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Abstract
Equilateral triangles of sidelengths 1, 2−t , 3−t , 4−t , . . . can be packed perfectly into
an equilateral triangle, provided that 1/2 < t ≤ 37/72. Moreover, for t slightly
greater than 1/2, squares of sidelengths 1, 2−t , 3−t , 4−t , . . . can be packed perfectly
into a square St in such a way that some squares have a side parallel to a diagonal of
St and the remaining squares have a side parallel to a side of St .
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1 Introduction

LetC,C1,C2,C3, . . . be planar convex bodies. We say that C1,C2, . . . can be packed
into C if it is possible to apply translations and rotations to the sets Cn so that the
resulting translated and rotated bodies are contained in C and have mutually disjoint
interiors. If the area of C is equal to the sum of areas of the bodies, then the packing
is perfect.

There aremany results concerning packings. For example,Moon andMoser showed
[12] that any collection of squares whose total area does not exceed 1/2 can be packed
into a square of sidelength 1. Richardson [15] proved that any collection of triangles
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homothetic to T , whose total area does not exceed half the area of T , can be packed
in T and made the conjecture that such a result is true also for the translative packing
by positive homothetic copies. This has been confirmed in [4].

In this note, we will study perfect packing.
In 1966 Moser posed the following well-known problem (see problem LM6 in

[13]): Find the smallest ε ≥ 0 such that the squares of harmonic sidelengths
1/2, 1/3, 1/4, . . . can be packed into a rectangle of area 1

6π
2 − 1 + ε (the sum of

areas of the squares equals 1
6π

2 − 1).
The following upper bounds for ε were obtained sequentially: 1/20 [11], 1/127

[8], 1/198 [1], and 1/1244918662 (see [14], [9], and [3]).
This packing problem can be extended. Let Stn be a square of sidelength n−t for

n = 1, 2, . . .. If t > 1/2, then the total area of the squares is equal to
∑∞

n=1
1
n2t

=
ζ(2t), where ζ(s) is the Riemann zeta function. The question is whether St1, S

t
2, . . .

(for t > 1/2) can be packed perfectly into a rectangle. Obviously, for t = 1, we get
Moser’s original question.

Some results are known for t < 1. Chalcraft [2] showed that St1, S
t
2, S

t
3, . . .

can be packed perfectly into a square for all t in the range [0.5964, 0.6]. Joós [10]
checked that these squares can be packed perfectly for all t in the range [log3 2, 2/3]
(log3 2 ≈ 0.63). Wästlund [17] proved that St1, S

t
2, S

t
3, . . . can be packed into a finite

collection of squares of the same area as the sum of areas of the squares, provided that
1/2 < t < 2/3. In [5] it is shown that for all t in the range (1/2, 2/3], the squares
St1, S

t
2, S

t
3, . . . can be packed perfectly into a single square. Recently, Tao [16] proved

that for any 1/2 < t < 1, and any n0 that is sufficiently large depending on t , the
squares Stn0 , S

t
n0+1, . . . can be packed perfectly into a square.

In this note, we will give an analog of this problem for the packing of triangles.
Let T t

n be an equilateral triangle of sidelength n−t for n = 1, 2, . . .. The question
arises whether T t

1 , T t
2 , . . . (for t > 1/2) can be packed perfectly into an equilateral

triangle. More precisely: whether T t
1 , T t

2 , . . . can be packed perfectly, for 0.5 < t ≤
0.761202... (now 1 + 1/2t ≤ √

ζ(2t)); whether T t
2 , T t

3 , . . . can be packed perfectly,
provided that 0.761202... < t ≤ 0.943674... (for such values of t the sum of
sidelengths of T t

2 and T t
3 is smaller than

√
ζ(2t) − 1); whether T t

3 , T t
4 , . . . can be

packed perfectly, provided that 0.943674... < t ≤ 1.121936... (now 1/3t + 1/4t ≤√
ζ(2t) − 1 − 1/22t ), etc.. It is only known [7] that T 1

3 , T 1
4 , . . . can be packed into an

equilateral triangle of side of length (π2/6 − 5/4)1/2 + 1/270.
In Sect. 2, we will show that equilateral triangles of sidelengths 1, 2−t , 3−t , 4−t , . . .

can be packed perfectly into an equilateral triangle Tt , provided that 1/2 < t ≤ 37/72.
In Sect. 3, we will check that if 1/2 < t ≤ 37/72, then all packed triangles can

be positive homothetic copies of Tt as well as all packed triangles can be negative
homothetic copies of Tt .

In addition, in Sect. 4, we will consider square-packing. We will prove that, for
1/2 < t ≤ (154 + 3

√
2)/306, squares of sidelengths 1, 2−t , 3−t , 4−t , . . . can be

packed perfectly into a square St in such a way that some squares have a side parallel
to a diagonal of St and the remaining squares have a side parallel to a side of St .
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R (l, u ) is x -big
Fig. 1 Standard trapezoids R(l, u)

2 Perfect Packing

Let t be a fixed number from the interval (1/2, 37/72] and let Tt be an equilateral

triangle of area
√
3
4 ζ(2t).

The outline of the packing method is as follows. For each n ≥ 2, the empty space
in Tt , i.e., the part of Tt not covered by packed triangles T t

1 , . . . , T t
n−1, will be divided

into at most 3(n− 1) trapezoids. Then, T t
n will be packed into a corner of one of these

trapezoids.
Let R(l, u) be an isosceles trapezoid with legs of length l, with the measure of the

base angles equal to 60◦ and with the shorter base of length u. Clearly, the length of
the longer base of R(l, u) is equal to l + u. If u = 0, then R(l, 0) is an equilateral
triangle.

A trapezoid R(l, u) is x-big, provided that l ≥ 2x (see Fig. 1, right).
A trapezoid R(l, u) is standard, provided that u ≤ l.
Obviously, each x-big trapezoid is also v-big for any v < x . Moreover, each

standard trapezoid is x-big for sufficiently small x .

Proposition 1 The area of any standard trapezoid that is not x-big is smaller than
3
√
3x2.

Proof The area of any standard trapezoid that is not x-big is smaller than three times
the area of an equilateral triangle of sidelength 2x (see Fig. 1, left), i.e., is smaller than

3 ·
√
3
4 · (2x)2 = 3

√
3x2. �	

Lemma 2 Let R(l, u) be an x-big trapezoid. Then R(l, u) can be divided into either
four or five parts: an equilateral triangle of sidelength x and at most four trapezoids
which are either standard or x-big.

Proof Let Ti be the equilateral triangle of sidelength x . We divide R(l, u) into Ti
(denoted by“+”in Figs. 2 and 3) and four sets Ai , Bi , Ci , Di which are either standard
trapezoids or x-big trapezoids (possibly some of them are triangles), or the empty set.

Case 1: l ≥ 4x . The trapezoid R(l, u) is divided into: Ti ∪ Ai ∪ Bi ∪ Ci , where
Ai = R(x, x), Bi = R(l − 2x, u) and Ci = R(2x, l + u − 3x). The trapezoid Ai is
standard. Moreover, Bi and Ci are x-big (see Fig. 2, left, when l > 4x). In this case
Di = ∅.
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Fig. 2 Divisions of the x-big trapezoid R(l, u), when l ≥ 3x

Case 2: 3x ≤ l < 4x .
Subcase2a: u < x . The trapezoid R(l, u) is divided into:Ti , two standard trapezoids

Ai = R(x, x), Bi = R(l − 2x, u) and one x-big trapezoid Ci = R(2x, l + u − 3x)
(as in Fig. 2, left, when 3x < l ≤ 4x). We take Di = ∅.

Subcase 2b: u ≥ x . The trapezoid R(l, u) is divided into: Ti , three standard trape-
zoids Ai = R(x, x), Bi = R(x, 0), Ci = R(x, l − 3x) and one x-big trapezoid
Di = R(l, u − x) (as in Fig. 2, right).

Case 3: 2x ≤ l < 3x .
Subcase 3a: u < x and l + u ≥ 3x . The trapezoid R(l, u) is divided into: Ti and

three standard trapezoids Ai = R(x, x), Bi = R(x, l+u−3x), andCi = R(l− x, u)

as in Fig. 3, left. We take Di = ∅.
Subcase 3b: u < x and l + u < 3x . The trapezoid R(l, u) is divided into: Ti and

three standard trapezoids Ai = R(x, l+u−2x), Bi = R(x, 0), and Ci = R(l− x, u)

as in Fig. 3, middle. We take Di = ∅.
Subcase 3c: u ≥ x . The trapezoid R(l, u) is divided into: Ti , three standard trape-

zoids Ai = Bi = R(x, 0),Ci = R(x, l−2x) and one x-big trapezoid Di = R(l, u−x)
as in Fig. 3, right. �	

Since t ≤ 37/72, it follows that the sidelength of Tt is greater or equal to√
ζ(37/36) > 6.

2.1 PackingMethodM�

[1] The first triangle is packed into the lower left vertex of Tt . After packing T t
1 , the

uncovered part of Tt is divided into A1 ∪ B1 ∪ C1 as in the proof of Lemma 2
(comp. Fig. 2, left, for u = 0). We take R1 = {A1, B1,C1}.

[2] Assume that n > 1, that the triangles T t
1 , . . . , T t

n−1 are packed into Tt and that the
familyRn−1 is defined.We choose one of the n−t -big trapezoids fromRn−1 in any
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Fig. 3 Divisions of the x-big trapezoid R(l, u), when 2x ≤ l < 3x

way. Denote this trapezoid by R. We pack T t
n into R at the vertex at the longer base

of R. After packing T t
n , the uncovered part of R is divided into An ∪Bn ∪Cn ∪Dn ,

as in the proof of Lemma 2, and we take Rn = (Rn−1\{R}) ∪ {An, Bn,Cn, Dn}.
It is possible that Dn = ∅.
Observe that Rn−1 contains at most 3(n − 1) trapezoids with mutually disjoint

interiors, for any n ≥ 2. Each trapezoid fromRn−1 is either n−t -big or standard. It is
possible that a trapezoid fromRn−1 is both n−t -big and standard.

Example 1 Figure4 illustrates the initial stage of the packing process for t = 0.51.
The area of T0.51 is equal to ζ(1.02)

√
3/4 ≈ 21.9, thus the sidelength σ of T0.51

is greater than 7.11. After packing T 0.51
1 , the uncovered part of T0.51 is divided into

three trapezoids: A1 = R(1, 1), B1 = R(σ − 2, 0) and C1 = R(2, σ − 3). Both
trapezoids B1 and C1 are 2-big and therefore we have two possibilities to pack T 0.51

2 .
For instance, we will pack each triangle into a trapezoid of maximum leg length. After
packing T 0.51

2 into B1, the uncovered part of T0.51 is partitioned into A1, C1, A2, B2
and C2 (D2 = ∅).

Theorem 3 For each t in the range 1/2 < t ≤ 37/72 ≈ 0.5138, the triangles T t
n can

be packed perfectly into the triangle Tt by the method M�.

Proof The proof is similar to that presented in [6]. Let t be a fixed number from

the interval (1/2, 37/72]. The area of Tt is equal to
√
3
4

∑∞
i=1

1
i2t

=
√
3
4 ζ(2t) ≥√

3
4 ζ(37/36) =

√
3
4 · 36.579 . . .. Consequently, Tt is 1-big (its leg length is greater

than 2). We pack T t
1 , T t

2 , ... into Tt by the method M�. To prove Theorem 3 it suffices
to show that, for any n, there is at least one n−t -big trapezoid inRn−1 (into which T t

n
will be packed).

First, we estimate the sum of areas of trapezoids in Rn−1, i.e., the area of the
uncovered part of Tt after packing T t

n−1. This value is equal to the sum of areas of
unpacked triangles T t

n , T t
n+1, . . ., i.e., is equal to
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Fig. 4 Packing method M� for t = 0.51

√
3

4

( 1

n2t
+ 1

(n + 1)2t
+ . . .

)
>

√
3

4
·
∫ +∞

n

1

x2t
dx =

√
3

4
· 1

2t − 1
n1−2t

≥
√
3

4
· 1

2 · 37
72 − 1

n1−2t = 9
√
3n1−2t .

Assume that there is an integer n such that the triangle T t
n cannot be packed into

Tt by the method M�, i.e., that there is no n−t -big trapezoid in Rn−1. This means
that all trapezoids in Rn−1 are standard and that the length of the leg of each such
trapezoid is smaller than 2n−t (if l ≥ 2n−t , then R(l, u) is n−t -big). By Proposition
1, the area of each such trapezoid is smaller than 3

√
3n−2t . Since there are at most

3(n − 1) trapezoids in Rn−1, it follows that the total area of trapezoids in Rn−1 is
smaller than (3n − 3) · 3√3n−2t < 9

√
3n1−2t , which is a contradiction.

Consequently, T t
1 , T t

2 , . . . can be packed into Tt . �	
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Fig. 5 Standard trapezoids T (l, u)

3 Positive or Negative Copies

One side of Tr is called the bottom. In our drawings, the bottom is the horizontal side
of the triangle. By T+(l, u) we mean the trapezoid T (l, u) lying such that its bases are
parallel to the bottom of Tr and that the longer base is lower than the shortest one (see
Fig. 5, left).

We call a trapezoid x-classic if it arises from rotating a trapezoid T+(l, u) by a
multiple of 60◦, where the respective T (l, u) is x-big or standard (see Fig. 5, left and
right).

The image of any positive homothetic copy of Tr in rotation of 60◦ is a negative
homothetic copy of Tr as well as the image of any negative homothetic copy of Tr in
rotation of 60◦ is a positive homothetic copy of Tr . The image of a triangle T (x, 0) in
rotation of 180◦ is denoted by −T (x, 0).

Lemma 4 Let R be an x-big classic trapezoid. Then R can be divided into: T+(x, 0)
and at most four x-classic trapezoids. Moreover, R can be divided into: −T+(x, 0)
and at most four x-classic trapezoids.

Proof Let R be the x-big classic trapezoid.
Since R is the image of T+(l, u) in rotation by a multiple of 60◦, it follows that

R can be divided into the same shapes as T+(l, u), with possibly switching roles of
T+(x, 0) and −T+(x, 0) (see Fig. 6). Consequently, to prove Lemma 4 it suffices to
check that T+(l, u) can be divided into T+(x, 0) (denoted by “+”) and at most four
x-classic trapezoids as well as that T+(l, u) can be divided into −T+(x, 0) (denoted
by“-”in Figs. 6, 7 and 8) and at most four x-classic trapezoids.

The first option was discussed in the proof of Lemma 2. Now consider negative
copies of the triangle.

Case 1: l ≥ 4x . The trapezoid R is divided into:−T+(x, 0), one standard trapezoid
and two x-big trapezoids (as in Fig. 7, left; if l ≥ 4x , then the upper trapezoid is x-big).

123



Discrete & Computational Geometry

l

u

T+ (l, u )

x

x
+

sx
b

bl −
2x

l

u

x

x
−

s x
b

b

l −
2x

l
u

x
−

x

b

s

b

l
u

x
+

x

b

s

b

l −
2x

l

u
x

x
+s

x

b

b

l − 2x

Fig. 6 Divisions of the x-big classic trapezoid R, when l ≥ 4x

Case 2: 3x ≤ l < 4x . If u < x , then T+(l, u) is divided as in Fig. 7, left (now the
upper trapezoid is standard). If u ≥ x , then T+(l, u) is divided as in Fig. 7, right.

Case 3: 2x ≤ l < 3x . If u < x and l+u ≥ 3x , then T+(l, u) is divided as in Fig. 8,
left. If u < x and l + u < 3x , then T+(l, u) is divided as in Fig 8, middle. If u ≥ x ,
then T+(l, u) is divided as in Fig. 8, right. �	

3.1 PackingMethodM�±

Let N = A ∪ B, where A ∩ B = ∅. Since t ≤ 37/72, it follows that the sidelength of
Tt is greater or equal to

√
ζ(37/36) > 6.

[1] If 1 ∈ A, then the first triangle is packed into Tt in the place “+” described in
the proof of Lemma 2 (see Fig. 2, left, if u = 0). If 1 ∈ B, then the first triangle
is packed in the place “-” described in the proof of Lemma 4 (see Fig. 7, left, if
l > 4x and u = 0). After packing T t

1 , the uncovered part of Tt is divided into
three 1-classic trapezoids as in the proof of Lemma 4. We take as R±

1 the family
of these three trapezoids.

[2] Assume that n > 1, that the triangles T t
1 , . . . , T t

n−1 are packed into Tt and that the
family R±

n−1 is defined. We choose one of the n−t -big trapezoids from R±
n−1

in any way. Denote this trapezoid by R. If n ∈ A, then T t
n is packed in the place
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Fig. 7 Divisions of the x-big trapezoid T+(l, u), when l ≥ 3x
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Fig. 8 Divisions of the x-big trapezoid T+(l, u), when 2x ≤ l < 3x

“+” in R; if n ∈ B, then T t
n is packed in the place “-” in R (see Figs. 2, 3, 6, 7 or 8).

After packing T t
n , the uncovered part of R is divided into at most four n−t -classic

trapezoids as in the proof of Lemma 4. We take as R±
n the union of the family

of these trapezoids and R±
n−1 \ {R}.

Clearly,R±
n−1 contains atmost 3(n−1) trapezoidswithmutually disjoint interiors,

for any n ≥ 2. Each trapezoid fromR±
n−1 is either n−t -big or standard.

Figure9 illustrates the initial stage of the packing process in the case when A = N

and B = ∅; note that the first twelve triangles are packed in the same places using the
algorithms M� and M�± . On the other hand, B = N and A = ∅ in Fig. 10.

Theorem 5 For each t in the range 1/2 < t ≤ 37/72, the triangles T t
n can be packed

perfectly into the triangle Tt so that each packed triangle Tn is a positive homothetic
copy of T t

n , provided that n ∈ A and that each packed triangle T t
n is a negative

homothetic copy of Tt , provided that n ∈ B.

Proof We pack T t
1 , T t

2 , ... into Tt by the method M�± . As in the proof of Theorem 3,
the sum of areas of trapezoids in R±

n−1 is greater than 9
√
3n1−2t . If there is an
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Fig. 9 Packing method for t = 0.51 and B = ∅

integer n such that the triangle T t
n cannot be packed into Tt by our method, then the

total area of trapezoids in R±
n−1 is smaller than (3n − 3) · 3√3n−2t < 9

√
3n1−2t ,

which is a contradiction. �	

4 Squares

Denote by St the square of area ζ(2t), where 1/2 < t ≤ (154+ 3
√
2)/306 ≈ 0.517.

Let P(h, a) be a right trapezoid with height h and with bases of length a and a − h.

In this section, a trapezoid P(h, a) is x-big, provided that h ≥ 3
√
2

2 x . A trapezoid

P(h, a) is standard, if a ≤ 3
√
2

2 h. A trapezoid P(h, a) is x-classic, provided that it
is either standard or x-big and provided that its bases are parallel either to a side of
St or to a diagonal of St . Observe that the area of each standard trapezoid that is not

x-big is smaller than
( 3

√
2

2 − 1
2

)( 3
√
2

2 x
)2 = 27

√
2−9
4 · x2.

Lemma 6 Let P be an x-big classic trapezoid. Then P can be divided into: a square of
sidelength x with a side parallel to the bases of P and atmost four x-classic trapezoids.
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Fig. 10 Packing method for t = 0.51 and A = ∅

Moreover, P can be divided into: a square of sidelength x with a diagonal parallel to
the bases of P and at most five x-classic trapezoids.

Proof Observe that P(h, a) can be divided (see Fig. 11) into a square of sidelength x
with a side parallel to bases of P(h, a) and into:

Case 1: two standard trapezoids P(x, x) and P(x, (3
√
2/2− 1)x) and two big trape-

zoids: P(3
√
2x/2, a − x) and P(h − 3

√
2x/2, a − 3

√
2x/2), provided that

h ≥ 3
√
2x ;

Case 2: two standard trapezoids P(x, h/2) and one big trapezoid P(h, a − x), pro-
vided that h < 3

√
2x and a − x ≥ h; clearly h/2 < 3

√
2x/2;

Case 3: four standard trapezoids: P(h − x, a − x), P(x, x) and two trapezoids
P(x, (a − x)/2), provided that a − x < h < 3

√
2x and a > 3x ; clearly

(a − x)/2 < 3
√
2x/2 as well as a − x < h = 2(h − x) − h + 2x ≤

2(h − x) − 3
√
2x/2 + 2x < 2(h − x);

Case 4: two standard trapezoids: P(h − x, a − x) and P(x, a − x), provided that
a − x < h < 3

√
2x and a ≤ 3x ; clearly a − x ≤ 3x − x = 2x as well as

a − x < h < 2(h − x).

Moreover, P(h, a) can be divided (see Fig. 12) into a square of sidelength x with a
diagonal parallel to bases of P(h, a) and into:
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Case 5: two standard trapezoids P(x, x) and P(x, 2x) and two big trapezoids:
P(3

√
2x/2, a − √

2x) and P(h − 3
√
2x/2, a − 3

√
2x/2), provided that

h ≥ 3
√
2x ;

Case 6: five standard trapezoids: P(z,
√
2x), P(h−z, h−z),where z = √

2x−(a−h),
P(

√
2x,

√
2x) and two trapezoids P(x, (h − z)

√
2/2 − x/2), provided that

h < 3
√
2x and z > a − h; since z + a − h = √

2x and z > a − h, it follows
that z >

√
2x/2; clearly,

√
2
2 (h− z)− 1

2 x <
√
2
2

(
3
√
2x −

√
2
2 x

)
− 1

2 x = 2x ;

Case 7: five standard trapezoids: P(h− z, h− z), P(a−h,
√
2x), P(

√
2x,

√
2x) and

two trapezoids P(x, h
√
2/2 − x), provided that 5

√
2x/2 ≤ h < 3

√
2x and

z ≤ a − h <
√
2x ; clearly, h

√
2
2 − x < 3

√
2x ·

√
2
2 − x = 2x as well as√

2x = z + a − h ≤ a − h + a − h = 2(a − h);
Case 8: four standard trapezoids: P(h− z, h− z), P(a−h,

√
2x) and two trapezoids

P(x, h
√
2/2 − x/2), provided that h < 5

√
2x/2 and z ≤ a − h <

√
2x ;

clearly, h
√
2/2− x/2 < (5

√
2x/2) · (√2/2) − x/2 = 2x as well as

√
2x =

z + a − h ≤ a − h + a − h = 2(a − h);
Case 9: one big trapezoid P(h, a − √

2x) and four standard trapezoids P(x, (h
√
2+

x)/4), provided that h < 3
√
2x and a − h ≥ √

2x ; clearly, (h
√
2 + x)/4 <

(3
√
2x · √

2 + x)/4 < 3
√
2

2 x . �	

Let N = A∪B, where A∩B = ∅. Since t ≤ (154+ 3
√
2)/306, it follows that the

sidelength of St is greater or equal to
√

ζ((154 + 3
√
2)/153) > 5.4.

4.1 PackingMethodM�

[1] The square St is partitioned into two right isosceles triangles: A1 containing the
lower left vertex of St and B1 containing the upper right vertex of St . We choose
one of them, say A1, and pack the first square into it in the following way. If
1 ∈ A, then the first square is packed in the place marked in Fig. 11 (the upper left
picture). If 1 ∈ B, then the first square is packed in the place marked in Fig. 12 (the
upper left picture). After packing St1, the uncovered part of A1 is divided into four
1-classic trapezoids as in Figs. 11 and 12. We take as P1 the union of the family
of these four trapezoids and {B1}.

[2] Assume that n > 1, that the squares St1, . . . , S
t
n−1 are packed into St and that the

family Sn−1 is defined. We choose one of the n−t -big trapezoids from Pn−1 in
any way. Denote this trapezoid by P . The square Stn is packed into P in the place
marked in Figs. 11 and 12. After packing Stn , the uncovered part of P is divided into
at most five trapezoids. We take as Pn the union of the family of these trapezoids
and Pn−1 \ {P}.
Figure13 illustrates the initial stage of the square-packing process when A is the

set of even numbers and B is the set of odd numbers.

Theorem 7 For each t in the range 1/2 < t ≤ (154 + 3
√
2)/306 ≈ 0.517, the

squares Stn can be packed perfectly into the square St so that a side of each packed
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Fig. 11 Divisions of the x-big classic trapezoid P(h, a), when a side of the square is parallel to the bases
of P(h, a)

square Si is parallel to a side of St for i ∈ A while a side of each packed square Si is
parallel to a diagonal of St for i ∈ B.

Proof Let t be a fixed number from the interval (1/2, (154 + 3
√
2)/306]. We place

St1, S
t
2, . . . by the method M�. The sum of areas of trapezoids in Pn−1 is greater than

∫ +∞

n

1

x2t
dx ≥ 1

2 · 154+3
√
2

306 − 1
· n1−2t = (27

√
2 − 9)n1−2t .

Assume that there is an integer n such that the square Stn cannot be packed into St by
our method, i.e., that there is no n−t -big trapezoid in Pn−1. Since there are at most 4n
trapezoids in Pn−1, it follows that the total area of trapezoids in Pn−1 is smaller than

4n · 27
√
2−9
4 · n−2t = (27

√
2 − 9)n1−2t , which is a contradiction. �	
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Fig. 12 Divisions of the x-big classic trapezoid P(h, a), when a diagonal of the square is parallel to the
bases of P(h, a)
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Fig. 13 Square-packing method for t = 0.51
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