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Abstract. Besides determining the exact blocking numbers of cubes and balls, a con-
ditional lower bound for the blocking numbers of convex bodies is achieved. In addition,
several open problems are proposed.

1. Introduction

Let K be aconvex bodyn R". Theblocking number BK) of K is the smallest number
of nonoverlapping translatd§ + x which are in contact wittK at its boundary and
prevent any other translate from touching it. Similarly, we can define a nume€p
by allowing overlapping between the translates.

As a counterpart and a limited casekigsing numbersblocking numbers were first
introduced in [12] and studied in [13] and [14], where an inequality between blocking
numbers andHadwiger’s covering numbeffer centrally symmetric convex bodies and
results concerning blocking numbers and kissing numbers have been achieved. Never-
theless, so far our knowledge about blocking numbers is very limited.

* This work was done while the first and the last authors were guests of the Mathematical Department of
the University College London. The work of the last author was supported by a research fellowship of The
Royal Society.
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Fig. 1

Denote thedifference sebf a convex setX by D(X). In other words,D(X) =
{x —y: x,y € X}. Itis well known that(X + x3) N (X + x2) # @ if and only if
(3D(X) +x1) N (3D(X) + X2) # ¥ (see [5]). SinceD(K) is centrally symmetric, we
may confine ourselves to the centrally symmetric case whenever we deal with the kissing
numbers and the blocking numbers (this is not true for Hadwiger’s covering numbers) of
convex bodies. In addition, we may apply tdenkowski metrid|-||c given by a centrally
symmetric convex bod¢ to our problem (for the definition df-||c we refer to [9]).

Definition 1. Let C be a centrally symmetric convex body R, let 3(C) be its
boundary, and letf|-||c be the Minkowski metric given byC. Denote the manifold
{x,y]: X,y € 3(C); %, ¥Yllc = 1} by @, the straight line passingandy by L (x, y),
the two-dimensional plane passiog, andy by P(x, y), and the tangent & N P(x, y)
which is parallel toL (x, y) and is at the same side ofwith L(x,y) by T(x,y) (see
Fig. 1). Then we call

m(C) = min
[x,yle®

{1_ d(o, L(x, y))}
d©, T(x,y))

the M-curvature ofC, whered(X, Y) indicates the Euclidean distance between the two
setsX andY.

Clearly, theM-curvature of a centrally symmetric convex body is invariant when a
linear transformation is applied to it. In high dimensions we have the following bounds
for m(C).

Theorem 1. For any positive numbet there is an integer Ke) such that

3
OEm(C)§1+£—§

holds for every n-dimensional centrally symmetric convex body C wheneve (x).
This theorem is an immediate consequence of Dvoretzky’s well-known theorem (see

[3] or [14]) which assertslet B be the n-dimensional unit baiind lete be a positive
number For each k-dimensional centrally symmetric convex bodywBere k is an
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integer determined by n and there exist an n-dimensional subspaced@® R¢ and a
positive number r such that

rBCCNR"C (1+¢)rB.

Problem 1. Determine the value mgmn(C)}, where the maximum is over all centrally
symmetric convex domains. We conjecture that the regular 10-gon is the extremal figure.

Problem 2. Isittrue thato(K) = b’(K) for all convex bodies?

2. A Lower Bound of b(C) Based on theM-Curvature of C

Lemma 1[8] (see also [1]). Forevery n-dimensional centrally symmetric convex body
C there exists a linear transformation T such that

BC T(C) cVnB )

By this lemma, since both the M-curvature and the blocking number of a centrally
symmetric convex body are invariant when a linear transformation is applied to it, we
only deal with then-dimensional centrally symmetric convex bodies which satisfy (1). As
usual, let (K) be the boundary of a convex bo#y, and letv,,(X) be them-dimensional
lebesgue measure of a s&t In addition, we denote b$g, the Steiner symmetrization
with respect to the hyperplane with notm

Lemma 2[11]. For every n-dimensional convex body K and every direation
Un-1(3(K)) = vp-1(0(K(K))).

Lemma 3(see [7]). Let C be a centrally symmetric convex domain ih Ror every
pointx € d(C) there exists an affine regular hexagon inscribed in C which takas
one of its six vertices

Theorem 2. If C is an n-dimensional centrally symmetric convex body with M-curva-
ture m(C), then

b(C) > n~¥2(1 — m(C))*™.

Proof. We assume that > 3. As usual, denote the interior 6fbyint(C). Assume that
X ={Xo = 0, X1, X2, ..., Xpc)} iS @ set of points such théant(C) +x;) N (int(C)+X;) =
¢ wheneveri # |, C + x; touchesC at its boundary for every point, € X, and
,bfl) (C + x;) prevents any other translate ©ffrom touching it. For convenience, in

the following discussion we cal \ {0} a blocking set o€. Then, observing the boundary
of 2C, one obtains

b(C)

3(2C) c [ (int(2C) +xi)
i=1
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and hence
tff un-1(3(2C) N (INt(2C) +x1)) _ 2
i1 vn-1(9(2C)) -
Now, we proceed to show
on-2(3(2C) N (M2C) +X)) _ 329 _ 11 cyyn-2 3

un-1(9(2C)) B

for all indicesi =1, 2 ..., b(C).
Let P be theperpendicular projectiorirom R" to the hyperplane which contains
and takesx; as a norm. Keeping (1) in mind, we have

conv{—x{, R (2C), x} € S¢(20), )

wherex; indicates the unit direction of, andcony{ X} indicates the convex hull of a
setX.
Abbreviatingun_2(3(P, (2C))) to u;, for every positive numbear we have

Un_2(d(rP; (2C))) = wir" 2.

Thus,
! 24
vn—1(d(conf—x", R (2C), X'})) > 2u; / 1- t)”_zdt = 1 5)
0 _
Therefore, by (4), (5), and Lemma 2 we obtain
21
vn-1(3(2C)) = o1 (6)
On the other hand, defining a cylinder
H = {(1-m(C))R(2C) +6x" 6] < V/n},
it is easy to calculate
21 (1 — m(C))"-1
v 1 O(H)) = 2ui /AL — m(C)yn? 4+ 24D @

n-1

Meanwhile, by (1), Lemma 3, and the definitionm§C) (see Fig. 2), for every index
i we have

conv{d(2C) N (int(2C) + x;), 3(2C) N (int(2C) — xj)} € H;. (8
It is well known that
vn-1(3(K1)) < vn-1(3(K2))
wheneverlK; C K. So, (7) and (8) yield

. _ n—-1
vn_1 (3(2C) N (INL(2C) +x)) < i /(L — MC))™2 + % ©

Clearly, (3) is a consequence of (6) and (9). Theorem 2 follows from (2) and (3]



The Blocking Numbers of Convex Bodies 271

If 9(C) is smooth, a similar (but worse) inequality betwd®&) and the minimal
section curvature o (C) can be achieved by this method.

Concerning the blocking number of a convex body and the blocking numbers of its
sections we have the following result.

Theorem 3. There are infinitely many dimensions in which a centrally symmetric con-
vex body C and a proper subspace R can be found such that

b(C) <b(CNR) + 1.
Proof. If there exist only finite many such dimensions, we assumenthat is the last
one. By Theorem 2, we may choose a positive nunatserch that
b(D) > 2n (10
holds for everyn-dimensional centrally symmetric convex boBywhich satisfies
BCcDc(1+¢)B. 1D

Let k be the integer determined lmyande in Dvoretzky’s theorem. According to a
result of [12], there is &-dimensional centrally symmetric convex bo@ysuch that

b(C) < 2k. (12

Meanwhile, by Dvoretzky’s theoreng, has am-dimensional sectio® which satisfies
(11) (noteb(r D) = b(D)), and therefore (10). Choose a sequence of subsgrites
R c ... ¢ R¥suchthatD = C N R" andC c RX. According to our assumption,

b(C N R™*) > pCNR™) +2
holds for every index, 0 <i < k —n — 1. So that by (10) we obtain
b(C) > 2n+ 2(k — n) > 2k, (13
a contradiction to (12). Theorem 3 is proved. O
Problem 3. Isthere am-dimensional Euclidean space in which a centrally symmetric
convex bodyC and an(m — 1)-dimensional subspad®™* can be found such that

b(C) < (or evenc) b(C N R™1)?
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3. The Blocking Numbers of Some Special Convex Bodies

In [12], based on a result of [6] about kissing numbers, it is provedlhig) = 4

for every two-dimensional convex domain. Now, we proceed to determine the blocking
numbers of cubes (in general dimensions) and balls, respectively. In fact we can also
prove that the blocking number of a tetrahedron is six.

3.1. Cubes

Theorem 4. The blocking number of an n-dimensional cubg"is

Proof. Denote the unit cubg(x®, x2, ..., x": [x'| < 1} in R" by W, and letX be a
blocking set ofW. Repeating partial argument in the proof of Theorem 2, one gets

a2wW) ¢ |Jintew) + x).
xeX

Since each translate ioft(2W) contains at most one vertex of\2 it follows immediately
that

b(W) > 2". (14

Now, we proceed to prove
b(w) < 2" (15
by constructing a proper blocking setf. If n = 2, it can be verified thdi(1, %), (%, 1),
(-1, 3), (—3. —D} is a blocking set ofV/. Inductively, if X = {X1, Xz, ..., Xx1} is @

centrally symmetric blocking set of tii@ — 1)-dimensional unit cube and = —Xon-1,
we define

(3.3.....3) 0L i =1,
. Xi@%, i=2 ..., 21
= Y xiipa @ (-1, —only1 1
-i-i ... -HeEyn, i=2,
where(xt, x2, ..., x""h @ x indicates(x*, x2, ..., x"71, x) in R". TakingY = {y1, 2,

.., Y}, it can be verified thaty is a centrally symmetric blocking set of the
n-dimensional unit cube. Hence we get (15). Theorem 4 follows from (14) and (15).
3.2. Balls

Theorem 5. The blocking number of a three-dimensional ball is six

Proof. Denote the three-dimensional unit ball By Since{£(2, 0, 0), (0, 2, 0),
+(0, 0, 2)} is a blocking set of B, one gets

b(B) < 6. (16)
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0

Fig. 3

On the other hand, assume théat= {x1, X, . .., Xpg)} IS a blocking set 0B, then
b(B)

3(2B) = U Qi
i=1

where Q; indicates the relative open cayg2B) N (int(2B) + x;). Clearly, the angle
between any two vectors which belong to the same cap is less thdh 3o that any
great circle ofd(2B) intersects at least four of thegB) caps. If, without loss of
generality,—x; € Q,, it can be shown tha®; N 2, = @. Thend(2B) has a great circle
C which intersects neith&R; nor 2. Therefore, we gei(B) > 6, which together with
(16) prove our theorem. |

Remark 1. This simple result can also be deduced from a result of Fejds[4] about
cap covering density.

In 1993, at a geometric meeting held in Vienna, Zong proposed the following
problem.

Problem 4. Denote bys" (K1, K») the Hausdorff distance betwedqy and K, (see
[9] for the definition. Let B be then-dimensional unit ball centered atand letP be a
polytope which circumscribeB and has 8 facets. Is it true that

sH(B,P) > vn—1,

where the equality can be realized onlyFifis a cube?

The answer of this problem is “yes” IR® (see [4]). Here we present a positive solution
to this problem inR%.

Theorem 6. In four dimensions
"B, P) =1,

where the equality holds if and only if P is a cube
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To prove this theorem, we first introduce three lemmas.

Lemma4. Let S be an n-dimensional simplex of fixed volumand let B (p) be an
n-dimensional ball of radius r and center Then S0 B; (p) has maximal volume for
every r if and only if S is regular ang is the center of gravity of .S

Proof. Let yg, Y1, ..., Yo be the verticesS with yi, ..., y, in the hyperplane
{(xX,x2,...,x"): x" = 0}. Leth > 0 be thenth coordinate ofy,. We proceed to
prove Lemma 4 by induction am Clearly, it is true fom = 1.

It is easy to see that, for any poim§ with z" = h, conzg, y1, ..., Yyn} has vol-
ume v. Further, any hyperplanél, = {(x*,x? ...,x"): x" =1t},0 <t < h,
meetsconyzo, V1, ..., Yn} iIn @ homothetic copy(h — t)/h) con\y,...,yn} of
convys, ..., ¥n}. By the induction assumption, these copies meet the corresponding
B: (p) N H; in sets of maximal(n — 1)-dimensional volume if and only if(h —
t)/h) condys, ..., yn} are regular with centers lying on the vertical linekf through
the center ofB; (p). This will be the case thatonys, ..., yn} is regular andy is the
intersection ofH; and the vertical line of it througp.

Repeating this process for all the facetsSpt. emma 4 follows. O

Lemmab5. Let S be a simplex inscribed in the unit ball B of. Rhen SN rB has
maximal volume for every r if and only if S is regular

Proof. LetS= {yo,Y1,...,Yyn}, Wherey; = (y}, y2 ..., y"), and assume thgf =
andy" = —a foralli =1,2 ..., n. Then

B
u(SﬂrB):/ V' (SNrB N Hy)dt,

—o

wherev'(-) indicates thgn — 1)-dimensional measure andl indicates the hyperplane
(XL, X2, .., x™): XD =t).

Let conz,, ..., z,} be a regular simplex lying irH_, with center of gravity
©,...,0, —a) and

v'(CoNzy, ..., Zy}) = v'(CONYy1, ..., Yn}).
Takezp = (0, ...,0, 8) andS* = conzy, ..., z,}. By Lemma 4 we get
v(SNrB) < v(S* NrB),

where the equality holds for everyif and only if yo = zg andconJyy, ..., yn} is
regular. With minor modifications of the previous arguments Lemma 5 follows. O

Lemma6. Let S be a spherical simplex lying within a cdp of radius p of the unit
ball B of R'. Then $has maximakn — 1)-dimensional measure if and only if 8
regular
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Proof. Let S be a spherical simplex o#(B) contained in some open hemisphere of
9(B), and letS be the corresponding simplex. The affine hull®fmeetsa(B) in an
(n — 1)-dimensional ball with centar and radiuso, 0 < p < 1. Itis easy to see that

s(S):c// e X dxt. .. dx",
V(S)

wherec is a constant depending only enandV (S) indicates the cone with vertex
over S. RegardingV (S) as a union of piecesS, 0 < A < +o0, then

c/ooo (/ /Ase"x'2 dAS) dx
c /O L ( f /S eklezds> dx. 17)

In S, writing X = u + v, it is easy to see that

/ / e g g = g AP / " e dr. (18)
S 0

wheres indicatess thén — 2)-dimensional measure 08— u) N a(rB), and

_dv,
Sr—dr,

s(S)

wherev, denotes thén — 1)-dimensional measure ¢6— u) NrB. Then, by Lemma 5,

P
_2r2 _32p2
/e“sdr:e“vr
0

o)
_ 22,2 922
= e“’vﬁ—/ 2%re ™y, dr
0

0 p
. +/ 202re*""y, dr
0

IA

—212p2 % r 2, A—22r2 x
e v, + A 2)\°re vy dr, (29)

wherev; indicates the corresponding value in the regular case and the equality holds if
and only if S is regular.
By (17), (18), and (19), Lemma 6 follows. O

Proof of Theoren®. LetP’ be the dual of. Theorem 6 is equivalent to the following
assertionLet P’ be a polytope inscribed in the four-dimensional unit ball B and having
eight verticesThen

s"(P'.B) = 3.

where the equality holds if and only if B a regular cross polytope W
Clearly,s" (W', B) = 1 ands" (P’, B) < « means

(1-a)BcC P.
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As usual, we uss to indicate the number afdimensional faces oP’. In addition,
without loss of generality, we assume tiitis simplicial. Now we proceed to prove
Theorem 6 by dealing with two cases.

Casel: s" (P, B) < % and f; < 16. Projecting the facets d?’ from o to the surface
of B, we get f3 spherical simplicesy;, S,, ..., S,. Lets* be the surface area of the
corresponding spherical simplex determined by the face#®’ ofrhen, by Lemma 6,

s(§) <5,

where equality holds if and only & is deduced by a facet of a regular cross polytope.
On the other hand, we have

f3

Y s(S) =s(d(B)).

i=1
Therefore,P’ must be a regular cross polytope.

Case2: " (P, B) < % and f; > 16. By the well-knownDehn—-Sommerville equations
(see [9]), we have

fo—2f1 +3f, —4f3 = —f,
—f1+3f, —6f3=—"1y,

and therefore
fi = fop+ f3 > 25

This means that at least one vertexfs connected with every other vertex by an edge.
In other words, in the original problen®, has a faceF which intersects all the other
facets. Letx = F N B and assume

max{|jo, yllI} = 2,
yeF

then an easy computation yields that the distance betwaad the point o (P) in the
opposite direction te is larger than 2. In other words, we has@(P, B) > 1 in this
case.

As a conclusion of these two cases, Theorem 6 is proved. O

Theorem 7. If B is a four-dimensional ballthen

b(B) =9.

Proof. It follows from Theorem 6 that
b(B) > 9. (20

Writeel = (l’ 07 07 0)1 e2 = (0’ 17 O’ 0)1 e\; = (09 O’ l’ 0)1 e4 = (07 O’ 07 1)7 e =
(17 1’ 17 1)’

2
Uy=—— (g —¢0),
' ~/1+452—28( )
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and

1
V= —— (=20 —¢6).
l /\/1+8+82(

It can be verified that, whenis small,
B + {€, u1, Uz, Us, Ug, V1, V2, V3, Va}
blocks any other translate & from touching it. Thus,
b(B) < 9. (21
Theorem 7 follows from (20) and (21). O

Remark 2. Let B be the unit ball inR", let 2 be a cap ind(B), and letS be a
spherical simplex inscribed 2. As an analogue of Lemma 1 of [2] we conjecture that
2(S)/A(S) attains its minimum if and only iSis regular. Herez (S) indicates the sum

of the spherical angles &andA(S) indicates the area @. If this conjecture is true, by

a simple mean value formula we can obtain the positive solution of Problem 4. In this
way, we can give a new proof of Fejesfh’s result inR3.
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