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Abstract
We initiate the axiomatic study of affine oriented matroids (AOMs) on arbitrary
ground sets, obtaining fundamental notions such as minors, reorientations and a natu-
ral embedding into the framework of Complexes of OrientedMatroids. The restriction
to the finitary case (FAOMs) allows us to study tope graphs and covector posets, as
well as to view FAOMs as oriented finitary semimatroids. We show shellability of
FAOMs and single out the FAOMs that are affinely homeomorphic to R

n . Finally, we
study group actions on AOMs, whose quotients in the case of FAOMs are a stepping
stone towards a general theory of affine and toric pseudoarrangements. Our results
include applications of the multiplicity Tutte polynomial of group actions of semima-
troids, generalizing enumerative properties of toric arrangements to a combinatorially
defined class of arrangements of submanifolds. This answers partially a question by
Ehrenborg and Readdy.
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1 Introduction

1.1 Subject, Results and Structure of the Paper

In this paper we establish the natural generalization of finite affine oriented matroids
(FAOMs) to arbitrary ground sets and derive several results about their axiomatics,
topology and geometry. Our motivation is twofold: on the one hand we aim at advanc-
ing the structural theory of oriented matroids and arithmetic matroids, on the other
hand we have in mind applications to linear and toric arrangements, which we discuss
below in Sect. 1.2, as well as to general manifold arrangements (see Remark 1.1). Let
us here summarize our main results.

• We present axiom systems for covectors of Affine Oriented Matroids (AOMs)
over arbitrary ground sets (Sect. 2). These support canonical operations such
as reorientation and taking minors (Sect. 2.1). In particular our axiomatization,
derived from results of Baum and Zhu [6], allows us to see AOMs as part of the
theory of Complexes of Oriented Matroids (COMs)—a recent common gener-
alization of oriented matroids and lopsided sets [4]. However, the extension to
arbitrary non-finite ground sets is novel and many of our results extend to general
COMs, shedding a first light into this direction. Furthermore, we introduce a natu-
ral and geometrically meaningful notion of parallelism that defines an equivalence
relation on the elements of the AOM (Sect. 2.2). It is crucial for the development
of the subsequent results.

• In order to obtain a theory that more closely encapsulates some of the geometric
features of finitary affine hyperplane arrangements, in Sect. 3 we state axioms for
Finitary Affine Oriented Matroids (FAOMs). These are AOMs with some local
cardinality restrictions. A main theoretical feature of this restricted setting is that
FAOMs are “orientations of finitary semimatroids”, i.e.: the zero sets of covectors
of an FAOM constitute the geometric semilattice of flats of a finitary semimatroid
(e.g., in the sense of [17], generalizing the finite notion developed by Wachs and
Walker [33] and by Ardila [3] and Kawahara [24]). We carry out a basic study
of tope graphs and covector posets of FAOMs (Sect. 3.1) and then we focus
on topological properties. We prove that order complexes of covector posets of
FAOMs are shellable (Sect. 3.2) and explicitly describe their homeomorphism type
(Sect. 3.3). Moreover, we derive some order-theoretic properties of the geometric
parallelism relation in FAOMs (Sect. 3.6). This allows us to single out a special
class of FAOMs whose covector poset is affinely homeomorphic to Euclidean
space R

n (see Sect. 4).
• In Sect. 5 we take FAOMs as a stepping stone in order to extend the theory
of arrangements of pseudospheres (and -planes) beyond the Euclidean setting,
towards pseudoarrangements in the torus. See Sect. 1.2 for some motivating
context from arrangements theory. In order to accomplish this we study group
actions on AOMs and, in particular, a class of group actions for which the quo-
tient of the covector poset is homeomorphic to a torus. In this torus, the quotients
of all one-element contractions of the given FAOM determine an arrangement of
tamely embedded tori. Notice that such “toric pseudoarrangements” are strictly
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(0 , 0, 0, +)

Fig. 1 An arrangement of hyperplanes in R
2 with some cells labeled by the respective sign vector

Fig. 2 A non-stretchable line arrangement with an action of Z
2 defined by letting a lattice basis act as

translations by the two sides of the shaded rectangle. (The picture should be thought of as being repeated
in vertical and horizontal direction.) Any orientation of it gives rise to a FAOM

more general than toric arrangements defined by level sets of characters (which
we call “stretchable” extrapolating the Euclidean terminology), see Fig. 2. In any
case, stretchable or not, the faces of the corresponding dissection of the torus are
enumerated by the Tutte polynomial associated in [17] to the induced group action
on the underlying semimatroid, generalizing enumerative results byMoci on arith-
metic Tutte polynomials associated to toric arrangements, see [12] and Remark
A.17. We also mention that Pagaria in [30] put forward a notion of orientable
arithmetic matroid, asking for an interpretation in terms of pseudoarrangements
on the torus. See Sect. 6.2 for how our work contributes to this line of research.

Remark 1.1 Ehrenborg and Readdy ask in [18] for a natural class of submanifold
arrangements where an “arithmetic” Tutte polynomial can be meaningfully defined.
Our first answer to this question is the class of arrangements in Euclidean space or
in tori obtained from (possibly trivial) “sliding” group actions on FAOMs (Definition
5.1). Theorem 5.22 shows that the Tutte polynomial of the associated group action on
the underlying semimatroid provides the desired topological enumeration, together
with the algebraic-combinatorial properties studied in [17]. In the case of “standard”
toric arrangements we recover the arithmetic Tutte polynomial.

The multi-pronged nature of our foundational work shows that infinite affine ori-
ented matroids are at the crossroads of several topics in structural, algebraic and
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topological combinatorics. Thus AOMs offer new tools for existing open problems,
and create some new ones in their own right: we outline some of these connections
and research directions in Sect. 6.

In order tomake the paper reasonably self-containedwe include anAppendixwhere
we briefly summarize the topological and algebraic-combinatorial tools we need.

1.2 TwoMotivating Examples

We outline some of the motivation for our work, and explain our contribution in these
contexts.

1.2.1 Arrangements in Euclidean Space

LetA := {He}e∈E be an arrangement of hyperplanes, i.e., a family of codimension 1
affine subspaces of the Euclidean space R

d . We call such an arrangement “oriented”
if for every e ∈ E we are given a labeling by H+e and H−e of the two connected
components of R

d \ He.

Definition 1.2 Given an oriented arrangement A := {He}e∈E of affine hyperplanes
in R

d define, for every x ∈ R
d a sign vector �x ∈ {+, 0,−}E as follows.

�x (e) :=
⎧
⎨

⎩

+ if x ∈ H+e
0 if x ∈ He

− if x ∈ H−e

Let then L (A ) := {�x | x ∈ R
d}.

The covector axioms of oriented matroids abstract some of the properties ofL (A )

in the case where A is finite and ∩A �= ∅, see Sect. A.3. Conversely, while not
every oriented matroid arises from such an arrangement of hyperplanes, the powerful
“Topological Representation Theorem” of Folkman and Lawrence asserts that the
system of covectors of every oriented matroid is the set of sign vectors determined by
some arrangement of oriented pseudospheres in the sphere (obtained as the boundary
of the order complex of the covector poset, see [8, Chap. 5]).

If A is finite, but ∩A is not necessarily non-empty, then L (A ) is the set of
covectors of a finite affine oriented matroid. FAOMs can be defined either intrinsically
or as subsets of covector sets of oriented matroids, see [6, 23]. The latter point of view
allows us to interpret every FAOM as an arrangement of pseudoplanes in Euclidean
space, again via the order complex of its covector poset, but it is an open problem to
characterize which arrangements arise from finite affine oriented matroids, see [19]
and Sect. 6.1.

More generally, ifA is only assumed to be finitary, meaning that every x ∈ R
d has a

neighborhoodmeeting finitelymany He, then every element ofL (A ) indexes an open
cell in R

d . These open cells are the relative interiors of the faces of the polyhedral
subdivision of R

d induced by A . The faces of a polyhedral complex are naturally
ordered by inclusion, and this partial order corresponds to the (abstract) natural order
among sign vectors (see Definition 2.1).
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Fig. 3 The quotient of the poset of covectors of the pseudoarrangement in Fig. 2 is the face category
of a (pseudo)arrangement in the 2-dimensional torus (e.g., obtained by identifying opposite sides of the
shaded rectangle), whose cells are counted by the Tutte polynomial of the group action on the underlying
semimatroid

• Our “Finitary Affine Oriented Matroids” axiomatize properties of the polyhedral
stratification of Euclidean space induced by finitary hyperplane arrangements. Not
every FAOM is realizable asL (A ) for a finitary arrangement. Still, some familiar
geometric and topological features generalize nicely to the non-realizable case as
well.

• We view our topological representation of FAOMs as a step towards the currently
open problem of a topological characterization of affine pseudoarrangements (see
Sect. 6.1).

1.2.2 Toric Arrangements

Let nowA be a finite family of level sets of characters of the compact torus T = (S1)d .
Such toric arrangements have been in the focus of recent research originallymotivated
bywork of DeConcini, Procesi andVergne on partition functions and splines, see [15].
A toric arrangement defines a polyhedral CW-structure K (A ) on the torus. The face
category of this cell complex is central in the study of the topology of the associated
arrangement in the complex torus [14, Sect. 2] and of arrangements in products of
elliptic curves [16]. It can be regarded as the “toric” counterpart of the poset of faces
of a linear arrangement.1

Notice that, by passing to the universal cover of the torus, a toric arrangement can
be seen as a quotient of an infinite, periodic arrangement of hyperplanes by the action
of the deck transformation group.

The current impulse towards the combinatorial study of toric arrangements already
led to substantial algebraic-combinatorial developments such as arithmetic Tutte poly-
nomials and arithmetic matroids [12]. However, the only available results about the
structure of face categories to date are an explicit description in the case of toric Weyl
arrangements by means of “labelled necklaces” [1].

• We obtain an abstract characterization of the face category of toric arrangements
as the quotient of the poset of covectors of an affine, infinite oriented matroid
by a suitable class of group actions. This can be seen as an “oriented” version
of the theory of group actions on semimatroids [17] designed to describe toric
arrangements on an “unoriented”, matroidal level.

1 The broadening from face posets to face categories is necessary since the CW-complex K (A ) is not
necessarily regular, see Appendix A.1.4.
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• Accordingly, we obtain a notion of pseudoarrangements in the torus whose topol-
ogy and geometry is amenable to treatment via the existing combinatorial toolkit.
We leave the relationship to Pagaria’s orientable arithmetic matroids to future
research, see Sect. 6.2.

2 Affine OrientedMatroids (AOM)

In the non-finite context it is essential to view AOMs with an intrinsic axiomatization
instead of as halfspaces of orientedmatroids as described in Sect. 1.2.1. The goal of this
section is to present the covector axiomatization of finite AOMs due to Karlander [23]
whose proof was corrected recently by Baum and Zhu [6].We state this axiomatization
for arbitrary cardinalities and bring it into a simplified form, which puts AOMs into
the context of (complexes) of oriented matroids, (C)OMs [4]. Moreover, we show that
notions of minors and parallelism generalize straightforwardly to the infinite setting.
Indeed, for the purpose of the present section no assumption on the ground set E has
to be made.

Definition 2.1 A sign vector (on a set E) is an element of {+,−, 0}E . A system of
sign vectors is any subset L ⊆ {+,−, 0}E . We say system of sign vectors “on E”,
and write (E,L ), if specification is needed. Every system of sign vectors carries a
natural partial order:

X � Y if and only if X(e) � Y (e) for all e ∈ E

where we define 0 < +, 0 < −, + and − incomparable. The poset (L ,�) will be
denoted by F (L ).

We introduce some further standard notions, see e.g. [8]. The support of a signvector
X is X := {e ∈ E | X(e) �= 0}. The zero set of a sign vector X is the complement of
its support, i.e., ze(X) := {e ∈ E | X(e) = 0}. Moreover, the separator of two sign
vectors X ,Y is S(X ,Y ) := {e ∈ X ∩ Y | X(e) �= Y (e)} and the composition of X
and Y is the sign vector given by

X ◦ Y (e) :=
{
X(e) if e ∈ X
Y (e) otherwise.

for all e ∈ E .

We now recall some notations that we take from the specific treatment of the affine
case given in [6]. Let X ,Y be any two sign vectors on E , e ∈ E , andL a given system
of sign vectors on E . Define

I=e (X ,Y ;L ) := {Z ∈ L | Z(e) = 0,∀ f /∈ S(X ,Y ) : Z( f ) = X( f )}

and

Ie(X ,Y ;L ) := {Z ∈ L | Z(e) = 0,∀ f /∈ S(X ,Y ) : Z( f ) = X( f ) ◦ Y ( f )}.
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Moreover, set

I=(X ,Y ;L ) :=
⋃

e∈S(X ,Y )

I=e (X ,Y ;L ) and

I (X ,Y ;L ) :=
⋃

e∈S(X ,Y )

Ie(X ,Y ;L ).

We will omit reference toL , writing simply I (X ,Y ), I=(X ,Y ), etc., if no confusion
can arise. The letter I is established for the above sets, because these sets can be seen
as intervals of sorts, see Fig. 4. Furthermore, write

Asym(L ) := {X ∈ L | −X /∈ L }

and let X ⊕ Y be the sign vector obtained from “adding” the signs of the sum of X
and Y seen as integer vectors, i.e.,

X ⊕ Y (e) :=
{
0 if e ∈ S(X ,Y )

X ◦ Y (e) otherwise.
for all e ∈ E .

We can now set

P=asym(L ) := {X ⊕ (−Y ) | X ,Y ∈ Asym(L ), X = Y ,

I=(X ,−Y ;L ) = I=(−X ,Y ;L ) = ∅},
P(L ) := {X ⊕ (−Y ) | X ,Y ∈ L , I (X ,−Y ;L ) = I (−X ,Y ;L ) = ∅}.

We are now able to state the first definition.

Definition 2.2 (AOM, following [6, 23]) A pair (E,L ) is the system of covectors of
an affine oriented matroid if and only if

(C) L ◦L ⊆ L , (composition)
(FS) L ◦ (−L ) ⊆ L , (face symmetry)

(SE=) X ,Y ∈ L , X = Y 
⇒ ∀e ∈ S(X ,Y ) : I=e (X ,Y ) �= ∅, (strong
elimination equal support)

(P=asym) P=asym(L ) ◦L ⊆ L . (peripheral composition equal support)

Then, the associated F (L ) is called the poset of covectors of the given AOM.

Remark 2.3 By [6, Thm. 1.2], finite AOMs (i.e., AOMs (E,L ) with |E | < ∞) are
exactly affine oriented matroids in the sense, e.g., of [8].

We propose the following simpler and (seemingly) stronger axiomatization.

Proposition 2.4 (AOM) A pair (E,L ) is the system of covectors of an affine oriented
matroid if and only if

(FS) L ◦ (−L ) ⊆ L ,
(SE) X ,Y ∈ L 
⇒ ∀e ∈ S(X ,Y ) : Ie(X ,Y ) �= ∅, (strong elimination)
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(P) P(L ) ◦L ⊆ L . (peripheral elimination)

Proof First we collect some straightforward observations. For every X ,Y ∈ {±, 0}E ,
we have

(1) S(X ,Y ) = S(X ◦ Y ,Y ◦ X);
(2) X ◦ Y = Y ◦ X ;
(3) if X = Y , then X = X ◦ Y ;
(4) X ⊕ Y = (X ◦ Y )⊕ (Y ◦ X).

We now move to prove the stated equivalence, in several steps.

– (FS)⇒(C), hence (C) can be removed from Definition 2.2.
Proof. It is enough to notice that X ◦ Y = (X ◦ −X) ◦ Y = X ◦ (−X ◦ Y ) =
X ◦ −(X ◦ −Y ).

– (SE)⇔(SE=).
Proof. Clearly, (SE) implies (SE=). Conversely, we get that with (C) the axiom
(SE=) implies (SE). Indeed, for X ,Y ∈ L by 1 we have Ie(X ,Y ) = Ie(X ◦
Y ,Y ◦ X) and both sets are defined for the same set of elements e. By (2) and (3)
we have X ◦ Y ( f ) = (X ◦ Y ) ◦ (Y ◦ X)( f ), which gives Ie(X ◦ Y ,Y ◦ X) =
I=e (X ◦ Y ,Y ◦ X). Thus, ∀e ∈ S(X ◦ Y ,Y ◦ X) : I=e (X ◦ Y ,Y ◦ X) �= ∅ implies
∀e ∈ S(X ,Y ) : Ie(X ,Y ) �= ∅.

– (P)⇒(P=asym).
Proof. Since by (3) Ie(X ,Y ) = I=e (X ,Y ) for sign vectors of equal support, we
can write P=asym(L ) as

{X ⊕ (−Y ) | X ,Y ∈ Asym(L ), X = Y , I (X ,−Y ) = I (−X ,Y ) = ∅},

which gives P=asym(L ) ⊆ P(L ).
– Under (SE), (P=asym)⇒ (P).
Proof. First observe that (P=asym) 
⇒ {X ⊕ (−Y ) | X ,Y ∈ L , X =
Y , I (X ,−Y ) = I (−X ,Y ) = ∅} ◦ L ⊆ L , i.e., we can drop the asymmetry
condition. Indeed, suppose X ,−X ,Y ∈ L . Now, by (SE) I (−X ,Y ) �= ∅ except
if S(−X ,Y ) = ∅. But if X = Y then S(−X ,Y ) = ∅ implies Y = −X , and
X⊕ (−Y ) = X⊕ X = X ∈ L . Thus, only trivially fulfilled conditions are added.
The symmetric argument works for the case X ,Y ,−Y ∈ L .

We proceed by showing that

{X ⊕ (−Y ) | X ,Y ∈ L , X = Y , I (X ,−Y ) = I (−X ,Y ) = ∅} ⊇ P(L ).

Let X ⊕ (−Y ) ∈ P(L ) and consider the vectors X ◦ (−Y ) and Y ◦ (−X). We can
compute −(Y ◦ (−X)) = −Y ◦ X and

X ◦ (−Y )
(2)= −Y ◦ X = −(Y ◦ (−X)) = Y ◦ (−X),

where the last equality follows from Z = −Z . By (1) we get

S(X ,−Y ) = S(X ◦ (−Y ),−Y ◦ X) and S(−X ,Y ) = S(−X ◦ Y ,Y ◦ (−X)).
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H 2H 1

H 3

H 4

Z −W

X ◦ − Y

X ◦ Y

I (X , Y, L )

Y

X

WZ

l

Fig. 4 Covector axioms illustrated in the example from Fig. 1

Which implies the equality of the elimination sets

I (X ,−Y ) = I (X ◦ (−Y ),−Y ◦ X) and I (−X ,Y ) = I (−X ◦ Y ,Y ◦ (−X)).

Finally, (4) gives X ⊕ (−Y ) = (X ◦ (−Y )) ⊕ (−Y ◦ X). Together we obtain that
X ⊕ (−Y ) is contained in the set on the left-hand side. This concludes the proof. ��

Example 2.5 In Fig. 4 we illustrate the operations involved in the covector axioms of
AOMs in Proposition 2.4 on the example of the realizable AOM from Fig. 1. First,
we choose two points X ,Y identified with the corresponding sign vectors and add the
auxiliary (dashed) line � defined by the two points. The fact that a point on � close to X
towards Y as well as away from Y is also in the arrangement, respectively, corresponds
to the covectors X ◦ Y ∈ L and X ◦ −Y ∈ L , respectively. The intersection points
of � with the hyperplanes H2 and H3, respectively, correspond to the elements of
I (X ,Y ;L ).

Now, Z ,W are sign vectors corresponding to two maximal cells bounded by the
parallel hyperplanes H3, H4. The sign vector Z ⊕−W can be seen as the intersection
point of the hyperplanes at infinity, i.e., with the auxiliary equator. The fact that (Z ⊕
−W ) ◦ L ⊆ L can be interpreted by saying that all points “close to (Z ⊕ −W )”
towards existing cells of the arrangement also form part of the arrangement. Hence,
the name peripheral composition.

Let us compare the axiomatization from Proposition 2.4 with axiomatizations for
COMs and OMs, even if those are usually given for finite ground sets. Following [4] a
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COM is a system of sign vectors satisfying (FS) and (SE). Thus, from Proposition 2.4
one immediately deduces:

Corollary 2.6 Every AOM is a COM.

The axiomatization of OMs given in [4] (see also Definition A.18) is as a system
of sign vectors satisfying (FS) and (SE) and

(0) the all-zeroes vector 0 is inL . (zero-vector)

Corollary 2.7 Every OM is an AOM.

Proof Note that (0) together with (FS) implies X ∈ L 
⇒ −X ∈ L . This,
together with (SE), yields that I (X ,−Y ;L ) = S(X ,−Y ) for all X ,Y ∈ L . Hence,
P(L ) ⊆ L ◦−L ⊆ L . Since (FS) impliesL ◦L ⊆ L , (P) is fulfilled trivially. ��

We now proceed to define reorientations.

Definition 2.8 Let L be a family of sign vectors. A reorientation ofL is any set

L (τ ) := {τ · X | X ∈ L }

for a given τ ∈ {+1,−1}E , where multiplication is intended componentwise, i.e.,
(τ · X)(e) := τ(e)X(e).

Remark 2.9 It is straightforward to see that every reorientation of an AOM is an AOM.

2.1 Minors

The notion of minors is crucial in the study of OMs and COMs. Let us define the
necessary ingredients here. Let (E,L ) be any system of sign vectors.

Definition 2.10 For any A ⊆ E define the contraction of A inL as

L /A := {X |E\A | X ∈ L , X(A) = {0}},

(notice that this is nonempty if and only if A ∈ K(L )), and the deletion of A from
L as

L \ A := {X |E\A | X ∈ L }.

Moreover, we call restriction to A the setL [A] := L \(E\A).
A system of sign vectors (E ′,L ′) is a minor of another system of sign vectors

(E,L ) if there are disjoint sets A, B ⊆ E such that (E ′,L ′) = (E\A\B,L \A/B).

As an example consider the AOM in Fig. 1. Contracting the element 3 yields
{(−,+,+), (0, 0,+), (+,−,+)}. Thus can be seen as considering only the cells on
H3 and removing the third coordinate. Deleting 3, corresponds to removing H3 from
the arrangement.
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Remark 2.11 Notice that there is a canonical order preserving injection

ιA : L /A ↪→ L , ιA(X)(e) :=
{
X(e) e /∈ A,

0 e ∈ A.

Remark 2.12 One can show following [4], that for countable families {Ai }i�1 and
{Bi }i�1 of sets we have

L \ A1/B1 \ A2/B2 . . . = L \
⋃

i�1

Ai

/ ⋃

i�1

Bi ,

i.e., the operations of contraction and deletion commute. We do not investigate further
the case of uncountable families of sets.

Lemma 2.13 Let (E,L ) satisfy (SE) and let A ⊆ E. Then,

P(L \ A) ⊆ P(L ) \ A.

Proof Let X ⊕ −Y ∈ P(L \ A), with X ,Y ∈ L \A and IL \A(X ,−Y ) =
IL \A(X ,−Y ) = ∅.

We prove that there are X̂ , Ŷ ∈ L such that X̂ \ A = X , Ŷ\A = Y and X̂ ⊕
−Ŷ ∈ P(L ). Let X̂ , Ŷ ∈ L such that X̂ \ A = X , Ŷ \ A = Y and suppose that
X̂ ⊕−Ŷ /∈ P(L ). Thus, without loss of generality there is a Z ∈ IL (X̂ ,−Ŷ ).

Note that for f ∈ S(X̂ ,−Ŷ ) \ A we have Z( f ) �= 0, since otherwise Z\A ∈
IL \A(X ,−Y ) with respect to f . Hence, ze(Z) = A ∪ (ze(X) ∩ ze(Y )).

Furthermore note that Z( f ) = X̂ f , since otherwise if Z( f ) = −X̂( f ) we can
apply strong elimination to Z and X̂ with respect to f and obtain a Z̃ ∈ IL (X̂ ,−Ŷ )

with Z̃( f ) = 0. This contradicts the above.

We conclude that for all g ∈ E we have Z(g) =
{
0 if g ∈ A

X̂ ◦ −Ŷ otherwise.

Next, we show that Z ⊕−Ŷ ∈ P(L ). Clearly, we have Z ,−Ŷ ∈ L . Furthermore,
we have that I (Z ,−Ŷ ) ⊆ ⋃

f /∈A I f (X̂ ,−Ŷ ) and I (−Z , Ŷ ) ⊆ ⋃
f /∈A I f (−X̂ , Ŷ ).

However, as argued above,
⋃

f /∈A I f (X̂ ,−Ŷ ) = ⋃
f /∈A I f (−X̂ , Ŷ ) = ∅. This con-

cludes the proof of this last claim.
Since we now know exactly how Z arises from X̂ and Ŷ it is straightforward to

check that (Z ⊕−Ŷ )\A = X ⊕−Y . This concludes the proof. ��
Lemma 2.14 Let (E,L ) any set of sign vectors and A ⊆ E. Then, P(L /A) ⊆
P(L )/A.

Proof Let X ⊕ −Y ∈ P(L /A), with X ,Y ∈ L /A and IL /A(X ,−Y ) =
IL /A(X ,−Y ) = ∅. Thus, that there are X̂ , Ŷ ∈ L with A ⊆ ze(X̂)∩ze(Ŷ ) that other-

wise coincide with X and Y , respectively. In particular, IL /A(X ,−Y ) ∼= IL (X̂ ,−Ŷ ),

since all covectors in IL (X̂ ,−Ŷ ) are 0 on A. The same holds for IL (X̂ ,−Ŷ ) and we
have IL (X̂ ,−Ŷ ) = IL (X̂ ,−Ŷ ) = ∅.
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This means that X ⊕ Y = (X̂ ⊕ Ŷ )/A ∈ P(L )/A. ��
We take the following from [4] and we review its proof in order to ensure that it

does not rely on finiteness assumptions.

Lemma 2.15 COMs are closed under minors, i.e., the properties (FS) and (SE) are
closed under deletion and contraction.

Proof We first prove the statement for deletion. To see (FS) let X \ A,Y \ A ∈ L \ A.
Then X ◦(−Y ) ∈ L and (X ◦(−Y ))\A = X\A◦(−Y\A) ∈ L \A. To check (SE) let
X\A,Y\A ∈ L \A and e an element separating X\A and Y\A. Then there is Z ∈ L
with Z(e) = 0 and Z( f ) = X ◦Y ( f ) for all f ∈ E \ S(X ,Y ). Clearly, Z \ A ∈ L \ A
satisfies (SE) with respect to X \ A,Y \ A.

Now, we prove the statement for contraction. Let X\A,Y\A ∈ L /A, i.e., X∩ A =
Y ∩A = ∅. Hence X ◦ (−Y )∩A = ∅ and therefore X\A◦(−Y\A) ∈ L /A, proving
(FS). Towards proving (SE), let X \ A,Y \ A ∈ L /A and e an element separating
X\A and Y\A. Then there is Z ∈ L with Z(e) = 0 and Z( f ) = X ◦ Y ( f ) for all
f ∈ E\S(X ,Y ). In particular, if X( f ) = Y ( f ) = 0, then Z( f ) = 0. Therefore,
Z \ A ∈ L /A and it satisfies (SE). ��
Theorem 2.16 AOMs are closed under minors.

Proof Let A, B ⊆ E be disjoint and let (E,L ) be an AOM. Consider the minor
(E\A\B,L \A/B). We prove that this is an AOM. For axioms (FS) and (SE) this
follows directly fromLemma2.15. SinceAOMs satisfy (SE)we can applyLemma2.13
and compute P(L \A) ◦ L \A ⊆ P(L )\A ◦ L \A = (P(L ) ◦ L )\A ⊆ L \A.

Similarly, using Lemma 2.14we getP(L /A)◦L /A ⊆ P(L )/A◦L /A = (P(L )◦
L )/A ⊆ L /A. ��
Example 2.17 In the realizable setting deletion and contraction of elements correspond
to removing a hyperplane or restricting to a hyperplane. E.g., in the example from
Fig. 1, deleting 2 would result in the arrangement where H2 is removed. Contracting
2 would result in an arrangement inside H2 ∼= R

1 yielding 5 covectors.

Theorem 2.16 implies immediately the following corollary.

Corollary 2.18 Finite restrictions of AOMs are finite AOMs.

2.2 Parallelism in AOMs

Definition 2.19 Given two elements e, f ∈ E , we say that e and f are parallel, written
e ‖ f , if there is no X ∈ L with e, f ∈ ze(X).

Example 2.20 In Fig. 5 the pseudolines labeled a−1, . . . , a3 correspond to parallel ele-
ments in the associated FAOM.

Note that a different notion of parallelism in systems of sign vectors appears in the
literature, that we call here equivalence in order to avoid confusion, and that is defined
by e ∼ f if X(e) = X( f ) for all X ∈ L or X(e) = −X( f ) for all X ∈ L . Note that
this is an equivalence relation on E . Another notion is that of redundant elements, i.e.,
e is redundant if X(e) = Y (e) for all X ∈ L .
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a− 1

0

a1

a2

a3

a0

b0

Fig. 5 An example of an infinite (but periodic) pseudoline arrangement. The point highlighted by a hollow
bullet corresponds to the covector XB described in Example 3.31

Definition 2.21 An AOM is called simple if all equivalence classes with respect to
∼ are trivial and there are no redundant elements. Every AOM can be reduced to a
simple one by deleting all redundant elements and all but one elements of each class of
equivalent elements. The resulting AOM is a minor, that is unique up to isomorphism,
called the simplification.

Remark 2.22 Let L ′ be the simplification of an AOM L . We have F(L ′) ∼= F(L )

and F (L ′) ∼= F (L ).

Corollary 2.23 In every simple AOM with ground set E, the reflexive closure of par-
allelism is an equivalence relation on E. We call π(e) the parallelism class of e ∈ E.

Proof Symmetry of ‖ being evident from the definition, we have to check transitivity.
By way of contradiction consider three elements with e ‖ f , e ‖ g, but f and g not
parallel. The restrictionL [{e, f , g}] is a finite AOM and soL := ze(L [{e, f , g}]) is
the geometric semilattice of flats of a (finite) semimatroid, see Lemma 3.25. Now since
there is a covector X such that ze(X) = { f , g}, we can find x ∈ Lwith f , g ∈ x . Now
since L is simple, so is its restriction to {e, f , g}. In particular, all of {e}, { f }, {g}
are atoms of L and x has rank at least 2 in L, so that { f }, {g} is an independent set
of atoms. Now Axiom (GSL2) in Definition A.12 ensures that one among the joins
{e}∨{ f } and {e}∨{g} exists inL. But this implies existence of a covector Y ∈ L with
either {e, f } ⊆ ze(Y ) or {e, g} ⊆ ze(Y ), contradicting our parallelism assumption. ��
Remark 2.24 Our notion of parallelism could be redefined so as to allow for Corol-
lary 2.23 to work also in non-simple AOMs, e.g., by adding to Definition 2.19 the
requirement that e, f are not loops and that |{e, f } ∩ ze(X)| �= 1 for all X ∈ L (the
latter condition implying that e, f are not parallel “in matroid sense” in the underlying
semimatroid). Our choice of definition is enough since we will need it in order to study
posets of covectors of AOMs, for which considering the “simple” case is no restriction
of generality (see Remark 2.22).

Remark 2.25 Notice that e ‖ f if and only if, for all X ,Y ∈ L , X( f ) = Y ( f ) = 0
implies X(e) = Y (e) �= 0. This sign we can then denote by σ f (e).
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Proof The condition in the Remark’s statement directly implies e ‖ f . For the other
implication, suppose e ‖ f and consider X ,Y ∈ L with X( f ) = Y ( f ) = 0. Clearly
X(e) �= 0 and Y (e) �= 0 otherwise parallelism is immediately violated. It remains to
prove X(e) = Y (e). Indeed, if X(e) = −Y (e) then e ∈ S(X ,Y ) and we can eliminate
e obtaining Z such that Z(e) = 0 and Z( f ) = X( f ) ◦ Y ( f ) = 0, a contradiction to
parallelism. ��
Definition 2.26 Following Huntington [21], we say that a ternary relation [·, ·, ·] on
a set X is a betweenness relation if it satisfies the following requirements for all
a, b, c, x ∈ X .

(BR1) [a, b, c] implies that a, b, c are distinct.
(BR2) [ω(a), ω(b), ω(c)] holds for some permutation ω of {a, b, c}.
(BR3) [a, b, c] implies [c, b, a]
(BR4) [a, b, c] and [a, c, b] are mutually exclusive
(BR5) [a, b, c] implies at least one of [a, b, x] and [x, b, c], whenever x /∈ {a, b, c}.
Proposition 2.27 Let π ⊆ E denote a parallelism class of a simple AOM. The ternary
relation on π defined by

[ f , g, h] ⇔ f , g, h are pairwise distinct and, for all X ,Y ∈ L ,

X( f ) = 0 and Y (h) = 0 imply X(g) = −Y (g),

is a betweenness relation and is invariant under reorientation.

Proof Properties (BR1) and (BR3) hold trivially. In order to prove the others let a, b, c
be distinct elements of π , recall the definition of the signs σ f (e) from Remark 2.25
and for x ∈ {a, b, c} write

σ(x) :=
∏

y∈{a,b,c}\{x}
σy(x).

Notice that [a, b, c] is equivalent to σa(b) = −σc(b), hence to σ(b) = −.
(BR2) It is enough to find x ∈ {a, b, c} with σ(x) = −. Since the AOM is simple

and a, b, c are parallel, in the restriction of the AOM to the set {a, b, c} we
can pick covectors X , X ′, Y with {a} = ze(X), {b} = ze(X ′), {c} = ze(Y ).
Now assume by way of contradiction that σ(x) = + for all x ∈ {a, b, c}.
Then X(c) = X ′(c), X(b) = Y (b), X ′(a) = Y (a) and we can compute

(X ⊕−X ′)(a) = −Y (a), (X ⊕−X ′)(b) = Y (b), (X ⊕−X ′)(c) = 0.

Moreover, I (X ,−X ′) = I (−X , X ′) = ∅ (Notice that I (X ,−X ′) =
Ic(X ,−X ′), hence any W ∈ I (X ,−X ′) must have W (c) = 0, W (a) =
−Y (a) and thus would witness σ(a) = σb(a)σc(a) = X ′(a)(−Y (a)) =
X ′(a)(−X ′(a)) = −, a contradiction. For I (X ′,−X) the reasoning is analo-
gous and contradicts σ(b) = +.) Thus, by (P) the family L should contain
the covector W ′ := (X ⊕ −X ′) ◦ Y , which satisfies W ′(a) = −Y (a) and
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W ′(c) = 0 and would witness again σ(a) = X ′(a)(−Y (a)) = −, a contra-
diction.

(BR4) Let us argue again in the restriction to {a, b, c} and pick covectors X , X ′ and
Y as in the proof of (BR2). If both [a, b, c] and [a, c, b] hold, then σ(b) =
σ(c) = − and so X(b) = −Y (b) and X(c) = −X ′(c). In particular, by
(SE) the set I (X ,Y ) = Ib(X ,Y ) contains some W with W (b) = 0 and
W (c) = X(c)◦Y (c) = X(c), but the latter is opposite to X ′(c), a contradiction
to σb(c) being well-defined.

(BR5) Recall that [a, b, c] means σa(b) = −σc(b). Then, for every x /∈ {a, b, c}
either σx (b) = σa(b), in which case [x, b, c], or σx (b) = σc(b), in which
case [a, b, x].

Invariance under reorientation is apparent from the definition of [·, ·, ·]. ��
Corollary 2.28 Let π ⊆ E be a parallelism class of the given AOM. Then there is a
total order<π on π , unique up to order reversal, such that a <π b <π c if and only if
[a, b, c]. In particular, this ordering is independent on the reorientation of the AOM.
Moreover, there is a reorientation of π such that

for all x, y ∈ π, x <π y if and only if σy(x) = +,

where σy(x) is defined in Remark 2.25.

Proof If π has less than 3 elements, the claim is trivial. Otherwise, recall the between-
ness relation on π defined in Proposition 2.27 and choose two distinct elements
e, f ∈ π . In [21, Sect. 3.1] it is proved that the condition “a <π b <π c if and
only if [a, b, c]” determines a pair of opposite total orderings on π , and thus letting
e <π f fully determines a total ordering of π with the desired properties.

The desired reorientation is obtained by reorienting e, f so that σ f (e) = + and
σe( f ) = −, as well as reorienting every other x ∈ π so that σe(x) = − if and only if
e <π x . ��

Notice that the total order <π obtained in Corollary 2.28 is unique up to order
reversal. In particular, the following definition is well-posed (where we assume, after
possibly reversing the order, that if an extremum exists, it is a minimum).

Definition 2.29 Write 1π resp. 0π for the unique maximal (resp. minimal) element
of <π when they exist. We will assume, after possibly reversing the order, that if an
extremum exists, then a minimum exists. Corollary 2.28 allows us then to define the
following partition of the ground set of anAOM, independently from the reorientation.

E01 :={e ∈ E | both 1π(e) and 0π(e) exist},
E0∗ :={e ∈ E | 0π(e) exists} \ E01

E∗∗ :=E \ (E01 ∪ E0∗)

Example 2.30 Figure6 illustrates different types of elements of the ground sets of
FAOMS represented by affine line arrangements.
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h 1h0 h1 h2 h3 h4 ¨ ¨ ¨¨ ¨ ¨

l

(a)

h 1h0 h1 h2 h3 h4 ¨ ¨ ¨¨ ¨ ¨

l0
l1
l2
l3

...
...

(b)

h 1h0 h1 h2 h3 h4 ¨ ¨ ¨¨ ¨ ¨

l 2

l 1

l0
l1
l2
l3

...
...

(c)

Fig. 6 Three examples of infinite line arrangements. The FAOM associated to example (a) has E01 = {l},
E∗∗ = {hi }i∈Z, E0∗ = ∅; the one associated to example (b) has E01 = ∅, E∗∗ = {hi }i∈Z, E0∗ = {l j } j∈N;
the one of example (c) has E01 = E0∗ = ∅, E∗∗ = {l j } j∈N ∪ {h j } j∈N

3 Finitary Affine OrientedMatroids (FAOM)

We now move to a more restrictive definition, especially in order to approach a topo-
logical study of covector posets and to connect our theory with that of the unoriented
“affine” version of matroids, i.e., semimatroid theory.

Definition 3.1 (FAOM) A Finitary Affine Oriented Matroid is a pair (E,L ) that is
an AOM (i.e., it satisfies (FS), (SE), and (P)) that furthermore fulfills:

(S) X ,Y ∈ L 
⇒ |S(X ,Y )| < ∞ (finite separators),
(Z) X ∈ L 
⇒ |ze(X)| < ∞ (finite zero sets),
(I) |F (L )�X | < ∞ (finite intervals).

Remark 3.2 Axiom (Z) implies that L is closed under infinite composition, since
|ze(X ◦ Y )| < |ze(X)|, unless X ◦Y = X . Thus, any result of an infinite composition
can be expressed as a finite composition.Moreover, (Z) also implies that |F (L )�X | <
∞ for every X ∈ L .
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Remark 3.3 Axiom (Z) might be weakened to

(Z’) X ∈ L 
⇒ |ze(X) \⋂
Y∈L ze(Y )| < ∞.

Most of the statements and proofs remain valid with some technical adjustments. We
choose the stronger axiom in order to fit the “finitary” nature of the extant literature
on matroids. For instance, (Z′) would allow for infinitely many elements of rank 0 in
the underlying semimatroid. Again, as we are interested in the structure of F (L ),
omitting loops does not restrict generality.

The next lemma follows from the more general property that faces of COMs are
OMs.

Lemma 3.4 (See [4, Lem. 4]) Let L be the set of covectors of an FAOM and let
X ∈ L . Then the poset F (L )�X is isomorphic to the poset of covectors of an
oriented matroid. More precisely, O := {Y|ze(X) | Y � X} = L [ze(X)] is the set of
covectors of an oriented matroid on the ground set ze(X).

3.1 Topes, Convex Sequences and Rank

Definition 3.5 The set of topes T of simple FAOM is constituted by the elements of
L of full support, i.e., with Xe �= 0 for all e ∈ E .

Remark 3.6 Note that a tope exists in a simple FAOM, since for every e ∈ E , there is
an Xe ∈ L with Xe(e) �= 0 and we can obtain a tope by composing all {Xe | e ∈ E}
by Remark 3.2. Moreover, every X ∈ L is below some tope in in the face poset—just
take any X ◦ T , with T ∈ T .

Definition 3.7 The tope graph GL is the simple graph with the set T as its vertices
and where a pair of vertices T , T ′ form an edge if and only if |S(T , T ′)| = 1. In other
words, GL is an induced subgraph of the hypercube QE .

Note that (I) implies that all topes have a finite number of neighbors, since the edges
of a tope T are inF (L )�T . Together with (S), this implies the following statement.

Remark 3.8 In the tope graph GL of a simple FAOM, every vertex has finite degree
and the distance of any two vertices is finite.

Remark 3.9 Remark 3.8 entails in particular that the distance in GL between any two
topes T , T ′ ∈ T satisfies d(T , T ′) = |S(T , T ′)|. In particular, GL is an isometric
subgraph of QE , i.e., a partial cube (of finite degree and finite distances), see [4, Prop.
2]. Moreover, L is uniquely determined by T and up to isomorphism by GL , see
[25, Corr. 4.10].

A subset of vertices of a graph G is called convex if it contains all vertices of every
shortest path between any two if its vertices. The convex hull of a subset of vertices
of G is the smallest convex subgraph containing it, if it exists. A subset C ⊆ T is
called convex if it is convex as a set of vertices of GL .

123



Discrete & Computational Geometry
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X

Fig. 7 Picture for Example 3.12 and Example 3.38

Remark 3.10 It iswell-known, see e.g. [2], that convex subsets in partial cubes coincide
with intersections of halfspaces, this is C ⊆ T is convex if and only if there is a sign
vector X (not necessarily in L ), such that C = {T ∈ T | T � X}. Moreover, for a
finite subset B its convex hull conv(B) can be represented by

XB(e) :=
{
0 if e ∈ S(T , T ′) for some T , T ′ ∈ B
©T∈BT (e) otherwise.

Lemma 3.11 LetL be a simple FAOM and C ∈ T . There is an increasing sequence

C1 � C2 � . . .

of finite convex subsets of L such that C ∈ C1 and L = ∪iCi .

Proof We consider the tope graphGL ofL . Take the sequence of ballsBi of radius i
aroundC , starting withB0 = {C}. If we defineCi = conv(Bi ) as the smallest convex
subgraph of GL that contains Bi , which is finite because all degrees are finite. In
particular,Bi is a subgraph of a finite partial cube and byRemark 3.10Ci is a subgraph
of the same cube, hence finite. Moreover, by definition the subgraph induced by Ci is
convex and since distances are finite the sequence eventually exhausts the entire graph
GL . ��
Example 3.12 In Fig. 7 an example of a sequence C1,C2, . . . associated to the base
tope C is shaded in decreasing hue of gray.

Lemma 3.11 implies immediately that FAOMs can only have countablymany topes.
This, together with (I ), yields the following corollary.

Corollary 3.13 The set of covectors of a FAOM has countable cardinality.

For C ∈ T we define T (L ,C) to be the tope poset based at C , i.e, for topes
T , T ′ ∈ T we have T � T ′ if and only if S(C, T ) ⊆ S(C, T ′).

Lemma 3.14 Let L be a simple FAOM, C ⊆ T convex and C ∈ C . Then C is
a lower ideal of the poset T (L ,C). Moreover, if |C | < ∞, then there is a finite
subset EC ⊆ E such that the restriction map resC : L → L [EC ] restricts to order
isomorphisms between
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(1) F (L )�C and F (L [EC ])�resC (C ), as well as,
(2) the induced subposets C ⊆ T (L ,C) and resC (C ) ⊆ T (L [EC ], resC (C)).

Proof Let C ⊆ T be convex and C ∈ C . Then by definition the set C is convex in
GT . By Remark 3.10, there is a sign vector XC such thatC = {T ′′ ∈ T | T ′′ � XC }.
Let T � T ′ with respect to T (L ,C) and T ′ ∈ C . Since S(C, T ) ⊆ S(C, T ′) and
C, T ′ � XC also T � XC . Thus, C is an order ideal of T (L ,C).

Now let C be finite, then since distances are finite, separators of elements of C are
finite and ze(XC ) is finite byRemark 3.10.Wedefine EC as the union

⋃
Y�T∈C ze(Y ).

Note that this is a finite set by (I) and (Z) contains ze(XC ).
The representation of C as intersection of halfspaces {T ′′ ∈ T | T ′′ � XC } yields

(2). In particular, since all members ofC are identical on the complement of EC , resC
induces an injection from C whose restriction to resC (C ) is then bijection. To see (1)
note that for two covectors below C with an element e in their separator, there are
also two topes T , T ′ ∈ C with e ∈ S(T , T ′) and e ∈ ze(XC ). Thus, all members of
F (L )�C are identical on the complement of EC . This proves injectivity. Moreover,
all elements of F (L ) \F (L )�C have an element e ∈ EC that is in the separator
with all elements ofC . Thus, their restriction cannot be inF (L [EC ])�resC (C ). Since
resC from F (L ) to F (L [EC ]) is surjective by definition, this proves surjectivity.

��
Corollary 3.15 TheposetF (L )∧∨ (obtained fromF (L )by adding aglobalminimum
and a global maximum, cf. Appendix A.1.1) is graded of finite length.

Proof We have to prove that any twomaximal chains inF (L )∧∨ have the same, finite
length. Letω,ω′ be two such chains andwrite X := max(ω\{̂1}), X ′ := max(ω′\{̂1}).
Let i be such that X , X ′ ∈ Ci as in Lemma 3.11. Then by Lemma 3.14 both ω and ω′
are maximal chains in the poset F (L [ECi ])∧∨ that is graded of finite length by [8,
Thm. 4.5.3]. ��
Remark 3.16 From Corollary 3.15 follows immediately thatF (L ) is ranked of finite
length.

Corollary 3.17 The posetF (L ) is the poset of cells of a regular CW-complex that we
call K (L ). The dimension of K (L ) is the length of F (L ).

Proof By [8, Prop. 4.7.23], it is enough to check that, for every X ∈ F (L ), the
interval IX := F (L )<X is homeomorphic to a rk(X)-sphere. Now by Lemma 3.14
IX is an order ideal in F (L [EC ]), for some finite, convex set of topes C (whose
existence is ensured by Lemma 3.11). In particular, IX is an order ideal in the “bounded
complex” of the finite affine oriented matroidF (L [EC ]) (see [8, Defn. 4.5.1]). With
[8, Discussion before 4.5.7, Sect. 4.3] the claim follows. ��

3.2 Shellings

As a stepping stone towards determining the topology of covector posets, we prove
their shellability. A brief introduction to shellability as well as to the parts of the theory
we need here are sketched in Appendix (Sects. A.1.2, A.1.3), where we also point to
some literature for further background.
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Proposition 3.18 LetL be the set of covectors of an FAOM. Then, the posetF (L )∧∨
admits a recursive coatom ordering without critical chains. In particular, both the
regular CW-complex K (L ) and its barycentric subdivision, the simplicial complex

(F (L )), are shellable and contractible.

Proof Let C be any tope of L and choose a sequence C1 � C2 � . . . according to
Lemma 3.11. Since for all i the set Ci is a lower ideal of T (L ,C), it is possible to
choose a linear extension ≺ of T (L ,C) such that Ti ≺ Tj if Ti ∈ Ci , Tj ∈ C j and
i < j . Then≺ is a total order, and it is awell-ordering because for anyX ⊆ T (L ,C)

the set {i | Ci ∩X �= ∅} ⊆ N has a minimum, say i0, and the set Ci0 ∩X is finite,
hence has a ≺-minimum T , that is also the minimum of X .

We show that ≺ defines a recursive coatom ordering on the poset F (L )∧∨. The
set of coatoms of F∧∨(L ) is exactly the set of topes. So let T be a tope, and
let i be such that T ∈ Ci . For T ′, T ′′ ∈ resCi (Ci ) let T ′ ≺i T ′′ if and only if
res−1Ci

(T ′) ≺ res−1Ci
(T ′′). Since resCi (Ci ) is a lower ideal in T (L [ECi ], resCi (C)),

the order ≺i can be extended to a linear extension of T (L [ECi ],C) where the ele-
ments of resCi (Ci ) come first. By [8, Prop. 4.5.6], this defines a recursive coatom
ordering ≺i of F∧∨(L [ECi ]). For every tope T ′ of L [ECi ] we let Qi

T ′ be the asso-
ciated distinguished set of coatoms of F (L [ECi ])�T ′ , uniquely determined by ≺i .
Now, for any T ∈ T (L ,C) we can set QT := res−1Ci

Qi
resC i (T ) where i is such that

T ∈ Ci (2).
Thus, by Remark A.5, ‖F (L )‖ is shellable. Now if some chain ω ⊆ F (L ) is

critical, then it is critical also in the shelling of F (L [ECi ]), where i is such that
maxω ∈ Ci . But we know [8, Thm. 4.5.7] that F (L [ECi ]) is contractible, hence
no shelling of the latter poset has critical chains. Therefore the obtained shelling of
‖F (L )‖ has no critical cells either, and this complex is contractible as well. The
claim about K (L ) follows with [8, Lem. 4.7.18]. ��

3.3 Topology of Covector Posets

We study the topology of the order complexes of posets of covectors of FAOMs.
For basic terminology and notations about combinatorial topology we refer again to
Appendix A.1.

Lemma 3.19 LetL be the set of covectors of an FAOM. Let ω be a maximal chain in
F (L ), let X ∈ ω and write ω′ := ω \ {X}.

Let Y be the set of all Y ∈ L such that ω′ ∪ {Y } is a chain inF (L ). Then

(1) |Y | � 2, and
(2) the boundary of ‖F (L )‖ is generated by all chains of the form ω′ with |Y | = 1.

Proof For (1) first notice that by (Z) we have |Y | < ∞. By Lemma 3.11 we can
find a finite convex set C such that ω ∪ Y ⊆ L [EC ]. Now the claim follows with

2 indeed for every j < i and every T ∈ C j , res
−1
C j

Q j
resC j

(T )
= res−1C i

Qi
resC i

(T )
, since ≺ j equals the

restriction of ≺i to C j .
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Lemma 3.14 from the corresponding property in the FAOM L [EC ] (see [8, Thm.
4.1.14], and recall that the poset of covectors of a finite AOM is a filter inside that of
a finite oriented matroid).

Now we prove (2). Consider any chain γ in F . Recall that shellability of F (L )

implies shellability of links, that F (L ) being ranked implies that the link of γ is
pure of dimension k := d − dim ‖γ ‖, and that (1) implies that every ridge of Lk(γ )

is contained is at most two facets of the link (see Sect. A.1.2). Moreover, by (Z) and
(I) the complex Lk(γ ) is finite. Now [8, Prop. 4.7.22] applies, implying that Lk(γ ) is
either a sphere or a closed ball, the second case entering exactly if there is one ridge
that is contained in only one facet. Equivalently (e.g., by [31, p. 7]) ‖γ ‖ is in the
boundary of ‖F (L )‖ if and only if γ ⊆ ω \ {X} for a maximal chain ω ⊆ F (L )

and X ∈ ω such that |Y | = 1. ��
Theorem 3.20 LetL be the set of covectors of anFAOM.Then ‖F (L )‖ is a shellable,
contractible PL d-manifoldwhose boundary is described in Lemma3.19(2).Moreover,

(1) IfL is finite, then ‖F (L )‖ is a PL-ball.
(2) If ‖F (L )‖ has no boundary, then it is PL-homeomorphic to R

rkL .

Proof The complex ‖F (L )‖ is shellable and contractible by Proposition 3.18.
Moreover, it is a PL-manifold (Lemma 3.19(1)) with the stated boundary

(Lemma 3.19(2)). For the itemized claims: (1) is [8, Thm. 4.5.7.(i)], and (2) follows
from [7, Thm. 1.5.(ii)], since axioms (Z), (I) imply that ‖F (L )‖ is finitary. ��
Example 3.21 When the FAOMarises froman arrangement in Euclidean space, the cell
complex ‖F (L )‖ is isomorphic to the barycentric subdivision of the dual complex
of the induced stratification of the ambient space. t With this we can see that if L is
the FAOM of the arrangement in Fig. 1 then ‖F (L )‖ is homeomorphic to a 2-disk.
On the other hand, if L is the FAOM of the arrangement in Fig. 6b then ‖F (L )‖
is a tiling of the plane by squares, i.e., it is homeomorphic to R

2. Figure6a shows an
example outside the scope of Theorem 3.20: there, ‖F (L )‖ is the poset of cells of
an infinite row of juxtaposed squares. See Fig. 8.

3.4 The Underlying Semimatroid

We show that zero sets of covectors of an FAOM define a semimatroid on the same
ground set. We point to the Appendix A.2 for some basic notions and notations of
semimatroid theory that we will be using in this section.

Definition 3.22 Given a system of sign vectors (E,L ) define

L(L ) := {ze(X) | X ∈ L } K(L ) :=
⋃

A∈L(L )

2A.

Elements of L(L ) are called flats, elements ofK(L ) “central sets” ofL . For A, B ∈
L(L ), let A � B :⇔ A ⊆ B and define

F(L ) := (L(L ),�).
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H2H 1

H 3

H 4

h1 h2 h3 h4 h5

l
h1 h2 h3 h4 h5

l1

l2

l3

Fig. 8 Three examples of polyhedral complexes realizing ‖F (L )‖. From top left clockwise, they corre-
spond to the FAOMs in Figs. 1, 6c and a. The resulting cell complexes (whose barycentric subdivision is
‖F (L )‖) are shaded gray: they are homeomorphic to a closed disk, R

2 and R
1 × [0, 1], respectively

P Q R

H2 H3 H4H1

P Q R

Fig. 9 The poset F (L ) (l.-h.s.) and the poset L(L ) (r.-h.s.) for the FAOM L corresponding to the
arrangement of Fig. 1

Remark 3.23 Notice that X � Y implies ze(X) ⊇ ze(Y ), where � is the partial
order of F . Therefore, taking zero sets induces an order reversing poset map ze(·) :
F (L ) → F(L ).

Example 3.24 Figure9 depicts the poset F (L ) and L(L ) where L is the set of
covectors of the line arrangement in Fig. 1.

Lemma 3.25 Let (E,L ) be a finite AOM. Then F(L ) ⊆ 2E is the geometric semilat-
tice of flats of a finitary semimatroid S (L ). This underlying semimatroid is unique
up to isomorphism.

Proof By Remark 2.3, (E,L ) is a finite affine oriented matroid in the sense of [8]. In
this case, L can be embedded into the set L (e) of covectors of an oriented matroid
on the set E ∪ {e} where e is a new element that is not a loop, so that there is a unique
atom e of F(L (e)) containing {e}. Moreover, e.g. by [8, Sect. 10.1],

F(L ) = F(L (e)) \ F(L (e))�e.

Since F(L (e)) is a geometric lattice [8, Prop. 4.1.13], by [33, Thm. 3.2] F(L ) is a
geometric semilattice. ��
Lemma 3.26 Let L be the set of covectors of an AOM on the ground set E.
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(1) For every F1, F2 ∈ L(L ), F1 ∩ F2 ∈ L(L ).
(2) For every A ⊆ E, L(L [A]) = {G ∩ A | G ∈ L(L )}.
(3) For all A ∈ L(L ), F(L [A]) = F(L )�A.
(4) For all A ⊆ E, the assignment X �→ ι(X) := min�{G ∈ F(L ) | G ∩ A = X}

defines an order preserving embedding ι : F(L [A]) ↪→ F(L ).
(5) For all A ⊆ E and all F1, F2 ∈ F(L [A]), if the join F1 ∨ F2 exists in F(L [A]),

then ι(F1) ∨ ι(F2) exists in F(L ).

Proof In order to check (1) let X1, X2 ∈ L such that Fi = ze(Xi ) for i = 1, 2. Then
axiom (C) ensures X1 ◦ X2 ∈ L . Thus F1 ∩ F2 = ze(X1 ◦ X2) ∈ L(L ).

Now, by definition, F ∈ L(L [A]) if and only if there is X ∈ L with F =
ze(X |A) = ze(X) ∩ A, i.e., if and only if F = G ∩ A for some G ∈ L(L ) (indeed,
G ∈ L(L ) if and only if there is X ∈ L with ze(X) = G). This proves (2). Item (3)
follows from (2) since, by (1), F(L )�A = {G ∩ A | G ∈ L(L )}.

The assignment in (4) is well-defined by (1) and clearly determines an order pre-
serving function. Its injectivity follows from the existence of the right-sided inverse
G �→ G ∩ A (this is well-defined by (2)).

For item (5) let F1, F2 have a join F1 ∨ F2 in F(L [A]). Then ι(F1 ∨ F2) � ι(Fi )
for i = 1, 2, hence the set of upper bounds of ι(F1) and ι(F2) is nonempty and, by
(1), has a unique minimal element. ��
Theorem-Definition 3.27 Let (E,L ) be an AOM satisfying (Z). Then F(L ) ⊆ 2E

is the geometric semilattice of flats of a finitary semimatroidS (L ). This underlying
semimatroid is unique up to isomorphism.

Proof By definition F(L ) is partially ordered by inclusion. By (Z) F(L ) is a chain-
finite subposet of Pfin(E). By Theorem A.13, it is enough to prove that F(L ) is a
geometric semilattice whose order ideals are lattices of flats of matroids. If |E | < ∞,
the claim is proved as Lemma 3.25. The proof for general E follows from the fact that
the obstructions to the claim can be detected in a finite restriction.

More precisely, first notice that F(L ) is bounded below, with 0̂F(L ) = {e ∈ E |
∀X ∈ L | X(e) = 0}, which is well-defined because topes exist (by Remark 3.6).
Now checking that F(L ) is graded and that order ideals are lattices of flats ofmatroids
(in particular, then it satisfies (GSL1)) amounts to checking statements about order
ideals of the type F(L )�U which, by Lemma 3.26(3), are isomorphic to order ideals
of (finite) geometric semilattices F(L [U ]), where the claims hold.

The poset F(L ) is a meet-semilattice by Lemma 3.26(1). In order to check (GSL2)
let A1, . . . , Ak be an independent set of atoms in F(L ) that joins to some U =
∨Ai ∈ F(L ) and let Y ∈ F(L ) have rank less than U . Notice that A1, . . . , Ak is
an independent set of atoms in F(L [U ∪ Y ]): indeed for all I ⊆ [k] the inclusion
∨i∈I Ai ⊆ U implies ∨i∈I Ai = ι(∨i∈I Ai ) ∈ F(L [U ∪ Y ]) by Lemma 3.26(2,4).
Thus, by Lemma 3.25 in the finite restriction F(L [U ∪ Y ]) there is some i such that
Ai∨Y exists in F(L [U∪Y ]), and so by Lemma 3.26(5) this join also exists in F(L ).
��
Corollary-Definition 3.28 For every AOM (E,L ) satisfying (Z), the set K(L ) from
Definition 3.22 is the set of central sets of the underlying semimatroid, i.e., K(L ) =
K(S (L )).
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Proof Immediate from Theorem A.13. ��
Corollary 3.29 Let (E,L ) be an AOM satisfying (Z) and let B be any basis of the
semimatroid S (L ). For every b ∈ B choose b′ ∈ π(b). Then B ′ := {b′ | b ∈ B} is
a basis of S (L ).

Proof Induction on the rank ofS (L ). If the rank is 0 or 1, there is nothing to prove.
Let then S (L ) have rank r > 1 and let B, B ′ be as in the claim. Choose b0 ∈ B.
By induction hypothesis applied to L [⋃b �=b0 π(b)], B ′\b′0 is an independent set of
S (L ) of rank r −1. Now apply (CR2) to the sets B and B ′ \b′0. Since every element
of B except b0 is parallel to some element of B ′ \ b′0, the only way for (CR2) to hold
is that B ′ is central inS (L ) (cf. Sect. A.2 for terminology) and has rank r . ��
Corollary 3.30 Let (E,L ) be an AOM satisfying (Z) and let B be any basis of the
semimatroid S (L ). Then there is a unique XB ∈ maxF (L ) with B ⊆ ze(XB).

Example 3.31 In Fig. 5 the elements a0 and b0 form a basis B = {a0, b0} of the FAOM
represented by the given pseudoline arrangement. The covector XB corresponds to
the vertex highlighted in white.

Proof of Corollary 3.30 Since B is a basis, cl(B) exists and is a maximal element in
F(L ). In particular, there is XB ∈ maxF (L ) with B ⊆ ze(XB). In order to prove
uniqueness consider any Y ∈ L with B ⊆ ze(Y ). If Y �= X , there is some e ∈ E with
Y (e) = −X(e) �= 0. Elimination of e from X and Y would give a Z � X in F (L ),
contradicting maximality of X . ��

3.5 Rank

We briefly compare the different notions of rank that have appeared so far and set
some notation for the remainder of the paper.

Proposition 3.32 The order reversingmap ze(·) : F (L ) → F(L ) fromRemark 3.23
is rank-preserving.

Proof In analogy with the proof of [8, Prop. 4.1.13.(ii)], it is enough to consider two
X ,Y ∈ L with X �Y inF (L ) and to prove ze(X)� ze(Y ) in F(L ). Now, for such
X ,Y clearly ze(X) � ze(Y ). If there is a covector Z ∈ L with ze(X) � ze(Z) �

ze(Y ), then we can in fact choose this covector to be in the upper interval F (L )�X
(take for instance X ◦ Z ), contradicting [8, Prop. 4.1.13.(ii)] for the OM L [ze(X)]
(cf. Lemma 3.4). ��
Definition 3.33 For any given FAOML , we will henceforth write rk for both the rank
function ofF (L ) and for the rank function of its underlying semimatroid. We write
rk(L ) = rk(S (L )) for the rank of either (i.e., the length of F (L ) and F(L )).

Corollary 3.34 Let L be an FAOM and let A ⊆ E. Then, rk(L [A]) = rk(A) and
rk(L /A) = rk(L )− rk(A).

Proof These identities are known on the semimatroid level, see, e.g., [17, Sect. 1.1] ��
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3.6 Order Type of Parallelism Classes

In this section we show that the isomorphism type of the natural total orderings of
parallelism classes of an FAOM (described in Corollary 2.28) is restricted. Recall the
notation and conventions of Definition 2.29.

Lemma 3.35 SupposeL is the set of covectors of an AOM satisfying (S) and let e ∈ E.
Then (π(e),�π(e)) is order isomorphic to Z if e ∈ E∗∗, to N if e ∈ E0∗, and to the
segment {0, 1, . . . , n|π(e)|} ⊆ N if e ∈ E01.

Example 3.36 Recall the FAOMs of Fig. 6. In case (a) we have that |π(l)| = 1. In both
cases �π(h0) has the order type of Z. In case (b) the order type of �π(l0) is N

Proof of Lemma 3.35 Write π for π(e) and < for <π(e). Recall that by Corollary 2.28
we have that π is a total order.

Given x < y in π choose covectors X and Y with x ∈ ze(X) and y ∈ ze(Y ). Now
any z ∈ π with x < z < y must have X(z) = −Y (z) �= 0 and thus z ∈ S(X ,Y ).
By (S) there are at most finitely many such z’s. Now, if e ∈ E01 the claim follows by
taking x = 0̂π , y = 1̂π . Otherwise, for every x ∈ π there is some y ∈ π with y > x
and so the assignment

s(x) := min{z ∈ π | x < z � y}

determines a well-defined “successor” function s : π → π (the set on the r.h.-
s. is finite by the previous discussion, nonempty since it contains at least y, and
independent on the choice of y since s(x) is an immediate successor of x and �
is a total order). Analogously, for every y ∈ π , y �= 0̂π , we can find an element
s−1(y) := max{z ∈ π | 0̂π � z < y} so that s−1(s(x)) = x for all x ∈ π and thus s
is injective.

Claim. For every x ∈ π , the function f : N → π�x , n �→ sn(x) is bijective.
Proof. Injectivity of s implies injectivity of f . In order to prove surjectivity, let
y ∈ π�x . As above, by (S) there is a finite number, say k, of z ∈ π , x < z � y,
therefore sk(x) = y.

If e ∈ E0∗, in the claim above we can choose x = 0̂π and we obtain an order
isomorphism between (π,�π ) and N with the natural order. If e ∈ E∗∗, the Claim
above gives an order isomorphism between N and π�e and an order antiisomorphism
between N and π�e, that combine to an order isomorphism between (π,�π ) and Z

with the standard ordering, where e is mapped to 0. ��
Corollary 3.37 Suppose thatL is an AOM satisfying (S) and let X ∈ L . Then there is
a reorientation ofL such that for every parallelism class π , there is a unique element
δX (π) ∈ π such that, for every e ∈ π ,

e <π δX (π) ⇒ X(e) = +, e >π δX (π) ⇒ X(e) = −, X(δX (π)) ∈ {0,−}
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Proof Consider the reorientation of L given in Corollary 2.28. First note that if
X(π) ⊆ {0,−} then δX (π) := 0̂π will do. Otherwise, we prove that the maximum

mπ (X) := max
�π

{e ∈ π | X(e) = +}

exists. For this, choose an f ∈ π and any Y ∈ L with f ∈ ze(Y ). Then by Corol-
lary 2.28 we know that Y (e) = + if e <π f and Y (e) = − if e >π f . Now assume
by way of contradiction that the stated maximum mπ (X) does not exist. Then, either
X(e) = − for all e ∈ π (a case that we excluded at the beginning), or there are
infinitely many e >π f with X(e) = +, violating (S) between X and Y .

Now, the element δX (π) := s(mπ (X)), the successor of δX (π), satisfies the
claim. ��
Example 3.38 In Fig. 7 with the pictured reorientation and choosing the ordering
li <π(l0) l j , resp hi <π(h0) h j if and only if i < j , for the covector X corresponding
to the bold segment we have δX (π(h0)) = h1 and δX (π(l0)) = l1. For the tope C we
have δC (π(h0)) = h1 and δC (π(l0)) = l0.

4 Basis Frames and Embeddings into Euclidean Space

This section contains some fundamentals that will be needed at a later stage, and can
be skipped in a first reading. The goal is to study the homeomorphism type of covector
posets of FAOMs by comparing themwith those of restrictions to unions of parallelism
classes of elements of a basis.

4.1 Covectors of Restrictions to Basis Frames

Throughout this section suppose that L is the set of covectors of an AOM on the
ground set E satisfying (S) and (Z). In particular, (Z) ensures that there is a well-
defined underlying semimatroid S (L ) (see Corollary 3.28), while (S) implies that
the canonical ordering of parallelism classes has the order type of subsets of Z (see
Lemma 3.35).

Definition 4.1 (Basis frame) Let B be a basis of the underlying semimatroid S (L ).
The associated basis frame is

B̃ :=
⋃

b∈B
π(b) ⊆ E,

the union of all parallelism classes of elements of B.

Example 4.2 Recall from Example 3.31 that the pseudolines labeled a0, b0 in Fig. 5
form a basis B = {a0, b0} of the associated FAOM. The pseudolines corresponding
to the basis frame B̃ for are drawn in a bold stroke in Fig. 5.
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Throughout this section let B be a basis of the semimatroid S (L ). We start by
describing an explicit model of the restrictionL [B̃]. Without loss of generality, sup-
pose that (E,L ) is reoriented so to satisfy Corollary 2.28. For every parallelism class
π of L we fix an order isomorphism

jπ : π →
⎧
⎨

⎩

Z if π ⊆ E∗∗
N if π ⊆ E0∗
{0, 1, . . . , nπ − 1} if π ⊆ E01 where nπ := |π |

(1)

and an index set

Iπ :=
⎧
⎨

⎩

1
2Z if π ⊆ E∗∗
{− 1

2 } � 1
2N if π ⊆ E0∗

{− 1
2 , 0,

1
2 , 1, . . . , nπ , , 2nπ+1

2 } if π ⊆ E01 where nπ := |π |
(2)

Now consider the product

I(B) :=
∏

b∈B
Iπ(b) (3)

For every i ∈ I(B) we define a sign vector Xi ∈ {+,−, 0}B̃ as

Xi (e) :=
⎧
⎨

⎩

+ if i(π(e)) > jπ(e)(e)
0 if i(π(e)) = jπ(e)(e)
− if i(π(e)) < jπ(e)(e)

for every e ∈ B̃. (4)

Moreover, our chosen reorientation is the one that yields Corollary 3.37 and so for
every X ∈ {+,−, 0}B̃ we can define a vector iX ∈ 1

2Z
π(B) as

iX (π) :=
{
jπ (δX (π)) if X(δX (π)) = 0
jπ (δX (π))− 1

2 if X(δX (π)) = − (5)

Lemma 4.3 With the definitions above, the following hold.

(1) For every X ∈ {+,−, 0}B̃ , XiX = X.
(2) For every i ∈ 1

2Z
π(B), iXi = i .

Proof We check both identities elementwise.

(1) Fix e ∈ B̃. By definition, XiX (e) = + if and only if iX (π(e)) > jπ(e)(e), i.e.,
jπ (δX (π)) > jπ(e)(e) or, equivalently, δX (π) > e, and by Corollary 3.37 the latter
means X(e) = +. The cases XiX (e) = 0 and XIX (e) = − are analogous.

(2) Notice first that jπ (δXi (π)) = �i(π)� for all i , with jπ (δXi (π)) = i(π) if and
only if Xi (δXi (π)) = 0. Nowwe computewith the definition, for every parallelism
class π :

iXi (π) =
{ �i(π)� = i(π) if Xi (δXi (π)) = 0
�i(π)� − 1

2 = i(π) if Xi (δXi (π)) = − ��
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1
2

1
2

3
2

1 0 1 2

Fig. 10 The partial order defined in Definition 4.4

Definition 4.4 Define a partial order  on 1
2Z by setting p ≺ q if and only if p ∈ Z,

q = ± 1
2 . (See Fig. 10.) This restricts to a partial order on Iπ , for every parallelism class

π , and induces a partial order on I(B) by taking Cartesian product of the orderings of
all Iπ . This ordering on I(B) we also call  , and it can be explicitly described as

i  i ′ if and only if iπ(b)  i ′π(b) for all b ∈ B.

Proposition 4.5 The assignment

I(B) → L [B̃], i �→ Xi

is a well-defined bijection with inverse X �→ iX .

Proof We first prove that the assignment is well-defined. By Corollary 3.30, if every
coordinate of i is an integer then Xi ∈ L [B̃]. Otherwise, there is an i∗  i with all
integer coordinates, and we have Xi∗ ∈ L [B̃], with Xi∗(e) = Xi (e) if e /∈ ze(Xi∗).
Now B∗ := ze(Xi∗) is a basis ofL [B̃] and thusL [B∗] is a Boolean (finite) oriented
matroid, i.e., L [B∗] = {+,−, 0}B∗ and, in particular, there is Y ∈ L [B̃] with
Y|B∗ = (Xi )|B∗ . Since Xi = Xi∗ ◦Y , by (C) we conclude Xi ∈ L [B̃] as desired. This
proves that the function is well-defined. The stated inverse is clearly well-defined, and
Lemma 4.3(2) shows that it is, in fact, an inverse. ��

We use this bijection in order to decompose the covector poset into a Cartesian
product.

Theorem 4.6 The function i �→ Xi defines an isomorphism of posets

(I(B), ) ∼= F (L [B̃]).

Proof We prove that both i �→ Xi and X �→ iX are order preserving.
First suppose i  i ′ in I(B). We prove Xi � Xi ′ componentwise. Consider a

parallelismclassπ . If iπ = i ′π , thenobviously Xi (e) = Xi ′(e) for all e ∈ π .Otherwise,
(1) iπ ∈ Z and (2) i ′π = iπ ± 1

2 . This means that, with e := j−1π (iπ ), we have (1)
Xi (e) = 0 and (2) Xi ′(e) �= 0, with Xi ′( f ) = Xi ( f ) for all f ∈ π\{e}. Therefore
(Xi )|π � (Xi ′)|π , and repeating the argument for every π proves Xi � Xi ′ .

Now suppose X � Y in F (L ), i.e., X(e) � Y (e) for all e ∈ E . In particular,
X(e) = Y (e) whenever X(e) �= 0. We prove the inequality iX  iY componentwise.
Fix a parallelism class π . If X(e) �= 0 for all e ∈ π , then iX (π) = iY (π). Otherwise
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there is e ∈ π with X(e) = 0 (which means iX (π) = jπ (e)), and by definition of
parallelism, X( f ) �= 0 (hence Y ( f ) = X( f )) for all f ∈ π\{e}. Y (e) can now be 0,+
or− and, depending on those cases, we will have iY (π) = jπ (e), iY (π) = jπ (e)+ 1

2 ,
iY (π) = jπ (e)− 1

2 . In any case, iX (π)  iX (π). ��
Example 4.7 IfL is the FAOM of the line arrangement of Fig. 2 and B = {a0, b0} is,
e.g., the basis described in Example 3.31, then Theorem 4.6 states the isomorphism
between the FAOM F (L (B̃)) (represented by the bold-faced lines in Fig. 5) and
(I(B), ), which is the FAOM of the arrangement in Fig. 6b.

4.2 Embeddings into Euclidean Space

Throughout this section letL be the covector set of a simple FAOM of rank d and let
B be a basis of the semimatroidS (L ) such that B ⊆ E∗∗. For every π ∈ π(B)we fix
an arbitrary order isomorphism jπ : π → Z and, thus, an isomorphismF (L [B̃]) →
I(B).

Notation 4.8 For brevity, in this sectionwewriteF forF (L ) andFB̃ forF (L [B̃]).
Lemma 4.9 There is an isomorphism of simplicial complexes
(FB̃) ∼= 
(I(B)) and,
in particular, a homeomorphism ‖FB̃‖ ∼= ‖I(B)‖.
Proof The poset-isomorphism from Theorem 4.6 establishes a one-to-one correspon-
dence between chains and, thus, an isomorphism of simplicial complexes. ��
Lemma 4.10 The natural inclusion I(B) ↪→ R

d extends affinely to a homeomorphism

‖I(B)‖ ! R
d .

Proof The elements of I(B) are the barycenters of the cells of the cube complexQ of
integer unit cubes, with set of vertices Z

d ⊆ R
d , and i1  i2 in I(B) if and only if the

cell with barycenter i1 is contained in the cell with barycenter i2. Therefore ‖I(B)‖ is
realized as a geometric simplicial complex by the barycentric subdivision of Q, see
Remark A.6. In particular, the homeomorphism in the claim can be defined by affine
extension of the inclusion of I(B) into R

d . ��
Lemma 4.11 LetL be the covector set of a simple FAOM and let B be a basis of the
semimatroid S (L ) such that B ⊆ E∗∗. Consider the natural restriction map

φ : L → L [B̃], X �→ X |B̃,

which induces an order preserving, surjective map F → FB̃ . For every Y ∈ FB̃ ,
the following hold.

(1) The preimage φ−1(Y ) is finite.
(2) The poset F�φ−1(Y ) has length equal to rk(Y ).
(3) The order complex ‖F�φ−1(Y )‖ is a subdivision of a rk(Y )-dimensional PL-ball

with boundary ‖φ−1((FB̃)<Y )‖.
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Fig. 11 A picture for the setup of the proof of Lemma 4.11

Proof LetL , B and Y be as in the claim. Moreover, we assume thatL is reoriented
as to satisfy Corollary 3.37. As all three items are claims regarding preimages of
(FB̃)�Y , by passing to contractions and simplifying, it is enough to consider the case
Y ∈ maxFB̃ , i.e., Y is a tope of L [B̃]. Then ze(Y ) = ∅ because L is simple. Thus
if k ∈ Z

π(B) is defined by kπ := jπ (δY (π)) − 1 for all π ∈ π(B), Corollary 3.37
yields, for all e ∈ E ,

Y (e) = + if jπ(e)(e) � kπ , Y (e) = − if jπ(e)(e) > kπ .

In particular, since B ⊆ E∗∗, the minimal elements of (FB̃)�Y are given as

Xk+ε, where ε ranges in {0, 1}π(B)

and Y = ©ε∈{0,1}π(B) Xk+ε (the composition taken in any order), as can be explicitly
verified e.g., via the isomorphism of Theorem 4.6.

Now, for every ε ∈ {0, 1}π(B) let Bε := ze(Xk+ε). Every Bε is a basis of the
semimatroid S (L [B̃]), and hence also of S (L ), because B̃ has maximal rank.
Thus by Corollary 3.30 for every ε there is a unique cocircuit Zε ∈ minF (L ) with
φ(Zε) = Xk+ε . See the top part of Fig. 11 for an illustration of the setup.

Let B� = ⋃
π∈π(B) j

−1
π ({kπ , kπ + 1}). It is apparent that L

[
B�

]
is the set of

covectors of the arrangement given by the hyperplanes xπ = kπ and xπ = kπ + 1
in R

π(B) (“the facet-defining planes of a cube”). In this interpretation, the restriction

Y ′ := Y|B� is the only bounded tope of L
[
B�

]
(cf. Definition A.22). Now by

Lemma A.23 we have that anything that maps to Y ′ (in particular, Y itself as well as
every covector inL�φ−1(Y )) is bounded inL .
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Ad (1). We argue by induction on the rank of L . If the rank is 0, then B = ∅ and
the claim is trivial. Let then L have rank r > 0 and consider the following
statement.

(†) For every W ∈ L with φ(W ) = Y and every e ∈ ze(W ) we have that
e ∈ S(Zε′ , Zε′′) for some ε′, ε′′ ∈ {0, 1}π(B).

Let usfirst check that proving (†) is enough. First notice that the claim, together
with the fact that there are finitely many Zε , ensures immediately that there
can be only finitely many e ∈ E such that there is W ∈ L with φ(W ) = Y
and ze(W ) = {e}, since otherwise axiom (S) would be contradicted for some
pair of cocircuits of the form Zε . Now, for every such e ∈ E , the induction
hypothesis applied to the contractionL [B̃∪{e}]/e shows that there are finitely
many W with φ(W ) = Y and ze(W ) = {e}. This ensures that φ−1(Y ) has
finitely many elements of rank (r − 1).
By the second statement in Remark 3.2, it follows that there can be at most
finitely many topes in φ−1(Y ). Moreover, (I) implies that there can be at most
finitely many maximal elements below any given W ∈ L . Thus φ−1(Y ) has
finitely many elements.

Proof of (†).
Let W ∈ L be such that φ(W ) = Y , let e ∈ ze(W ).

Then the imageW ′ ofW inL
[
B� ∪ {e}

]
is not maximal and we can choose

T ′ ∈ L
[
B� ∪ {e}

]
maximal with T ′ � W ′.

Let then T ′′ := W ′ ◦ −T ′, which is a maximal element ofL
[
B� ∪ {e}

]

�W ′
by (FS). See the lower part of Fig. 11 for illustration.
Then all of W , T ′, T ′′ map to Y ′, and are therefore bounded. In particular, by
[8, Prop. 3.7.2] we have that T ′ and T ′′ can be obtained fromW ′ by composing

with some cocircuits ofL
[
B� ∪ {e}

]
. Now the only cocircuitswith nontrivial

composition withW ′ are those that are nonzero on e, hence exactly the images
Z ′ε of the Zε’s, for ε ∈ {0, 1}π(B). Since T ′′(e) = −T ′(e) �= 0, there must then
be ε1 and ε2 with Z ′ε1(e) = −Z ′ε2(e) �= 0, and hence Zε1(e) = −Zε2(e) �= 0
as well.

Since by Axiom (I) intervals inL [B̃] are finite, part (1) implies thatL�φ−1(Y ) is finite
as well. Write for brevity P := F (L )�φ−1(Y ). This is a convex set, as it coincides
with all X ∈ L such that

(‡)

{
X(e) ∈ {0,+} if e ∈ B̃ and jπ(e)(e) = kπ(e),

X(e) ∈ {0,−} if e ∈ B̃ and jπ(e)(e) = kπ(e) + 1.

In particular, with Lemma 3.14 we can find a finite E ′ ⊆ E such that P is an order
ideal in in the poset of covectors of the FAOML [E ′]. We can then extend L [E ′] to
the set O of vectors of a (finite) oriented matroid with one additional element g (see
Remark A.21). In O , P is a convex set defined by the above equations, in addition
to X(g) = +. Such a convex set of covectors, with the usual partial order, is known
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to be a shellable poset [8, Prop. 4.3.6]. Moreover, since P it is not the full poset of
covectors of a contraction of O (e.g., becauseP ⊇ φ−1(Y ) and the latter contains at
least one tope, since φ is order preserving), again by [8, Prop. 4.3.6] we conclude that

(††) the order complex of P is is a shellable PL-ball of dimension r .

Ad (2). The length of a poset equals the dimension of its order complex, hence (2)
follows directly from (††).

Ad (3). The first part of claim (3) is exactly (††). From there, via Proposition A.7,
we also deduce that P∧∨ is a subthin poset. We are thus left with showing
that the maximal simplices in the boundary of ‖P‖ are exactly given by the
maximal chains inP ∩ φ−1(L [B̃]<Y ).
To this end, again by Proposition A.7, it is enough to consider any X ∈P∧∨
such that [X , 1̂] has length 2, and to prove that [X , 1̂] has 3 elements if and
only if φ(X) < Y . Notice that in this case, since O is simple, there is a
single element e ∈ E ′ with ze(X) = {e}. Moreover, from the fact that O
is an oriented matroid, L [E ′] is an order filter in F (O), and X ∈ L [E ′],
we deduce that there are exactly two elements Z , Z ′ ∈ L [E ′] with X � Z ,
X � Z ′, and these are given by Z( f ) = Z ′( f ) = X( f ) for all f �= e, and
Z(e) = −Z ′(e) �= 0. Now, if φ(X) = Y , then Z , Z ′ ∈ P (for instance, in
this case φ(Z) = φ(Z ′) = Y , thus e /∈ B̃ and so Z and Z ′ both satisfy the
definition of the convex set P in (‡)) and so [X , 1̂] has 4 elements. On the
other hand, if φ(X) < Y then e ∈ B̃ and thus only one among Z , Z ′ agrees
with Y on e and satisfies (‡), so that in this case [X , 1̂] has 3 elements.

��
Proposition 4.12 LetF be an FAOM and let B be a basis of the semimatroidS (L )

such that B ⊆ E∗∗. The canonical restriction map L → L [B̃] induces a homeo-
morphism

ψ : ‖F‖ → ‖FB̃‖

that restricts to a homeomorphism ‖F�φ−1(Y )‖ ∼= ‖(FB̃)�Y ‖ for all Y ∈ L [B̃].
Proof Weprove the statement by constructing the desired homeomorphism recursively
in the rank ofFB̃ . Let thenF

j
B̃
be the set of elements ofFB̃ of rank atmost j . For every

Y ∈ F 0
B̃
we have |φ−1(Y )| = 1, hence φ restricts to a homeomorphism ψ0 between

the discrete spaces ‖φ−1(F 0
B̃
)‖ and ‖F 0

B̃
‖ that again restricts to a homeomorphism

between the one-point spaces (FB̃)�Y and φ−1(Y ) for every Y ∈ F 0
B̃
. Let then j > 0

and suppose we already constructed a homeomorphism ψ j−1 : ‖F�φ−1(F j−1
B̃

)
‖ →

‖F j−1
B̃

‖ that restricts to a homeomorphism ‖F�φ−1(Y )‖ ∼= ‖(FB̃)�Y ‖ for all Y ∈
F

j−1
B̃

. Consider any Y ∈ F
j
B̃
\F j−1

B̃
. Then by Lemma 4.11 the poset (FB̃)�Y is

homeomorphic to a j-ball whose boundary ‖F<Y ‖ ⊆ ‖F j−1‖ is the homeomorphic
image under ψ j−1 of ‖F<φ−1(Y )‖, a subcomplex of ‖F�φ−1(F j−1

B̃
)
‖. We can now
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extend the boundary homeomorphismψ j−1 across ‖F�φ−1(Y )‖ to a homeomorphism
‖F�φ−1(Y )‖ → ‖(FB̃)�Y ‖ of j-balls. See, e.g., [32, Chap. 1.4, Corr. 13]. Doing this
inductively over the countable (by Corollary 3.13) setF j

B̃
\F j−1

B̃
we can extendψ j−1

to the desired ψ j . ��

5 Group Actions

If a group G acts on a set E by permutations, for every g ∈ G and e ∈ E we
write g(e) for the image of e under the action of g. Moreover, for every sign vector
X ∈ {+,−, 0}E we can define a sign vector g.X by setting g.X(e) := X(g−1(e)) for
all e ∈ E . This extends the action of G on E to an action on the set of sign vectors.
For X ⊆ {+,−, 0}E write g.X := {g.X | X ∈X }.
Definition 5.1 A group G acts on an AOM (E,L ) if G acts by permutations on E
and g.L = L for all g ∈ G. An action of G on L will be denoted by α : G � L .
The action of G is called sliding if g(e) ∈ π(e) for all e ∈ E .

Example 5.2 The notion of sliding actions is meant to model the action of a group of
translations on an arrangement. For instance consider the pseudoline arrangement of
Fig. 5. The action that corresponds to a vertical “translation” of the picture sending
ai to ai+1 is sliding. On the other hand, the reflection with respect to a vertical line
passing through, e.g., the point where b0 meets a3 is not sliding, since it switches pairs
of diagonal pseudolines passing through that point, and so any of those will not be
parallel to its image.

Lemma 5.3 Let (E,L ) be an AOM and let τ ∈ {+,−}E . Every G-action on (E,L )

induces a G-action on the reorientation L (τ ). If the action on L is sliding, so is the
induced action on L (τ ).

Proof Given any group action of G on L and any h ∈ {+,−}E , G acts on the reori-
entationL (τ ) by g · (τ · X) = τ · g.X , for all g ∈ G (recall Definition 2.8). The claim
about sliding actions follows because parallelism is preserved under reorientation, as
ze(X) = ze(τ · X) for all X ∈ L . ��
Lemma 5.4 Let (E,L ) be an AOM with an action α of a group G. Let A ⊆ E.

(1) The action α induces an action α/A : stab(A) � L /A.
(2) If GA=A, then α restricts to an action α[A] : G � L [A].
If α is sliding, then so are α/A and α[A].

Proof The check of the claims is straightforward. ��
Lemma 5.5 Every action of a group G on an FAOM (E,L ) induces an action of G
on the underlying semimatroid S (L ). If the action is sliding, the action on S (L )

is translative.

Proof Let e ∈ E and g ∈ G. Then, the sliding property implies e ‖ g(e). In particular,
with Corollary 3.28 we have {e, g(e)} /∈ K(L ) whenever e �= g(e), and the claim
follows. ��

123



Discrete & Computational Geometry

Every action α : G � L induces an action α : G � F (L ) by poset automor-
phisms. We will now begin the study of quotients of this poset. Recall that every poset
can be seen as an acyclic category (see Appendix A.1.4).

Definition 5.6 Let α : G � L be a group action on an AOM. Let

qα : F (L ) → F (L )//G

be the quotient functor in the category AC. Explicitly, if we regard G as a one-object
category G with one morphism for each group element and the group operation as
composition law, then α defines a diagram in AC over G, and qα is the universal
co-cone over this diagram with target the diagram’s colimitF (L )//G.

Remark 5.7 Since, by Corollary 3.15, F (L ) is ranked, the category F (L )//G can
be described explicitly via [16, Lem. A.18]. It has object set Ob(F (L )//G) =
Ob(F (L ))/G, the set of orbits of objects. The morphisms ofF (L )//G are orbits of
morphisms of F (L ): the orbit of φ : X → Y is a morphism Gφ : GX → GY and
composition between orbits Gφ and Gψ is defined as the orbit of the composition of
φ and ψ , when it exists.

Lemma 5.8 Let α : G � L be a group action on an AOM. The following hold for
every A ∈ K(L ) and g ∈ G.

(1) L /g(A) = g−1(L /A) and hence qα(L /A) = qα(L /g(A)).
(2) If g(A) �= A, then L /A ∩L /g(A) = ∅.
(3) There is a canonical isomorphismof categories qα(F (L /A)) ∼= qα/A (F (L /A)).
(4) There is a canonical isomorphismof categories qα(F (L /A)) ∼= qα(F (L / cl(A))).

Proof The first statement can be checked straightforwardly. The second follows from
Lemma 5.5, as any X ∈ L /A ∩ L /g(A) would have ze(X) ⊇ A ∪ g(A), but
translativity of the induced action on S (L ) implies that A ∪ g(A) can only be a
central set if g(A) = A.

For the third statement, we regardF (L ) as an acyclic category and we denote by
X � Y the unique morphism between any two X ,Y ∈ F (L /A), if one exists. Now
the assignment

Mor(qα(F (L /A))) → Mor(qα/A (F (L /A))), G(X � Y ) �→ stab(A)(X � Y )

(6)

is well-defined since any representative (X ′ � Y ′) ∈ G(X � Y ) has the form (X ′ �
Y ′) = g(X � Y ) for some g ∈ G, and if g /∈ stab(A) then g.X , g.Y /∈ F (L /A) by
part (2). The proof of item (3) is complete by noticing that (6) describes the inverse
of the natural functor qα/A (F (L /A)) → qα(F (L /A)) induced by the inclusion
stab(A) ⊆ G.

For item (4), notice that for translative actions we have stab(A) = stab(cl(A))

(see, e.g., [17, Lem. 8.1]) and the isomorphism L /A ∼= L / cl(A) (see Remark
2.22) is equivariant. This induces a natural isomorphism of diagrams, and hence an
isomorphism of quotients. Alternatively, (4) can be verified explicitly via Remark 5.7.

��

123



Discrete & Computational Geometry

5.1 Actions on Parallelism Classes

Lemma 5.9 If the action of G on (E,L ) is sliding, then the restriction of the action
on each parallelism class π is an action by order isomorphisms of the ordered set
(π,<π).

Proof Letπ be a parallelism class of (E,L ). Since the definition of<π is independent
on reorientation, by passing to a suitable reorientation of L (as in Corollary 2.28)
and recalling Remark 2.25 we can assume that e <π f if and only if σ f (e) = +,
for all e, f ∈ π . Now let g ∈ G and consider any two X ,Y with X(g( f )) =
Y (g( f )) = 0. This means g−1.X( f ) = g−1.Y ( f ) = 0 and, since g−1.X , g−1.Y ∈
g−1.L = L , the order relation e <π f implies g−1.X(e) = g−1.Y (e) = σ f (e) = +.
Since X(g(e)) = g−1.X(e) and Y (g(e)) = g−1.Y (e), we conclude σg( f )(g(e)) =
X(g(e)) = Y (g(e)) = + and so g(e) <π g( f ).

Now the assignment e �→ g−1(e) from π to π is order preserving as well, and it is
an inverse to e �→ g(e). The latter is thus an order isomorphism. ��

Proposition 5.10 Let π be a parallelism class of an FAOM (E,L ) with a sliding
action of a group G and recall the order isomorphism jπ from (1).

For every g ∈ G there is k(g)π ∈ Z such that jπ (g(e)) = k(g)π + jπ (e) for all
e ∈ π . If π � E∗,∗ then k(g)π = 0 for all g, and so G acts trivially on π .

Proof Let g ∈ G and π a parallelism class. By Lemma 5.9 the map g is an order
isomorphism on π . If π ⊆ E0,1 ∪ E0,∗ then this implies that g acts as the identity on
π . Otherwise, under the order isomorphism jπ from (π,<π) to Z the map g carries
over to an order automorphism of Z, and those are exactly the maps “addition by a
constant”. ��

Remark 5.11 The function k : G → Z
π(E) defined by g �→ k(g)∗ is a group homo-

morphism.

Corollary 5.12 The isomorphism FB̃ → I(B) from Theorem 4.6 is equivariant with
respect to the induced G-action on the left, and the G-action on I(B) defined by
i �→ i + k(g) for every g ∈ G.

Proof The stated poset isomorphism maps any X ∈ FB̃ to iX ∈ I(B). Now, for
every g ∈ G and every parallelism class π we have δg.X (π) = g(δX (π)) (recall
Corollary 3.37) and therefore

ig.X (π) =
{
jπ (g(δX (π))) if g.X(δg.X (π)) = 0
jπ (g(δX (π)))− 1

2 if g.X(δg.X (π)) = −
=

{
jπ (δX (π))+ k(g)π if X(δX (π)) = 0
jπ (δX (π))− 1

2 + k(g)π if X(δX (π)) = −
}

= iX (π)+ k(g)π .

��
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5.2 Topological Aspects

We now consider the topology of quotients of covector posets of AOMs under a group
action. A preliminary remark is in order:

Definition 5.13 If a group G acts on an FAOM (E,L ), let

Qα : ‖F (L )‖ → ‖F (L )‖/G

denote the topological quotient map.

We will study in particular the case where the quotient map is a topological cover.
This happens for instance if the group action is free.

Definition 5.14 Call an action α : G � L free if the induced action on L is free.

Lemma 5.15 If the action α is free, then qα is a regular covering of acyclic cate-
gories, Qα = ‖qα‖ is a topological covering map and there is an isomorphism of cell
complexes

‖qα(F (L ))‖ ∼= Qα(‖F (L )‖).

Proof By definition, any action of G on (E,L ) induces an action by rank-preserving
automorphisms onF (L ). The Lemma then followswith [16, Lem.A.19, Corr. A.20].

��
Theorem 5.16 Let (E,L ) be a nonempty FAOMwith a distinguished basis B ⊆ E∗,∗,
and let a free abelian group G ∼= Z

|B| act on (E,L ) so that the induced action on
L [B̃] is free. If the action is sliding, then ‖F (L )//G‖ is homeomorphic to the |B|-
torus (S1)|B|.

Proof First note that, by Remark 5.15, there is a homeomorphism ‖F (L )/G‖ !
‖F (L )‖/G. Moreover, the restriction map L → L [B̃] is G-equivariant, and so
is the homeomorphism of nerves that it induces (see Proposition 4.12). Therefore
the quotients ‖F (L )‖/G and ‖FB̃‖/G are homeomorphic. Analogously we have
a homeomorphism with ‖I(B)‖/G, where the action is the one described in Corol-
lary 5.12.

Now Lemma 4.10 gives a concrete realization of ‖I(B)‖ as R
|B|, and on this real-

ization the G-action described in Corollary 5.12 corresponds to the action of the
subgroup k(G) of the group of integer translations Z

|B|. Since stabilizers of k(G) are
trivial (by the freeness assumption), the subgroup k(G) is full-rank, and so R

|B|/k(G)

is homeomorphic to a |B|-torus, as was to be proved. ��
Corollary 5.17 Let α : G � L , let B be as in the statement of Theorem 5.16, and let
A ∈ K(L ). Then, Qα(‖F (L /A)‖) is homeomorphic to a (|B|−rk(A))-dimensional
torus.
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Proof Wecheck that the actionα/A satisfies the hypotheses of Theorem 5.16; the claim
about the dimension follows with Corollary 3.34. The action is sliding by Lemma 5.4
and free, e.g., by Remark 2.11. We claim that there is a basis B ′ ofL /A with B ′ ⊆ B.
In fact, by (CR2) in the semimatroidS (L ) any maximal independent subset I ⊆ A
can be completed to a basis J of S (L ) using elements from B, and it is enough to
take B ′ := J\I . Now for every b′ ∈ B ′ and every b′′ ∈ π(b′) we have, again by
(CR2), that A ∪ {b′} ∈ K(L ). Moreover, b′ /∈ cl(A) implies A ∪ {b′′} ∈ K(L ) and
b′′ /∈ cl(A). Therefore b′′ ‖ b′ in L /A, and so the parallelism class of b′ in L /A
contains the parallelism class of b′ inL . In particular, B ′ ∈ (E\A)∗,∗. We are left to
check that stab(A) acts freely on (L /A)[B̃ ′] which is straightforward. ��

5.3 Toric Pseudoarrangements

Throughout this section let α : G � L denote a free and sliding action of a finitely
generated free abelian group G on an FAOML , and suppose thatS (L ) has a basis
B ∈ E∗,∗.

Definition 5.18 Via the embedding ι{e} of Remark 2.11 we can identify ‖F (L /e)‖
with the subcomplex

He := ‖ι{e}(F (L /e))‖ ⊆ ‖F (L )‖.

Let T := ‖F (L )‖/G and, for every a ∈ E/G, let

Ta := Qα (He) ,

where e is any representative of a (this is well-defined by Lemma 5.8(1)). We then let

Aα := {Ta | a ∈ E/G}.

We call any such arrangement of subspaces of the torus T a toric pseudoarrangement.
IfS (L ) has no loops, Aα is called proper

Example 5.19 Figure3 shows the toric pseudoarrangement obtained by quotienting the
pseudoarrangement of Fig. 2 by the action of Z

2 by translations whose fundamental
region is shaded in Fig. 2.

Lemma 5.20 Every toric pseudoarrangement Aα as in Definition 5.18 defines a CW-
complex structure K (Aα) on T , with one cell for every object in qα(F (L )).

IfAα is proper, the union ∪Aα is the (d−1)-skeleton of K (A ), here d = dim T =
rk(L ). In particular, the complement of ∪Aα in T is a union of open d-cells.

Proof For every GX ∈ Ob(qα(F (L ))), by [16, Lem. A.19] freeness of the action
implies that the slice category below GX (see [16, Defn. A.3]) is isomorphic to the
principal order ideal F (L )�X whose geometric realization is a rk(X)-ball BX with
boundary ‖F (L )<X‖. Now [16, Lem. A.4] implies that the interior of BX includes
homeomorphically into an open subsetUGX of T . We haveUGX ∩UGY = ∅whenever
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GX �= GY , and clearly T is the union of allUGX . We claim that this is a CW-structure
on T , and we prove it by checking the conditions given in [28, Sect. 38].

First, since nerves of categories are defined as CW-complexes, the total space T
is Hausdorff. The required continuous map of BX into T carrying the interior of BX

to UGX and the boundary to a finite union of cells is the canonical map from the
realization of the slice below GX to T (see [16, Defn. A.3], where this map is called
jGX ). Moreover, the closure UGX of UGX in T is a subcomplex of the geometric
realization ‖qα(F (L ))‖ (i.e., the the image of jGX in [16, Defn. A.3]), and since the
latter is a CW-complex, it follows that any V ⊆ T is closed if V ∩ UGX is closed in
UGX .

From this description follows in particular that the k-skeleton of K (Aα) is the union
of allUGX with rk(X) � k. Now, X has maximal rank if and only if it is a tope and, if
L has no loops, being a tope implies ze(X) = ∅, hence X /∈ F (L /e) for all e ∈ E .
Conversely, any X that is not of maximal rank is contained in some He, thus ∪Aα

is exactly the (d − 1)-skeleton of K (Aα), and the complement of ∪Aα in T is the
disjoint union of all UGX where X is a tope. ��

The topological tameness expressed by Lemma 5.20 allows us to apply Zaslavsky’s
theory of topological dissections in order to enumerate the open cells constituting the
complement of a toric pseudoarrangement Aα . The stepping stone is determining the
poset of connected components of intersections of Aα .

Proposition 5.21 The poset of connected components of intersections of Aα is iso-
morphic to the quotient poset F(L )/G. Moreover, every intersection is topologically
a torus (S1)d−r where r is the rank of the corresponding element in F(L )/G.

Proof Let A := {a1, . . . , am} ⊆ E/G and write K = K(L ) for the set of central sets
of the underlying semimatroid (see Definition 3.28). Then

Q−1G (Ta1 ∩ . . . ∩Tam ) =
⋃

e1∈a1,...,em∈am
He1 ∩ . . . ∩Hem

=
⋃

e1∈a1,...,em∈am{e1,...,em }∈K

‖F (L /{e1, . . . , em})‖.

The right-hand side union is disjoint by Lemma 5.8, and by Corollary 5.17 each
of its members maps under QG to a torus of dimension d − rk(L [A]). Therefore,
the connected components of Ta1 ∩ . . . ∩ Tam correspond to G-orbits of maxi-
mal elements of K(L [A]), the index set of the r.-h.s. union. More precisely, the
component ‖F (L /{e1, . . . , em})‖ corresponds to such an orbit G{e1, . . . , em} and
has dimension rk(L ) − rk({e1, . . . , em}). Let X be the closure of {e1, . . . , em} in
S (L ). By Lemma 5.8(4), we have ‖F (L /{e1, . . . , em})‖ = ‖F (L /X))‖ and
rk(X) = rk({e1, . . . , em}). Comparingwith the definition of F(L )/G gives the claim.

��
Theorem 5.22 Let α : G � L denote a free and sliding action of a finitely generated
free abelian group G on an FAOML , and suppose thatS (L ) has a basis B ∈ E∗,∗.
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We use α to denote the induced G-semimatroid α : G � S (L ), and let Tα(x, y)
be the associated Tutte polynomial (see Definition A.15). Then Tα(x, y) computes the
number of connected components of the arrangement’s complement as follows:

|π0 (T \ ∪Aα)| = Tα(1, 0)

Remark 5.23 In analogywith the case of enumeration of faces of arrangements [34], by
passing to contractions and using the properties of Tutte polynomials of group actions
derived in [17], Theorem 5.22 leads to enumerating faces of Aα of any dimension.

Proof of Theorem 5.22 This is an application of Zaslavsky’s dissection theory and of
the theory of group actions on semimatroids. In fact, if K is a finite CW -complex,
{He}e∈E is any set of (proper) subcomplexes and {R j } j∈J is the set of connected
components of the complement K \⋃

e∈E He, then [35, Lem. 1.1 and Thm. 1.2] states
that

∑

j∈J
κ(R j ) =

∑

p∈P
μ(p)κ(p)

where P is the poset of connected components of intersections of the Hes ordered by
reverse inclusion, μ is the Möbius function of P , and κ is the “combinatorial Euler
number” (κ(X) equals Euler characteristic of X if X is compact, and otherwise it
equals the Euler characteristic of the one-point compactification, see [35, Sect. 1]).

Now we can apply this to the CW-complex K (Aα) and the collection of sub-
complexes Aα . By Lemma 5.20, all R j s are open d-cells and thus

∑
j∈J κ(R j ) =

(−1)d |π0 (T \ ∪Aα)|. Moreover, by Proposition 5.21 the poset of connected compo-
nents of intersections is F(S )/G and everyGX ∈ F(S )/G is a torus (S1)d−r where
r is the rank of GX in F(S )/G. Thus, κ(GX) �= 0 only if GX is a maximal element
of F(S )/G and, in that case, GX is a single point, whence κ(GX) = 1. In summary,
we can express the desired number of connected components as

(−1)d |π0 (T \ ∪Aα)| =
∑

GX∈max F(S )/G

μF(S )/G(GX) = χF(S )/G(0),

where the last equality is the definition of the characteristic polynomial (see Sect.
A.1.1).

Now, α is translative by Lemma 5.5, and by Theorem A.16 the characteristic poly-
nomial of the poset F(L )/G equals (−1)dTα(1− t, 0), thus the claim follows. ��

6 Open Questions

6.1 Pseudoarrangements in Euclidean Space

Considerable work has been devoted to the study of arrangements of (and in) general
manifolds - see, e.g., the introduction of [18] for a recent account. An open problem in
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this context is the one discussed in [19], namely to give a topological characterization of
the arrangements that can appear as realizations of a (finite) AOM. Our work suggests
the following reformulation.

We say that Y is a pseudohyperplane in X if there is a homeomorphism of X with
R
n , for some n, that carries Y to a coordinate hyperplane. In particular, X\Y consists of

two connected components, which we can label as the “positive” and “negative” side
of Y in X . With this, call pseudoarrangement in R

d any collection A = {He}e∈E of
pseudohyperplanes ofR

n such that (1)A is finitary (every p ∈ R
d has a neighborhood

that intersects only finitely many He), and chambers have finitely many walls; (2) if
Y = ⋂

e∈A He is the intersection of some of the pseudohyperplanes and e ∈ E is such
that He ∩ Y �= ∅, then either Y ⊆ He or Y ∩ He is a pseudohyperplane in Y ; (3) the
intersection of any family of elements of A , when nonempty, is clean in the sense
of Bott (i.e., every point of R

d has an open neighborhood U with a homeomorphism
U → R

n that sends the intersections of the He withU to a finite arrangement of linear
hyperplanes, see [18, Sect. 3] for a precise statement); (4) parallelism (He‖H f if and
only if He ∩ H f = ∅) is an equivalence relation.

An “oriented” pseudoarrangement is a pseudoarrangement with a choice of a “pos-
itive” and “negative” side of every He. An oriented pseudoarrangement A gives rise
to a set L (A ) of sign vectors on E as in Sect. 1.2.1.

(Q1) Conjecture: For every oriented pseudoarrangement A , L (A ) is the set of
covectors of a unique simple FAOM. Conversely, every simple FAOM arises
this way.

Remark 6.1 Conditions (2) and (3) above define what Forge and Zaslavsky call an
“affine topoplane arrangement”. In the finite case, our conjecture amounts to the con-
verse of their [19, Lem. 11] and is proved in rank 2 as [19, Thm. 13]. A positive
answer to (Q1) would also solve the questions stated in [19] about topology of faces
and structure of intersection semilattices of pseudoarrangements.

6.2 Toric OrientedMatroids and Pseudoarrangements

The results of Sect. 5 suggest the categories qα(F (L )) associated to a free and sliding
action on an FAOML as the counterpart of covector posets for toric arrangements, see
Sect. 1.2.2 for an outline of this context. In order to fully develop an oriented matroid
theory for arrangements on the torus we ask the following questions.

(Q2) Find an intrinsic axiomatic description of the class of acyclic categories that
can be obtained as qα(F (L )) for a free and sliding action on an FAOM L .
This framework should include for instance Aguiar and Petersen’s posets of
labeled necklaces [1].

(Q3) Find a topological characterization of the pseudoarrangements on the torus
that arise as Aα = {Ta}a∈E/G in Sect. 5.3.

In this context, Pagaria [30] proposed an algebraic notion of orientable arithmetic
matroid and asked whether it can be interpreted in terms of pseudoarrangements
in the torus. Every toric pseudoarrangement in the sense of Definition 5.3 has an
associated matroid with multiplicity (via the induced group action on the underlying
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semimatroid), but the multiplicity does not have to be arithmetic—for example, the
one associated to the pseudoarrangement in [17, Fig. 11] is not. On the other hand, for
example the multiplicity matroid underlying to the non-stretchable infinite pseudoar-
rangement in [17, Fig. 2, left-hand side] is arithmetic, and indeed orientable—take
any orientation of the underlying uniform matroid U2,5—(however, of course it has
not the “GCD” property from [30, Sect. 8]).

(Q4) Does every orientable arithmetic matroid as defined by Pagaria [30] arise from
a toric pseudoarrangement in the sense of Sect. 5.3?

6.3 Further Topological Interpretation: Salvetti Complexes

To every oriented matroid one can associate a cell complex that, in case the oriented
matroid comes from a finite arrangement of hyperplanes, carries the homotopy type of
the complement of the arrangement’s complexification. This cell complex is usually
called “Salvetti complex”, and its cohomology is described by the underlyingmatroid’s
Orlik-Solomon algebra [20]. The construction can be carried out also for infinite affine
arrangements and, indeed, for every FAOM L , yielding a regular CW-complex with
poset of cells M(L ). Moreover, given a group action α : G � L , we can consider
the category M (α) := M(L )//G. If α is the action by deck transformations on the
periodic hyperplane arrangement that is obtained by lifting a toric arrangement to the
universal cover of the d-torus, thenM (α) is the category studied in [14, Sect. 2.5]. In
particular, thePoincaré polynomial of‖M (α)‖ is tdTα(2+1/t, 0) (recallRemarkA.17
and see [12, Thm. 3.5.(2)]), the space ‖M (α)‖ is minimal [14, Corr. 6.10] and its
cohomology algebra can be described by an Orlik-Solomon type presentation [10].
Now let α be any free and sliding action of a finitely generated free abelian group G
on a FAOM with a basis B ⊆ E∗,∗.

(Q5) Is t |B|Tα(2+1/t, 0) the Poincaré polynomial of‖M (α)‖? Is‖M (α)‖minimal?
(Q6) Is there a presentation of the cohomology algebras H∗(‖M (α)‖, Q) and

H∗(‖M (α)‖, Z) that extends the one for the case of toric arrangements given
in [10]?

6.4 Beyond FOAMs

In many of our results one can observe that indeed not all axioms of FAOMs are
needed. This leads to questions concerning the generalizability of the theory. We want
to single out the study of finitary and general COMs and their group actions as a
worthwhile endeavour. A natural problem to attack in this spirit is the following.

(Q7) Characterize tope graphs of finitary or general COMs.

Note that some classes of tope graphs of finitary COMs have been studied already,
e.g., median graphs [5, 22, 27] and more generally hypercellular graphs [11].
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Appendix A

A.1 Simplicial Complexes and Posets

We collect here some basic terminology and background material about combinatorial
topology.Wewill onlymentionwhat is strictly necessary in order tomakeour treatment
self-contained, and refer the reader to the literature for more.

A.1.1 Posets

A partially ordered set (or poset for short) is a set P with a reflexive, antisymmetric
and transitive binary relation on P , usually denoted by �. The relation � is a total
order, and P is a totally ordered set if, for all p, q ∈ P one of p � q or q � p holds.
If P has a unique maximal (resp. minimal) element, this is denoted 1̂P (resp. 0̂P ) and
P is called “bounded above” (resp. “bounded below”). A bounded poset is one that
is both bounded above and below. Write P := {P \ 0̂P } (so that P = P if P is not
bounded below), let P∧ := P � 1̂, resp. P∨, denote the poset P extended by a new,
maximal (resp. minimal) element. Moreover, write P∧∨ for (P∧)∨.

A subset Q ⊆ P is called an order ideal if x ∈ Q and y � x imply y ∈ Q; dually,
an order filter is any Q ⊆ P such that x ∈ Q and y � x imply y ∈ Q. To every
A ⊆ P we associated the order ideal P�A := {x ∈ P | ∃a ∈ A : x � a} and the
order filter P�A := {x ∈ P | ∃a ∈ A : x � p}. The meet, resp. join, of p, q ∈ P is
defined as p ∨ q := 1̂P�p∩P�q , resp. p ∧ q := 0̂P�p∩P�q , if this exists. We call P a
meet-semilattice, resp. join-semilattice if p ∨ q, resp. p ∧ q, exists for all p, q ∈ P .
A lattice is a meet-semilattice that is also a join-semilattice.

A poset is pure if every maximal chain p0 < p1 < · · · < p� in P has the same
length �; this number is called the length of P . If for a given x ∈ P the poset P�x is
pure, then its length is the rank of x . If the rank of every x ∈ P is defined and finite,
P is called ranked. The poset P is graded if it is bounded and ranked. Write p � q,
and say “q covers p”, if p � x < q implies p = x . A saturated chain is one of the
form p0 � p1 � · · ·� p�. If P is bounded-below, the atoms of P are the elements that
cover 0̂P .

The characteristic polynomial of a bounded-below, ranked poset P of finite length
� is

χP (t) :=
∑

p∈P
μP (p)t�−rank(p),

where μP (p) is the Möbius Function of P , defined recursively as μP (̂0) = 1 and, for
all p ∈ P ,

∑
x�p μP (x) = 0.

A.1.2 Simplicial Complexes

An abstract simplicial complex on the vertex set V is any family � of finite subsets of
V such that every subset of a member of the family is again a member of the family
(i.e., σ ∈ � and τ ⊆ σ implies τ ∈ �).
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A geometric simplicial complex is a collection of simplices (i.e., convex hulls of
finite, affinely independent sets of points) in Euclidean space that is closed under taking
faces of simplices, and such that the intersection of any two simplices in the collection
is a face of both. The union of all simplices of a geometric simplicial complex is called
the underlying space of the complex. The collection of all sets of vertices of simplices
of a geometric simplicial complex is an abstract simplicial complex, which we say
is “realized” by the given geometric complex. Since any two geometric complexes
realizing the same abstract complex have homeomorphic underlying spaces, it makes
topological sense to talk about “the” geometric realization of an abstract simplicial
complex. The dimension of an abstract simplex σ ∈ � is one less than its cardinality,
which corresponds to the dimension of any geometric simplex realizing the abstract
complex 2σ . A geometric (resp. abstract) simplicial complex is called pure if all
its maximal simplices (resp. its maximal elements) have the same dimension (resp.
cardinality). It is customary to call facets of a simplicial complex its nontrivial faces
of maximal dimension. A facet’s facet is a ridge of the given complex.

A powerful tool for the study of the topology of simplicial complexes is the theory
of shellability introduced by Björner.

Definition A.1 (See [7, Defn. 1.1 and Rem. 4.21]) An abstract simplicial complex
� pure of dimension d is called shellable the set of its maximal elements can be
well-ordered in a way that, for every σ that is not the initial element in the order,

σ ∩
(⋃

σ ′<σ 2σ ′
)
is a pure, (d − 1)-dimensional complex. Shellable complexes have

very restricted homotopy types (see, e.g., [7], and Remark A.5).

The link of a simplex σ ∈ � is the abstract simplicial complex Lk(σ ) := {τ ∈ � |
τ ∩σ = ∅, τ ∪σ ∈ �}. If � is pure of dimension d, then Lk(σ ) is pure of dimension
d − |σ |. Moreover, every shelling order for � induces a shelling order for Lk(σ ).

A.1.3 Order Complexes of Posets

To every partially ordered set P one can associate the family
(P) of all finite subsets
of P that are totally ordered as sub-posets of P (such finite subsets are called chains
of P). The collection 
(P) is called the order complex of P , and it is naturally an
abstract simplicial complex, with P as vertex set. We write ‖P‖ for the geometric
realization of the order complex of P .

Remark A.2 Notice that the geometric realization of a chain is a simplex with one
vertex for each element of the chain. Therefore, the length of the chain corresponds
to the dimension of the simplex. The length of a poset P is the maximum length of a
chain in P (if this maximum exists), and thus corresponds to the dimension of ‖P‖.
If P is a ranked poset, for every p ∈ P the dimension of ‖P�p‖ equals the rank of p.

There are several techniques available in order to determine whether the order
complex of a poset is shellable. We recall the notion of a recursive coatom ordering.

Definition A.3 ([33, Sect. 7]) Let P be a graded poset of finite length � and let ≺ be a
well-ordering of the setU of coatoms of P (i.e., the elements of P covered by 1̂). This
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ordering is a recursive coatom ordering for P if either � � 2, or � > 2 and, for every
coatom a of P there is a recursive coatom ordering of P�a in which the elements of
the set Qa of coatoms of P�a ∩

(⋃
a′≺a P�a′

)
come first.

Remark A.4 Notice that, for every p ∈ P , the set Qp is completely determined by the
ordering ≺ (see discussion after [8, Defn. 4.7.17]).

Remark A.5 (Recursive coatom orderings and shellings) A recursive coatom ordering
on a graded poset P induces a total order on the chains of P that is a shelling order
for 
(P), and implies that ‖P‖ is homotopy equivalent to a wedge of spheres. Those
spheres are indexed by “critical chains”, i.e., maximal chains ω ⊆ P such that for
every p ∈ ω the set ω \ {p} is contained in some chain that comes before ω in the
ordering. Notice that whether a maximal chain ω is critical or not only depends on the
ordering of the coatoms up to maxω.

Remark A.6 (Face posets of regular CW-complexes) To every regular CW-complex
K we can associate the poset F(K ) of all (closed) cells of K , partially ordered by
inclusion. Then, ‖F(K )‖ is homeomorphic to F(K ) (in fact, the order complex of F
is the barycentric subdivision of K ).

Let P be a graded poset. Following [8, Sect. 4.7] we call P thin if every interval of
length 2 in P has exactly 4 elements. We call P subthin if intervals of length 2 have
either 3 or 4 elements, where the first case enters only if the interval contains 1̂, and
indeed does enter at least once. Recall that the poset of cells of a regular CW complex
is the set of all (closed) cells, ordered by inclusion.

Proposition A.7 Let P be a finite, graded poset of length �+ 2.

(1) P is the poset of cells of a shellable, regular cell decomposition of the �-sphere if
and only if P is thin and admits a recursive coatom ordering.

(2) P is the poset of cells of a shellable, regular cell decomposition of the �-ball if
and only if P is subthin and admits a recursive coatom ordering. Moreover, the
maximal simplices in the boundary of ‖P‖ correspond exactly to saturated chains
ω′ ⊆ P of length �− 1 and such that the interval P�maxω′ has only 3 elements.

Proof This is [8, Prop. 4.7.24], the claim about the boundary in item (2) easily follow-
ing from the fact, mentioned in the referred proof, that ω′ indexes a boundary simplex
if and only if it can be completed in exactly one way to a maximal chain of P . ��

A.1.4 Group Actions on Posets and Acyclic Categories

The geometric realization of the order complex of a poset can be generalized as
follows. A small category C is called “acyclic” if the only invertible morphisms in C
are endomorphisms, and the only endomorphisms are the identities.3 The geometric
realization ‖C‖ of C is a regular CW-complex whose cells are indexed by composable

3 Two comprehensive references for this point of view are [26] (in the context of computational algebraic
topology) and [9] (in the context of geometric group theory, and in particularwithout finiteness assumptions).
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chains of morphisms of C [16, App. A1]. The category C may arise from a poset P
by taking P as the set of objects of C and declaring that there is at most a morphism
between any two elements, and one morphism p → q exists when p � q: in this
case the geometric realization of C is ‖P‖. Conversely, to every acyclic category C is
associated a poset C, i.e., the set of objects of C partially ordered by x � y if and only
if MorC(x, y) �= ∅. We call C ranked if C is.

The category-theoretic point of view is useful when dealing with group actions,
as we explain next. Let SCAT denote the category of small categories. We call AC
the full subcategory of SCAT with objects all acyclic categories. Although AC is
cocomplete, its colimits do not coincide with colimits taken in SCAT. In particular,
given C ∈ Ob(AC) and an action of a group G on C, we write C//G for the quotient
object in AC. See [14, Sect. 5.1] for a study of colimits in AC and [16, App. A.4] for an
explicit treatment of quotients by group actions. In particular, if a group G acts on an
acyclic category C then it acts on the cell complex ‖C‖ and, under certain conditions
there is an isomorphism of cell complexes ‖C//G‖ ! ‖C‖/G (see, e.g., [16, Corr.
A.20]).

Remark A.8 (P/G and P//G) A poset P can be thus considered as an object in the
category POS of partially ordered sets and order preserving maps, or as an acyclic
category, as described above. This distinction entails that on posets we may consider
two different types of “quotients”. Let a groupG act on a poset P . Then on the set P/G
of orbits of elements of P we can consider a binary relation � defined by Gp � Gq
if and only if p � gq for some g ∈ G. Under some mild conditions, this defines a
partial order relation (e.g., when P is of finite length, see [13, Sect. 2.1]) and we can
speak of the quotient poset P/G. It is important to underscore that in general the poset
P/G, viewed as an acyclic category, is different from the quotient category P//G.

A.2 Semimatroid Theory

We recall some basic definitions and set up some notations from the theory of semi-
matroids and geometric semilattices, and group actions thereon. We follow mainly
[17], to which we refer for a more thorough treatment as well as for a brief historical
sketch of the subject.

A.2.1 Finitary Semimatroids

Definition A.9 A finitary semimatroid is a triple S = (E,K, rk) consisting of a
(possibly infinite) set E , a non-empty simplicial complex K on E and a function
rk : K→ N satisfying the following conditions.

(R1) If X ∈ K, then 0 � rk(X) � |X |.
(R2) If X ,Y ∈ K and X ⊆ Y , then rk(X) � rk(Y ).

(R3) If X ,Y ∈ K and X ∪ Y ∈ K, then rk(X)+ rk(Y ) � rk(X ∪ Y )+ rk(X ∩ Y ).

(CR1) If X ,Y ∈ K and rk(X) = rk(X ∩ Y ), then X ∪ Y ∈ K.

(CR2) If X ,Y ∈ K and rk(X) < rk(Y ), then X ∪ y ∈ K for some y ∈ Y − X .
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Definition A.10 A loop of a semimatroidS = (E,K, rk) is any s ∈ E with rk(s) = 0.
We callS simple if it has no loops and if rk(x, y) = 2 for all {x, y} ∈ K with x �= y.

Definition A.11 LetS = (S,K, rk) be a finitary semimatroid and X ∈ K. The closure
of X in K is

cl(X) := {x ∈ S | X ∪ x ∈ K, rk(X ∪ x) = rk(X)}.

A flat of a finitary semimatroidS is a set X ∈ K such that cl(X) = X . The set of
flats of S ordered by containment forms the poset of flats of S .

A.2.2 Geometric Semilattices

Geometric semilattices offer a poset-theoretic cryptomorphism for semimatroids, just
as geometric lattices do for matroids. However, the study of geometric semilattices
goes back to work of Wachs and Walker [33] that predates the introduction of semi-
matroids and does not restrict to the finite case. We review the definition and prove
a cryptomorphism, slightly improving on [17, Thm. E]. Recall that a set A of atoms
of a ranked, bounded-below meet-semilattice is called independent if ∨A exists and
its the poset-rank equals the cardinality of A. This is equivalent to saying that A is
minimal under all A′ such that ∨A′ = ∨A.
Definition A.12 (see [33, Thm. 2.1]) A geometric semilattice is a chain-finite ranked
meet-semilattice L satisfying the following conditions.

(GSL1) Every (maximal) interval in L is a finite geometric lattice.
(GSL2) For every independent set A of atoms ofL and every x ∈ L such that rkL(x) <

rkL(∨A), there is a ∈ A with a 	 x and such that x ∨ a exists.

Theorem A.13 A poset L is a geometric semilattice if and only if it is isomorphic
to the poset of flats of a finitary semimatroid. More precisely, there is a one-to-one
correspondence between

(1) Subposets L ⊆ Pfin(E) of the poset of finite subsets of a set E ordered by
inclusion, such that L is a chain-finite ranked meet-semilattice with respect
to set intersection, such that (GSL2) holds and such that, for all X ∈ L, L�X
is the (geometric) lattice of flats of a matroid.

(2) Finitary semimatroids (E,K, rkL).

The correspondence is as follows: given L as in (1) let K := ⋃
X∈L 2X and for every

A ∈ K define A := minL{X ∈ L | X ⊇ A} (this is well-defined because L is a
meet-semilattice). Let then rk(A) := rkL(A), where rkL denotes the rank function of
L. Then (E,K, rkL) is a finitary semimatroid with poset of flats isomorphic to L.
Proof The proof that the poset of flats of a semimatroid is a geometric semilattice can
be found in [17] (Notice also Remark 5.3. there).

Now let L ⊆ Pfin(E) be as in the claim and consider the triple (E,K, rkL).
The family K is by definition a simplicial complex on E . Since L is chain-finite, the
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function rkL, that measures length of maximal chains in intervals, takes value in N,
and so does rk. Now, (R1), (R2) and (R3) are statements about the value of rkL on
intervals of L (specifically: (R1) on the interval L�X , (R2) on the interval L�Y , (R3)
on the interval L�X∪Y ). By assumption these intervals are geometric lattices of flats
of matroids, and hence the corresponding restriction of rk is a matroid rank function
(on X , resp. Y , X ∪ Y )—in particular, rk satisfies (R1), (R2), (R3), see, e.g., [29].

For (CR1) Let X , Y ∈ K. Trivially X ∩ Y ⊆ X , and so rk(X) = rk(X ∩Y ) implies
X ∩ Y = X . Now, X ∩ Y ⊆ Y and thus X = Y . In particular, L contains an element
(e.g., X ) that contains X ∪ Y , whence X ∪ Y ∈ K.

For (CR2), let X ,Y ∈ K with rk(X) < rk(Y ) and consider AY :=
{{y} | y ∈ Y

}
.

Then, ∨AY = Y (the inclusion ⊇ is trivial, and since {y} ⊆ Y for all y ∈ Y we have
Y ⊇ ⋃

y∈Y {y} hence ∨AY ⊆ Y ). Choose A ⊆ AY minimal such that ∨A = Y . Then

A is independent. Now (GSL2) implies that there is a ∈ A, a � X , such that X ∨ a
exists. Choose y ∈ Y such that {y} = a. Then, X ∪ {y} ∈ K, y ∈ Y and y /∈ X (the
latter since a ∧ X = 0̂, the set of loops, and since y is not a loop y /∈ X ). ��

A.2.3 Group Actions on Semimatroids

Definition A.14 An action of a groupG on a semimatroidS = (E,K, rk) is an action
of G on E by permutations that preserves K and rk. I.e., for every g ∈ G and every
X ∈ K we have gX ∈ K and rk(gX) = rk(X). The action is called translative if, for
every e ∈ E , {e, g(e)} ∈ K implies g(e) = e.

Given such an action, for every X ∈ K we can define #X$ := {Gx | x ∈ X} ⊆
E/G. With this notation, for each A ⊆ E/G let us write

rkα(A) := max{rk(X) | X ∈ K, #X$ = A}, mα(A) := |{X ∈ CC | #X$ = A}/G|
(7)

Definition A.15 Consider an actionα : G � S such that E/G is finite. The associated
Tutte polynomial is

Tα(x, y) :=
∑

A⊆E/G

mα(A)(x − 1)rkα(E/G)−rkα(A)(y − 1)|A|−rkα(A).

Recall that an actionα : G � S induces an action ofG on the geometric semilattice
L(S ) of closed sets. This action is by semilattice automorphisms, and these are in
particular rank-preserving. It follows that the set L/G of orbits of elements L has a
natural partial order: given X ,Y ∈ L let GX � GY if X � gY for some g ∈ G.

Theorem A.16 ([17, Thm. F]) If α is translative and L/G is finite, then

χL/G(t) = (−1)rkα(E/G)Tα(1− t, 0).
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Remark A.17 When α is the group action on the semimatroid associated to a toric
arrangement (via the associated periodic hyperplane arrangement, see Sect. 1.2.2),
then Tα(x, y) is the arithmetic Tutte polynomial of the given toric arrangement, see
[12, 17].

A.3 Finite OrientedMatroids, Regular and Affine

We summarize some basics of the theory of finite (affine) oriented matroids. See [8]
for more.

Definition A.18 Let E be a finite set. A system of sign vectors O ⊆ {+,−, 0}E is the
set of covectors of an oriented matroid (OM) if and only if it satisfies the following
axioms.

(0) 0 := (0, . . . , 0) ∈ O .
(Sym) If X ∈ O then −X ∈ O .

(C) If X ,Y ∈ O then X ◦ Y ∈ O .
(SE=) X ,Y ∈ O, X = Y 
⇒ ∀e ∈ S(X ,Y ) : I=e (X ,Y ) �= ∅.

It is easy to see that (also for arbitrary ground sets E) the above definition is
equivalent to requiring (0), (FS), and (SE), see [4].

A fundamental theorem in oriented matroid theory says thatO is an OM if and only
if it is the set of sign vectors of an arrangement of pseudospheres (i.e., a set of cen-
trally symmetric, tame embeddings of codimension-1 spheres in a sphere, with some
conditions on their intersections, see [8, Sect. 5.1]). In this interpretation, finite affine
oriented matroids appear as sign vectors of the arrangement induced on one of the the
open hemispheres obtained by removing one pseudosphere from the ambient sphere.

Proposition A.19 ([6, Thm. 2.1]) Let E be a finite set. A subset L ⊆ {+,−, 0}E
is the set of covectors of a finite AOM if and only if there is an oriented matroid
O ⊆ {+,−, 0}E�{g} such that L = {X ∈ O | X(g) = +}.
Remark A.20 Notice that in the setting of Proposition A.19 we have thatF (L ) is an
order filter in F (O). In particular, it is ranked (see also [8, Prop. 4.5.3]).

Borrowing some terminology from the theory of arrangements, we say that O is
obtained by coningL with respect to the new element g. It is noteworthy that the set
of sign vectors in O is fully determined by L as in the following remark.

Remark A.21 ([6, Lem. 2.2]) Let L be a finite AOM on the ground set E . Let O
be the set of covectors of the finite OM obtained by coning L with respect to an
additional element g /∈ E . Then O\ (L ∪ −L ) = {N ∈ {+,−, 0}E∪g | N (g) =
0, (±N\g) ◦L ⊆ L }.
Definition A.22 A bounded face of a finite AOML that arises from an OM O is any
X ∈ L such that F (L )�X = F (O)�X , compare [8, Defn. 4.5.1].

Lemma A.23 Let L be a finite AOM on the ground set E, let A ⊆ E and let Y ′ be a
bounded face of L [A]. Then every Y ∈ L such that Y|A = Y ′ is a bounded face of
L .
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Proof Let O be the set of covectors of the finite OM obtained by coning L with
respect to an additional element g /∈ E . Let Y ′ be bounded in L [A] and let Y be
such that Y|A = Y ′. By definition, Y is bounded if and only if O�Y ⊆ L . In view of
Remark A.21, this means that there is no X ∈ O�Y such that (±X) ◦L ⊆ L . By
way of contradiction suppose that such an X exists and consider X ′ := X |A. Then, for
every Z ∈ L [A] we can choose Z ∈ L such that Z |A = Z and then in particular,
(±X ′) ◦ Z = (

(±X) ◦ Z)

|A ∈ L [A] (since (±X) ◦ Z ∈ L ). Since obviously

X ′ � Y ′ inL [A], again by Remark A.21 we conclude that Y ′ is unbounded inL [A],
a contradiction. ��
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