd
1 otherwise
Then
b2
|V(P€,m)| = q2

(Of coursethe trivial realization Ry g has one vertex

Proof. (a) The indicated congruences of realizations follow from conjugatingjthe
by A and byurgr,, respectively.

(b) From character theory, a complex representafiom — G is irreducible iff its
character norm equals 1 [10, p. 69]. In the present (real) case, it follows at least that
Gem= (F)f acts irreducibly on the eight-dimensional sp&cé

Z tracgy ( f))tracey ()).

Tr o

However, by (6) and the related remarks, the preceding sum is

= a3 2 el o) ooFm) s ) eof om)

4 2
= @[s(g, £)s(m, m) + s(¢, my“],

where

b1 2 27qj
o0 = S5l 52)

=0
b, if p=gq=0 or p=qgq=Db/2 (modb);
= {b/2, if p=+g but p£0 or b/2 (modb);

0, otherwise
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Thus, as we claim in (i)P;.m is indeed a pure eight-dimensional realization #0n <
L <b/2.

For general irreducible real representations, the character norm may exceed 1. Even
S0, in the present instanc®, , is reducible for other values of the parametéra.
For example, in part (ii) with & m < ¢ < b/2, we find thatE’ is an invariant four-
dimensional subspace &f with basis

{eg+ €, 61 + 63,6+ €7, 65 — €4}

(Note that the base vertgxe E’.) The induced generatogs, g, are reflections (trace-

2) whereag); is a half-turn (trace= 0). Thus some nontranslations have nonvanishing
trace. Nevertheless, a similar and straightforward calculation of the character norm shows
that Py o (0 < £ < b/2) is pure four-dimensional.

The remaining cases (iii)—(vii) follow similarly.

(c) Given the information concerning dimension and trace, it is clear that realizations
from different classes (i)—(vii) are incongruent. So consider, for example, two realiza-
tions in class (i), for pairg¢;, m;) and (€2, my). If these realizations were congruent,
corresponding translatior@gij would have equal traces, as described in (6). Taking
(j,k) = (1,0) and (1, 1), and recalling that &< m; < ¢; < b/2, we soon find that
m; = mp and{y = £,. Cases (ii)—(vii) follow similarly.

(d) The “translation” subgroup acts transitively UriP; m). A close look at (5) and
(7) shows that the number of vertices is the same as the order of the subg(@gp )
generated by, £, m, m] and [-m, m, —¢, £]. Having found the elementary divisors of
the 2x 4 integer matrix with these rows, we may readily compgMeéP, ,)|. |

A remarkable consequence of Theorem 3.1 is that much of the data for these pure
realizations of4, 4} .o, is neatly encoded in a picture of the polytope as a toroidal map.
The caseb® = 4 andb = 5, which are typical enough, are shown in Fig. 3. In Fig. 3 we
interpret(¢, m) as coordinates (mdg) for a typical vertex in the grid. Also indicated are
two adjacent lines of symmetry for the grid (and the toroidal map). Theorem 3.1(a),(c)
can now be interpreted as asserting that

e each distinct pure realizatid®, ,, corresponds to exactly one vertex in the wedge-
shaped fundamental region enclosed by the two mirrors in the grid. (The corre-
sponding vertices have been clearly indicated by a circle, or box.)

Just as interesting we observe from Theorem 3.1(b) that

o the dimension of each nontrivial pure realizatiBn, equals the size of the orbit
of the corresponding grid vertex, under the dihedral group generated by the two
grid symmetries. (This dimension appears as a label inside each circle. The corner
box, which indicates the trivial realization, also fits into this scheme, if we replace
“dimension” by “degree.”)

Forexample, up to similarit{4, 4} s o) has exactly one eight-dimensional pure realization
of type Py m, while {4, 4}4.0) has none.
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b=4 b=5

Fig. 3. Pure realizations of4, 4}, 0) encoded in the polytope itself.

In a sense, the polytope acts as a kind of discrete “moduli space” for its own set of
pure realizations. As yet, we lack a more insightful proof of this. (The same situation
occurs for maps of typ€3, 6}, as explained in [1].)

We must still, however, check thatverypure realization of4, 4} .o, is (Similar to) a
realization of typeP; m. To do so, we first refer to Fig. 1, noting that any two vertices in
the square tessellatiga, 4} can be interchanged by a symmetry of the whole tessellation
(e.g., by some half-turn). Passing to the quotient polyt@pd} o), with groupI’, and
identifying its vertices with the coselgo, we conclude that for each € T there exists
A € I' such that'g, 'go)A = (I'go, I'g). Hence

ooy = Too 1Ty, Vo eT.

It follows from Theorem 2.1(b),(c) that = w. Thus for each distinct, nontrivial irre-
ducible representation — G, the Wythoff dimensionvg = 1 (see Theorem 19 of
[6]). Furthermore, there are justinequivalent, pure, nontrivial realizations. However,
I'yo Ty can be identified with th&y-orbit of the vertexpo, so that by Theorem 2.1(c),
r = w is just the number of orbits under the actionl@fon the vertex set of4, 4} .0
(excluding the base vertéx itself).

A little thought shows that we may reinterpiég as the group generated by the grid
symmetries indicated in Fig. 3. Theserypure realization of4, 4}, corresponds
to a unique vertex in the wedge; andthe number of such vertices, is readily calcu-
lated. Summarizing we have

Theorem 3.2. For b > 2, each pure realization of the polytofdé, 4} .0, is of type
P,.m- The number of nontrivial pure realizations is therefore

=22z )
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4. The Pure Realizations for{4, 4} . .,

Using the presentation (4) for the automorphism grbgg, 4} .¢)), one readily verifies
that

1= (p1p20100)*°.
It follows that there is an epimorphism

T ({4 #2c0) = T ({4 Heco),

which preserves the distinguished generators, sq4hdj . o) covers{4, 4} [7, Sec-
tion 2.1.2]. Moreover, every pure realizati®yof {4, 4} ¢, is thussomepure realization
Pe.m0f {4, 4} 2c 0), by Theorem 3.2. Indeed, by (4); m will be a realization fof4, 4} ¢ ¢
just whengggl = 1. Taking j = k = candb = 2c in (5), we see that this happens
precisely whert = m (mod 2).

Looking again at thé x b grid which parametrizes thB, , (as in Figure 3), we
observe that

e forb = 2c, and starting with the trivial verterlternatevertices in the fundamental
wedge of theb x b grid describe inequivalent, pure realizationd4f4} ..

The case = 3 (i.e.,b = 6) is indicated in Fig. 4.

It is easy to check that the number of alternate, nontrivial grid vertices in the wedge
isr’ = c+ [c?/4]. On the other hand, an analysis similar to that preceding Theorem 3.2
shows that’ also equals the total number of inequivalent, nontrivial pure realizations.
We thus have

Theorem 4.1. Forc > 2,the pure realizations of the polytop 4} ¢ are exactly the
realizations R m, with £ = m (mod 2).The number of such nontrivial pure realizations

is thus
CZ
r'=c —
+{4

’ T trivial

1=0

c=3 (ie. b=6)

Fig. 4. Pure realizations of4, 4} c) encoded in the polytopg, 4}(2c,0-
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5. Tori Inscribed in the 4-Cube

We conclude by examining the polyhed#a4} 4,0, and{4, 4} .2, which are particularly
attractive, since their pure realizations in four-dimensional Euclidean dpaman be
usefully visualized with the help of the 4-culpé 3, 3} and the regular cross-polytope
{3, 3, 4} situated inE.

Referring to the grid on the left in Fig. 3, we begin with the realizatfr for
{4, 4} 4.0 In this case the “translationgj, andg, are simple rotations of period four
about orthogonal planes B. Thus, by Theorem 3.1(d), the 16 vertices of the realization
are in fact the vertices of the double prigd} x {4}, namely, the 4-cub@4, 3, 3} [2,

p. 37]. Moreover, the 32 edges of the polyhedron are faithfully represented by (all) edges
of the convex polytope. Now recall that each facet of the 4-cube belongs (in three ways)
to a belt of four, in which consecutive facets share a (square) face. Indeed, all eight facets
lie in two such complementary belts. If we discard the eight intermediary squares from
these two belts, we are left with the 16 square faces of the polyhedron, as realized by
P1.o. (A view of this familiar realization of the polyhedron as an actual map is hidden in
Fig. 6 below; see also Figure 4.2B on p. 31 of [2].)

Like Py, the faithful realizatiorP, 1 also employs all 16 vertices of the 4-cube. Now,
however, the edges d#, 4}(4,0) joining these vertices are realized by the 32 “main”
diagonals of the eight cubical facets of the 4-cube (see Fig. 5). Furthermore, each face
of the polyhedron{4, 4}4.0, is here realized by a skew quadrilateral following—and
inscribed in—one of the above-mentioned belts of four facets.

Finally, we consider the realizatio®, ;, in which the edges of4, 4} .0, are repre-
sented as certain diagonals of the square faces in the 4-cube. Consequently, this realiza-
tion is not faithful and involves a 2: 1 collapse of the vertices of the polyhedron onto a
set of eight alternate vertices in the 4-cube (Fig. 6). Indeed, these eight vertices are the
vertices of a regular cross-polytof@ 3, 4} inscribed in the original 4-cube. Referring
to Theorem 4.1, we observe that; in fact provides a faithful realization of the regular
polyhedron{4, 4} 2.2 , which is doubly covered by the origingd, 4} 4,0).

In Fig. 7 we give a more symmetrical view of the cross-polytope itself, where we
observethatthe 16 edgedqdf 4}, 2 arerealized as justthose edges of the cross-polytope
which remain after removing those in two orthogonal equatorial squares (indicated by

Fig. 5. A view of the realizatiorP, 1 for {4, 4}(4,0).
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Fig. 6. The realizationPy 1 for {4, 4}4.0).

Fig. 7. The faithful realizatiorPy 1 for {4, 4}(2 7).

dotted lines). Last, we note that adjacent facgd04} , ) appear here as Petrie polygons
for two tetrahedral facets ¢8, 3, 4}, lying opposite one another along a common edge.
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