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Abstract. This paper examines directed graphs related to convex polytopes. For each
fixed d-polytope and any acyclic orientation of its graph, we prove there exist both convex
and concave functions that induce the given orientation. For each combinatorial class of
3-polytopes, we provide a good characterization of the orientations that are induced by an
affine function acting on some member of the class.

Introduction

A graph is d-polytopalif it is isomorphic to the grapks (P) formed by the vertices and
edges of some (conves}polytopeP. As the term is used heredigraph is d-polytopal
if it is isomorphic to a digraph that results when the gr&atP) of somed-polytopeP
is oriented by means of some affine functionfn

3-Polytopes and their graphs have been objects of research since the time of Euler.
The mostimportant result concerning 3-polytopal graphs is the theorem of Steinitz [SR],
[Gr1], asserting that a graph is 3-polytopal if and only if it is planar and 3-connected.
Also important is the related fact that the combinatorial type (i.e., the entire face-lattice)
of a 3-polytopeP is determined by the grapB(P). Steinitz’s theorem has been very
useful in studying the combinatorial structure of 3-polytopes because it makes it easy to
recognize the 3-polytopality of a graph and to construct graphs that represent 3-polytopes
without producing an explicit geometric realization.

During the 1900s a theory of higher-dimensional polytopes and their graphs gradually
emerged. The most familiar propertydfpolytopal graphs is that they adeconnected
[Ba], and the most striking property is that fodgpolytopeP whose graph ig-regular,
the entire face-lattice is determined by the gr&ai®) [BML], [Kal]. Grunbaum wrote
two survey articles dealing with polytopal graphs [Gr2], [Gr3], and these graphs also

* The authors are indebted to the National Science Foundation for partial support of this research.
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played an important role in his book on convex polytopes [Grl] and in Ziegler's book
on the same subject [Zi].

In contrast to the broad study of polytopal graphs, attention to polytopal digraphs has
been much narrower. Except for some very recent papers [Ed], [ADRS], [AER], research
on polytopal digraphs has been largely confined to establishing bounds on the lengths
of monotone paths for various sorts of polytopes. (See [KI], [KM], [To], [Ka2], [Ka3],
[Zi], [Gd], [GZ], [AZ], and [HK], and see [AZ] for additional references.)

We hope that the present article will open the door to a broader study of polytopal
digraphs. Its main accomplishment is adapting a proof of Steinitz’'s theorem due to
Barnette and Gnibaum [BG], and thereby obtaining a characterization of 3-polytopal
digraphs that is easily testable and thus facilitates the study, without constructing an
explicit geometric realization, of the digraphs that can arise when the edges of some
3-polytope are oriented by means of some affine function. We also include a short
discussion of the digraphs that result when the gapR) of ad-polytopeP is oriented
by means of a function that is convex or concave.

1. Statement of Main Result

An orientationof a graphG is a way of assigning a direction to each edgé&othus
turning G into a digraph. Whert is a real-valued function whose domain includes the
vertex set of a grapB, we say thatf isadmissible€or G provided thatf does not attain
the same value at any two adjacent vertice§&oEach function that is admissible for
G inducesan orientation by replacing each undirected exig®y the directed edgey
or yx according asf (x) < f(y) or f(y) < f(x). The resulting digraph is denoted by
D(G, f). Ifafunction does not attain the same value at any two vertices (whether or not
they are connected by an edge), it is cabéngly admissible
WhenC is a convex set, a functian: C — R is convexf g(aX + BY) < ap(X) +
Be(y) for each choice ok, y € C anda, 8 > 0 with o + 8 = 1. If this holds with<
replaced by>, the functiong is concave The functiong is affineif it is both convex
and concave, and in this cagecan be extended to a functigrt on the entire ambient
spaceRY such thatp* (ax + BY) = ap*(x) + Be*(y) for all X,y € RY anda, f € R
with o + 8 = 1. Of course the extensiast is equal to a linear function plus a constant.
WhenP is a polytope in reall-spaceR?, anLP orientationof P’s graphG(P) is one
that is induced by some affine function &nthat corresponds to an admissible function
for G(P). (Since adding a constant to a function will not change the orientation itinduces,
any orientation induced by an affine function is also induced by a linear function. “LP”
is intended to suggest “linear programming.”) Thus a digraghpslytopal if and only
if it is isomorphic to an LP orientation of the graph of soth@olytope.
A pathinagraphisasequen¢®, .. ., vk) of distinct vertices such that, ford i <k,
the unordered paiv; _1v; is an edge of the graph. With respect to a given orientation
of the graph, the path isonotoneprovided that each of the ordered pairs1v; is a
directed edge of the digraph, and a patlamgitoneprovided that each of the ordered
pairsv;vi_1 is a directed edge of the digraph. Tleagthof a path is the number of edges
it uses. A set of paths from to v is calledindependenif no vertex other tham or v
appears in more than one member of the set.
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For an acyclic digraph, we definedgtourto be a monotone path of length greater
than one whose endpoints are also connected by a single edifjés H monotone path,
thenadding a detouto M means replacing a single edgeMfwith a longer monotone
path having the same endpoints as the edge.

A vertexv of a digraphK is asourceif all edges incident te are directed away from
v, and asinkif all edges incident te are directed toward. Now our main result can be
stated as follows:

Theorem 1.1. Suppose that K is an orientation of3apolytopal graph G Then the
digraph K is3-polytopal if and only if it is acyclichas a unique source and a unique
sink and admits three independent monotone paths from source to sink

Note that, since the graph determines the combinatorial type for 3-polytopes, Theo-
rem 1.1 specifies all LP orientations possible within a combinatorial type. It is easy to
find examples consisting of two combinatorially equivalent polytdpesd P’ and an
LP orientation ofG(P) such that the corresponding orientationGfP’) is not LP. (In
two dimensions, for example, any LP orientation of a rectangle must have source and
sink diagonally opposite, but a more general quadrilateral may possess an LP orientation
with source and sink adjacent.)

The “only if” in Theorem 1.1 follows from a previous result [HK] which we restate
in Section 3. The proof of “if,” given in Section 3, closely follows the “edge deletion”
proof of Steinitz's theorem given by Barnette andu@@aum [BG]. Other proofs of
Steinitz's theorem appear in [SR], [Grl], [BG], [Zi], and [RG], but since they utilize
the dual of the given polytope they do not seem to be adaptable to deal with polytopal
digraphs.

The proof of Theorem 1.1 appears in Section 3, but we first devote a short Section 2
to orientations induced by convex functions. The following proposition plays a role in
both Sections 2 and 3.

Proposition 1.2. If G is a finite graphthen each orientation of G that is induced by
an admissible function is acycliand each acyclic orientation of G is induced by some
strongly admissible function

Proof. Thefirstassertion is obvious. For the second, suppose that an acyclic orientation
of the graphG = (V, E) is given. Call the resulting digrapk. Let n be the number

of vertices in the graph and |8t denote the subset &f that consists of all sinks in

K. Acyclicity implies thatT is not empty. Choose any € T and set (v) = n. Now
consider the acyclic digrapK \{v}. Take any sinkw in this smaller digraph and set

I (w) = n — 1. lterating this process, we eventually define the fundtion all vertices

of the finite graphG. As defined] is an injection hence it is strongly admissible. For
any directed edgéw, the vertex will not be a sink untikw is removed, hence we must
havel (v) < | (w), soK = D(G, ). O

The functionl is called aevel functionof the digraphk .
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2. Orientations Induced by Convex or Concave Functions

Itis wellknown [HH], [GK] thata convex functior on a polytopeP attains its maximum
at some vertex oP.

Further, if f is strictly convex, then each of its local maxima is attained at a vertex.
The following remark shows that knowledge aloR& edges is sufficient to recognize
which vertices ofP constitute local maxima for a given convex function. This reduces
the recognition problem to a finite number of one-dimensional tests.

Proposition 2.1. Suppose that P is a polytopé is a convex function on Randv is
a vertex of P Then f attains a local maximum atif and only if for each edge E of P
incident tov, the restriction of f to E attains a local maximumaat

Proof. “Only if” is obvious. For “if," let x4, ..., Xk be the other ends of the edges of
P that are incident t@ and suppose that, for eachthe restriction off to the edge
vX; has a local maximum at. Then each edgex; contains a segmentw; such that
f’s restriction tovw; has a maximum at. The rays that issue fromand pass through
the various points; are the extreme rays of a pointed convex c@nthat has apex
and containg?. From this it follows that the convex hu@ of the set{v, wy, ..., wk}

is a neighborhood of relative toP. Each pointg € Q can be expressed in the form
q= Z!‘Zl Aig with all &; > 0, Z!‘zl Ai = 1, andqg € vw;. Sincef is convex, it then
follows that

k k
fa)y <D aif) <) xfe) =fw). O
i=1 i=1

If the objective functionf is affine rather than merely convex, then either or both
occurrences of “local” can be replaced by “global” in the statement of Proposition 2.1.
This is an essential aspect of edge-following algorithms for linear programming.

The main purpose of this paper is to provide, in the next section, a good charac-
terization of the edge-orientations that can be induced on 3-polytopes (within a given
combinatorial class) by means of affine functions. First we prove Theorem 2.2, which
shows that, for an arbitrad/and an arbitrarfixed d-polytopeP, each acyclic orientation
of G(P) is induced by some convex and also by some concave functié¢h on

Now suppose that, for an admissible convex objective funcfian a polytopeP,
the resulting orientatio’ = D(P, f) is known. Then it follows from Proposition 2.1
that each sink ik corresponds to a local maximum for Clearly all the global maxima
must be among the sinks. The following result shows that nothing more can be said about
local and global maxima if we know onlp (P, f) and the fact thaf is convex.

Theorem 2.2. Suppose that P is a d-polytopelRf, V is P’s vertex-setand K is an
acyclic orientation of P’s graphLet T denote the set of all K-sinks in, ¥nd let W
and M be any sets satisfying M T ¢ W ¢ V. ThenRY admits two convex functions
f and f and a concave function g such that the following conditions are satisfied

the functions fg, and f are all piecewise affine and admissible fof;
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each function induces the orientation K of &);

for each pe P, f(p) < g(p);

over each face of P thatis a simplér particular, along each edge f and g agree
and are both affing

for the restriction off to P, global maxima are attained precisely at the members of
M and local maxima are attained precisely at the members of W

Proof. By Proposition 1.2, there is an admissible functloan V that induces the
orientationK of G(P). Let

C =con{(v,l(v)): ve V} C P x R c R,

ThenC is a convex polytope iiR9*. UnlessP is a simplex (in which case the result is
trivial), we may assure tha is (d + 1)-dimensional by perturbing the values afhile
preserving the orientatiod induced byi. For eachp € P, let f(p) andg(p) denote
respectively the smallest and the largest real numliseich thai p, n) € C. Itis evident
that, for eachv € V, C intersects the ling¢v} x R in the single poin{v, | (v)). Hence
f(v) =1(v) = g(v).

The graph off is the lower boundary of, and f (p) is the height ap of this lower
boundary above the hyperplaRé x {0} in R%*1, Similarly, the graph of is the upper
boundary ofC. Then f andg are respectively a convex and a concave functioriPon
and each is an extensionlo$o each induces the orientatighof G(P).

Now suppose thap € P, thatF is the smallest face oP containingp, and that
F is ak-simplex with vertices, ..., vk. Then there is a unique expressionés a
convex combination of the;—say p = Z:(:o Ajvi—and it is easily verified that the
intersection ofC with the line{p} x R consists of the single poirifp, Zik:o Al (v)).
Hencef (p) = g(p) and it follows that, for each fac& of P that is a simplex,f and
g agree orG. Sincef is convex whileg is concave, it follows that both functions have
affine restriction taG.

Now we want to extend each éfandg to all of RY in such a way that the extensions are
piecewise affine and are respectively convex and concave. The argument is essentially
the same for the two cases, so we consider dnlyThe graph off is the union of
certain “lower” facets oC. Let these bd-, ..., Fy. Each facef; lies in a hyperplane
H; in R such that the se€\F; lies entirely aboveH;. That is, there is a linear
function®;: R41 — R and a constant such thats ¢ {(X, «): ®i(X,a) = y;} and
®;(y, B) > y for all (y, B) € C\F;. Now we can define a functiop: RY — R by
the condition that, for eack € RY, (x, ¢ (X)) € Hi; equivalently,®; (X, ¢i (X)) = ;. A
routine exercise shows that each functjeis affine. Finally, for eack € RYsetf*(x) =
max{g; (X): 1 < i < mj}. This is an extension of (hence ofy) to all of RY and, as the
maximum of a collection of convex functions, it is convex. It is clearly piecewise affine.

It remains only to produce the convex functibnWe begin by constructing a function
f”in a fashion analogous to the constructiorf oexcept that, for all vertices € M, we
choose some sufficiently large integerand use(v, ) instead of(v, | (v)) in defining
the polytopeC. SinceM c T, itis clear thatf’ still inducesK. For large enouglu,
eachv € M is a global maximum. Note that, sindé's restriction to each edge is affine,
it follows from Proposition 2.1 that the local maxima féf are precisely the members
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of T. Now for each vertexw € W, let H,, be a hyperplane that strictly separates
from the set of all midpoints of edges & incident tow, and let the affine function
V.. RY — R be defined by the condition thalt, (w) = 1 andv,,(y) = 0 for all
y € H,,. Takey = max{y,, 0}. Finally, set

F=-1+33 u
weW
Then f is convex. It induces the orientatid6 since f’ is integer valued owv, f’ and
f agree on the vertices W, andf = ' — % on all other vertices oP (hence their
relative order is unchanged). If eath, is chosen sufficiently close te, then each
vertexw € W provides a strict local maximum for the restriction bto P. However,
at each vertex € V\W, the local behavior of agrees with that of " and hence (since
v ¢ T) v does not produce a local maximum for O

3. Linear Orientations and 3-Polytope Combinatorial Classes

If a d-polytopeP is presented as the convex hull of a finite subs@%bfthe vertices and
edges ofP can be produced by routine applications of linear programming. When an
orientationK of P’s graph is given, linear programming can be used to decide whether
the orientation is LP. For this decision, M denote the set of all points of the form
y — x whereXy is a directed edge oP. Then the orientation is LP if and only if the
origin does not belong to the convex hull 8f—and this can be tested by means of
linear programming. It follows that wheR is presented as the convex hull of finitely
many points with integer coordinates, it can be decided in polynomial time whether a
given orientation ofP’s graph is LP.

Now suppose that we are merely given an abstract graph or digraph and a positive
integerd, and we wonder whether the given objecatlipolytopal. By reasoning similar
to that used by Guibaum for a different but related purpose [Grl, pp. 91-92], there is
a (very slow) recognition algorithm based on Tarski’s decision method for real-closed
fields [Ta], [Re]. On the other hand, wheh= 3 the theorem of Steinitz provides a
characterization that is testable in polynomial time for the undirected case. We obtain
such a characterization for the directed case by usingl(fer3) the following directed
analogue ofl-connectedness established in [HK].

Theorem 3.1. Suppose that f is an admissible affine function for a d-polytogng

x and y are vertices of P such thatxX) = min f (P) and f(y) = maxf(P). Thenin

the orientation of P’s graph induced by f there are d independent monotone paths from
Xtoy.

(Sincef is affine each of the sefg € P: f(x) = min f(P)}and{x € P: f(x) =
max f (P)} is actually a face oP. Admissibility implies that each of these faces must
simply be a vertex. Hence the hypotheses imply thattains a unique minimum and a
unique maximum orP.)

We call a digraph dnonotonéf its underlying graph is 3-polytopal and the digraph is
acyclic with a unique source, a unique sink, and three independent monotone paths from



Convex and Linear Orientations of Polytopal Graphs 427

source to sink. It follows from Theorem 3.1 that each 3-polytopal digraph is 3-monotone.
The main result of this paper is that the converse is also true. That is, we want to prove
the “if” part of Theorem 1.1.

It is worth noting that Theorem 3.1 actually implies a stronger property. Sfnce
determines an admissible affine function in every face-defining hyperplane, the theorem
implies that everyj-face hasj independent monotone paths from the face’s (relative)
source to its (relative) sink. Our definition of 3-monotone makes no explicit restrictions
on the 2-faces of the polytope.

The proof of Theorem 1.1 works by induction on the number of edges and consists of
two parts. The first part shows that each 3-monotone digraph has a “deletable” edge. The
second part shows that if the digraph that results from deleting an edge is 3-polytopal,
then the original digraph is also 3-polytopal.

To help clarify some details in what follows, we introduce some definitions and
notation. A digraphl] is contained ina digraphK if there exist two injections

¥ vert(J) — vert(K) and
¢: edg€J) — the set of almonotonepaths inK

satisfying the following conditions:

for each edge?f) of J, ¢>(a_5) is a monotone path iK from ¢ (a) to ¥ (b);
the interior of each path in imagp) is disjoint from all other paths in imagg).

A particular choice ofy andg is called arembeddingf J in K. With each embedding
(¥, @), we associate two subsets of \@&). The first is image/). For anyy, this set
has cardinality equal to that of vedt); its members are called ttactive verticesof
the embedding. The second set consists of all vertices in the interiors of those paths in
image¢); its members are called tltwrmant vertice®f the embedding. Even witr
fixed, the cardinality of this set can vary with differemt

If an edge contained in an element of imégepossesses a detour that intersects
the embedding only at the detour’s endpoints, then we may add the detour to increase
the number of dormant vertices. Starting with any embedding, we may successively
modify it by adding available detours (ones whose interiors do not intersect the current
embedding) to arrive at an embedding that does not admit any detours.

Note that up to symmetry, the diagram on the leftin Fig. 1 represents the unique acyclic
orientation of the complete graph on four vertices. Dgtdenote this orientation.

Lemma 3.2. Each3-monotone digraph contains JODFurther, the embedding may be
chosen so that the source and sink ofdde sent to the source and sink of the digraph

o <
a <«

A A
y y

K B X > b X

Fig. 1. Here are two different embeddingsbf; in a digraph on the cub&.= ¢ (-),y = ¥ (+),a = ¥ (),
andb = v (B). The injectionp may be inferred from the dark edges. The left cube shows an embedding with
three dormant vertices. The right cube shows an embedding with four dormant vertices.
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Fig. 2. Labels refer to vertices or darkened paths. From the nonmonotone connectirigywatfind either
a monotone connecting path (not shown) or a new quadrupl®’, C, P*) where P* has smaller length
thanP.

Proof. Call the source of the 3-monotone digraphnd the sinky. We must find four
monotone path#\,, B, C, M that satisfy the following conditions: each &f B, andC
goes fromx to y; M goes from an interior vertex of to an interior vertex oB; and
except for the intersections implied by the preceding two conditions, the patdsC,
andM are pairwise vertex-disjoint.

Let Q denote the set of all quadruples, B, C, P) that satisfy all the above conditions
except thatP is just a path in the graph (not necessarily monotone). We show first that
Q is nonempty.

Since K is 3-monotone with sourc& and sinky, there exist three independent
monotone paths fromto y. Start with any such triple and note that, since our definitions
do not permit parallel edges, at least two of the three paths must have interior vertices.
Let u andv be interior vertices of different paths. SinGs graph is 3-connected;
contains a patlP from u to v that misses andy. We may take a subpath &f, and
combine it with the original triple (appropriately labeled), to satisfy the above conditions
and produce an element &%

Now let (A, B, C, P) be a quadruple ir©@ for which the length ofP is a minimum
(Fig. 2). Assume thaP connectd € B toa € A. Starting ab, let p be the first vertex
of P where the “direction changes” (i.e., the subpathPofrom b to p is the longest
monotone or antitone subpath that inclubtgs

If this first segment is monotone, I8&tbe a monotone path frop to y. SinceK is
acyclic with unigue sinky, such a monotone path must exist. From plana8tynust
encounterA or B before it encounter€. We claim thatS encounterdA before reaching
y. The subpath o from b to p followed by the initial segment o8 up to A can
then serve as the monotone padhconnectingB and A to satisfy the conditions of the
lemma.

To justify the claim, note that i goes all the way ty before it encounters, then
the minimality of P in the quadrupl€éA, B, C, P) € Q is contradicted by the quadruple
(A, B/, C, P*) whereB’ is formed by followingB from x to b thenP to p followed by
Stoy, and whereP* is the subpath oP connectingp to a.

If instead, the first segment &f is antitone, the proof is similar with the role &f
being played by an antitone path frgorto x. O

When a digraptK is 3-monotone we call an edde of K deletableif there exists
a 3-monotone digraph contained inK with an embeddingy/, ¢) such that image)
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includes all edges dk exceptE. As described in [BG], there are three possibilities for

the change in cardinality from véit) to vert(K). If the deletable edge connects two
vertices that are active i), ¢), then the two cardinalities are the same. Otherwise,
the new edge “activates” one or two dormant vertices and thus increases the cardinal-
ity of vert(K) by one or two. Correspondingl¥k has one, two, or three more edges
than J since each time a dormant vertex is activated it split¥ adge into twoK

edges.

Lemma 3.3. For each3-monotone digraph K there exists a sequencg-wfonotone
digraphs 4, ..., J such that dis D4, Jx = K, and each J_; is obtained from J by
deleting one edge

Proof. Lemma 3.2 proves the existence of at least one embedding) of D4 in K,
wheres takes the source and sink B, to x (the source) ang (the sink) ofK. By
adding detours, if necessary, we arrive at an embeddiggpe) which has no detours
available.

Now assume we have a sequedge . ., J, of digraphs, where each,_; is obtained
from Jn, by deleting one edge, and whelkgs contained irk with an embeddingy,, ¢n)
which has no detours available. Jf # K, we will show that it is always possible to
“add an edge” tal, to create al,.;1. (That is, we will find a monoton& -path which
may be added to the embeddingJfto create an embedding of a larger digragh,i,
which differs fromJ, by a single deletable edge.) By assumptidnis a 3-monotone
digraph, but care must be taken to ensure fhat is a 3-monotone digraph as well.

SinceK is planar and acyclic, any digraph contained in it is planar and acyclic. The
process of “adding an edge” cannot create new sources or sinks. FurtherJgisce
D4 and (by composing embeddings) ealtcontainsdy, eachd, 1 will still have three
independent paths from the unique source to the unique sink. Finally, it is routine to
verify that “adding an edge” cannot destroy the 3-connectedness of a graph.

Our one concern will be to ensure that the new object is actually a digraph. If the
proposed “new edge” (i.e., a monotone patkimhose endpoints belong tth embed-
ding but whose interior is disjoint from it) is not properly chosén,; will have parallel
edges. Itis also routine to check that a proposed “new edge” will create parallel edges in
Jno1 if and only if a single element of imagg,) contains both of the path’s endpoints
(Fig. 3). (Note that dormant vertices are contained in a unique element of (fage
active vertices are contained in at least three.)

M a b

AN d

a — b
p(ap) c

Fig. 3. Thicker lines indicate edges contained in the embed@ing). All active vertices are labeled, with
a = ¥(«) andb = v (B8). Adding the monotone pathl creates two parallel edges, but addiXgloes not
create any parallel edges since no element of irgggeontains both of the path’s endpoints.
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Given the sequencd), Ji, ..., J, as described above, # # K, then either:

(a) thenth embedding has no dormant vertices and ong, sfvertices is “missing
aK edge” (i.e., there is am in J, such that = ¥, («) has greater valence than
a), or

(b) thenth embedding includes a dormant vertex.

Note: A greek letter always signifies a vertexJyf its corresponding vertex iK is
given the roman counterpart.

Case(a): When There Are No Dormant Verticdékthe nth embedding has no dormant
vertices, therp, must take edges af, to single edges oK. Leta be a vertex ofl, that

is missing aK edge and led = (). Let b be the other endpoint of the missikg
edge, |.e.§5 or ba is an edge oK that is not contained in imagg,).

If b happens to be in imag¢,), we may simply takel,,; to be the digraph that
results from adding a directed edge betweeand 8 = v, 1(b). Since these are active
vertices, this would create a parallel edge only if an edge betweenl 8 already exists
in Jy. By hypothesis, this is not the case. Thus add?ﬁgor ,3_0)5 creates a 3-monotone
i1

To produce thén + 1)st embedding, takén 1 = ¥, and begin WithﬁrH,]_((X_é) — ab
(or ¢ni1(Ba) = ba, respectively) then add detours to arrive atar- 1)st embedding
with no detours available.

If bis not in imagéy,,) and theK edge is directed from to b, then consider any
monotoneK path fromb to the sinky. (The case where th edge points fronb to
a is similar, with “monotone” replaced by “antitone” and “sink” replaced by “source.”
Let c be the first vertex of this path that is contained in tite embedding. CalM the
monotoneK path froma throughb to c. Leta = ¥, 1(a) andy = ¥, 1(c). We now
form J,,1 by adding a directed edge thy from « to y. Note thatxy does not already
exist in J, since¢, takes edges to edges, thélh embedding has no detours available,
andM is a detour taa¢ which only intersects thath embedding at its endpoints.

To determine thén+ 1)st embedding, again takié, 1 = ¥, and begin withpn,.1(a7)
= M then add detours to arrive at am+ 1)st embedding with no detours available.

Case(b): Activating a Dormant Vertex et u be a dormant vertex in theth embedding.
LetU be the element of image,) that containsl. (U isamonoton& path.) Choose any
other vertex contained in th@th embedding but not containedth As in Lemma 3.2,
the 3-connectedness Kfimplies there exists a (not necessarily monotone) pafitom

u to v in K that avoidsU’s endpoints. We may relabel and take a subpath d? to
ensure that no vertex in the interior Bfis contained in theith embedding. (We may
need to replace with a different dormant vertex ib).) Setpy, = u. Within P, label
vertices where the “direction changes”@s ps, . .., pi- (That s, the portion oP from
pi_1 to pi is monotone; the portion frorp; to pi1 is antitone; etc.)

For eachp; that is a sink relative t®, consider any monotone path frgomup to the
sink y. (Acyclicity with a unigue sink implies there is at least one such path.yLie¢
the first vertex of this path that is contained in tith embedding. Calf the monotone
subpath leading fronp; to 5 (Fig. 4). Similarly, for eachp; that is a source relative to
P, consider any antitone path fropp down to the sourc&. Lets be the first vertex in
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S
>.
P1 p Ps o /s/lr» y
P2 v pz\\\SQ“ X
S .

Fig. 4. Labels refer to vertices or darkened paths. Starting with a nonmonoton® fttweeru andv, we
define two families of points and two families of monotone pagh«onnectsp; to 5 andM; connects to
S-1.

M2

this antitone path that is contained in thiln embedding. Cal§ the antitone subpath
leading fromp; to 5. Definesy to beu and S to be the trivial path fronu to u. Define
boths,; andp ;1 to bev andS ., to be trivial. Finally, callM; the monotone or antitone
path that begins &, follows § to p;, follows the portion ofP from p; to pi_1, then
follows S_; to end afs _;.

Letsj 1 be thefirstelement dfy, ..., s11) not contained it . (Recallthab = 51
is not inU.) Unlesss; andsj, belong to a single element ¢4, the pathM;,; may
be used to create a “new edge” {1, as we shall describe. § is active in thenth
embedding, let: be the corresponding endpointgf1(U). (¢, (V) is an edge ofl,.)

If 5 is dormant in thenth embedding, letr be a new vertex created in the interior of
#;1(U). Let W be an element of image,) which containssi ;1. If 541 is active, then
let B8 be the appropriate endpoint ¢f1(W). If ;11 is dormant, le{8 be a new vertex
created in the interior af, 1(W). We form J, 1 by adding taJ, a directed edge between
o andg (with orientation determined by the orientationf 1).

To find the(n 4+ 1)st embedding, we begin by using the same assignments as the
nth embedding, by settingi,1(«) = S andyn11(8) = Sj4+1 and by sending the edge
betweenx andg to M;,;. (Note that “using the same assignments” implies thé if
is an edge inJ, which gets “split” into twoJ,1 edges, thew,,1 must send the two
edges thus created to subpathg)pfE).) We then successively add detours to ensure
that (Y11, ¥nr1) has no detours available.

If 5 ands;1 do belong to a single element of imadge), call this elemenW. (Wis a
monotoneK path.) In this casg must be an active vertex. Letbe a new vertex created
in the interior ofg;(U) and letB be a new vertex created in the interiorggf:(W).
We form Jn1 by adding toJ, a directed edge betweerandg. Sincex andg are in the
interiors of different edges af,, the new edge will not be parallel to an existing one. As
described below, the + 1)st embedding will send to p;_; andg to p;. The subpath
of P from p;_; to p; determines the orientation of the new edge betweandp.

We determine thén + 1)st embedding by first finding a new embedding Jpr Call
W’ the monotone path that results from replacing the sectioW éfom s;,1 to s; by
the pathM; 1 (Fig. 5). If j > 1, callU’ the monotone path that results from replacing
the section otJ from s;_; to 5;_, by the pathM;_;. If j = 1, setU’ = U. (Sinces;
is an active vertexj > 0.) The interiors of thevl; contain no vertices—neither active
nor dormant—from theth embedding. This implies that by replacibgwith U’ and
W with W’ we create a new embeddilign, ¢;,) of J,. To find the(n + 1)st embedding,
we begin by using the same assignments/as ¢,,), by sendingy to p;_1 andg to p;,
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S-1

Fig. 5. Labels refer to vertices or darkened paths. We definby replacing the subpath &f fromsj_; to
sj—2 with Mj_1. We defineW’ by replacing the subpath & from s;.1 to §; with M; 1. The figure shows
the case wherg¢ = 2.

and by sending the new edge (betweeand g) to the subpath oP from p;_; to p;.
We then successively add detours to ensure(that:, ¢n1) has no detours available.
Thus we have shown that &, is contained irK but J, # K, we may always “add
an edge” to create &,,1. SinceK is finite, we must eventually arrive 8¢ = K. This
completes the proof of Lemma 3.3. O

We omit the proof of the following lemma, since it concerns only the undirected graph
and it appears in detail in [BG].

Lemma 3.4. The totality of all vertices and faces of3aconnected planar grapiG,

may be arranged in a sequence in such a manner that each element is incident with at
most three of the elements that precede itin the sequiBttreoversuch an arrangement
exists even under the additional requirement that for any chosen edge E of G the two
vertices of E and the two faces containing E be placed at the beginning of the sequence

The following result also concerns only undirected graphs. While itis true for directed
graphs as well, itis not convenient to prove it separately from the main result. Itis proved
in detail in [BG], but we sketch the proof here to help clarify the directed case.

Lemma 3.5. If a graph G is3-polytopal and is obtained from a planar graph 6y
deleting an edgéin the sense of the definition preceding Len®r), then G is also

3-polytopal

Proof. Intuitively, if we have a polytope that realiz€s then we firstimagine “drawing
an edge” across the appropriate face to give us an object with the combinatorial structure
of G’. However, this object is not a polytope since the two newly created faces are
coplanar. We then “bend one face” slightly to produce a polytope. It is a hontrivial result
that such a bending may always take place without disturbing the combinatorial structure.
(In fact, such an operation may be impossible in higher dimensions.) The fact that this
is always possible for 3-polytopes follows from Lemma 3.4.

Lemma 3.4 implies that after “bending” one face, we may iteratively adjust the re-
maining faces to maintain the same combinatorial structure. As we “propagate” the
perturbation according to the sequence given by the lemma, each vertex is specified to
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be in at most three of the preceding planes (which have been only slightly perturbed
from previously intersecting in a point) and each plane is required to contain at most
three of the preceding points, hence we cannot run into a geometric impossibility from
our small perturbation. O

Armed with the preceding lemmas, we may now restate the theorem of Steinitz in
combination with its directed analogue.

Theorem 3.6. A graph is3-polytopal if and only if it is planar an@-connectedIf K

is an orientation of &3-polytopal graphthen the digraph K i8-polytopal if and only
if K is acyclig has a unique source and a unique siakd admits three independent
monotone paths from the source to the sink

Proof. The undirected case would follow simply from an induction using the previous
lemmas. One minor complication arises in the digraph case. We must take pains to
ensure that each new edge receives the proper orientation. To do this, we use the entire
Jn sequence from Lemma 3.3. Let a “sequence function” for the digraph be any integer-
valued function on the vertices such that each directed edge points from the vertex with
lower function value to the vertex with higher value. Proposition 1.2 implies that for
any acyclic digraph at least one such function exists. Fix any sequence function. By
composing the embeddings implied by the containment sequence, we may identify the
vertices of eachd,, with vertices ofK in a consistent manner. When choosing a polytope

and functiontorealizdy = D4, we take the linear function to be theoordinate (height)

and take the four vertices to have heights equal to the value of the sequence function at
the corresponding vertices K. Additionally, we may ensure that each bending is so
small that it has a negligible effect on the (integer-valued) heights of the vertices. Now,
whenever bending creates a new vertex, we can choose the bend to intersect the existing
edges at heights equal to the sequence function of the corresponding verkceRhis
ensures that each new edge will have the proper orientation.

Again, we would like to emphasize the difference from the undirected cades &
3-polytopal digraph that results from deleting an edg& pfve do not claim that ANY
polytope plus linear function that realizdsmay be bent to realiz& . The new edge
might necessarily receive the wrong orientation. Rather, the proof shows that by starting
with a particular tetrahedron and linear function we may follow the entire sequence from
Lemma 3.3 to arrive at a polytope and linear function that induces the orient&tion

This completes the proof. O

The undirected proof in [BG] shows that arbitrarily close (in the Hausdorff metric)
to any 3-simplex inR3 there are realizations of every 3-polytopal graph. Since all 3-
simplices are affinely equivalent, the above proof shows the same is true of realizations
of 3-polytopal digraphs.

Griinbaum [Gr1] showed that each combinatorial type of 3-polytope can be realized
by a 3-polytope whose vertices belong to the integer lattid@3init follows from our
argument that this extends to the lattice realization of an arbitrary combinatorial type
along with an arbitrary 3-monotone orientation of its graph.
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Gil Kalai asked us which linear orderings of the vertices of a given 3-polyfopan
be induced, on some memketof P’'s combinatorial class, by some linear function that
is strongly admissible foP’. From the above proof of Theorem 3.6 it follows that the
linear orderings so inducible are precisely those for which the induced edge-orientation
satisfies the condition stated in the theorem.

Theorem 3.6 also yields an immediate corollary characterizing the line shellings of
3-polytopes. Any strongly admissible function determines a sequence of a polytope’s
vertices. A sequence of a polytope’s facets is calleghelling if it possesses certain
desirable properties, see [Zi]. There is a natural identification between the strongly
admissible linear orientations of a polytope and a special class of shellings (oadled
shellingg of its polar, see [DK]. The corollary below follows from this identification and
from the definition of a general shelling.

Corollary 3.7. For a fixed combinatorial class @&polytopesa shelling can be re-
alized as a line shelling on some member of the class if and only if there are three
independent monotone ridge-paths from the initial facet to the final facet of the shelling

Finally, we state without proof a characterization of linear orientations-fuolytopes
with d + 2 vertices. As described in [Grl], the Gale transform of such a polytope lies in
RL. Further, the combinatorial class is determined by the respective numbers of points
with positive, zero, or negative coordinate. Each vertex of the polytope corresponds to a
pointin the Gale transform, so a sequence of vertices naturally corresponds to a sequence
of points in the Gale transform. We say that a sequenizes signsf some point with
negative coordinate precedes some point with positive coordinate and some point with
positive coordinate precedes some point with negative coordinate.

Theorem 3.8. A sequence of the vertices of a d-polytope with @ vertices arises
from a linear function acting on some member of the combinatorial class if and only if
the sequence mixes the signs of the corresponding points in the Gale transform

We can use this characterization to find examples which illustrate that, even in four
dimensions, the “directed-connectedness” of Theorem 3.1 is insufficient to ensure
that an orientation arises from a linear function acting on some member of a fixed
combinatorial class. (Consider neighborly polytopes.)

Applying the Gale transform td-polytopes withd + 3 vertices leads to a characteri-
zation of which orientations are inducible by a linear function acting on some member of
the combinatorial class. This will appear elsewhere, along with the proof of Theorem 3.8.
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