Perfectly Packing an Equilateral Triangle by Equilateral Triangles of Sidelengths $n^{-1 / 2-\epsilon}$

Janusz Januszewski ${ }^{1}$ •Łukasz Zielonka ${ }^{1}$ (D)

Received: 20 July 2023 / Revised: 13 November 2023 / Accepted: 14 April 2024
© The Author(s) 2024

Abstract

Equilateral triangles of sidelengths $1,2^{-t}, 3^{-t}, 4^{-t}, \ldots$ can be packed perfectly into an equilateral triangle, provided that $1 / 2<t \leq 37 / 72$. Moreover, for t slightly greater than $1 / 2$, squares of sidelengths $1,2^{-t}, 3^{-t}, 4^{-t}, \ldots$ can be packed perfectly into a square S_{t} in such a way that some squares have a side parallel to a diagonal of S_{t} and the remaining squares have a side parallel to a side of S_{t}.

Keywords Packing • Perfect packing • Triangle • Square

Mathematics Subject Classification 52C15

1 Introduction

Let $C, C_{1}, C_{2}, C_{3}, \ldots$ be planar convex bodies. We say that C_{1}, C_{2}, \ldots can be packed into C if it is possible to apply translations and rotations to the sets C_{n} so that the resulting translated and rotated bodies are contained in C and have mutually disjoint interiors. If the area of C is equal to the sum of areas of the bodies, then the packing is perfect.

There are many results concerning packings. For example, Moon and Moser showed [12] that any collection of squares whose total area does not exceed $1 / 2$ can be packed into a square of sidelength 1 . Richardson [15] proved that any collection of triangles

[^0]Janusz Januszewski and Łukasz Zielonka have contributed equally to this work.

Janusz Januszewski
januszew@pbs.edu.pl
Łukasz Zielonka
lukasz.zielonka@pbs.edu.pl
1 Institute of Mathematics and Physics, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland
homothetic to T, whose total area does not exceed half the area of T, can be packed in T and made the conjecture that such a result is true also for the translative packing by positive homothetic copies. This has been confirmed in [4].

In this note, we will study perfect packing.
In 1966 Moser posed the following well-known problem (see problem LM6 in [13]): Find the smallest $\varepsilon \geq 0$ such that the squares of harmonic sidelengths $1 / 2,1 / 3,1 / 4, \ldots$ can be packed into a rectangle of area $\frac{1}{6} \pi^{2}-1+\varepsilon$ (the sum of areas of the squares equals $\frac{1}{6} \pi^{2}-1$).

The following upper bounds for ε were obtained sequentially: $1 / 20$ [11], $1 / 127$ [8], $1 / 198$ [1], and $1 / 1244918662$ (see [14], [9], and [3]).

This packing problem can be extended. Let S_{n}^{t} be a square of sidelength n^{-t} for $n=1,2, \ldots$. If $t>1 / 2$, then the total area of the squares is equal to $\sum_{n=1}^{\infty} \frac{1}{n^{2 t}}=$ $\zeta(2 t)$, where $\zeta(s)$ is the Riemann zeta function. The question is whether $S_{1}^{t}, S_{2}^{t}, \ldots$ (for $t>1 / 2$) can be packed perfectly into a rectangle. Obviously, for $t=1$, we get Moser's original question.

Some results are known for $t<1$. Chalcraft [2] showed that $S_{1}^{t}, S_{2}^{t}, S_{3}^{t}, \ldots$ can be packed perfectly into a square for all t in the range [0.5964, 0.6]. Joós [10] checked that these squares can be packed perfectly for all t in the range $\left[\log _{3} 2,2 / 3\right]$ $\left(\log _{3} 2 \approx 0.63\right)$. Wästlund [17] proved that $S_{1}^{t}, S_{2}^{t}, S_{3}^{t}, \ldots$ can be packed into a finite collection of squares of the same area as the sum of areas of the squares, provided that $1 / 2<t<2 / 3$. In [5] it is shown that for all t in the range $(1 / 2,2 / 3$], the squares $S_{1}^{t}, S_{2}^{t}, S_{3}^{t}, \ldots$ can be packed perfectly into a single square. Recently, Tao [16] proved that for any $1 / 2<t<1$, and any n_{0} that is sufficiently large depending on t, the squares $S_{n_{0}}^{t}, S_{n_{0}+1}^{t}, \ldots$ can be packed perfectly into a square.

In this note, we will give an analog of this problem for the packing of triangles.
Let T_{n}^{t} be an equilateral triangle of sidelength n^{-t} for $n=1,2, \ldots$. The question arises whether $T_{1}^{t}, T_{2}^{t}, \ldots$ (for $t>1 / 2$) can be packed perfectly into an equilateral triangle. More precisely: whether $T_{1}^{t}, T_{2}^{t}, \ldots$ can be packed perfectly, for $0.5<t \leq$ $0.761202 \ldots$ (now $\left.1+1 / 2^{t} \leq \sqrt{\zeta(2 t)}\right)$; whether $T_{2}^{t}, T_{3}^{t}, \ldots$ can be packed perfectly, provided that $0.761202 \ldots<t \leq 0.943674 \ldots$ (for such values of t the sum of sidelengths of T_{2}^{t} and T_{3}^{t} is smaller than $\sqrt{\zeta(2 t)-1}$; whether $T_{3}^{t}, T_{4}^{t}, \ldots$ can be packed perfectly, provided that $0.943674 \ldots<t \leq 1.121936 \ldots$ (now $1 / 3^{t}+1 / 4^{t} \leq$ $\sqrt{\left.\zeta(2 t)-1-1 / 2^{2 t}\right)}$, etc.. It is only known [7] that $T_{3}^{1}, T_{4}^{1}, \ldots$ can be packed into an equilateral triangle of side of length $\left(\pi^{2} / 6-5 / 4\right)^{1 / 2}+1 / 270$.

In Sect. 2, we will show that equilateral triangles of sidelengths $1,2^{-t}, 3^{-t}, 4^{-t}, \ldots$ can be packed perfectly into an equilateral triangle T_{t}, provided that $1 / 2<t \leq 37 / 72$.

In Sect. 3, we will check that if $1 / 2<t \leq 37 / 72$, then all packed triangles can be positive homothetic copies of T_{t} as well as all packed triangles can be negative homothetic copies of T_{t}.

In addition, in Sect. 4, we will consider square-packing. We will prove that, for $1 / 2<t \leq(154+3 \sqrt{2}) / 306$, squares of sidelengths $1,2^{-t}, 3^{-t}, 4^{-t}, \ldots$ can be packed perfectly into a square S_{t} in such a way that some squares have a side parallel to a diagonal of S_{t} and the remaining squares have a side parallel to a side of S_{t}.

Fig. 1 Standard trapezoids $R(l, u)$

2 Perfect Packing

Let t be a fixed number from the interval $(1 / 2,37 / 72]$ and let T_{t} be an equilateral triangle of area $\frac{\sqrt{3}}{4} \zeta(2 t)$.

The outline of the packing method is as follows. For each $n \geq 2$, the empty space in T_{t}, i.e., the part of T_{t} not covered by packed triangles $T_{1}^{t}, \ldots, T_{n-1}^{t}$, will be divided into at most $3(n-1)$ trapezoids. Then, T_{n}^{t} will be packed into a corner of one of these trapezoids.

Let $R(l, u)$ be an isosceles trapezoid with legs of length l, with the measure of the base angles equal to 60° and with the shorter base of length u. Clearly, the length of the longer base of $R(l, u)$ is equal to $l+u$. If $u=0$, then $R(l, 0)$ is an equilateral triangle.

A trapezoid $R(l, u)$ is x-big, provided that $l \geq 2 x$ (see Fig. 1, right).
A trapezoid $R(l, u)$ is standard, provided that $u \leq l$.
Obviously, each x-big trapezoid is also v-big for any $v<x$. Moreover, each standard trapezoid is x-big for sufficiently small x.

Proposition 1 The area of any standard trapezoid that is not x-big is smaller than $3 \sqrt{3} x^{2}$.

Proof The area of any standard trapezoid that is not x-big is smaller than three times the area of an equilateral triangle of sidelength $2 x$ (see Fig. 1, left), i.e., is smaller than $3 \cdot \frac{\sqrt{3}}{4} \cdot(2 x)^{2}=3 \sqrt{3} x^{2}$.

Lemma 2 Let $R(l, u)$ be an x-big trapezoid. Then $R(l, u)$ can be divided into either four or five parts: an equilateral triangle of sidelength x and at most four trapezoids which are either standard or x-big.

Proof Let T_{i} be the equilateral triangle of sidelength x. We divide $R(l, u)$ into T_{i} (denoted by "+"in Figs. 2 and 3) and four sets $A_{i}, B_{i}, C_{i}, D_{i}$ which are either standard trapezoids or x-big trapezoids (possibly some of them are triangles), or the empty set.

Case 1: $l \geq 4 x$. The trapezoid $R(l, u)$ is divided into: $T_{i} \cup A_{i} \cup B_{i} \cup C_{i}$, where $A_{i}=R(x, x), B_{i}=R(l-2 x, u)$ and $C_{i}=R(2 x, l+u-3 x)$. The trapezoid A_{i} is standard. Moreover, B_{i} and C_{i} are x-big (see Fig. 2, left, when $l>4 x$). In this case $D_{i}=\emptyset$.

Fig. 2 Divisions of the x-big trapezoid $R(l, u)$, when $l \geq 3 x$

Case 2: $3 x \leq l<4 x$.
Subcase $2 a: u<x$. The trapezoid $R(l, u)$ is divided into: T_{i}, two standard trapezoids $A_{i}=R(x, x), B_{i}=R(l-2 x, u)$ and one x-big trapezoid $C_{i}=R(2 x, l+u-3 x)$ (as in Fig. 2, left, when $3 x<l \leq 4 x$). We take $D_{i}=\emptyset$.

Subcase $2 b: u \geq x$. The trapezoid $R(l, u)$ is divided into: T_{i}, three standard trapezoids $A_{i}=R(x, x), B_{i}=R(x, 0), C_{i}=R(x, l-3 x)$ and one x-big trapezoid $D_{i}=R(l, u-x)$ (as in Fig. 2, right).

Case 3: $2 x \leq l<3 x$.
Subcase $3 a: u<x$ and $l+u \geq 3 x$. The trapezoid $R(l, u)$ is divided into: T_{i} and three standard trapezoids $A_{i}=R(x, x), B_{i}=R(x, l+u-3 x)$, and $C_{i}=R(l-x, u)$ as in Fig. 3, left. We take $D_{i}=\emptyset$.

Subcase 3b: $u<x$ and $l+u<3 x$. The trapezoid $R(l, u)$ is divided into: T_{i} and three standard trapezoids $A_{i}=R(x, l+u-2 x), B_{i}=R(x, 0)$, and $C_{i}=R(l-x, u)$ as in Fig. 3, middle. We take $D_{i}=\emptyset$.

Subcase $3 c: u \geq x$. The trapezoid $R(l, u)$ is divided into: T_{i}, three standard trapezoids $A_{i}=B_{i}=R(x, 0), C_{i}=R(x, l-2 x)$ and one x-big trapezoid $D_{i}=R(l, u-x)$ as in Fig. 3, right.

Since $t \leq 37 / 72$, it follows that the sidelength of T_{t} is greater or equal to $\sqrt{\zeta(37 / 36)}>6$.

2.1 Packing Method M_{Δ}

[1] The first triangle is packed into the lower left vertex of T_{t}. After packing T_{1}^{t}, the uncovered part of T_{t} is divided into $A_{1} \cup B_{1} \cup C_{1}$ as in the proof of Lemma 2 (comp. Fig. 2, left, for $u=0$). We take $\mathcal{R}_{1}=\left\{A_{1}, B_{1}, C_{1}\right\}$.
[2] Assume that $n>1$, that the triangles $T_{1}^{t}, \ldots, T_{n-1}^{t}$ are packed into T_{t} and that the family \mathcal{R}_{n-1} is defined. We choose one of the n^{-t}-big trapezoids from \mathcal{R}_{n-1} in any

Fig. 3 Divisions of the x-big trapezoid $R(l, u)$, when $2 x \leq l<3 x$
way. Denote this trapezoid by R. We pack T_{n}^{t} into R at the vertex at the longer base of R. After packing T_{n}^{t}, the uncovered part of R is divided into $A_{n} \cup B_{n} \cup C_{n} \cup D_{n}$, as in the proof of Lemma 2 , and we take $\mathcal{R}_{n}=\left(\mathcal{R}_{n-1} \backslash\{R\}\right) \cup\left\{A_{n}, B_{n}, C_{n}, D_{n}\right\}$. It is possible that $D_{n}=\emptyset$.

Observe that \mathcal{R}_{n-1} contains at most $3(n-1)$ trapezoids with mutually disjoint interiors, for any $n \geq 2$. Each trapezoid from \mathcal{R}_{n-1} is either n^{-t}-big or standard. It is possible that a trapezoid from \mathcal{R}_{n-1} is both n^{-t}-big and standard.

Example 1 Figure 4 illustrates the initial stage of the packing process for $t=0.51$. The area of $T_{0.51}$ is equal to $\zeta(1.02) \sqrt{3} / 4 \approx 21.9$, thus the sidelength σ of $T_{0.51}$ is greater than 7.11. After packing $T_{1}^{0.51}$, the uncovered part of $T_{0.51}$ is divided into three trapezoids: $A_{1}=R(1,1), B_{1}=R(\sigma-2,0)$ and $C_{1}=R(2, \sigma-3)$. Both trapezoids B_{1} and C_{1} are 2-big and therefore we have two possibilities to pack $T_{2}^{0.51}$. For instance, we will pack each triangle into a trapezoid of maximum leg length. After packing $T_{2}^{0.51}$ into B_{1}, the uncovered part of $T_{0.51}$ is partitioned into $A_{1}, C_{1}, A_{2}, B_{2}$ and $C_{2}\left(D_{2}=\emptyset\right)$.

Theorem 3 For each t in the range $1 / 2<t \leq 37 / 72 \approx 0.5138$, the triangles T_{n}^{t} can be packed perfectly into the triangle T_{t} by the method M_{Δ}.

Proof The proof is similar to that presented in [6]. Let t be a fixed number from the interval $(1 / 2,37 / 72]$. The area of T_{t} is equal to $\frac{\sqrt{3}}{4} \sum_{i=1}^{\infty} \frac{1}{i^{2 t}}=\frac{\sqrt{3}}{4} \zeta(2 t) \geq$ $\frac{\sqrt{3}}{4} \zeta(37 / 36)=\frac{\sqrt{3}}{4} \cdot 36.579 \ldots$ Consequently, T_{t} is 1-big (its leg length is greater than 2). We pack $T_{1}^{t}, T_{2}^{t}, \ldots$ into T_{t} by the method M_{Δ}. To prove Theorem 3 it suffices to show that, for any n, there is at least one n^{-t}-big trapezoid in \mathcal{R}_{n-1} (into which T_{n}^{t} will be packed).

First, we estimate the sum of areas of trapezoids in \mathcal{R}_{n-1}, i.e., the area of the uncovered part of T_{t} after packing T_{n-1}^{t}. This value is equal to the sum of areas of unpacked triangles $T_{n}^{t}, T_{n+1}^{t}, \ldots$, i.e., is equal to

Fig. 4 Packing method M_{\triangle} for $t=0.51$

$$
\begin{aligned}
\frac{\sqrt{3}}{4}\left(\frac{1}{n^{2 t}}+\frac{1}{(n+1)^{2 t}}+\ldots\right) & >\frac{\sqrt{3}}{4} \cdot \int_{n}^{+\infty} \frac{1}{x^{2 t}} \mathrm{~d} x=\frac{\sqrt{3}}{4} \cdot \frac{1}{2 t-1} n^{1-2 t} \\
& \geq \frac{\sqrt{3}}{4} \cdot \frac{1}{2 \cdot \frac{37}{72}-1} n^{1-2 t}=9 \sqrt{3} n^{1-2 t}
\end{aligned}
$$

Assume that there is an integer n such that the triangle T_{n}^{t} cannot be packed into T_{t} by the method M_{Δ}, i.e., that there is no n^{-t}-big trapezoid in \mathcal{R}_{n-1}. This means that all trapezoids in \mathcal{R}_{n-1} are standard and that the length of the leg of each such trapezoid is smaller than $2 n^{-t}$ (if $l \geq 2 n^{-t}$, then $R(l, u)$ is n^{-t}-big). By Proposition 1 , the area of each such trapezoid is smaller than $3 \sqrt{3} n^{-2 t}$. Since there are at most $3(n-1)$ trapezoids in \mathcal{R}_{n-1}, it follows that the total area of trapezoids in \mathcal{R}_{n-1} is smaller than $(3 n-3) \cdot 3 \sqrt{3} n^{-2 t}<9 \sqrt{3} n^{1-2 t}$, which is a contradiction.

Consequently, $T_{1}^{t}, T_{2}^{t}, \ldots$ can be packed into T_{t}.

$T_{+}(l, u)$

$T(l, u)$ is x-classic

Fig. 5 Standard trapezoids $T(l, u)$

3 Positive or Negative Copies

One side of T_{r} is called the bottom. In our drawings, the bottom is the horizontal side of the triangle. By $T_{+}(l, u)$ we mean the trapezoid $T(l, u)$ lying such that its bases are parallel to the bottom of T_{r} and that the longer base is lower than the shortest one (see Fig. 5, left).

We call a trapezoid x-classic if it arises from rotating a trapezoid $T_{+}(l, u)$ by a multiple of 60°, where the respective $T(l, u)$ is x-big or standard (see Fig. 5, left and right).

The image of any positive homothetic copy of T_{r} in rotation of 60° is a negative homothetic copy of T_{r} as well as the image of any negative homothetic copy of T_{r} in rotation of 60° is a positive homothetic copy of T_{r}. The image of a triangle $T(x, 0)$ in rotation of 180° is denoted by $-T(x, 0)$.

Lemma 4 Let R be an x-big classic trapezoid. Then R can be divided into: $T_{+}(x, 0)$ and at most four x-classic trapezoids. Moreover, R can be divided into: $-T_{+}(x, 0)$ and at most four x-classic trapezoids.

Proof Let R be the x-big classic trapezoid.
Since R is the image of $T_{+}(l, u)$ in rotation by a multiple of 60°, it follows that R can be divided into the same shapes as $T_{+}(l, u)$, with possibly switching roles of $T_{+}(x, 0)$ and $-T_{+}(x, 0)$ (see Fig. 6). Consequently, to prove Lemma 4 it suffices to check that $T_{+}(l, u)$ can be divided into $T_{+}(x, 0)$ (denoted by "+") and at most four x-classic trapezoids as well as that $T_{+}(l, u)$ can be divided into $-T_{+}(x, 0)$ (denoted by"-"in Figs. 6, 7 and 8) and at most four x-classic trapezoids.

The first option was discussed in the proof of Lemma 2. Now consider negative copies of the triangle.

Case 1: $l \geq 4 x$. The trapezoid R is divided into: $-T_{+}(x, 0)$, one standard trapezoid and two x-big trapezoids (as in Fig. 7, left; if $l \geq 4 x$, then the upper trapezoid is x-big).

Fig. 6 Divisions of the x-big classic trapezoid R, when $l \geq 4 x$

Case 2: $3 x \leq l<4 x$. If $u<x$, then $T_{+}(l, u)$ is divided as in Fig. 7, left (now the upper trapezoid is standard). If $u \geq x$, then $T_{+}(l, u)$ is divided as in Fig. 7, right.

Case 3: $2 x \leq l<3 x$. If $u<x$ and $l+u \geq 3 x$, then $T_{+}(l, u)$ is divided as in Fig. 8, left. If $u<x$ and $l+u<3 x$, then $T_{+}(l, u)$ is divided as in Fig 8, middle. If $u \geq x$, then $T_{+}(l, u)$ is divided as in Fig. 8, right.

3.1 Packing Method $M_{\Delta^{ \pm}}$

Let $\mathbb{N}=\mathbb{A} \cup \mathbb{B}$, where $\mathbb{A} \cap \mathbb{B}=\emptyset$. Since $t \leq 37 / 72$, it follows that the sidelength of T_{t} is greater or equal to $\sqrt{\zeta(37 / 36)}>6$.
[1] If $1 \in \mathbb{A}$, then the first triangle is packed into T_{t} in the place " + " described in the proof of Lemma 2 (see Fig. 2, left, if $u=0$). If $1 \in \mathbb{B}$, then the first triangle is packed in the place "-" described in the proof of Lemma 4 (see Fig. 7, left, if $l>4 x$ and $u=0$). After packing T_{1}^{t}, the uncovered part of T_{t} is divided into three 1-classic trapezoids as in the proof of Lemma 4 . We take as $\mathcal{R}_{1}^{ \pm}$the family of these three trapezoids.
[2] Assume that $n>1$, that the triangles $T_{1}^{t}, \ldots, T_{n-1}^{t}$ are packed into T_{t} and that the family $\mathcal{R}^{ \pm}{ }_{n-1}$ is defined. We choose one of the n^{-t}-big trapezoids from $\mathcal{R}^{ \pm}{ }_{n-1}$ in any way. Denote this trapezoid by R. If $n \in \mathbb{A}$, then T_{n}^{t} is packed in the place

Fig. 7 Divisions of the x-big trapezoid $T_{+}(l, u)$, when $l \geq 3 x$

$$
u<x
$$

$l+u \geq 3 x$

$$
u<x
$$

$$
l+u<3 x
$$

$u \geq x$

Fig. 8 Divisions of the x-big trapezoid $T_{+}(l, u)$, when $2 x \leq l<3 x$
" + " in R; if $n \in \mathbb{B}$, then T_{n}^{t} is packed in the place "-" in R (see Figs. 2, 3, 6, 7 or 8). After packing T_{n}^{t}, the uncovered part of R is divided into at most four n^{-t}-classic trapezoids as in the proof of Lemma 4. We take as $\mathcal{R}^{ \pm}{ }_{n}$ the union of the family of these trapezoids and $\mathcal{R}^{ \pm}{ }_{n-1} \backslash\{R\}$.
Clearly, $\mathcal{R}^{ \pm}{ }_{n-1}$ contains at most $3(n-1)$ trapezoids with mutually disjoint interiors, for any $n \geq 2$. Each trapezoid from $\mathcal{R}^{ \pm}{ }_{n-1}$ is either n^{-t}-big or standard.

Figure 9 illustrates the initial stage of the packing process in the case when $\mathbb{A}=\mathbb{N}$ and $\mathbb{B}=\emptyset$; note that the first twelve triangles are packed in the same places using the algorithms M_{\triangle} and $M_{\Delta^{ \pm}}$. On the other hand, $\mathbb{B}=\mathbb{N}$ and $\mathbb{A}=\emptyset$ in Fig. 10 .

Theorem 5 For each t in the range $1 / 2<t \leq 37 / 72$, the triangles T_{n}^{t} can be packed perfectly into the triangle T_{t} so that each packed triangle T_{n} is a positive homothetic copy of T_{n}^{t}, provided that $n \in \mathbb{A}$ and that each packed triangle T_{n}^{t} is a negative homothetic copy of T_{t}, provided that $n \in \mathbb{B}$.

Proof We pack $T_{1}^{t}, T_{2}^{t}, \ldots$ into T_{t} by the method $M_{\Delta^{ \pm}}$. As in the proof of Theorem 3, the sum of areas of trapezoids in $\mathcal{R}^{ \pm}{ }_{n-1}$ is greater than $9 \sqrt{3} n^{1-2 t}$. If there is an

Fig. 9 Packing method for $t=0.51$ and $\mathbb{B}=\emptyset$
integer n such that the triangle T_{n}^{t} cannot be packed into T_{t} by our method, then the total area of trapezoids in $\mathcal{R}^{ \pm}{ }_{n-1}$ is smaller than $(3 n-3) \cdot 3 \sqrt{3} n^{-2 t}<9 \sqrt{3} n^{1-2 t}$, which is a contradiction.

4 Squares

Denote by S_{t} the square of area $\zeta(2 t)$, where $1 / 2<t \leq(154+3 \sqrt{2}) / 306 \approx 0.517$. Let $P(h, a)$ be a right trapezoid with height h and with bases of length a and $a-h$. In this section, a trapezoid $P(h, a)$ is x-big, provided that $h \geq \frac{3 \sqrt{2}}{2} x$. A trapezoid $P(h, a)$ is standard, if $a \leq \frac{3 \sqrt{2}}{2} h$. A trapezoid $P(h, a)$ is x-classic, provided that it is either standard or x-big and provided that its bases are parallel either to a side of S_{t} or to a diagonal of S_{t}. Observe that the area of each standard trapezoid that is not x-big is smaller than $\left(\frac{3 \sqrt{2}}{2}-\frac{1}{2}\right)\left(\frac{3 \sqrt{2}}{2} x\right)^{2}=\frac{27 \sqrt{2}-9}{4} \cdot x^{2}$.

Lemma 6 Let P be an x-big classic trapezoid. Then P can be divided into: a square of sidelength x with a side parallel to the bases of P and at most four x-classic trapezoids.

Fig. 10 Packing method for $t=0.51$ and $\mathbb{A}=\emptyset$

Moreover, P can be divided into: a square of sidelength x with a diagonal parallel to the bases of P and at most five x-classic trapezoids.

Proof Observe that $P(h, a)$ can be divided (see Fig. 11) into a square of sidelength x with a side parallel to bases of $P(h, a)$ and into:
Case 1: two standard trapezoids $P(x, x)$ and $P(x,(3 \sqrt{2} / 2-1) x)$ and two big trapezoids: $P(3 \sqrt{2} x / 2, a-x)$ and $P(h-3 \sqrt{2} x / 2, a-3 \sqrt{2} x / 2)$, provided that $h \geq 3 \sqrt{2} x$;
Case 2: two standard trapezoids $P(x, h / 2)$ and one big trapezoid $P(h, a-x)$, provided that $h<3 \sqrt{2} x$ and $a-x \geq h$; clearly $h / 2<3 \sqrt{2} x / 2$;
Case 3: four standard trapezoids: $P(h-x, a-x), P(x, x)$ and two trapezoids $P(x,(a-x) / 2)$, provided that $a-x<h<3 \sqrt{2} x$ and $a>3 x$; clearly $(a-x) / 2<3 \sqrt{2} x / 2$ as well as $a-x<h=2(h-x)-h+2 x \leq$ $2(h-x)-3 \sqrt{2} x / 2+2 x<2(h-x)$;
Case 4: two standard trapezoids: $P(h-x, a-x)$ and $P(x, a-x)$, provided that $a-x<h<3 \sqrt{2} x$ and $a \leq 3 x$; clearly $a-x \leq 3 x-x=2 x$ as well as $a-x<h<2(h-x)$.
Moreover, $P(h, a)$ can be divided (see Fig. 12) into a square of sidelength x with a diagonal parallel to bases of $P(h, a)$ and into:

Case 5: two standard trapezoids $P(x, x)$ and $P(x, 2 x)$ and two big trapezoids: $P(3 \sqrt{2} x / 2, a-\sqrt{2} x)$ and $P(h-3 \sqrt{2} x / 2, a-3 \sqrt{2} x / 2)$, provided that $h \geq 3 \sqrt{2} x$;
Case 6: five standard trapezoids: $P(z, \sqrt{2} x), P(h-z, h-z)$, where $z=\sqrt{2} x-(a-h)$, $P(\sqrt{2} x, \sqrt{2} x)$ and two trapezoids $P(x,(h-z) \sqrt{2} / 2-x / 2)$, provided that $h<3 \sqrt{2} x$ and $z>a-h$; since $z+a-h=\sqrt{2} x$ and $z>a-h$, it follows that $z>\sqrt{2} x / 2$; clearly, $\frac{\sqrt{2}}{2}(h-z)-\frac{1}{2} x<\frac{\sqrt{2}}{2}\left(3 \sqrt{2} x-\frac{\sqrt{2}}{2} x\right)-\frac{1}{2} x=2 x$;
Case 7: five standard trapezoids: $P(h-z, h-z), P(a-h, \sqrt{2} x), P(\sqrt{2} x, \sqrt{2} x)$ and two trapezoids $P(x, h \sqrt{2} / 2-x)$, provided that $5 \sqrt{2} x / 2 \leq h<3 \sqrt{2} x$ and $z \leq a-h<\sqrt{2} x$; clearly, $h \frac{\sqrt{2}}{2}-x<3 \sqrt{2} x \cdot \frac{\sqrt{2}}{2}-x=2 x$ as well as $\sqrt{2} x=z+a-h \leq a-h+a-h=2(a-h)$;
Case 8: four standard trapezoids: $P(h-z, h-z), P(a-h, \sqrt{2} x)$ and two trapezoids $P(x, h \sqrt{2} / 2-x / 2)$, provided that $h<5 \sqrt{2} x / 2$ and $z \leq a-h<\sqrt{2} x$; clearly, $h \sqrt{2} / 2-x / 2<(5 \sqrt{2} x / 2) \cdot(\sqrt{2} / 2)-x / 2=2 x$ as well as $\sqrt{2} x=$ $z+a-h \leq a-h+a-h=2(a-h)$;
Case 9: one big trapezoid $P(h, a-\sqrt{2} x)$ and four standard trapezoids $P(x,(h \sqrt{2}+$ $x) / 4$), provided that $h<3 \sqrt{2} x$ and $a-h \geq \sqrt{2} x$; clearly, $(h \sqrt{2}+x) / 4<$ $(3 \sqrt{2} x \cdot \sqrt{2}+x) / 4<\frac{3 \sqrt{2}}{2} x$.

Let $\mathbb{N}=\mathbb{A} \cup \mathbb{B}$, where $\mathbb{A} \cap \mathbb{B}=\emptyset$. Since $t \leq(154+3 \sqrt{2}) / 306$, it follows that the sidelength of S_{t} is greater or equal to $\sqrt{\zeta((154+3 \sqrt{2}) / 153)}>5.4$.

4.1 Packing Method M_{\square}

[1] The square S_{t} is partitioned into two right isosceles triangles: A_{1} containing the lower left vertex of S_{t} and B_{1} containing the upper right vertex of S_{t}. We choose one of them, say A_{1}, and pack the first square into it in the following way. If $1 \in \mathbb{A}$, then the first square is packed in the place marked in Fig. 11 (the upper left picture). If $1 \in \mathbb{B}$, then the first square is packed in the place marked in Fig. 12 (the upper left picture). After packing S_{1}^{t}, the uncovered part of A_{1} is divided into four 1 -classic trapezoids as in Figs. 11 and 12. We take as \mathcal{P}_{1} the union of the family of these four trapezoids and $\left\{B_{1}\right\}$.
[2] Assume that $n>1$, that the squares $S_{1}^{t}, \ldots, S_{n-1}^{t}$ are packed into S_{t} and that the family \mathcal{S}_{n-1} is defined. We choose one of the n^{-t}-big trapezoids from \mathcal{P}_{n-1} in any way. Denote this trapezoid by P. The square S_{n}^{t} is packed into P in the place marked in Figs. 11 and 12. After packing S_{n}^{t}, the uncovered part of P is divided into at most five trapezoids. We take as \mathcal{P}_{n} the union of the family of these trapezoids and $\mathcal{P}_{n-1} \backslash\{P\}$.

Figure 13 illustrates the initial stage of the square-packing process when \mathbb{A} is the set of even numbers and \mathbb{B} is the set of odd numbers.

Theorem 7 For each t in the range $1 / 2<t \leq(154+3 \sqrt{2}) / 306 \approx 0.517$, the squares S_{n}^{t} can be packed perfectly into the square S_{t} so that a side of each packed

$h \geq 3 \sqrt{2} x$

$a-x<h<3 \sqrt{2} x$
$a>3 x$

$h<3 \sqrt{2} x$
$a-x \geq h$

$$
a-x<h<3 \sqrt{2} x
$$

$$
a \leq 3 x
$$

Fig. 11 Divisions of the x-big classic trapezoid $P(h, a)$, when a side of the square is parallel to the bases of $P(h, a)$
square S_{i} is parallel to a side of S_{t} for $i \in \mathbb{A}$ while a side of each packed square S_{i} is parallel to a diagonal of S_{t} for $i \in \mathbb{B}$.

Proof Let t be a fixed number from the interval $(1 / 2,(154+3 \sqrt{2}) / 306]$. We place $S_{1}^{t}, S_{2}^{t}, \ldots$ by the method M_{\square}. The sum of areas of trapezoids in \mathcal{P}_{n-1} is greater than

$$
\int_{n}^{+\infty} \frac{1}{x^{2 t}} \mathrm{~d} x \geq \frac{1}{2 \cdot \frac{154+3 \sqrt{2}}{306}-1} \cdot n^{1-2 t}=(27 \sqrt{2}-9) n^{1-2 t}
$$

Assume that there is an integer n such that the square S_{n}^{t} cannot be packed into S_{t} by our method, i.e., that there is no n^{-t}-big trapezoid in \mathcal{P}_{n-1}. Since there are at most $4 n$ trapezoids in \mathcal{P}_{n-1}, it follows that the total area of trapezoids in \mathcal{P}_{n-1} is smaller than $4 n \cdot \frac{27 \sqrt{2}-9}{4} \cdot n^{-2 t}=(27 \sqrt{2}-9) n^{1-2 t}$, which is a contradiction.

$$
\begin{aligned}
& h<3 \sqrt{2} x \\
& z>a-h
\end{aligned}
$$

$$
\begin{gathered}
h<3 \sqrt{2} x \\
a-h \geq \sqrt{2} x
\end{gathered}
$$

Fig. 12 Divisions of the x-big classic trapezoid $P(h, a)$, when a diagonal of the square is parallel to the bases of $P(h, a)$

Fig. 13 Square-packing method for $t=0.51$

Acknowledgements We would like to thank the reviewers for pointing out minor errors and inaccuracies in the first draft of the manuscript.

Data Availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ball, K.: On packing unequal squares. J. Combin. Theory Ser. A 75(2), 353-357 (1996)
2. Chalcraft, A.: Perfect square packings. J. Combin. Theory Ser. A 92, 158-172 (2000)
3. Grzegorek, P., Januszewski, J.: A note on three Moser's problems and two Paulhus' lemmas. J. Combin. Theory Ser. A 162(2), 222-230 (2019)
4. Januszewski, J.: Optimal translative packing of homothetic triangles. Stud. Sci. Math. Hung. 46(2), 185-203 (2009)
5. Januszewski, J., Zielonka, Ł: A note on perfect packing of squares and cubes. Acta Math. Hung. 163, 530-537 (2021)
6. Januszewski, J.: A simple method for perfect packing of squares of sidelengths $n^{-1 / 2-\epsilon}$. Math. Semesterber. 70(1), 17-23 (2023)
7. Januszewski, J., Zielonka, Ł: Packing a triangle by equilateral triangles of harmonic sidelengths. Discrete Math. 347(1), 113744 (2024)
8. Jennings, D.: On packing of squares and rectangles. Discrete Math. 138, 293-300 (1995)
9. Joós, A.: On packing of squares in a rectangle: Discrete Geometry Fest, May 15-19, 2017. Rényi Institute, Budapest (2017)
10. Joós, A.: Perfect square packings. Math. Rep. 25(2), 221-229 (2023)
11. Meir, A., Moser, L.: On packing of squares and cubes. J. Combin. Theory 5, 126-134 (1968)
12. Moon, J.W., Moser, L.: Some packing and covering theorems. Colloq. Math. 17, 103-110 (1967)
13. Moser, W.O.J.: Problems, problems, problems. Discrete Appl. Math. 31, 201-225 (1991)
14. Paulhus, M.M.: An algorithm for packing squares. J. Combin. Theory Ser. A 82(2), 147-157 (1998)
15. Richardson, T.: Optimal packing of similar triangles. J. Combin. Theory Ser. A 69, 288-300 (1995)
16. Tao, T.: Perfectly packing a square by squares of nearly harmonic sidelength. Discrete Comput. Geom. (2023). https://doi.org/10.1007/s00454-023-00523-y
17. Wästlund, J.: Perfect packings of squares using the stack-pack strategy. Discrete Comput. Geom. 29, 625-631 (2003)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Editor in Charge: Csaba D. Tóth

