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Abstract. In this paper we show that an affine bijectidn T, — T, between two
polyhedral complexedy, T,, both of which consist of a union of faces of two convex
polyhedraP; andP,, necessarily respects the cell-complex structurg @ndT, inherited

from P, and P,, respectively, provided extends to an affine map frof, into P,. In
addition, we present an application of this result within the area of T-theory to obtain a
far-reaching generalization of previous results regarding the equivalence of two distinct
constructions of the phylogenetic tree associated to “perfect” (that is, treelike) distance
data.

1. Introduction

In this paper golyhedronis understood to be a subset of some affine space that is the
intersection of a finite collection of closed half-spaces, apdlgtopeis a compact poly-
hedron. Thus, for us, polyhedra and polytopes are all cofR@yhedral cell complexes

in turn, are finite collection€ of polytopes, called theellsof C, such that (i) each face
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part of the work. The third author thanks the Swedish Natural Science Research Council (NFR) for its support
(Grant # M12342-300), and the FSPM-Strukturbildungsprozesse, University of Bielefeld, for hosting him
during part of the work.
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of a member of is itself a member of and (ii) the intersection of any two members of

C is either a face of each or is empty. Such cell complexes are studied in discrete geom-
etry. For example, they arise naturally as boundaries of polytopes or, more generally, as
collections of bounded faces of polyhedra [21], and they are of use in the study of fiber
polytopes [25] and in combinatorial optimization [23]. They can also be used to justify
de Bruijn’s dualization principle which allows us to construct zonotopal Penrose-type
tilings from multigrids of hyperplanes [4] (see the Appendix for more details).

Polyhedral complexes play an important role in the emerging fieldtbkeory[15],
too. Here, an approach ttistance analysiss taken that relies on constructions that use
distance data defined on some (usually finitep&as follows: First, one embed§into
some affine spaca, then one constructs some large polyhedPdn Athat contains the
image ofX and, finally, one considers some—generally simply connected—polyhedral
subcomplexT of the polyhedral complex consisting of (all or some) compact faces of
P. Such constructions are generally motivated by the expectation that the geometric
and combinatorial properties @f may eventually reveal some important features of the
original distance data in question.

This approach has application in subjects ranging from the theory of molecular evo-
lution and systematic biology to psychology, archaeology, or stemmatology (see [1], [2],
[6], [12], and [22]), and, provided one is willing not to care much about the finiteness
restrictions above, it can be applied even in pure mathematics: Given & faehdl a dis-
crete valuation of K (that is, a map from K into Z U {—o0} satisfying the conditions
v(X) = —00 <= X = 0,u(Xy) = v(X)v(y), and maxv(x), v(y)) > v(Xx + y)) the
Bruhat-Tits buildingassociated to the general linear grasip (K, n 4+ 1) of dimension
n + 1 can be identified easily with the union of all compact faces of the polyhedron
P that is contained in the affine spage:= R* formed by the set of all mapé from
X := K"1_{0}intoR, and consists exactly of all those maipthat satisfy the inequality

v(det(Xp, X1, ..., Xn)) < f(Xo) + F(X0) +---+ F(Xn)

for every family of nonzero vectorg, x1, . .., X, in K", while thechambersof that
building coincide exactly with the maximal compact faces’dfsee [16] and [17]).

It was in the context of that T-theoretic approach to distance analysis described above
that the following problem arose: More often than not, there are several constructions
that can be applied to a given instance of distance data regardingXg sed these
constructions will often lead to distinct affine spadesA, ... and distinct polyhedra
P, P’,..., containing distinct polyhedral complex&sT’,.... In such a situation, one
wants to compare these complexes, and a natural way to do this is to look for affine maps
between the “enveloping” affine spaces that—at least in favorable cases—would map
into P andT into T'. However, even if an affine map between affine spaces would induce
abijectionbetween certain polyhedral complexesT’ contained in (and considered as
subsets of) those affine spaces, this bijection need not indyxxdyhedral-complex
isomorphismthat is, a bijection between (the points handT’ such that a subs&of
(points in) T forms a cell inT if and only if the imageS of Sin T’ forms a cell inT’.

For example, the map: R? — R: (X, y) — X — y induces a bijection between the
polyhedral complexP obtained from the two faces

{(x,0: 0<x<1 and {0, y):0<y<1l}
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of the unit square [01] x [0, 1] onto the polytope?’ consisting of the intervaH 1, 1]
(which we regard as a polyhedral complex in the natural way),fyit clearlynot a
polyhedral-complex isomorphism.

Therefore, the following observation appeared remarkable:

(A) If the affine map induces not only a bijection between the two polyhedral com-
plexes in question, but also maps polyhedron into polyhedron, this bijection must
necessarily respect the induced cell-complex structure of the two complexes.

Although this result is quite general, it is also fairly basic and—as we shall see—
its proof is quite elementary. In fact, we first expected that, to make use of it in the
context of T-theory, we could just quote any appropriate textbook devoted to convex
geometry. However, we searched in vain and were later assured by a number of experts
that, seemingly, this result had been overlooked so far. Therefore, to highlight its basic
nature within the context of elementary convex geometry, we decided not to conceal it
in a highly specialized paper regardifigonstruction@andBuneman complexéahere
it is urgently needed—see Section 5), but to make it available to a wider audience.

The rest of the paper is organized as follows. In Sections 2 and 3 we provide some ele-
mentary results in convex geometry concerrertgemal setsNe then use these to prove
our main result, Theorem 1, that is stated purely in terms of convex sets, but from which
the above stated result (A) on polyhedral complexes follows as an easy consequence.
Finally, in the last section, we give a detailed account of the application of our main result
within the context of T-theory referred to above and, in the Appendix, we recall briefly
how polyhedral complexes can be used to establish de Bruijn’s dualization principle.

2. Extremal Sets

LetV be afinite-dimension&-vector space and I& C V be some subset &. A point

p € P is called arextremal poinbf Pif0 <a < 1,x,y € P,andp=ax+ (1—a)y

impliesx = p = y. More generally, we define a subgeiC P to be anextremalsubset
of P if, for anyu, v € P and any positive real numbess 8 > O witha + 8 = 1, the
assumptioru + gv € T impliesu, v € T (see p. 181 of [24]).

Clearly, any extremal point dP gives rise to an extremal subsetBfthat consists
of just that single point. Furthermore, it is easy to see khiself is an extremal subset
of P, and also that the intersection of any collection of extremal subselsiefan
extremal subset d?, too. Motivated by this last observation, we definegktzemal hull
[x] = [x]p of any elemenk € P to be the intersection of all extremal subset$ahat
containx.

Clearly, a subset of P is extremal if and only ifT is a union of extremal subsets if
and only if T coincides withUer[x] for some setQ C P if and only if T coincides
with [, [x]. In addition, we have:

Lemmal. If P CV isaconvex setand& P, then

(i) [X] = {b € P: there existy > 0Owith (1+ p)x — pb € P}.
(i) [x] is convex
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Y

Fig. 1. The configuration considered in the proof of Lemma 1(i).

Proof. (i) PutB := {b € P: there existp > 0 with (1 + p)x — pb € P}. Take some
elementb € B. Then, by definitionb € P and there exists some positive real number
p > 0withb' := (1+ p)x — pb € P. Hence

/ 14
—Db' + —>b=xe][x].
1+p 14+p [
Since ] is an extremal set, we hawee [x] and, thereforeB C [x].

Conversely, note that we trivially have € B. Thus, if we can show thaB is an
extremal setirP, then ] € B follows, since k] is the minimal extremal set containing
X. To this end, choose,v € Pand O0< a < 1 withw ;= au+ (1 — a)v € B (see
Fig. 1).

We claim thatu andv are contained iB. By definition, there exists some positive
real numbep > Owitha := (1+ p)x — pw € P. Thus,

1 Jole
a—+ u
1+ pa 1+ pa

_ 1 B _ oo
= 1+/OO[((H,O)X p(au+ (1 oz)v))+1+pa

1+p w_ PP
1+ pa 1+ pa

_ 1+p(l—oc) " p(l—a)v.
1+ pa 1+ pa

u

Asa,u e P,1/(1+ pa), pa/(1+ pa) > 0,and Y (1 + pa) + pa/(1+ pa) =1, we
havec € P, and, hencey € B in view of p(1 — «)/(1 + pa) > 0. Similarly, we get
u € B. So,B is indeed extremal.

(i) Supposeu, v € [X], 0 < @ < 1, andB := 1 — «. In view of (i), there exist some
positive real numberg, o > 0 suchthat’ := (1+ p)X — puandv’ := (14+o0)X—ov
are elements oP (see Fig. 2).

Putr := Bp+ao.Thenthe assumption@ « < limmediatelyyieldsO< wo /7 < 1
andpo/t > 0. Now, the convexity oP implies that

oo 0
w/ — _u/ + ﬂ_v/
T T
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» U
v/
X
w’ w
ul
%

Fig. 2. The configuration considered in the proof of Lemma 1(ii).

is an element ofP. Clearly, the convexity ofP also implies thatw := «au + Buv is
contained inP. Finally, we have

(142 ) x— 220 = TEC@EDOT, 09 g

ao(l+p)+ Bp(l+o0) oo Bp

= X——pU——ov
T T T
= “7”((1+ P)X — pu) + ﬁ7p((1+a)x — o)
_ %oy Be
T T
= w €P.
From this, (ii) follows immediately using (i). O

3. Extremal Sets for Polyhedra

In this section we see that an extremal set in a polyhe&rmi—as one would expect—
just the union of a collection of some of the facedof

So, suppose tha® is a polyhedron and that we are given a collectiorRelinear
mapsfi: V — Randrealnumberg e R(1<i <nwithP={xeV: fix) >}
Clearly, the smallest face iR that contains some € P equals

facax) = faces(x) = {b e P: fi(x) = fi(b)foralli =1, ..., nwith fi(x) =¢}.

We now show that the extremal hull][r of a pointx in a polyhedrorP always coincides
with faces (x).

Proposition 1. Given a polyhedron P and some poinexP, the following subsets of
P coincide

0 [xI:

(i) facex);

(i) C(x) :={ue P: f(u) = f(x)foreverylinearmap f V — R with f(x) =
inf f(P)}.
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Proof. We assume tha® is described in terms of some linear majpsand constants
G, as discussed above, and show thiaicgx) C [x] € C = C(x) C facgx)”
holds.

Suppose thab € facg(x) and thatj € {1,..., n}. If either f;(x) = ¢; or f;(x) >
fj (b), then theR-linearity of f; immediately implies that

fi((L+ p)x — pb) = f;(xX) + p(f;(x) — fj(b)) > ¢;

holds for everyp > 0. Now, suppose tha < fj(x) < fj(b) holds. Put

- fico—¢ . o _
0= 1r§nj|2n{—fj o — T, " G < fj(x) < f (b)},

which is clearly positive. Then thR-linearity of f; together withf;(x) — fj(b) < 0
yields

fi((A+ p)x —pb) = ) + p(f;(x) — f(0))

B0 =G ¢ ) — 1))

fj (%) + 7fj(b) —f00

= Cj.

Thus, we immediately see thét + p)x — pb € P and so, by Lemma 1(i), we have
b € [x]. Clearly, this impliedacex) < [X].

Next, supposel € [x], i.e.,u € P andv := (14 p)X — pu € P for some positive
real numberp > 0. Let f: V — R be someR-linear map withf (x) = inf f(P).
Then, in particular,f (x) < f(v) and f(x) < f(u). TheR-linearity of f along with
v = (14+p)x—puyieldsf (x) < f(v) = (p+21) f (X)—pf (u)and, hencef (x) > f(u);
thus,u e C and thereforex] c C.

Now, supposel € C, and assume; = f;(x) for somei € {1,...,n}. SinceP is
contained in the set of elements= V with f;(y) > ¢, we have

¢ = fi(x) > inf fi(P) > g,

that is, fj (x) = inf f;(P). Asu € C, we havef;(x) = fj(u). Henceu < faceXx) and
thereforeC C facgXx). O

4. The Main Result

In this section we prove the main result of this paper. Note that since polyhedra are
convex sets, and that—as we have just seen—faces of polyhedra coincide with ex-
tremal sets of the polyhedra, statement (A) in the introduction follows directly from this
result.

Theorem 1. Let V and V be finite-dimensional real vector spacést P C V and
P’ C V'’ be convex setand let f: V' — V be some affine map with(P") C P.
Moreoverlet T be somextremalsubset of PThen the following statements hold for
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T :=fXT)nP:

(i) T'is an extremal subset of P

(iiy If f maps T bijectivelyonto T, then f maps the smallest extremal suljzgp
of P’ containing a given Xe T’ bijectively onto the smallest extremal subset
[ f(xX)]p of P containing fx').

Proof. (i) Supposeu, v € P’ and O< o < 1 are such that
wi=au+(l—-a)weT =Y T)NP.

The assumption thdt(P’) € P along with theR-linearity of f implies f (u), f (w) €
Paswellasyf(u)+(1—a) f(v) € T. SinceT is an extremal subset &, we conclude
that f (u) and f (v) are elements if. Hence,u,v € f~1(T) and—asu,v € P’ by
assumption—we have, v € f X(T) N P’ = T’. Thus, T’ is an extremal subset &,
as required.

(i) Now, assume that the restrictioff := f|1.: T" — T of f is bijective, and
supposex’ € T andu’ € [x]. By Lemma 1(i), there exists some positive real number
o > 0such tha{l + p)x’ — pu’ € P’. Sincef (P") C P and f is R-linear, it follows
that(1+ p) f (x') — pf (W) € P holds. Moreover, Lemma 1(i) applied t10:= f (X))
andb := u := f(U’) yieldsu € [x]. Hence, the restrictior” := f'|xj: [X] — [X] is
well defined.

It remains to show thaf”: [x'] — [x] is bijective. The injectivity of f” follows
trivially from the assumed bijectivity of . Thus, it only remains to show thdt” is
surjective.

So, assume € [x], choosep > 0 withv := (1 + p)x — pu € P, and note that
u= A+ pHx—p~tv e Pimpliesv € [x]. Chooseu’, v’ € T’ € P’ with f(u) =u
and f (v') = v, and note that

0 1
X'=——Uu+ v
1+p 1+p

isin P’ (because ofi’, v' € P’ aswellas 0< p/(1+ p),1/(1+ p) andp/(1+ p) +
1/(1+ p) = 1) and that

f(x") = Py +

v=XxeT
1+p 1+p

holds. Hencex” € fXT)N P’ = T’ and f(x”) = f(x’) which, in view of our
injectivity assumption, implies’ = x” and thereforél+p)x'—pu’ = (1+p)X"—pu’ =
v € P’. So, we must have’ € [x'], as required. O

5. An Application

In [10], our main result is applied within the following context:
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Given ametrid: X? — R.q: (X, y) = XY := d(X, y) defined on a finite seX, one
may form Isbell'sinjective hull

TWd) = {f eR*: f(x) = max(xy — f (y)) for everyx e X}
ye

of the metric spacéX, d). It is well known thafT (d) is a complete metric space relative
to the induced,-metric

I, glleo == max(| f (x) — g(x)[: x € X)

(f,g € T(d)), and thatX embeds canonically and isometrically intqd) via the
(invariate) adjoint

h: X - T@): x+— (hy: X > R: y— Xy)

of the bivariate mayl. Note also tha® (d)—as was observed already by Isbell [19] in
other notation—can be viewed as a polyhedral complex with a canonical cell-complex
structure which it inherits from that of the polyhedron

P):={f e R*: f(x)+ f(y) > xyforallx,ye X}

becausd (d) is easily seen to be nothing but the union of all compact facéXdy.
Next, one may also form thBuneman complex @) that consists exactly of those
mapsu from the set

P(X):={AC X: ## A# X}
of proper subsets of into R that satisfy the condition
(B1) A, B € P*(X), AUB = X, andu(A) # 0 # n(B) impliesAn B =4,
as well as
(B2) A e P*(X)impliesu(A) + u(X — A) = aq(A),

whereaq(A) is defined to be the number
$ min(max@ab+ a't’, ab' +a'b, aa + bb) —aa —bb: a,a € A;b,b' € X — A).

One may observe that can also be mapped inf&(d) in a canonical fashion by asso-
ciating, to eachx € X, the map

. ) 0 if xeA,
wx: P*(X) = Rop! A {ad(A) else,
that B(d) can also be viewed as a polyhedral complex (containe®Ain®) that has
a canonicalcell-complex structure, too, because it consists of the union of faces of the
affine hypercube

H(d) := {u € R, u satisfies (B2),
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and that it also carries a canonical metric defined by restrictingy theetric of R”* %)
to B(d) and scaling it by one-half:

lea palli =3 > |ua(A) — pa(A))
AeP*(X)

(u1, 2 € B(d)) so that

lpen poli = Y Ira(A) — pa(A)l
xe AeP*(X)

holds for everyx € X.
One may finally observe that there exists a canonical linear (and, hence, affine) map
A fromR7"X into R* defined by

NRWMHRKMH(unu»RXH 2: MM)
XxeAeP*(X)
One can now re-interpret certain well-known results obtained within the context of

phylogenetic analysis as asserting that the restrichod) := Al|gq) of the mapA

to B(d) induces a bijective and isometric map betwegi) and T (d) that is also

a polyhedral-complex isomorphism provided tHatd) (and hence als@®(d)) is of
dimension one, or—equivalently—ai-)tree, or—still equivalently—thad satisfies

the so-calledour-point condition

(B3) xy+ uv < maxxu+ yv, xv+ yu) forall x, y,u,v € X

(see [3], [5], and [7]).

Obviously, the main result of this paper implies that—more generallyey will
always be a polyhedral-complex isomorphism provided that) is bijective. So, one
may ask whether or not there are further metrics, not necessarily satisfying (B3), for
which A (d) is bijective. Amazingly enough, this question could be answered definitively
in [10], and it follows from the characterization of those metrics given there in terms
of certain relaxations of the four-point condition (B3) (see also [8] and [9] for related
results) that this is the case for every set of cardinality at most four, while it holds for
a setX of cardinality five if and only if the metrid is totally split decomposablésee
[1]), and for a set of cardinality at least six if and onlyAf(d|yy) is bijective for the
restrictiond|y .y of d to every subseY of cardinality six in which casé (d)(uyx) = hy
as well ag|uy, pyll1 = Xy also holds for alk, y € X.

Remarkably,A (d) is not necessarily an isometry even if it is a polyhedral-complex
isomorphism and, hence, induces, at least, an isometry

{ux: x € X} = {hy: x € X}

between the images of in B(d) and inT(d), respectively. It is shown in [11] that
A(d) is indeed an isometry if it is a bijection provideK#< 5 holds while, just as
above, it is an isometry in case#> 6 if and only if A(d|yxy) is an isometry for all

Y C X with #Y = 6. Moreover, provided\ (d) is a bijection, this holds if and only if,
for A, B, C € P*(X) with ag(A), ag(B), aq(C) > 0 and

¥#ANB#A#AUB# X
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as well as
##+ANC#A#£AUC # X,
oneha®) = BNC,orBNC =B,orB=BUC,orBUC = X, thatis, if and only if
the associated set system
{A e P*(X): ag(A) > 0},

is 3<cross-freeaccording to the definition given by Karzanov in [20] (see also [14] and
[18)).

Acknowledgment

We thank Ginter Ziegler for his helpful comments regarding an earlier version of this
paper.

Appendix

In this appendix we recall briefly how polyhedral complexes can be used to establish de
Bruijn’s famous dualization principle that allows the construction of zonotBpatose-
typetilings from multigrids of hyperplanes: Consider a discrete family of hyperplane
equations

{hi (X1, X2, ..., Xn) = &, X1 + @, X2 + - - - + & Xn + G }jel,

with | denoting some index set. Further, assume (without loss of generality) thald
holds for alli in |, and note that this condition implies that our requirement that the
above family of hyperplane equations beiscretefamily is then equivalent to requiring
that, for every poinP = (Xg, X2, ..., Xy) € R", there be only finitely many € | with
hi (P) > 0, that is, that only finitely many hyperplanét := {P € R": h;(P) = 0}
(i € 1) separat€0,0,...,0) from P.

Clearly, there is diling of R" canonically defined by such a family of hyperplanes,
whose tiles consist exactly of all subs@&t®f R" that are of the form

T =T(P):={Q e R" sgnhi(Q)) = sgnthi(P)) orhi(Q) = 0}
(P € R"). De Bruijn observed that there is a simple way to construct a (topological)
dual of this tiling by associating, to eaéhe R", the subset
T*(P) == {Zai(al,az,...,an): ai = 0ifh(P) <0,
iel
aj =1if hi(P) >0, anda; € [0, 1] if hi(P) = 0} .

Moreover, it was further observed in [4] that this tiling consists exactly of the projections
into (or, rather up toR" of those faced$ of the (possibly unbounded) zonotoBein
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R+ defined by

B:=1{) «i(@,.a,....&,0G): e €0,1] almostalle; =0

iel

that satisfy the condition

fo

(X1, X2, ooy Xn, Xne1 +6) € B

revery(xay, X2, - .., Xn, Xnt1) € F and every positive, that is, de Bruijn’s tiling is

exactly the projection of the polyhedral complex consisting of all fa&#sat belong to
the “upper boundary” oB (relative to the last coordinate along which we projgét*

ontoR").
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