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Abstract. Besides determining the exact blocking numbers of cubes and balls, a con-
ditional lower bound for the blocking numbers of convex bodies is achieved. In addition,
several open problems are proposed.

1. Introduction

Let K be aconvex bodyin Rn. Theblocking number b(K ) of K is the smallest number
of nonoverlapping translatesK + x which are in contact withK at its boundary and
prevent any other translate from touching it. Similarly, we can define a numberb′(K )
by allowing overlapping between the translates.

As a counterpart and a limited case ofkissing numbers, blocking numbers were first
introduced in [12] and studied in [13] and [14], where an inequality between blocking
numbers andHadwiger’s covering numbersfor centrally symmetric convex bodies and
results concerning blocking numbers and kissing numbers have been achieved. Never-
theless, so far our knowledge about blocking numbers is very limited.

∗ This work was done while the first and the last authors were guests of the Mathematical Department of
the University College London. The work of the last author was supported by a research fellowship of The
Royal Society.
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Fig. 1

Denote thedifference setof a convex setX by D(X). In other words,D(X) =
{x − y: x, y ∈ X}. It is well known that(X + x1) ∩ (X + x2) 6= ∅ if and only if
( 1

2 D(X) + x1) ∩ ( 1
2 D(X) + x2) 6= ∅ (see [5]). SinceD(K ) is centrally symmetric, we

may confine ourselves to the centrally symmetric case whenever we deal with the kissing
numbers and the blocking numbers (this is not true for Hadwiger’s covering numbers) of
convex bodies. In addition, we may apply theMinkowski metric‖·‖C given by a centrally
symmetric convex bodyC to our problem (for the definition of‖·‖C we refer to [9]).

Definition 1. Let C be a centrally symmetric convex body inRn, let ∂(C) be its
boundary, and let‖·‖C be the Minkowski metric given byC. Denote the manifold
{[x, y]: x, y ∈ ∂(C); ‖x, y‖C = 1} by8, the straight line passingx andy by L(x, y),
the two-dimensional plane passingo, x, andy by P(x, y), and the tangent ofC∩ P(x, y)
which is parallel toL(x, y) and is at the same side ofo with L(x, y) by T(x, y) (see
Fig. 1). Then we call

m(C) = min
[x,y]∈8

{
1− d(o, L(x, y))

d(o, T(x, y))

}
theM-curvature ofC, whered(X,Y) indicates the Euclidean distance between the two
setsX andY.

Clearly, theM-curvature of a centrally symmetric convex body is invariant when a
linear transformation is applied to it. In high dimensions we have the following bounds
for m(C).

Theorem 1. For any positive numberε there is an integer N(ε) such that

0≤ m(C) ≤ 1+ ε −
√

3

2

holds for every n-dimensional centrally symmetric convex body C whenever n≥ N(ε).

This theorem is an immediate consequence of Dvoretzky’s well-known theorem (see
[3] or [14]) which asserts:Let B be the n-dimensional unit ball, and letε be a positive
number. For each k-dimensional centrally symmetric convex body C, where k is an
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integer determined by n andε, there exist an n-dimensional subspace Rn of Rk and a
positive number r such that

r B ⊆ C ∩ Rn ⊆ (1+ ε)r B.

Problem 1. Determine the value max{m(C)}, where the maximum is over all centrally
symmetric convex domains. We conjecture that the regular 10-gon is the extremal figure.

Problem 2. Is it true thatb(K ) = b′(K ) for all convex bodies?

2. A Lower Bound of b(C) Based on theM-Curvature of C

Lemma 1 [8] (see also [1]). For every n-dimensional centrally symmetric convex body
C there exists a linear transformation T such that

B ⊆ T(C) ⊆ √nB. (1)

By this lemma, since both the M-curvature and the blocking number of a centrally
symmetric convex body are invariant when a linear transformation is applied to it, we
only deal with then-dimensional centrally symmetric convex bodies which satisfy (1). As
usual, let∂(K ) be the boundary of a convex bodyK , and letvm(X) be them-dimensional
lebesgue measure of a setX. In addition, we denote bySu the Steiner symmetrization
with respect to the hyperplane with normu.

Lemma 2 [11]. For every n-dimensional convex body K and every directionu,

vn−1(∂(K )) ≥ vn−1(∂(Su(K ))).

Lemma 3 (see [7]). Let C be a centrally symmetric convex domain in R2. For every
point x ∈ ∂(C) there exists an affine regular hexagon inscribed in C which takesx as
one of its six vertices.

Theorem 2. If C is an n-dimensional centrally symmetric convex body with M-curva-
ture m(C), then

b(C) ≥ n−3/2(1−m(C))2−n.

Proof. We assume thatn ≥ 3. As usual, denote the interior ofC by int(C). Assume that
X = {x0 = o, x1, x2, . . . , xb(C)} is a set of points such that(int(C)+xi )∩(int(C)+xj ) =
∅ wheneveri 6= j , C + xi touchesC at its boundary for every pointxi ∈ X, and⋃b(C)

i=1 (C + xi ) prevents any other translate ofC from touching it. For convenience, in
the following discussion we callX\{o}a blocking set ofC. Then, observing the boundary
of 2C, one obtains

∂(2C) ⊂
b(C)⋃
i=1

(int(2C)+ xi )
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and hence
b(C)∑
i=1

vn−1(∂(2C) ∩ (int(2C)+ xi ))

vn−1(∂(2C))
≥ 1. (2)

Now, we proceed to show

vn−1(∂(2C) ∩ (int(2C)+ xi ))

vn−1(∂(2C))
≤ n3/2(1−m(C))n−2 (3)

for all indicesi = 1, 2, . . ., b(C).
Let Pi be theperpendicular projectionfrom Rn to the hyperplane which containso

and takesxi as a norm. Keeping (1) in mind, we have

conv
{−x∗i , Pi (2C), x∗i

} ⊆ Sx∗i (2C), (4)

wherex∗i indicates the unit direction ofxi andconv{X} indicates the convex hull of a
setX.

Abbreviatingvn−2(∂(Pi (2C))) toµi , for every positive numberr we have

vn−2(∂(r Pi (2C))) = µi r
n−2.

Thus,

vn−1(∂(conv{−x∗i , Pi (2C), x∗i })) ≥ 2µi

∫ 1

0
(1− t)n−2 dt = 2µi

n− 1
. (5)

Therefore, by (4), (5), and Lemma 2 we obtain

vn−1(∂(2C)) ≥ 2µi

n− 1
. (6)

On the other hand, defining a cylinder

Hi =
{
(1−m(C))Pi (2C)+ θx∗i : |θ | ≤ √n

}
,

it is easy to calculate

vn−1(∂(Hi )) = 2µi
√

n(1−m(C))n−2+ 2µi (1−m(C))n−1

n− 1
. (7)

Meanwhile, by (1), Lemma 3, and the definition ofm(C) (see Fig. 2), for every index
i we have

conv{∂(2C) ∩ (int(2C)+ xi ), ∂(2C) ∩ (int(2C)− xi )} ⊆ Hi . (8)

It is well known that

vn−1(∂(K1)) ≤ vn−1(∂(K2))

wheneverK1 ⊆ K2. So, (7) and (8) yield

vn−1 (∂(2C) ∩ (int(2C)+ xi )) ≤ µi
√

n(1−m(C))n−2+ µi (1−m(C))n−1

n− 1
. (9)

Clearly, (3) is a consequence of (6) and (9). Theorem 2 follows from (2) and (3).
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Fig. 2

If ∂(C) is smooth, a similar (but worse) inequality betweenb(C) and the minimal
section curvature of∂(C) can be achieved by this method.

Concerning the blocking number of a convex body and the blocking numbers of its
sections we have the following result.

Theorem 3. There are infinitely many dimensions in which a centrally symmetric con-
vex body C and a proper subspace R can be found such that

b(C) ≤ b(C ∩ R)+ 1.

Proof. If there exist only finite many such dimensions, we assume thatn−1 is the last
one. By Theorem 2, we may choose a positive numberε such that

b(D) > 2n (10)

holds for everyn-dimensional centrally symmetric convex bodyD which satisfies

B ⊆ D ⊆ (1+ ε)B. (11)

Let k be the integer determined byn andε in Dvoretzky’s theorem. According to a
result of [12], there is ak-dimensional centrally symmetric convex bodyC such that

b(C) ≤ 2k. (12)

Meanwhile, by Dvoretzky’s theorem,C has ann-dimensional sectionD which satisfies
(11) (noteb(r D) = b(D)), and therefore (10). Choose a sequence of subspacesRn ⊂
Rn+1 ⊂ · · · ⊂ Rk such thatD = C ∩ Rn andC ⊂ Rk. According to our assumption,

b(C ∩ Rn+i+1) ≥ b(C ∩ Rn+i )+ 2

holds for every indexi , 0≤ i ≤ k− n− 1. So that by (10) we obtain

b(C) > 2n+ 2(k− n) ≥ 2k, (13)

a contradiction to (12). Theorem 3 is proved.

Problem 3. Is there anm-dimensional Euclidean space in which a centrally symmetric
convex bodyC and an(m− 1)-dimensional subspaceRm−1 can be found such that

b(C) ≤ (or even<) b(C ∩ Rm−1)?
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3. The Blocking Numbers of Some Special Convex Bodies

In [12], based on a result of [6] about kissing numbers, it is proved thatb(K ) = 4
for every two-dimensional convex domain. Now, we proceed to determine the blocking
numbers of cubes (in general dimensions) and balls, respectively. In fact we can also
prove that the blocking number of a tetrahedron is six.

3.1. Cubes

Theorem 4. The blocking number of an n-dimensional cube is2n.

Proof. Denote the unit cube{(x1, x2, . . . , xn): |xi | ≤ 1
2} in Rn by W, and letX be a

blocking set ofW. Repeating partial argument in the proof of Theorem 2, one gets

∂(2W) ⊂
⋃
x∈X

(int(2W)+ x).

Since each translate ofint(2W) contains at most one vertex of 2W, it follows immediately
that

b(W) ≥ 2n. (14)

Now, we proceed to prove

b(W) ≤ 2n (15)

by constructing a proper blocking set ofW. If n = 2, it can be verified that{(1, 1
2), (

1
2,1),

(−1, 1
2), (− 1

2,−1)} is a blocking set ofW. Inductively, if X = {x1, x2, . . . , x2n−1} is a
centrally symmetric blocking set of the(n− 1)-dimensional unit cube andx1 = −x2n−1,
we define

yi =


( 1

3,
1
3, . . . ,

1
3)⊕ 1, i = 1,

xi ⊕ 1
2, i = 2, . . . , 2n−1,

xi−2n−1 ⊕ (− 1
2), i = 2n−1+ 1, . . . ,2n − 1,

(− 1
3,− 1

3, . . . ,− 1
3)⊕ (−1), i = 2n,

where(x1, x2, . . . , xn−1)⊕ x indicates(x1, x2, . . . , xn−1, x) in Rn. TakingY = {y1, y2,

. . . , y2n}, it can be verified thatY is a centrally symmetric blocking set of the
n-dimensional unit cube. Hence we get (15). Theorem 4 follows from (14) and (15).

3.2. Balls

Theorem 5. The blocking number of a three-dimensional ball is six.

Proof. Denote the three-dimensional unit ball byB. Since{±(2,0,0), ±(0,2, 0),
±(0,0,2)} is a blocking set of B, one gets

b(B) ≤ 6. (16)
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Fig. 3

On the other hand, assume thatX = {x1, x2, . . . , xb(B)} is a blocking set ofB, then

∂(2B) =
b(B)⋃
i=1

Äi ,

whereÄi indicates the relative open cap∂(2B) ∩ (int(2B) + xi ). Clearly, the angle
between any two vectors which belong to the same cap is less than 2π/3. So that any
great circle of∂(2B) intersects at least four of theseb(B) caps. If, without loss of
generality,−x1 ∈ Ä2, it can be shown thatÄ1 ∩Ä2 = ∅. Then∂(2B) has a great circle
C which intersects neitherÄ1 norÄ2. Therefore, we getb(B) ≥ 6, which together with
(16) prove our theorem.

Remark 1. This simple result can also be deduced from a result of Fejes T´oth [4] about
cap covering density.

In 1993, at a geometric meeting held in Vienna, Zong proposed the following
problem.

Problem 4. Denote byδH (K1, K2) the Hausdorff distance betweenK1 and K2 (see
[9] for the definition). Let B be then-dimensional unit ball centered ato, and letP be a
polytope which circumscribesB and has 2n facets. Is it true that

δH (B, P) ≥ √n− 1,

where the equality can be realized only ifP is a cube?

The answer of this problem is “yes” inR3 (see [4]). Here we present a positive solution
to this problem inR4.

Theorem 6. In four dimensions,

δH (B, P) ≥ 1,

where the equality holds if and only if P is a cube.
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To prove this theorem, we first introduce three lemmas.

Lemma 4. Let S be an n-dimensional simplex of fixed volumev, and let Br (p) be an
n-dimensional ball of radius r and centerp. Then S∩ Br (p) has maximal volume for
every r if and only if S is regular andp is the center of gravity of S.

Proof. Let y0, y1, . . . , yn be the verticesS with y1, . . . , yn in the hyperplane
{(x1, x2, . . . , xn): xn = 0}. Let h > 0 be thenth coordinate ofy0. We proceed to
prove Lemma 4 by induction onn. Clearly, it is true forn = 1.

It is easy to see that, for any pointz0 with zn = h, conv{z0, y1, . . . , yn} has vol-
ume v. Further, any hyperplaneHt = {(x1, x2, . . . , xn): xn = t}, 0 ≤ t ≤ h,
meetsconv{z0, y1, . . . , yn} in a homothetic copy((h − t)/h) conv{y1, . . . , yn} of
conv{y1, . . . , yn}. By the induction assumption, these copies meet the corresponding
Br (p) ∩ Ht in sets of maximal(n − 1)-dimensional volume if and only if((h −
t)/h) conv{y1, . . . , yn} are regular with centers lying on the vertical line ofHt through
the center ofBr (p). This will be the case thatconv{y1, . . . , yn} is regular andz0 is the
intersection ofHt and the vertical line of it throughp.

Repeating this process for all the facets ofS, Lemma 4 follows.

Lemma 5. Let S be a simplex inscribed in the unit ball B of Rn. Then S∩ r B has
maximal volume for every r if and only if S is regular.

Proof. Let S= {y0, y1, . . . , yn}, whereyi = (y1
i , y2

i , . . . , yn
i ), and assume thatyn

0 = β
andyn

i = −α for all i = 1, 2, . . . , n. Then

v(S∩ r B) =
∫ β

−α
v′(S∩ r B ∩ Ht )dt,

wherev′(·) indicates the(n− 1)-dimensional measure andHt indicates the hyperplane
{(x1, x2, . . . , xn): xn = t}.

Let conv{z1, . . . , zn} be a regular simplex lying inH−α with center of gravity
(0, . . . ,0,−α) and

v′(conv{z1, . . . , zn}) = v′(conv{y1, . . . , yn}).

Takez0 = (0, . . . ,0, β) andS∗ = conv{z0, . . . , zn}. By Lemma 4 we get

v(S∩ r B) ≤ v(S∗ ∩ r B),

where the equality holds for everyr if and only if y0 = z0 and conv{y1, . . . , yn} is
regular. With minor modifications of the previous arguments Lemma 5 follows.

Lemma 6. Let S′ be a spherical simplex lying within a capÄ of radiusρ of the unit
ball B of Rn. Then S′ has maximal(n − 1)-dimensional measure if and only if S′ is
regular.
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Proof. Let S′ be a spherical simplex on∂(B) contained in some open hemisphere of
∂(B), and letS be the corresponding simplex. The affine hull ofS meets∂(B) in an
(n− 1)-dimensional ball with centeru and radiusρ, 0< ρ < 1. It is easy to see that

s(S′) = c
∫ ∫

V(S)
e−|x|

2
dx1 · · ·dxn,

wherec is a constant depending only onn andV(S) indicates the cone with vertexo
overS. RegardingV(S) as a union of piecesλS, 0≤ λ < +∞, then

s(S′) = c
∫ ∞

0

(∫ ∫
λS

e−|x|
2

dλS

)
dλ

= c
∫ ∞

0
λn−1

(∫ ∫
S

e−λ
2|x|2 dS

)
dλ. (17)

In S, writing x = u+ v, it is easy to see that∫ ∫
S

e−λ
2|x|2 dS= e−λ

2|u|2
∫ ρ

0
e−λ

2r 2
sr dr, (18)

wheresr indicatess the(n− 2)-dimensional measure of(S− u) ∩ ∂(r B), and

sr = dvr

dr
,

wherevr denotes the(n−1)-dimensional measure of(S−u)∩ r B. Then, by Lemma 5,∫ ρ

0
e−λ

2r 2
sr dr = e−λ

2r 2
vr

∣∣∣ρ
0
+
∫ ρ

0
2λ2re−λ

2r 2
vr dr

= e−λ
2ρ2
vρ +

∫ ρ

0
2λ2re−λ

2r 2
vr dr

≤ e−λ
2ρ2
v∗ρ +

∫ ρ

0
2λ2re−λ

2r 2
v∗r dr, (19)

wherev∗r indicates the corresponding value in the regular case and the equality holds if
and only ifS′ is regular.

By (17), (18), and (19), Lemma 6 follows.

Proof of Theorem6. Let P′ be the dual ofP. Theorem 6 is equivalent to the following
assertion:Let P′ be a polytope inscribed in the four-dimensional unit ball B and having
eight vertices. Then

δH (P′, B) ≥ 1
2,

where the equality holds if and only if P′ is a regular cross polytope W′.
Clearly,δH (W′, B) = 1

2 andδH (P′, B) ≤ α means

(1− α)B ⊂ P′.
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As usual, we usefi to indicate the number ofi -dimensional faces ofP′. In addition,
without loss of generality, we assume thatP′ is simplicial. Now we proceed to prove
Theorem 6 by dealing with two cases.

Case1: δH (P′, B) ≤ 1
2 and f3 ≤ 16. Projecting the facets ofP′ from o to the surface

of B, we get f3 spherical simplicesS′1, S′2, . . . , S′f3. Let s∗ be the surface area of the
corresponding spherical simplex determined by the facets ofW′. Then, by Lemma 6,

s(S′i ) ≤ s∗,

where equality holds if and only ifS′i is deduced by a facet of a regular cross polytope.
On the other hand, we have

f3∑
i=1

s(S′i ) = s(∂(B)).

Therefore,P′ must be a regular cross polytope.

Case2: δH (P′, B) ≤ 1
2 and f3 > 16. By the well-knownDehn–Sommerville equations

(see [9]), we have {
f0− 2 f1+ 3 f2− 4 f3 = − f0,

− f1+ 3 f2− 6 f3 = − f1,

and therefore

f1 = f0+ f3 ≥ 25.

This means that at least one vertex ofP′ is connected with every other vertex by an edge.
In other words, in the original problem,P has a facetF which intersects all the other
facets. Letx = F ∩ B and assume

max
y∈F
{‖o, y‖} ≤ 2,

then an easy computation yields that the distance betweeno and the point of∂(P) in the
opposite direction tox is larger than 2. In other words, we haveδH (P, B) > 1 in this
case.

As a conclusion of these two cases, Theorem 6 is proved.

Theorem 7. If B is a four-dimensional ball, then

b(B) = 9.

Proof. It follows from Theorem 6 that

b(B) ≥ 9. (20)

Write e1 = (1,0,0,0), e2 = (0,1,0,0), e3 = (0,0,1,0), e4 = (0,0,0,1), e =
(1,1,1,1),

ui = 2√
1+ 4ε2− 2ε

(ei − εe),
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and

vi = 1√
1+ ε + ε2

(−2ei − εe).

It can be verified that, whenε is small,

B+ {e,u1,u2,u3,u4, v1, v2, v3, v4}
blocks any other translate ofB from touching it. Thus,

b(B) ≤ 9. (21)

Theorem 7 follows from (20) and (21).

Remark 2. Let B be the unit ball inRn, let Ä be a cap in∂(B), and let S be a
spherical simplex inscribed inÄ. As an analogue of Lemma 1 of [2] we conjecture that
6(S)/A(S) attains its minimum if and only ifS is regular. Here6(S) indicates the sum
of the spherical angles ofSandA(S) indicates the area ofS. If this conjecture is true, by
a simple mean value formula we can obtain the positive solution of Problem 4. In this
way, we can give a new proof of Fejes T´oth’s result inR3.
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