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Abstract. In this paper we show that an affine bijectionf : T1 → T2 between two
polyhedral complexesT1, T2, both of which consist of a union of faces of two convex
polyhedraP1 andP2, necessarily respects the cell-complex structure ofT1 andT2 inherited
from P1 and P2, respectively, providedf extends to an affine map fromP1 into P2. In
addition, we present an application of this result within the area of T-theory to obtain a
far-reaching generalization of previous results regarding the equivalence of two distinct
constructions of the phylogenetic tree associated to “perfect” (that is, treelike) distance
data.

1. Introduction

In this paper apolyhedronis understood to be a subset of some affine space that is the
intersection of a finite collection of closed half-spaces, and apolytopeis a compact poly-
hedron. Thus, for us, polyhedra and polytopes are all convex.Polyhedral cell complexes,
in turn, are finite collectionsC of polytopes, called thecellsof C, such that (i) each face
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of a member ofC is itself a member ofC and (ii) the intersection of any two members of
C is either a face of each or is empty. Such cell complexes are studied in discrete geom-
etry. For example, they arise naturally as boundaries of polytopes or, more generally, as
collections of bounded faces of polyhedra [21], and they are of use in the study of fiber
polytopes [25] and in combinatorial optimization [23]. They can also be used to justify
de Bruijn’s dualization principle which allows us to construct zonotopal Penrose-type
tilings frommultigridsof hyperplanes [4] (see the Appendix for more details).

Polyhedral complexes play an important role in the emerging field ofT-theory[15],
too. Here, an approach todistance analysisis taken that relies on constructions that use
distance data defined on some (usually finite) setX as follows: First, one embedsX into
some affine spaceA, then one constructs some large polyhedronP in A that contains the
image ofX and, finally, one considers some—generally simply connected—polyhedral
subcomplexT of the polyhedral complex consisting of (all or some) compact faces of
P. Such constructions are generally motivated by the expectation that the geometric
and combinatorial properties ofT may eventually reveal some important features of the
original distance data in question.

This approach has application in subjects ranging from the theory of molecular evo-
lution and systematic biology to psychology, archaeology, or stemmatology (see [1], [2],
[6], [12], and [22]), and, provided one is willing not to care much about the finiteness
restrictions above, it can be applied even in pure mathematics: Given a fieldK and a dis-
crete valuationv of K (that is, a mapv from K intoZ ∪ {−∞} satisfying the conditions
v(x) = −∞ ⇐⇒ x = 0, v(xy) = v(x)v(y), and max(v(x), v(y)) ≥ v(x + y)) the
Bruhat–Tits buildingassociated to the general linear groupGL(K ,n+ 1) of dimension
n + 1 can be identified easily with the union of all compact faces of the polyhedron
P that is contained in the affine spaceA := RX formed by the set of all mapsf from
X := K n+1−{0} intoR, and consists exactly of all those mapsf that satisfy the inequality

v(det(x0, x1, . . . , xn)) ≤ f (x0)+ f (x1)+ · · · + f (xn)

for every family of nonzero vectorsx0, x1, . . . , xn in K n+1, while thechambersof that
building coincide exactly with the maximal compact faces ofP (see [16] and [17]).

It was in the context of that T-theoretic approach to distance analysis described above
that the following problem arose: More often than not, there are several constructions
that can be applied to a given instance of distance data regarding a setX, and these
constructions will often lead to distinct affine spacesA, A′, . . . and distinct polyhedra
P, P′,. . . , containing distinct polyhedral complexesT, T ′,. . . . In such a situation, one
wants to compare these complexes, and a natural way to do this is to look for affine maps
between the “enveloping” affine spaces that—at least in favorable cases—would mapP
into P′ andT intoT ′. However, even if an affine map between affine spaces would induce
abijectionbetween certain polyhedral complexesT, T ′ contained in (and considered as
subsets of) those affine spaces, this bijection need not induce apolyhedral-complex
isomorphism, that is, a bijection between (the points in)T andT ′ such that a subsetSof
(points in)T forms a cell inT if and only if the imageS′ of S in T ′ forms a cell inT ′.

For example, the mapf : R2→ R: (x, y) 7→ x − y induces a bijection between the
polyhedral complexP obtained from the two faces

{(x,0): 0≤ x ≤ 1} and {(0, y): 0≤ y ≤ 1}
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of the unit square [0,1]× [0,1] onto the polytopeP′ consisting of the interval [−1,1]
(which we regard as a polyhedral complex in the natural way), yetf is clearlynot a
polyhedral-complex isomorphism.

Therefore, the following observation appeared remarkable:

(A) If the affine map induces not only a bijection between the two polyhedral com-
plexes in question, but also maps polyhedron into polyhedron, this bijection must
necessarily respect the induced cell-complex structure of the two complexes.

Although this result is quite general, it is also fairly basic and—as we shall see—
its proof is quite elementary. In fact, we first expected that, to make use of it in the
context of T-theory, we could just quote any appropriate textbook devoted to convex
geometry. However, we searched in vain and were later assured by a number of experts
that, seemingly, this result had been overlooked so far. Therefore, to highlight its basic
nature within the context of elementary convex geometry, we decided not to conceal it
in a highly specialized paper regardingT-constructionsandBuneman complexes(where
it is urgently needed—see Section 5), but to make it available to a wider audience.

The rest of the paper is organized as follows. In Sections 2 and 3 we provide some ele-
mentary results in convex geometry concerningextremal sets. We then use these to prove
our main result, Theorem 1, that is stated purely in terms of convex sets, but from which
the above stated result (A) on polyhedral complexes follows as an easy consequence.
Finally, in the last section, we give a detailed account of the application of our main result
within the context of T-theory referred to above and, in the Appendix, we recall briefly
how polyhedral complexes can be used to establish de Bruijn’s dualization principle.

2. Extremal Sets

Let V be a finite-dimensionalR-vector space and letP ⊆ V be some subset ofV . A point
p ∈ P is called anextremal pointof P if 0 < α < 1, x, y ∈ P, andp = αx+ (1− α)y
impliesx = p = y. More generally, we define a subsetT ⊆ P to be anextremalsubset
of P if, for any u, v ∈ P and any positive real numbersα, β > 0 with α + β = 1, the
assumptionαu+ βv ∈ T impliesu, v ∈ T (see p. 181 of [24]).

Clearly, any extremal point ofP gives rise to an extremal subset ofP that consists
of just that single point. Furthermore, it is easy to see thatP itself is an extremal subset
of P, and also that the intersection of any collection of extremal subsets ofP is an
extremal subset ofP, too. Motivated by this last observation, we define theextremal hull
[x] = [x]P of any elementx ∈ P to be the intersection of all extremal subsets ofP that
containx.

Clearly, a subsetT of P is extremal if and only ifT is a union of extremal subsets if
and only if T coincides with

⋃
x∈Q[x] for some setQ ⊆ P if and only if T coincides

with
⋃

x∈T [x]. In addition, we have:

Lemma 1. If P ⊆ V is a convex set and x∈ P, then:

(i) [x] = {b ∈ P: there existsρ > 0 with (1+ ρ)x − ρb ∈ P}.
(ii) [ x] is convex.
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Fig. 1. The configuration considered in the proof of Lemma 1(i).

Proof. (i) Put B := {b ∈ P: there existsρ > 0 with (1+ ρ)x − ρb ∈ P}. Take some
elementb ∈ B. Then, by definition,b ∈ P and there exists some positive real number
ρ > 0 with b′ := (1+ ρ)x − ρb ∈ P. Hence

1

1+ ρ b′ + ρ

1+ ρ b = x ∈ [x].

Since [x] is an extremal set, we haveb ∈ [x] and, therefore,B ⊆ [x].
Conversely, note that we trivially havex ∈ B. Thus, if we can show thatB is an

extremal set inP, then [x] ⊆ B follows, since [x] is the minimal extremal set containing
x. To this end, chooseu, v ∈ P and 0< α < 1 with w := αu + (1− α)v ∈ B (see
Fig. 1).

We claim thatu andv are contained inB. By definition, there exists some positive
real numberρ > 0 with a := (1+ ρ)x − ρw ∈ P. Thus,

c := 1

1+ ραa+ ρα

1+ ραu

= 1

1+ ρα ((1+ ρ)x − ρ(αu+ (1− α)v))+ ρα

1+ ραu

= 1+ ρ
1+ ρα x − ρ − ρα

1+ ρα v

=
(

1+ ρ(1− α)
1+ ρα

)
x − ρ(1− α)

1+ ρα v.

As a,u ∈ P, 1/(1+ ρα), ρα/(1+ ρα) > 0, and 1/(1+ ρα)+ ρα/(1+ ρα) = 1, we
havec ∈ P, and, hence,v ∈ B in view of ρ(1− α)/(1+ ρα) > 0. Similarly, we get
u ∈ B. So,B is indeed extremal.

(ii) Supposeu, v ∈ [x], 0 < α < 1, andβ := 1− α. In view of (i), there exist some
positive real numbersρ, σ > 0 such thatu′ := (1+ ρ)x− ρu andv′ := (1+ σ)x− σv
are elements ofP (see Fig. 2).

Putτ := βρ+ασ . Then the assumption 0< α < 1 immediately yields 0< ασ/τ < 1
andρσ/τ > 0. Now, the convexity ofP implies that

w′ := ασ

τ
u′ + βρ

τ
v′
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Fig. 2. The configuration considered in the proof of Lemma 1(ii).

is an element ofP. Clearly, the convexity ofP also implies thatw := αu + βv is
contained inP. Finally, we have(

1+ ρσ
τ

)
x − ρσ

τ
w = τ + (α + β)ρσ

τ
x − ρσ

τ
(αu+ βv)

= ασ(1+ ρ)+ βρ(1+ σ)
τ

x − ασ
τ
ρu− βρ

τ
σv

= ασ

τ
((1+ ρ)x − ρu)+ βρ

τ
((1+ σ)x − σv)

= ασ

τ
u′ + βρ

τ
v′

= w′ ∈ P.

From this, (ii) follows immediately using (i).

3. Extremal Sets for Polyhedra

In this section we see that an extremal set in a polyhedronP is—as one would expect—
just the union of a collection of some of the faces ofP.

So, suppose thatP is a polyhedron and that we are given a collection ofR-linear
maps fi : V → R and real numbersci ∈ R (1≤ i ≤ n) with P = {x ∈ V : fi (x) ≥ ci }.
Clearly, the smallest face inP that contains somex ∈ P equals

face(x) = faceP(x) = {b ∈ P: fi (x) = fi (b) for all i = 1, . . . ,n with fi (x) = ci }.
We now show that the extremal hull [x]P of a pointx in a polyhedronP always coincides
with faceP(x).

Proposition 1. Given a polyhedron P and some point x∈ P, the following subsets of
P coincide:

(i) [x];
(ii) face(x);

(iii) C(x) := {u ∈ P: f (u) = f (x) for every linear map f: V → R with f (x) =
inf f (P)}.



54 A. Dress, K. T. Huber, and V. Moulton

Proof. We assume thatP is described in terms of some linear mapsfi and constants
ci , as discussed above, and show that “face(x) ⊆ [x] ⊆ C := C(x) ⊆ face(x)”
holds.

Suppose thatb ∈ face(x) and that j ∈ {1, . . . ,n}. If either f j (x) = cj or f j (x) ≥
f j (b), then theR-linearity of f j immediately implies that

f j ((1+ ρ)x − ρb) = f j (x)+ ρ( f j (x)− f j (b)) ≥ cj

holds for everyρ > 0. Now, suppose thatcj < f j (x) < f j (b) holds. Put

ρ := min
1≤ j≤n

{
f j (x)− cj

f j (b)− f j (x)
: cj < f j (x) < f j (b)

}
,

which is clearly positive. Then theR-linearity of f j together with f j (x) − f j (b) < 0
yields

f j ((1+ ρ)x − ρb) = f j (x)+ ρ( f j (x)− f j (b))

≥ f j (x)+ f j (x)− cj

f j (b)− f j (x)
( f j (x)− f j (b))

= cj .

Thus, we immediately see that(1+ ρ)x − ρb ∈ P and so, by Lemma 1(i), we have
b ∈ [x]. Clearly, this impliesface(x) ⊆ [x].

Next, supposeu ∈ [x], i.e., u ∈ P andv := (1+ ρ)x − ρu ∈ P for some positive
real numberρ > 0. Let f : V → R be someR-linear map with f (x) = inf f (P).
Then, in particular,f (x) ≤ f (v) and f (x) ≤ f (u). TheR-linearity of f along with
v = (1+ρ)x−ρu yields f (x) ≤ f (v) = (ρ+1) f (x)−ρ f (u)and, hence,f (x) ≥ f (u);
thus,u ∈ C and therefore [x] ⊆ C.

Now, supposeu ∈ C, and assumeci = fi (x) for somei ∈ {1, . . . ,n}. SinceP is
contained in the set of elementsy ∈ V with fi (y) ≥ ci , we have

ci = fi (x) ≥ inf fi (P) ≥ ci ,

that is, fi (x) = inf fi (P). As u ∈ C, we havefi (x) = fi (u). Hence,u ∈ face(x) and
thereforeC ⊆ face(x).

4. The Main Result

In this section we prove the main result of this paper. Note that since polyhedra are
convex sets, and that—as we have just seen—faces of polyhedra coincide with ex-
tremal sets of the polyhedra, statement (A) in the introduction follows directly from this
result.

Theorem 1. Let V and V′ be finite-dimensional real vector spaces, let P ⊆ V and
P′ ⊆ V ′ be convex sets, and let f: V ′ → V be some affine map with f(P′) ⊆ P.
Moreover, let T be someextremalsubset of P. Then the following statements hold for
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T ′ := f −1(T) ∩ P′:

(i) T ′ is an extremal subset of P′.
(ii) If f maps T′ bijectivelyonto T, then f maps the smallest extremal subset[x′]P′

of P′ containing a given x′ ∈ T ′ bijectively onto the smallest extremal subset
[ f (x′)]P of P containing f(x′).

Proof. (i) Supposeu, v ∈ P′ and 0< α < 1 are such that

w := αu+ (1− α)v ∈ T ′ = f −1(T) ∩ P′.

The assumption thatf (P′) ⊆ P along with theR-linearity of f implies f (u), f (w) ∈
P as well asα f (u)+ (1−α) f (v) ∈ T . SinceT is an extremal subset ofP, we conclude
that f (u) and f (v) are elements inT . Hence,u, v ∈ f −1(T) and—asu, v ∈ P′ by
assumption—we haveu, v ∈ f −1(T) ∩ P′ = T ′. Thus,T ′ is an extremal subset ofP′,
as required.

(ii) Now, assume that the restrictionf ′ := f |T ′ : T ′ → T of f is bijective, and
supposex′ ∈ T ′ andu′ ∈ [x′]. By Lemma 1(i), there exists some positive real number
ρ > 0 such that(1+ ρ)x′ − ρu′ ∈ P′. Since f (P′) ⊆ P and f is R-linear, it follows
that (1+ ρ) f (x′) − ρ f (u′) ∈ P holds. Moreover, Lemma 1(i) applied tox := f (x′)
andb := u := f (u′) yieldsu ∈ [x]. Hence, the restrictionf ′′ := f ′|[x′] : [x′] → [x] is
well defined.

It remains to show thatf ′′: [x′] → [x] is bijective. The injectivity of f ′′ follows
trivially from the assumed bijectivity off ′. Thus, it only remains to show thatf ′′ is
surjective.

So, assumeu ∈ [x], chooseρ > 0 with v := (1+ ρ)x − ρu ∈ P, and note that
u = (1+ ρ−1)x − ρ−1v ∈ P impliesv ∈ [x]. Chooseu′, v′ ∈ T ′ ⊆ P′ with f (u′) = u
and f (v′) = v, and note that

x′′ := ρ

1+ ρ u′ + 1

1+ ρ v
′

is in P′ (because ofu′, v′ ∈ P′ as well as 0≤ ρ/(1+ ρ),1/(1+ ρ) andρ/(1+ ρ) +
1/(1+ ρ) = 1) and that

f (x′′) = ρ

1+ ρ u+ 1

1+ ρ v = x ∈ T

holds. Hence,x′′ ∈ f −1(T) ∩ P′ = T ′ and f (x′′) = f (x′) which, in view of our
injectivity assumption, impliesx′ = x′′ and therefore(1+ρ)x′−ρu′ = (1+ρ)x′′−ρu′ =
v′ ∈ P′. So, we must haveu′ ∈ [x′], as required.

5. An Application

In [10], our main result is applied within the following context:
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Given a metricd: X2→ R≥0: (x, y) 7→ xy := d(x, y) defined on a finite setX, one
may form Isbell’sinjective hull

T(d) :=
{

f ∈ RX: f (x) = max
y∈X

(xy− f (y)) for everyx ∈ X

}
of the metric space(X,d). It is well known thatT(d) is a complete metric space relative
to the inducedl∞-metric

‖ f, g‖∞ := max(| f (x)− g(x)|: x ∈ X)

( f, g ∈ T(d)), and thatX embeds canonically and isometrically intoT(d) via the
(invariate) adjoint

h: X→ T(d): x 7→ (hx: X→ R: y 7→ xy)

of the bivariate mapd. Note also thatT(d)—as was observed already by Isbell [19] in
other notation—can be viewed as a polyhedral complex with a canonical cell-complex
structure which it inherits from that of the polyhedron

P(d) := { f ∈ RX: f (x)+ f (y) ≥ xy for all x, y ∈ X}

becauseT(d) is easily seen to be nothing but the union of all compact faces ofP(d).
Next, one may also form theBuneman complex B(d) that consists exactly of those

mapsµ from the set

P∗(X) := {A ⊆ X: ∅ 6= A 6= X}
of proper subsets ofX intoR≥0 that satisfy the condition

(B1) A, B ∈ P∗(X), A∪ B = X, andµ(A) 6= 0 6= µ(B) implies A∩ B = ∅,
as well as

(B2) A ∈ P∗(X) impliesµ(A)+ µ(X − A) = αd(A),

whereαd(A) is defined to be the number

1
2 min(max(ab+ a′b′,ab′ + a′b,aa′ + bb′)− aa′ − bb′: a,a′ ∈ A;b,b′ ∈ X − A).

One may observe thatX can also be mapped intoB(d) in a canonical fashion by asso-
ciating, to eachx ∈ X, the map

µx: P∗(X)→ R≥0: A 7→
{

0 if x ∈ A,
αd(A) else,

that B(d) can also be viewed as a polyhedral complex (contained inRP∗(X)) that has
a canonicalcell-complex structure, too, because it consists of the union of faces of the
affine hypercube

H(d) := {µ ∈ RP∗(X)≥0 : µ satisfies (B2)},
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and that it also carries a canonical metric defined by restricting thel1-metric ofRP∗(X)
to B(d) and scaling it by one-half:

‖µ1, µ2‖1 := 1
2

∑
A∈P∗(X)

|µ1(A)− µ2(A)|

(µ1, µ2 ∈ B(d)) so that

‖µ1, µ2‖1 =
∑

x∈A∈P∗(X)
|µ1(A)− µ2(A)|

holds for everyx ∈ X.
One may finally observe that there exists a canonical linear (and, hence, affine) map

3 fromRP∗(X) intoRX defined by

3: RP∗(X)→ RX: µ 7→
(

fµ: X→ R: x 7→
∑

x∈A∈P∗(X)
µ(A)

)
.

One can now re-interpret certain well-known results obtained within the context of
phylogenetic analysis as asserting that the restriction3(d) := 3|B(d) of the map3
to B(d) induces a bijective and isometric map betweenB(d) and T(d) that is also
a polyhedral-complex isomorphism provided thatT(d) (and hence alsoB(d)) is of
dimension one, or—equivalently—an (R-)tree, or—still equivalently—thatd satisfies
the so-calledfour-point condition

(B3) xy+ uv ≤ max(xu+ yv, xv + yu) for all x, y,u, v ∈ X

(see [3], [5], and [7]).
Obviously, the main result of this paper implies that—more generally—3(d) will

always be a polyhedral-complex isomorphism provided that3(d) is bijective. So, one
may ask whether or not there are further metrics, not necessarily satisfying (B3), for
which3(d) is bijective. Amazingly enough, this question could be answered definitively
in [10], and it follows from the characterization of those metrics given there in terms
of certain relaxations of the four-point condition (B3) (see also [8] and [9] for related
results) that this is the case for every set of cardinality at most four, while it holds for
a setX of cardinality five if and only if the metricd is totally split decomposable(see
[1]), and for a set of cardinality at least six if and only if3(d|Y×Y) is bijective for the
restrictiond|Y×Y of d to every subsetY of cardinality six in which case3(d)(µx) = hx

as well as‖µx, µy‖1 = xy also holds for allx, y ∈ X.
Remarkably,3(d) is not necessarily an isometry even if it is a polyhedral-complex

isomorphism and, hence, induces, at least, an isometry

{µx: x ∈ X} → {hx: x ∈ X}
between the images ofX in B(d) and in T(d), respectively. It is shown in [11] that
3(d) is indeed an isometry if it is a bijection provided #X ≤ 5 holds while, just as
above, it is an isometry in case #X ≥ 6 if and only if3(d|Y×Y) is an isometry for all
Y ⊆ X with #Y = 6. Moreover, provided3(d) is a bijection, this holds if and only if,
for A, B,C ∈ P∗(X) with αd(A), αd(B), αd(C) > 0 and

∅ 6= A∩ B 6= A 6= A∪ B 6= X
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as well as

∅ 6= A∩ C 6= A 6= A∪ C 6= X,

one has∅ = B∩C, or B∩C = B, or B = B∪C, or B∪C = X, that is, if and only if
the associated set system

{A ∈ P∗(X): αd(A) > 0},
is 3-cross-freeaccording to the definition given by Karzanov in [20] (see also [14] and
[18]).
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Appendix

In this appendix we recall briefly how polyhedral complexes can be used to establish de
Bruijn’s famous dualization principle that allows the construction of zonotopalPenrose-
type tilings from multigrids of hyperplanes: Consider a discrete family of hyperplane
equations

{hi (x1, x2, . . . , xn) = ai1x1+ ai2x2+ · · · + ain xn + ci }i∈I ,

with I denoting some index set. Further, assume (without loss of generality) thatci ≤ 0
holds for all i in I , and note that this condition implies that our requirement that the
above family of hyperplane equations be adiscretefamily is then equivalent to requiring
that, for every pointP = (x1, x2, . . . , xn) ∈ Rn, there be only finitely manyi ∈ I with
hi (P) ≥ 0, that is, that only finitely many hyperplanesHi := {P ∈ Rn: hi (P) = 0}
(i ∈ I ) separate(0,0, . . . ,0) from P.

Clearly, there is atiling of Rn canonically defined by such a family of hyperplanes,
whose tiles consist exactly of all subsetsT of Rn that are of the form

T = T(P) := {Q ∈ Rn: sgn(hi (Q)) = sgn(hi (P)) or hi (Q) = 0}
(P ∈ Rn). De Bruijn observed that there is a simple way to construct a (topological)
dual of this tiling by associating, to eachP ∈ Rn, the subset

T∗(P) :=
{∑

i∈I

αi (ai1,ai2, . . . ,ain): αi := 0 if hi (P) ≤ 0,

αi := 1 if hi (P) ≥ 0, andαi ∈ [0,1] if hi (P) = 0

}
.

Moreover, it was further observed in [4] that this tiling consists exactly of the projections
into (or, rather up to)Rn of those facesF of the (possibly unbounded) zonotopeB in
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Rn+1 defined by

B :=
{∑

i∈I

αi (ai1,ai2, . . . ,ain, ci ): αi ∈ [0,1] almost allαi = 0

}
that satisfy the condition

(x1, x2, . . . , xn, xn+1+ ε) 6∈ B

for every(x1, x2, . . . , xn, xn+1) ∈ F and every positiveε, that is, de Bruijn’s tiling is
exactly the projection of the polyhedral complex consisting of all facesF that belong to
the “upper boundary” ofB (relative to the last coordinate along which we projectRn+1

ontoRn).
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