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Abstract. We determine and completely describe all pure realizations of the finite toroidal
maps of types{4,4}(b,0) and{4,4}(b,b), b ≥ 2. For large values ofb, most such realizations
are eight-dimensional.

1. Introduction

The theory of regular polytopes, and other regular figures with kindred structures, has a
long and rich history [7, pp. 97–100]. A recent contribution of great significance in this
story was Branko Gr¨unbaum’s “Regular polyhedra—old and new” [5], with its startling
exhortation to abandon membranes. We vividly recall experiencing this wonderful insight
in person, when Branko lectured at the University of Toronto, just over 20 years ago.

From these investigations (see [4] as well), and the work of many others, we now have
available the highly distilled notion ofregular abstract polytope, which is a combinatorial
structure having the essential features of such diverse objects as the classical regular
convex and star-polytopes, regular honeycombs, and regular maps on surfaces. Now
while an abstract approach clarifies the general properties and construction of polytopes,
it is nevertheless still interesting and useful to consider concrete realizations, for example,
as symmetric objects in Euclidean space (see [6]). For example, in [1], Burgiel and
Stanton describe the pure realizations of the finite, regular toroidal maps of type{3,6},
essentially by examining the action of the group on a unitary space whose basis is
identified with the vertex set of the map.

Here we investigate maps of type{4,4} from a somewhat different point of view,
which allows us to describe real representations of the group explicitly.

∗ This research was supported by the NSERC of Canada
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2. Regular Toroidal Maps of Type{4,4}

Let us begin with an overview of the basic theory, referring to the survey article [7] and
monograph [9] for details. An (abstract) n-polytopeP is a partially ordered set with a
strictly monotone rank function having range{−1,0, . . . ,n}. An elementF ∈ P with
rank(F) = j is called aj -face; naturally, faces of rank 0 andn− 1 are calledvertices
andfacets, respectively. We also require thatP have two improper faces: a unique least
faceF−1 and a unique greatest faceFn. Furthermore, each maximal chain orflag in P
must containn+2 faces, andP should be strongly flag-connected. Finally,P must have
a homogeneity property: wheneverF < G with rank(F) = j −1 and rank(G) = j +1,
there are exactly twoj -facesH with F < H < G.

The symmetry ofP is, of course, exhibited by itsautomorphism group0(P). In
particular,P is regular if 0(P) is transitive on flags, as we henceforth assume. Now fix
a base flag8 = {F−1, F0, . . . , Fn−1, Fn}, with rank(Fj ) = j . For 0≤ j ≤ n− 1, there
is a unique flag8 j differing from8 in just the rankj face; so letρj be the (unique)
automorphism with(8)ρj = 8 j . In this case,0(P) is generated by the involutions
ρ0, ρ1, . . . , ρn−1, which satisfy at least the relations

(ρiρj )
pi j = 1, 0≤ i, j ≤ n− 1, (1)

wherepii = 1, 2≤ pi j ≤ ∞ for i 6= j , and pi j = 2 for |i − j | ≥ 2. Furthermore, an
intersection conditionon standard subgroups holds:

〈ρi : i ∈ I 〉 ∩ 〈ρi : i ∈ J〉 = 〈ρi : i ∈ I ∩ J〉 (2)

for all I , J ⊆ {0, . . . ,n − 1}. In short,0(P) is a certain quotient of a Coxeter group
with linear diagram, and we call0(P) astring C-group.

Conversely, given any group0 = 〈ρ0, . . . , ρn−1〉 generated by involutions and sat-
isfying (1) and (2), one may construct a polytopeP with 0(P) = 0 (see Theorem 2.9
of [7]).

As a concrete example, consider the regular tessellation{4,4}of the plane (by identical
squares). Indeed,{4,4} is an infinite regular 3-polytope; and the full symmetry group
[4,4] is generated by the reflectionsρ0, ρ1, ρ2 indicated in Fig. 1. The perpendicular,
unit translationsτx = ρ1ρ2ρ1ρ0 andτy = ρ2ρ1ρ0ρ1 generate an abelian subgroup; and
we may regardτ b

x τ
c
y as translating the origin(0,0) to the point(b, c). For a fixed pair

of integers(b, c), consider the translation subgroup〈τ b
x τ

c
y , τ
−c
x τ b

y 〉, whose fundamental
region is the square with vertices

(0,0), (b, c), (b− c,b+ c), (−c,b).

Identifying opposite edges of this square, we obtain the finite toroidal mapP = {4,4}(b,c),
havingv = b2+c2 vertices, 2v edges, andv faces. In fact,P is also a regular 3-polytope
whenb ≥ 2, c = 0 (and vice versa), or whenb = c ≥ 2 [3, Section 8.3]. Moreover, for
{4,4}(b,0), the automorphism group, of order 8b2, has the presentation

ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)

4 = (ρ1ρ2)
4 = (ρ0ρ2)

2 = 1,
(ρ1ρ2ρ1ρ0)

b = 1.
(3)



Realizations of Regular Toroidal Maps of Type{4,4} 455

Fig. 1. The tessellation{4,4}.

The automorphism group for{4,4}(c,c) has order 16c2 and the presentation

ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)

4 = (ρ1ρ2)
4 = (ρ0ρ2)

2 = 1,
(ρ2ρ1ρ0)

2c = 1.
(4)

(For simplicity we also useρj to indicate the generators of these finite groups; and it is
convenient, though not geometrically accurate, to still speak ofτx, τy as “translations.”)

Although it is fruitful, even necessary at times, to abandon concrete geometric figures
(such as a torus) when thinking of an abstract polytopeP, it is nevertheless interesting
to modelP in a natural way in Euclideann-spaceE, as is done in McMullen’s theory
of realizationsof P. (We assume thatP is finite and thus modify slightly the discussion
in Section 3 of [7].

Fixing an origino ∈ E, we consider any homomorphism

f : 0(P)→ O(E)

(into the orthogonal group). TakingRj := (ρj ) f , we define theWythoff spacefor f as

W := {p ∈ E: pRj = p, 1≤ j ≤ n− 1}.

A realization P:= [ f, p] is now defined by the homomorphismf , together with a base
vertex p ∈ WP := W.

Now consider the vertex set ofP, namelyP0 := {F0γ : γ ∈ 0(P)}. Then the map

β: P0 → E,

F0γ 7→ p(γ f )

is well defined, and eachγ ∈ 0(P) thereby induces an isometric permutation onV(P) :=
(P0)β (the vertex set of the realization). IfE′ = aff(V(P)), then thedimensionof the
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realization is dim(P) = dim(E′). Note that the linear groupG(P) := (0(P)) f leaves
E′ invariant.

We naturally say that two realizations ofP, say Pj = [ f j , pj ] in Ej ( j = 1,2),
arecongruentif there is an isometryg: E1→ E2 such that(p1)g = p2 and(γ f1)g =
g(γ f2),∀γ ∈ 0. It is known that the congruence classes of realizations have the structure
of a convexr -dimensional cone, wherer is the number of diagonal classes inP [7,
Theorem 3.8]. (Adiagonal is an unordered pair of distinct vertices inP0.) If the j th
diagonal class is represented byp,qj ∈ V(P), and‖p−qj ‖2 = δj , thenP is determined
by the diagonal vector4(P) = (δ1, . . . , δr ).

Now if G(P) acts reducibly onE′, then in a natural wayP is congruent to ablendof
lower dimensional realizations, sayQ andR, and we writeP ≡ Q#R (see Section 3.1.4
of [7]). On the other hand, if this does not happen, i.e., ifG(P) acts irreducibly onE′,
thenP is said to be apurerealization. The fact that diagonal vectors of pure realizations
span the extreme rays in the realization cone is crucial to McMullen’s proof of the
fundamental numerical results outlined below.

Forv = |P0|, let E be(v−1)-dimensional Euclidean space. Clearly,P has asimplex
realization T in E, obtained by letting0(P) act in a natural way on the vertex setV(T)
of a regular simplex inE. Letw = dim(WT ).

TakedG to be the degree andwG to be the Wythoff space dimension for each of
the (finitely many) distinct, irreducible representationsG of 0(P), excluding cases with
wG = 0, and let00 = 〈ρ1, . . . , ρn−1〉 in 0(P).

Theorem 2.1[7, Section 3.2]. With the notation above and summing over distinct ir-
reducible represenations of0(P), we have:

(a)
∑

G wGdG = v − 1= |{00σ : σ ∈ 0\00}|.
(b)

∑
G

1
2wG(wG + 1) = r = |{00σ00 ∪ 00σ

−100: σ ∈ 0\00}|.
(c)

∑
G w

2
G = w = |{00σ00: σ ∈ 0\00}|.

These character-like results are extremely useful in classifying the full range of pure
realizations for a finite regular polytopeP.

3. General Pure Realizations for{4,4}(b,0)
Throughout this section,b ≥ 2 is a fixed positive integer andP = {4,4}(b,0). ThusP
has automorphism group0 = 〈ρ0, ρ1, ρ2〉, whose “translation” subgroup is generated
by τx = ρ1ρ2ρ1ρ0 andτy = ρ2ρ1ρ0ρ1.

We begin our construction with the Coxeter groupK whose diagram is shown in
Fig. 2. (The generatorsr0, r1, . . . , r7 of K correspond to the nodes as labeled. As usual,
whenb = 2 the branches in the diagram are removed.) ThusK is a direct product of
dihedral groups. We also require two outer automorphismλ,µ for K , as suggested in
Fig. 2:µ interchangesr0 andr2, etc., whileλ interchangesr0 andr6, etc. By adjoining
λ,µ to K we obtain a groupK ′ of order 64b4. Evidently, this extension toK ′ is an
example oftwisting(see pp. 205–206 of [8]). To motivate our construction, it is helpful
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Fig. 2. The groupK .

to note that the group for{4,4}(b,0) can be defined by applying the twisting operation

(r0, r1, r2, r3;µ)→ (r0, µ, r3)

to a subdiagram in Fig. 2. (We thank the referee for this comment.)
We can faithfully representK ′ as a group of orthogonal transformations on the Eu-

clidean spaceE = R8, endowed with the usual inner product. In fact, ife0, . . . ,e7 is the
usual basis, we may suppose forj = 0,2,4,6 thatr j has rootej ; and for j = 1,3,5,7
thatr j has root cos(π/b)ej−1+sin(π/b)ej . It follows thatµ is the linear map permuting
e0 ande2, e1 ande3, e4 ande6, e5 ande7; λ acts similarly on basis vectors.

We can now define the group of main interest to us, which we found after a consid-
erable amount of experimentation involving some well-known four-dimensional tori [2,
Section 4.5] and certain computations inGAP:

Definition. For integers̀ ,m satisfying 0≤ `,m≤ b− 1, letG`,m be the subgroup of
K ′ generated by

g0 = µ(r0r1)
`r0(r2r3)

`r2(r4r5)
mr4(r6r7)

mr6,

g1 = λµr0r4,

g2 = µ.

Noting that we compose linear mappings left to right, it is easy to verify that

g2
0 = g2

1 = g2
2 = (g0g1)

4 = (g1g2)
4 = (g0g2)

2 = (g1g2g1g0)
b = I ,

whereI denotes the identity onE. HenceG`,m is the image of0 under the homomorphism

f : 0→ G`,m

which sends eachρj → gj . Sincer j−1r j has periodb ( j = 1,3,5,7), we may treat̀ ,m
as residues (modb).
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We require the basic “translations”gx = g1g2g1g0 andgy = g2g1g0g1. Now for any
integersj, k, we may writegj

x gk
y as a matrix (with respect to the usual basis):

gj
x gk

y =
[

R

(
2π

b
( j `− km)

)
; R

(
2π

b
( j `+ km)

)
;

R

(
2π

b
( jm− k`)

)
; R

(
2π

b
( jm+ k`)

)]
. (5)

In this 8× 8 block diagonal matrix,R(θ) denotes the rotation matrix

R(θ) =
[
cosθ − sinθ
sinθ cosθ

]
.

Since the relations in (3) imply thatτx andτy commute, it follows that everyg ∈ G`,m

can be written as

g = hgj
x gk

y,

whereh ∈ 〈g1, g2〉. It is now readily verified thatall elements ofG`,m other than
“translations” have trace 0, whereas

trace
(
gj

x gk
y

) = 4

[
cos

(
2π

b
j `

)
cos

(
2π

b
km

)
+ cos

(
2π

b
jm

)
cos

(
2π

b
(k`)

)]
. (6)

Next, it is easy to verify that the Wythoff spaceW`,m for G`,m is spanned by

p = e1+ e3+ e5+ e7. (7)

We, therefore, have the ingredients necessary to define a realizationP̀ ,m := [ f, p]
(depending on(`,m)) for the toroidal mapP = {4,4}(b,0).

Notice thatg0 fixes p only if ` = m = 0, in which caseV(P0,0) = {p}, so thatP0,0

is a trivial realization forP. Hence dim(P0,0) = 0, although it is still useful to consider
G0,0 as a trivial linear group of degree deg(G0,0) = 1 acting irreducibly onE′ = Rp
(the linear subspace ofE spanned byp).

Otherwise, when 0< ` or 0< m, o ∈ E is the unique point fixed byG`,m and so
V(P̀ ,m) affinely spans a linear subspaceE′ of E. In this case, dim(P̀ ,m) = dim(E′) =
deg(G`,m) > 0. (The dimension of the realization coincides with the degree of the
inducedrepresentation onE′.)

In summary, in all casesE′ denotes the linear subspace ofE spanned byV(P̀ ,m),
and we usually considerG`,m as acting onE′.

We assemble several properties of this realization into

Theorem 3.1. For integers0≤ `,m≤ b− 1 (b ≥ 2), let P̀ ,m be the realization in E′

described above for{4,4}(b,0). Then P̀,m has the following properties:

(a) P̀ ,m ≡ Pm,` and P̀,m ≡ P−`,m. (Recall that̀ ,m can be taken(mod b).)
(b) Assume(as we may, by (a)) that 0 ≤ m ≤ ` ≤ b/2. Then each P̀,m is a pure

realization with
(i) dim(P̀ ,m) = 8, if 0< m< ` < b/2. Each gj has trace0 (acting on E=

E′).
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(ii) dim(P̀ ,m) = 4, if 0= m< ` < b/2. Here g0, g2 act as reflections and g1

as a half-turn on the4-space E′.
(iii) dim (Pm,m) = 4, if 0< m= ` < b/2. Here g0, g2 act as half-turns and g1

as a reflection on the4-space E′.
(iv) dim(Pb/2,m) = 4,if 0< m< ` = b/2 (for b even).Here g0 acts as a rotatory

reflection(trace(g0) = −2), g1 as a half-turn and g2 as a reflection on
the4-space E′.

(v) dim(Pb/2,0) = 2 (for b even). In this collapse to a square, g0, g1 act as
reflections and g2 as the identity on the2-space E′.

(vi) dim(Pb/2,b/2) = 1 (for b even). In this collapse to a segment, g0 acts as a
reflection and g1, g2 as the identity on the1-space E′.

(vii) dim(P0,0) = 0 (the trivial realization).
(c) The realizations enumerated in part(b) are mutually incongruent.
(d) For (`,m) 6= (0,0), let d = gcd(`,m,b) and let

ε =
{

2, if b/d is even, and both̀ /d and m/d are odd;
1, otherwise.

Then ∣∣V(P̀ ,m)
∣∣ = b2

εd2
.

(Of course, the trivial realization P(0,0) has one vertex.)

Proof. (a) The indicated congruences of realizations follow from conjugating thegj ’s
by λµ and byµr0r2, respectively.

(b) From character theory, a complex representationf : 0 → G is irreducible iff its
character norm equals 1 [10, p. 69]. In the present (real) case, it follows at least that
G`,m = (0) f acts irreducibly on the eight-dimensional spaceE if

1 = 1

|0|
∑
γ∈0

trace(γ ( f ))trace(γ ( f )).

However, by (6) and the related remarks, the preceding sum is

= 16

8b2

b−1∑
j,k=0

[
cos

(
2π

b
j `

)
cos

(
2π

b
km

)
+ cos

(
2π

b
k`

)
cos

(
2π

b
jm

)]2

= 4

b2
[s(`, `)s(m,m)+ s(`,m)2],

where

s(p,q) =
b−1∑
j=0

cos

(
2πpj

b

)
cos

(
2πq j

b

)

=


b, if p ≡ q ≡ 0 or p ≡ q ≡ b/2 (modb);
b/2, if p ≡ ±q but p 6≡ 0 or b/2 (modb);
0, otherwise.
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Thus, as we claim in (i),P̀ ,m is indeed a pure eight-dimensional realization if 0< m<

` < b/2.
For general irreducible real representations, the character norm may exceed 1. Even

so, in the present instance,G`,m is reducible for other values of the parameters`,m.
For example, in part (ii) with 0= m< ` < b/2, we find thatE′ is an invariant four-
dimensional subspace ofE with basis

{e0+ e2,e1+ e3,e5+ e7,e6− e4}.

(Note that the base vertexp ∈ E′.) The induced generatorsg̃0, g̃2 are reflections (trace=
2) whereas̃g1 is a half-turn (trace= 0). Thus some nontranslations have nonvanishing
trace. Nevertheless, a similar and straightforward calculation of the character norm shows
that P̀ ,0 (0< ` < b/2) is pure four-dimensional.

The remaining cases (iii)–(vii) follow similarly.
(c) Given the information concerning dimension and trace, it is clear that realizations

from different classes (i)–(vii) are incongruent. So consider, for example, two realiza-
tions in class (i), for pairs(`1,m1) and(`2,m2). If these realizations were congruent,
corresponding translationsgj

x gk
y would have equal traces, as described in (6). Taking

( j, k) = (1,0) and (1,1), and recalling that 0< mj < `j < b/2, we soon find that
m1 = m2 and`1 = `2. Cases (ii)–(vii) follow similarly.

(d) The “translation” subgroup acts transitively onV(P̀ ,m). A close look at (5) and
(7) shows that the number of vertices is the same as the order of the subgroup of(Z4

b,+)
generated by [̀, `,m,m] and [−m,m,−`, `]. Having found the elementary divisors of
the 2× 4 integer matrix with these rows, we may readily compute|V(P̀ ,m)|.

A remarkable consequence of Theorem 3.1 is that much of the data for these pure
realizations of{4,4}(b,0) is neatly encoded in a picture of the polytope as a toroidal map.
The casesb = 4 andb = 5, which are typical enough, are shown in Fig. 3. In Fig. 3 we
interpret(`,m) as coordinates (modb) for a typical vertex in the grid. Also indicated are
two adjacent lines of symmetry for the grid (and the toroidal map). Theorem 3.1(a),(c)
can now be interpreted as asserting that

• each distinct pure realizationP̀ ,m corresponds to exactly one vertex in the wedge-
shaped fundamental region enclosed by the two mirrors in the grid. (The corre-
sponding vertices have been clearly indicated by a circle, or box.)

Just as interesting we observe from Theorem 3.1(b) that

• the dimension of each nontrivial pure realizationP̀ ,m equals the size of the orbit
of the corresponding grid vertex, under the dihedral group generated by the two
grid symmetries. (This dimension appears as a label inside each circle. The corner
box, which indicates the trivial realization, also fits into this scheme, if we replace
“dimension” by “degree.”)

For example, up to similarity{4,4}(5,0) has exactly one eight-dimensional pure realization
of type P̀ ,m, while {4,4}(4,0) has none.
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Fig. 3. Pure realizations of{4,4}(b,0) encoded in the polytope itself.

In a sense, the polytope acts as a kind of discrete “moduli space” for its own set of
pure realizations. As yet, we lack a more insightful proof of this. (The same situation
occurs for maps of type{3,6}, as explained in [1].)

We must still, however, check thateverypure realization of{4,4}(b,0) is (similar to) a
realization of typeP̀ ,m. To do so, we first refer to Fig. 1, noting that any two vertices in
the square tessellation{4,4} can be interchanged by a symmetry of the whole tessellation
(e.g., by some half-turn). Passing to the quotient polytope{4,4}(b,0), with group0, and
identifying its vertices with the cosets00σ , we conclude that for eachσ ∈ 0 there exists
λ ∈ 0 such that(00, 00σ)λ = (00σ, 00). Hence

00σ00 = 00σ
−100, ∀σ ∈ 0.

It follows from Theorem 2.1(b),(c) thatr = w. Thus for each distinct, nontrivial irre-
ducible representation0 → G, the Wythoff dimensionwG = 1 (see Theorem 19 of
[6]). Furthermore, there are justr inequivalent, pure, nontrivial realizations. However,
00σ00 can be identified with the00-orbit of the vertex00σ , so that by Theorem 2.1(c),
r = w is just the number of orbits under the action of00 on the vertex set of{4,4}(b,0)
(excluding the base vertex00 itself).

A little thought shows that we may reinterpret00 as the group generated by the grid
symmetries indicated in Fig. 3. Thuseverypure realization of{4,4}(b,0) corresponds
to a unique vertex in the wedge; andr , the number of such vertices, is readily calcu-
lated. Summarizing we have

Theorem 3.2. For b ≥ 2, each pure realization of the polytope{4,4}(b,0) is of type
P̀ ,m. The number of nontrivial pure realizations is therefore

r = 1

2

⌊
b

2

⌋(⌊
b

2

⌋
+ 3

)
.
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4. The Pure Realizations for{4,4}(c,c)
Using the presentation (4) for the automorphism group0({4,4}(c,c)), one readily verifies
that

1= (ρ1ρ2ρ1ρ0)
2c.

It follows that there is an epimorphism

0
({4,4}(2c,0)

)→ 0
({4,4}(c,c)) ,

which preserves the distinguished generators, so that{4,4}(2c,0) covers{4,4}(c,c) [7, Sec-
tion 2.1.2]. Moreover, every pure realizationP of {4,4}(c,c) is thussomepure realization
P̀ ,m of {4,4}(2c,0), by Theorem 3.2. Indeed, by (4),P̀ ,m will be a realization for{4,4}(c,c)
just whengc

xgc
y = I . Taking j = k = c andb = 2c in (5), we see that this happens

precisely wheǹ ≡ m (mod 2).
Looking again at theb × b grid which parametrizes theP̀ ,m (as in Figure 3), we

observe that

• for b = 2c, and starting with the trivial vertex,alternatevertices in the fundamental
wedge of theb× b grid describe inequivalent, pure realizations of{4,4}(c,c).

The casec = 3 (i.e.,b = 6) is indicated in Fig. 4.
It is easy to check that the number of alternate, nontrivial grid vertices in the wedge

is r ′ = c+bc2/4c. On the other hand, an analysis similar to that preceding Theorem 3.2
shows thatr ′ also equals the total number of inequivalent, nontrivial pure realizations.
We thus have

Theorem 4.1. For c ≥ 2, the pure realizations of the polytope{4,4}(c,c) are exactly the
realizations P̀,m, with ` ≡ m (mod 2).The number of such nontrivial pure realizations
is thus

r ′ = c+
⌊

c2

4

⌋
.

Fig. 4. Pure realizations of{4,4}(c,c) encoded in the polytope{4,4}(2c,0).
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5. Tori Inscribed in the 4-Cube

We conclude by examining the polyhedra{4,4}(4,0) and{4,4}(2,2), which are particularly
attractive, since their pure realizations in four-dimensional Euclidean spaceE can be
usefully visualized with the help of the 4-cube{4,3,3} and the regular cross-polytope
{3,3,4} situated inE.

Referring to the grid on the left in Fig. 3, we begin with the realizationP1,0 for
{4,4}(4,0). In this case the “translations”gx andgy are simple rotations of period four
about orthogonal planes inE. Thus, by Theorem 3.1(d), the 16 vertices of the realization
are in fact the vertices of the double prism{4} × {4}, namely, the 4-cube{4,3,3} [2,
p. 37]. Moreover, the 32 edges of the polyhedron are faithfully represented by (all) edges
of the convex polytope. Now recall that each facet of the 4-cube belongs (in three ways)
to a belt of four, in which consecutive facets share a (square) face. Indeed, all eight facets
lie in two such complementary belts. If we discard the eight intermediary squares from
these two belts, we are left with the 16 square faces of the polyhedron, as realized by
P1,0. (A view of this familiar realization of the polyhedron as an actual map is hidden in
Fig. 6 below; see also Figure 4.2B on p. 31 of [2].)

Like P1,0, the faithful realizationP2,1 also employs all 16 vertices of the 4-cube. Now,
however, the edges of{4,4}(4,0) joining these vertices are realized by the 32 “main”
diagonals of the eight cubical facets of the 4-cube (see Fig. 5). Furthermore, each face
of the polyhedron{4,4}(4,0) is here realized by a skew quadrilateral following—and
inscribed in—one of the above-mentioned belts of four facets.

Finally, we consider the realizationP1,1, in which the edges of{4,4}(4,0) are repre-
sented as certain diagonals of the square faces in the 4-cube. Consequently, this realiza-
tion is not faithful and involves a 2 : 1 collapse of the vertices of the polyhedron onto a
set of eight alternate vertices in the 4-cube (Fig. 6). Indeed, these eight vertices are the
vertices of a regular cross-polytope{3,3,4} inscribed in the original 4-cube. Referring
to Theorem 4.1, we observe thatP1,1 in fact provides a faithful realization of the regular
polyhedron{4,4}(2,2) , which is doubly covered by the original{4,4}(4,0).

In Fig. 7 we give a more symmetrical view of the cross-polytope itself, where we
observe that the 16 edges of{4,4}(2,2) are realized as just those edges of the cross-polytope
which remain after removing those in two orthogonal equatorial squares (indicated by

Fig. 5. A view of the realizationP2,1 for {4,4}(4,0).
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Fig. 6. The realizationP1,1 for {4,4}(4,0).

Fig. 7. The faithful realizationP1,1 for {4,4}(2,2).

dotted lines). Last, we note that adjacent faces of{4,4}(2,2) appear here as Petrie polygons
for two tetrahedral facets of{3,3,4}, lying opposite one another along a common edge.
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5. B. Grünbaum, Regular polyhedra—old and new,Aequationes Math. 16 (1977), 1–20.
6. P. McMullen, Realizations of regular polytopes,Aequationes Math. 37 (1989), 38–56.



Realizations of Regular Toroidal Maps of Type{4,4} 465

7. P. McMullen, Modern developments in regular polytopes, in T. Bisztriczky et al. (eds),Polytopes: Abstract,
Convex and Computational, Proc. NATO Advanced Study Institute, NATO ASI Series C, Vol. 440, Kluwer,
Dordrecht (1994), pp. 97–124.

8. P. McMullen and E. Schulte, Regular polytopes of type{4,4,3} and{4,4,4}, Combinatorica12(2) (1992),
203–220.

9. P. McMullen and E. Schulte, Abstract regular polytopes (manuscript in preparation).
10. E.B. Vinberg,Linear Representations of Groups, Birkhäuser Verlag, Basel (1989).
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