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Abstract
Finding point configurations, that yield the maximum polarization (Chebyshev con-
stant) is gaining interest in the field of geometric optimization. In the present article,
we study the problem of unconstrained maximum polarization on compact sets. In
particular, we discuss necessary conditions for local optimality, such as that a locally
optimal configuration is always contained in the convex hull of the respective darkest
points. Building on this, we propose two sequences of mixed-integer linear programs
in order to compute lower and upper bounds on the maximal polarization, where the
lower bound is constructive. Moreover, we prove the convergence of these sequences
towards the maximal polarization.
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1 Introduction

Suppose you were given a set A and N lamps you are to place such that the darkest
point in A is as bright as possible. In less descriptive terms this max-min problem
is known as the maximal polarization problem, which we now state in mathematical
language.

Let A, D ⊂ Rn be nonempty sets and let K : A × D → R ∪ {+∞} be a function
bounded from below. An N -point multiset C ⊆ D will be referred to as point config-
uration (of N points) and the set of all N -point configurations supported on D will
be denoted by C. We assign the discrete K -potential associated with C to every point
p ∈ A as

UK ,A(p,C) =
∑

c∈C
K (p, c).

To any point configuration we associate its polarization

PK ,A(C) = inf
p∈A

UK ,A(p,C).

It is then natural to consider the (maximal) polarization problem:

PK (A) = sup
C∈C

PK ,A(C). (1)

For a broader context and overview of this formulation of the polarization prob-
lem we refer to the recent monograph [1, CH. 14]. Problems of this kind have been
extensively studied. In particular the case of A = D = Sn−1 being a unit sphere and
K (x, y) = ‖x − y‖−s being related to a Riesz potential is rich in results on explicit
optimal configurations of few points (eg. [2–8]), bounds on maximal polarization (eg.
[4, 7]) and asymptotic results (eg. [9–12]). Asymptotic results are also available for
more general choices of A, such as rectifiable sets.

Moreover, the polarization problem as stated in (1) is closely related to the well-
studied covering problem, i.e. the question, whether A can be covered by N balls
of radius r > 0. In particular, let K (x, y) = 1[0,r ](‖x − y‖), then, a covering with
N balls exists if and only if 1 ≤ PK (A). General discussions of covering problems
can be found, for example in the seminal book by Conway and Sloane [13]. For
covering problems on compact metric spaces we refer to [14] for an overview, whereas
constructive methods have been developed, e.g. in [15] and [16].

In this paper we consider polarization problems of the following kind. The set A ⊂
Rn will be a compact set andwewill impose no restrictions on the point configurations,
i.e. D = Rn . Furthermore, we restrict to functions K (x, y) = f (‖x − y‖) for some
continuous strictly monotone decreasing function f : R+ → R+ and use the notation
U f ,A(p,C), Pf ,A(C),P f (A). If the subscript parameters are clear from context we
omit them.

123



Discrete & Computational Geometry

Under the above assumptions, we therefore consider the optimization problem

P f (A) = sup
C⊂C

Pf ,A(C). (2)

For explicit computations we choose Gaussians f (x) = e−ax2 . These functions
appear rather naturally in the context of universal optimality (cf. [17]): Recall that
a function g : (0,∞) → R is completely monotonic if it is infinitely differentiable
and the derivatives satisfy (−1)kg(k) ≥ 0 for all k. The functions g(x) = e−αx

are completely monotonic and we can write f (‖x − y‖) = g(‖x − y‖2). In this
context functions f (x) = g(x2) are called completelymonotonic functions of squared
distance.

A Theorem of Bernstein (cf. [18, Thm. 9.16]) asserts that every completely mono-
tonic function can be written as a convergent integral

g(x) =
∫

[0,∞)

e−αxdμ(α).

From this one obtains that the set of completely monotonic functions of squared
distance is the cone spanned by the Gaussians and the constant function x �→ 1.

In particular the commonly used Riesz potentials can be written in this way.
We fix some more notation for the case that the infimum Pf ,A is in fact a minimum,

i.e. the minimizers of this function are points in A. In this case, any such minimizer
will be called a darkest point of A. Moreover,

DarkA(C) =
{
p ∈ A :

∑

c∈C
f (‖p − c‖) = Pf ,A(C)

}

will be called the set of darkest points of C . To explain this wording we invite the
reader to recall the interpretation of the problem we gave in the beginning: we center
lamps at the points in C which now illuminate A. The polarization of A is then the
lowest level of brightness any point in A can have, any point realizing this is a “darkest
point”.

Note, that requiring A to be compact is rather natural. Indeed if A were unbounded,
then the value of the polarization would always tend to N · inf f . If A were not closed,
darkest points need not exist. Consider for example A to be the open disc and C only
containing the origin. In this case, Pf ,A(C) is not attained at any point in A.

In Sect. 2 we provide some results connecting a locally optimal configuration to
the set of its respective darkest points. Theorem 2.1 states that the points of such a
configuration are contained in the convex hull of the darkest points while on the other
hand Theorem 2.5 states that the darkest points are located either on the boundary of
A or in the interior of the convex hull of the configuration. These restrictions provide
necessary conditions for optimality.

In Sect. 3 we investigate mixed-integer approximations of the polarization problem
providing upper and lower bounds. These are collected in Theorem 3.5.We then prove
that these bounds indeed converge to P f (A) in Theorems 3.8 and 3.9.
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In Sect. 4 we illustrate capabilities and limitations of the approach on some bench-
mark instances.

2 Darkest Points and Necessary Conditions

In this section, we investigate structural properties an optimal configuration needs to
satisfy in order to potentially falsify the optimality of a given polarization and reduce
the search space of optimal configurations.

In particular, we have the following necessary condition that relates local optimality
of a configuration to the set of its darkest points:

Theorem 2.1 If C is a locally optimal solution of (2), then

C ⊂ convDarkA(C).

Proof Suppose C is a configuration for which we have c ∈ C such that c /∈
conv(DarkA(C)). In the following, we discuss how to construct a new configura-
tion C ′ in an arbitrary neighbourhood of C such that P(C ′) > P(C). Thus C can not
be locally optimal. Since f is continuous, the niveau line

S = {p ∈ Rn : U (p,C) = P(C)}

containing the darkest points is closed and thus DarkA(C) = A ∩ S is compact.
Therefore, conv(DarkA(C)) is a compact convex set and we can find a hyperplane
H = {x : a�x = b} strictly separating this set from c such that a�c < b. For ε > 0
small enough c′ = c + εa still satisfies a�c′ < b. We obtain a new configuration
C ′ = C ∪ {c′} \ {c}. Note, that for every neighbourhood of C , there is a sufficiently
small ε such that C ′ is contained in said neighbourhood. Obviously |c′ − p| < |c− p|
for all points p in the non-negative halfspace of H . In particular c′ is closer to all of
the darkest points than c and since f is monotonously decreasing

U (p,C ′) > U (p,C) ≥ P(C)

for all points p in the non-negative halfspace of H .
It remains to assert this also on the negative halfspace. Since all the darkest points

are on the positive side of H , a point p ∈ A ∩ (H ∪ H−) satisfies

U (p,C) > P(C).

Since A ∩ (H ∪ H−) is compact this yields

U (p,C) ≥ δ > P(C)

for some constant δ. By continuity of f , for ε small enough, we can guarantee that

U (p,C ′) > P(C)
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for all p ∈ A ∩ (H ∪ H−). Altogether,

P(C ′) = inf
p∈A

U (p,C ′) > P(C).

��
The formulated condition is very “unstable” in the following sense:

Proposition 2.2 Let C be a configuration such that C ⊂ convDarkA(C). Let c ∈ C
and c′ �= c and C ′ = C ∪ {c′} \ {c}. Then
1. P(C ′) < P(C) and
2. C ′ � convDarkA(C ′).

Proof 1. Consider the hyperplane H with outer normal c−c′ through c, oriented such
that c′ is on the negative side. Since c ∈ convDarkA(C) there has to be a darkest
point d ∈ DarkA(C) in the non-negative halfspace of H (it might be in H ). Then
‖c−d‖ < ‖c′−d‖ and bymonotonicity f (‖c−d‖) > f (‖c′−d‖). The potentials
U (d,C ′) and U (d,C) differ by f (‖c′ − d‖) − f (‖c − d‖), therefore the above
implies

P(C ′) ≤ U (d,C ′) < U (d,C) = P(C).

2. Suppose C ′ ⊂ convDarkA(C ′). Then we can apply 1. to C ′ with the roles of c, c′
reversed. But this would give P(C ′) < P(C) < P(C ′), which is a contradiction.

��
Optimization methods which only consider single components (like pattern search) or
move single configuration points therefore possibly converge to a configuration con-
tained in the convex hull of the darkest points which is not locally optimal. Therefore
it seems reasonable to only use optimization methods which are able to move several
points at once. Another conclusion is the following, which seems to suggest that the
number of optimization variables can be reduced to only N − 1 vectors.

Corollary 2.3 For given points C ′ with |C ′| = N − 1 there is at most one point c such
that {c} ∪ C ′ ⊂ convDarkA({c} ∪ C ′).

We can use Theorem 2.1 to study the structure of the darkest points even more. First,
we discuss a way to find certificates for p /∈ DarkA(C). To this end, we recall that the
conic hull of a set S ⊆ Rn is given by cone(S) = ⋂

K⊃S: K is a convex cone C .

Lemma 2.4 Let C be a configuration and p ∈ Rn be an arbitrary point. Let

N (p,C) = {p + v : v �= 0 and v�w ≥ 0 for all w ∈ cone{p − c : c ∈ C}}.

1. For all q ∈ N (p,C) we have U (q,C) < U (p,C),
2. if N (p,C) ∩ A �= ∅ then p /∈ DarkA(C).
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Proof Write q = p + v ∈ N (p,C) with v �= 0. Then for all c ∈ C we have

|c − (p + v)|2 = |c − p|2 + 2(p − c)�v + |v|2 > |c − p|2.

Since f is strictly monotone decreasing, we haveU (q,C) < U (p,C). From this, the
second claim follows immediately. ��

Observe that Lemma 2.4 1 implies, that N (p,C) contains only points whose poten-
tial is strictly smaller than the potential at p. If we recall the visualization of the
polarization problem as placing light sources C to illuminate A the above definition
of N (p,C) of a point p contains only points that are illuminated less than p itself. It
is closely related to the idea of a physical shadow as p+ cone{p− c′}with c′ ∈ C can
be seen as the set of points lying in the shadow thrown by object p with respect to light
source c′. In this interpretation p + cone{p − c : c ∈ C} resembles the shadow with
respect to all light sources simultaneously. Note that N (p,C) is defined by replacing
cone{p− c : c ∈ C} by its dual cone1. With this we prove the following result which
further restricts the location of the darkest points:

Theorem 2.5 Let C be a feasible configuration for (2). Then the points of DarkA(C)

are either in the interior of conv(C) or in δA, i.e. DarkA(C) ⊂ int conv(C) ∪ δA.
Moreover, if C is locally optimal for (2), then DarkA(C) ∩ δA �= ∅.

Proof Let p ∈ DarkA(C) and assume p /∈ int conv(C). Furthermore, let N (p,C) be
defined as in Lemma 2.4. We can find a hyperplane H = {x ∈ Rn : a�x = β}
through p separating C from p, in particular a�c ≤ β for all c ∈ C . Then for all
c ∈ C

a�(p − c) = a� p − a�c = β − a�c ≥ 0,

which shows that p + λa ∈ N (p,C) for arbitrary λ > 0. If p ∈ int A, so is p + λa
for λ sufficiently small. Then A ∩ N (p,C) �= ∅ in contradiction to Lemma 2.4. Thus
p ∈ ∂A as claimed.

In addition, if C is also locally optimal for (2) by Theorem 2.1 we immediately
obtain that C ⊂ convDarkA(C). Now, assume DarkA(C) ∩ δA = ∅, then as seen
above DarkA(C) ⊆ int convC and we obtain

C ⊆ convDarkA(C) ⊆ int convC,

which is a contradiction since C is finite. ��

To summarize, locally optimal configurationsC of (2) and its corresponding darkest
points DarkA(C) share a similar containment property as is illustrated in Fig. 1.

1 Recall that the dual cone of a convex cone C ⊆ Rn is the cone {v ∈ Rn : v�w ≥ 0 for all w ∈ C}
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Fig. 1 Illustration of Theorems 2.1 and 2.5. A is depicted in red, DarkA in black and the configuration C
in orange. The dashed lines depict the convex hulls convC and convDarkA(C), whereas the black line
depicts all points p ∈ R2, such that U (p,C) = P(C)

3 AnMIP Approach to Polarization

The current section is dedicated to the development of two hierarchies ofmixed-integer
linear programs (MIP) that approximate the maximal polarization of a compact set A
with respect to a monotonically decreasing and continuous function f : R+ → R+.
The MIP, that computes the lower bounds is constructive, i.e. solutions to this MIP
are configurations whose polarization is lower bounded by the value of the MIP. The
actual polarization of these configurations may very well exceed this lower bound by
a significant margin, cf. Figure 3 for some numerical evidence.

First we give an equivalent description of problem (2). For this we observe that
by Theorem 2.1 any locally optimal point configuration is necessarily supported on
conv(A). Furthermore we can get rid of the infimum by adding new constraints. The
resulting optimization problem is then

P f (A) = max
x,C

x

C ∈
[
conv(A)

N

]

x ≤ U f ,A(p,C) for all p ∈ A, (3)

where

[
X
N

]
describes the set of all multisets of size N with elements in X . It is now

clear, that the sup is actually a max, since the feasible region can easily be made
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compact by bounding x from below (e.g. x ≥ 0) without changing the value of the
program.

3.1 MIP Hierarchies

We observe that Problem (3) is an optimization problem with finitely many variables
(namely x,C), but infinitely many constraints - it is a semiinfinite program (SIP) -
and therefore not solvable using standard solvers. In the remainder of this section we
introduce two hierarchies of (tractable) MIPs, that approximate P(A) from above and
below (see Theorem 3.5). For this we make use of the following concept of functions
which “control” the difference of two values of f .

Definition 3.1 We call a family of functions gc,p : R+ → R+ for c ∈ conv(A), p ∈ A
a family of control functions (with respect to f , A) if for all c ∈ conv(A), p ∈ A:

1. gc,p(0) = 0,
2. gc,p is continuous and non-decreasing,
3. | f (‖c − p‖) − f (‖c′ − p‖)| ≤ gc,p(‖c − c′‖) for all c′ ∈ conv(A),
4. | f (‖c − p‖) − f (‖c − p′‖)| ≤ gc,p(‖p − p′‖) for all p ∈ A,

where ‖ · ‖ denotes the standard Euclidean norm.

Note that f is related to a function K taking twopoints c, p as arguments: K (c, p) =
f (‖c − p‖). A family of control functions allows us to control the way K changes as
we vary either c or p.

This control will be an important ingredient of the proof of Theorem 3.5. For
continuous functions this is related to bounding the slope of K as can be illustrated
by the following example: Suppose the function K (c, ·) = f (‖c − ·‖) is Lipschitz-
continous with Lipschitz constant L for all p ∈ A. Then, gc,p(ε) = L · ε is a valid
control function for f .

However, applying global Lipschitz-continuity is not a very precise approximation
as it ignores local information around specific points c, p. Therefore we provide a
more suitable family of control functions.

Proposition 3.2 For f monotonously decreasing and continuous the following is a
family of control functions:

gc,p(ε) = max(ĝc,p(ε), ĝc,p(−ε)),

where

ĝc,p(x) =
{
f (0) − f (‖c − p‖) if x < −‖c − p‖,
| f (‖c − p‖ + x) − f (‖c − p‖)| otherwise.

Proof We fix c, p and write g = gc,p and ĝ = ĝc,p. Clearly g(0) = ĝ(0) = 0. Since
f is continuous, so is g.
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For x ∈ (−∞,−‖c − p‖) the function ĝ(x) is constant. For x ∈ (−‖c − p‖, 0)
we have

ĝ(x) = f (‖c − p‖ + x) − f (‖c − p‖),

which is decreasing since f is decreasing. For x ∈ (0,∞) we have

ĝ(x) = f (‖c − p‖) − f (‖c − p‖ + x),

which is increasing since f is decreasing. Overall g(ε) = max(ĝ(ε), ĝ(−ε)) is an
increasing function on R+.

By symmetry, it is sufficient to prove that g provides an upper bound for � =
| f (‖c − p‖) − f (‖c − p′‖)| for all p′ ∈ conv(A). To this end, we use the triangle
inequalities

‖c − p‖ − ‖p′ − p‖ ≤ ‖c − p′‖ ≤ ‖c − p‖ + ‖p′ − p‖

and that f is a decreasing function. Then, on the one hand if ‖c− p‖ ≤ ‖c− p′‖, we
have

� = f (‖c − p‖) − f (‖c − p′‖)
≤ f (‖c − p‖) − f (‖c − p‖ + ‖p′ − p‖) = ĝ(‖p′ − p‖) ≤ g(‖p′ − p‖).

On the other hand, if ‖c − p‖ ≥ ‖c − p′‖, we obtain

� = − f (‖c − p‖) + f (‖c − p′‖)
≤ − f (‖c − p‖) + f (‖c − p‖ − ‖p − p′‖) = ĝ(−‖p − p′‖) ≤ g(‖p − p′‖).

��
For explicit computations we need to discretize two aspects of the problem. Firstly,

we discretize the set of possible point configurations. For this we choose a finite sample
	 ⊂ conv(A) and only optimize over

C ∈
[

	

N

]
. (4)

Secondly, we replace the infinite number of constraints, parameterized by A, by a finite
subcollection. For this we again choose a finite sample 
 ⊂ A, and only consider the
inequalities

x ≤ U (p,C) for all p ∈ 
. (5)

However, this naively sampled problem is not necessarily connected to the original
problem, since we enforce only a subset of the infinitely many constraints and allow
only a finite number of configurations. Either one of these changes would provide
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valid bounds but they unfortunately work in different directions. We will now show
how to overcome this problem by utilizing the above family of control functions to
obtain lower and upper bounds on the original problem.

Let us first consider lower bounds on (3). It is clear that we can restrict the choice
of configurations to be supported on a finite sample 	 of conv(A) as in (4) and obtain
a program that computes a lower bound.

Discretizing the constraints is the harder part, since removing constraints lets the
maximum grow. The following lemma shows how a slight variation of discretized
constraints for some finite sample 
 of A imply the validity of all of the infinitely
many original constraints.

Lemma 3.3 Let gc,p be a family of control functions. Let ε > 0,	 be an arbitrary finite

sample of conv(A) and 
 be an ε-net of A. Furthermore, suppose x ∈ R,C ⊂
[

	

N

]

satisfy

x ≤
∑

c∈	

1C (c) · (
f (‖c − p‖) − gc,p(ε)

)
for all p ∈ 
.

Then

x ≤
∑

c∈	

1C (c) · f (‖c − p‖) for all p ∈ A.

Proof Let p ∈ A be arbitrary and n(p) = argmin p̄∈
{‖p − p̄‖} denote the closest
sample point to p ∈ A. Note that ‖p − n(p)‖ < ε since 
 is an ε-net. Then

∑

c∈	

1C (c) f (‖c − p‖) =
∑

c∈	

1C (c) · ( f (‖c − p‖) − f (‖c − n(p)‖))

+
∑

c∈	

1C (c) · (
f (‖c − n(p)‖) − gc,n(p)(ε)

)

+
∑

c∈	

1C (c) · gc,n(p)(ε)

≥ −
∑

c∈	

1C (c) · gc,n(p)(‖p − n(p)‖)

+ x

+
∑

c∈	

1C (c) · gc,n(p)(ε),

which is larger than x since gc,n(p) is non-decreasing and ‖p − n(p)‖ < ε. ��
Conversely, if we consider upper bounds on (3), we now cannot simply choose a

finite sample 	 of conv(A) to approximate the above SIP. Indeed this would restrict
the set of feasible solutions of (3) and thereby lower the maximum instead. Again,
the following lemma provides a way around this problem using a variation of the
constraints.
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Lemma 3.4 Let gc,p be a family of control functions. Let ε > 0 and 	 be an ε-net of

conv(A). Furthermore, suppose C ∈
[
conv(A)

N

]
and x satisfy

x ≤ U (p,C) =
∑

c∈C
f (‖c − p‖) for all p ∈ 
.

Then, there exists a configuration C ′ ∈
[

	

N

]
such that

x ≤
∑

c∈C ′
f (‖c − p‖) + gc,p(ε) for all p ∈ 
.

Proof Let C ′ = {{n(c) : c ∈ C}} where n(c) = argminc′∈	 ‖c − c′‖. Then
∑

c∈C ′
f (‖c − p‖) + gc,p(ε) =

∑

c∈C
f (‖n(c) − p‖) − f (‖c − p‖)

+
∑

c∈C
f (‖c − p‖) +

∑

c∈C
gn(c),p(ε)

≥ −
∑

c∈C
gn(c),p(‖c − n(c)‖) + x +

∑

c∈C
gn(c),p(ε) ≥ x,

where the last inequality holds since gn(c),p is non-decreasing and ‖c − n(c)‖ < ε as
	 is an ε-net of conv(A). ��

Now we can prove the main result of this section.

Theorem 3.5 Let ε	, ε
 > 0 and	 be an ε	-net of conv(A) and 
 be an ε
-net of A.
Furthermore, let gc,p be a family of control functions. Then we have the following:

max x (6a)

y ∈ {0, . . . , N }	
1�y = N

x ≤
∑

c∈	

yc · ( f (‖c − p‖) − gc,p(ε
)) for all p ∈ 


≤ max x (6b)

y ∈ {0, . . . , N }	
1�y = N

x ≤
∑

v∈	

yc · f (‖c − p‖) for all p ∈ A

≤ P(A) (6c)

≤ max x (6d)
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C ∈
[
conv(A)

N

]

x ≤
∑

c∈C
f (‖c − p‖) for all p ∈ 


≤ max x (6e)

y ∈ {0, . . . , N }	
1�y = N

x ≤
∑

c∈	

yc · ( f (‖c − p‖) + gc,p(ε	)) for all p ∈ 
 (6f)

Proof We show, that feasible solutions of the left hand sides are also feasible for the
right hand sideswith the same objective value justifying the asserted inequalities. First,
observe that Lemma 3.3 implies that a feasible solution x, y of (6a) is also feasible for
(6b) and the objective values coincide. Next, we consider a feasible solution x, y of

(6b) and observe that y encodes a multiset C ∈
[

	

N

]
⊆

[
conv(A)

N

]
. Moreover, x,C

satisfy the constraints in (2) and with the same objective value x . The next inequality
follows rather immediately since (6d) is a relaxation of (2) due to dropping constraints
for p ∈ A \ 
. Lastly, if x,C is a feasible solution of (6d), we apply Lemma 3.4 to

obtain a setC ′ ∈
[

	

N

]
satisfying the constraints of (6e). Then, by encodingC ′ through

y ∈ {0, . . . , N }	 with 1�y = N we obtain a feasible solution to (6e) with the same
objectve value x . ��

Let us briefly comment on the computational complexity of the mixed-integer pro-
grams (6a) and (6e). It is worth noting, that mixed-integer linear programming usually
refers to optimization problems that include binary variables, which run significantly
faster. We would like to note that the integral variables y ∈ {0, . . . , N }	 in both (6a)
and (6e) can be replaced by |	| · log(N ) binary variables.

Moreover, in the lower bound of Theorem 3.5 the vector y can be chosen as
y ∈ {0, 1}	, which still provides a (potentially worse) lower bound and reduces
the number of binary variables significantly. Unfortunately, a similar simplification is
not immediately possible for the upper bound. However, we introduce another concept
which aims to reduce the computational complexity in a similar fashion in the upper
bound case.

Definition 3.6 A finite subset 	 ⊂ Rn is called an (ε, k)-net of A if

1. 	 ⊂ A,
2. For every p ∈ A there are at least k distinct points p1, . . . , pk ∈ 	 such that

|pi − p| < ε.

Using an (ε	, N )-net we obtain a hierarchy similar to Theorem 3.5 restricting the
possible entries of y to {0, 1}.
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Proposition 3.7 Let ε	, ε
 > 0 and 	 be an (ε	, N )-net of conv(A) and 
 be an
ε
-net of A. Furthermore, let gc,p be a family of control functions. Then,

(6d) ≤ max x

y ∈ {0, 1}	
1�y = N

x ≤
∑

c∈	

yc · ( f (‖c − p‖) + gc,p(ε	)) for all p ∈ 


Proof The proof works similar to the proof of Theorem 3.5 by replacingC ′ = {{n(c) :
c ∈ C}} in the proof of Lemma 3.4 by a setC ′ of N distinct points of	. This is possible
since 	 is an (ε	, N )-net (see Definition 3.6). ��

A trivial example of an (ε, N )-net can basically be obtained by amultiset consisting
of N copies of an ε-net. However, in practise there are usually solutions that need fewer
points, albeit more than a classical ε-net.

3.2 Convergence Results

After establishing upper and lower bounds to P(A) through the hierarchies presented
in Theorem 3.5, we study the quality of these bounds. To this end, we show in this
section, that solutions of the bounding problems (6a) and (6e) converge, as ε	, ε
 both
tend to 0, to a solution of the original problem (3). Both proofs rely in large parts on
the proof of Lemma 6.1 in [19], which proves similar convergence for more general
semiinfinite programs, but include minor necessary modifications. At first, we focus
on the lower bounds, i.e., we show, that (6a) converges to (6b) as ε
 → 0:

Theorem 3.8 Let (εk) be a non-negative sequence converging towards 0. Furthermore,
for every k ∈ N choose an εk net 
k of A. Then, any accumulation point of a sequence
(xk, yk)k∈N of optimal solutions of (6a)w.r.t. 
k and εk is an optimal solution of (6b).

Proof Let (x̄, ȳ) be an accumulation point of (xk, yk). By passing to a subsequence
we can assume that (xk, yk) → (x̄, ȳ) if k → ∞. We are now going to prove, that
(x̄, ȳ) is feasible and in fact optimal for (6b):

Consider an arbitrary p ∈ A and observe that since
k is an εk-net of A, there exists
a sequence (pk) with pk ∈ 
k such that pk → p as k → ∞. We observe further, that
for all k we have

xk ≤
∑

c∈	

(yk)c · ( f (‖c − pk‖) − gc,pk (εk)) ≤
∑

c∈	

(yk)c · f (‖c − pk‖)

and by taking limits

x̄ ≤
∑

c∈	

ȳc · f (‖c − p‖).
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Hence, (x̄, ȳ) is feasible for (6b).
Now, let (x, y) be an arbitrary solution to (6b). Since A is compact and εk > 0, we

know that gc = maxp∈A gc,p is a continuous, monotonously non-decreasing function
with gc(0) = 0. We now observe, that

(x −
∑

c∈	

yc · gc(εk), y)

is feasible for (6a) with respect to 
k . Since (xk, yk) is an optimal solution to (6a), we
have xk ≥ x − ∑

c∈	 yc · gc(εk). Consequently, as gc(0) = 0, in the limit we obtain
that x̄ ≥ x . Since x was chosen arbitrarily, we conclude, that (x̄, ȳ) is indeed optimal
for (6b). ��

Note that the convergence of (6b) to (6c) as ε	 → 0 follows directly since the
utility function and f are continuous. Thus, Theorem 3.8 implies the convergence of
(6a) to (6c), i.e. the value of (6a) tends to P(A), as ε	, ε
 → 0.

Moreover, with the same arguments, we conclude the convergence of (6d) to (6c) as
ε
 → 0 and thus only one proof of convergence remains, namely that (6e) converges
to (6d) as ε	 → 0.

One difficulty of the following theorem is the different kinds of feasible solutions
when altering the sample	. Feasible solutions of (6e) have the form y ∈ {1, . . . , N }	
with 1�y = N while feasible solutions of (6d) are N -point multisets supported on
conv(A). Note that these objects do not permit an easy discussion of convergence.
However, both notions can be translated into an element ω ∈ (conv(A))N which is
independent of	 and allows a discussion of convergence. Note thatω can canonically
be translated back into a multiset.

Theorem 3.9 Let (εk) be a non-negative sequence converging towards 0. Furthermore,
for every k ∈ N choose an εk-net 	k of conv(A). Let (xk, yk) be a sequence of
optimal solutions of (6e) w.r.t. 	k , εk . Identifying each yk with ωk ∈ (conv(A))N ,
any accumulation point (x̄, ω̄) of this sequence corresponds to an optimal solution of
(6d) by identification of ω̄ with a multiset.

Proof The proof is similiar to the proof of Theorem 3.8. Note that, since order of
elements is not important for the discussed problems, we can regard to elements of
(conv(A))N either as tuples or asmultisets depending on the context. Suppose (xk, ωk)

with has an accumulation point (x̄, ω̄). By passing to a subsequence we can assume
that (xk, ωk) → (x̄, ω̄). Consider the continuous function gp = maxc∈conv(A) gc,p
with gp(0) = 0. Then, we have for all k and p ∈ 
:

xk ≤
∑

c∈	k

(yk)c · ( f (‖c − p‖) + gc,p(εk))

≤
N∑

i=1

f (‖(ωk)i − p‖) + gp(εk)
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By taking limits we obtain

x̄ ≤
N∑

i=1

f (‖ω̄i − p‖)

for all p ∈ 
. Thus x̄, ω̄ is feasible for (6d).
Now suppose x, ω is an arbitrary solution of (6d). Then by Lemma 3.4 there exists

ω′
k such that x, ω

′
k is a feasible solution for (6d). Since (xk, ωk) is an optimal solution,

we have xk ≥ x and by taking limits x̄ ≥ x . Therefore x̄ is also optimal for (6e). ��
Note, that the proofs of Theorems 3.8, 3.9 still work if we restrict y to be binary as

was discussed at the end of Sect. 3.1.
CombiningTheorems 3.8 and 3.9, we conclude that by choosing a suitable sequence

(ε
)k, (ε	)k , we can in theory bound the value of P(A) as tightly as we need. How-
ever, solving the respective mixed-integer linear problems in practice will pose a
computational challenge.

4 Computational Results

This section presents numerical experiments illustrating the capabilities and limits of
the MIP approach presented in this paper. All computations have been performed
using Gurobi on a HP DL380 Gen9 server with two Intel(R) Xeon(R) CPU E5-
2660v@2.00GHz (each with 14 cores) and 256 GB RAM. We first focus on a simple
illustrative example, where A is an equilateral triangle and the size of the configu-
ration is N = 3. In addition, we chose f (x) = e−5‖x‖2 for our potential function
and ε
 = 0.014, ε	 = ε
/3 as the respective discretization widths of 
 ⊆ A and
	 ⊆ conv(A). Lastly, we restrict both, (6a) and (6e) to binary variables y ∈ {0, 1}	
instead of integral y ∈ {0, . . . , N }	 as discussed below Theorem 3.5. Since we expect
the resulting configuration to consist of three separate points, this should not signifi-
cantly impact the quality of the bounds.

We illustrate the configuration given by (6a) in Fig. 2. It was obtained after approx-
imately 10 hours.

We continue by assessing the numerical evidence on the convergence for the above
example. To this end, we illustrate the quality of the binary versions of both, (6a)
and (6e) for decreasing values of ε	 and ε
 . Here, the binary variant of (6e) was
derived from Proposition 3.7. To be precise, for every ε ∈ {0.04, 0.038, . . . , 0.014}
we computed the lower bound using ε	 = ε/3, ε
 = ε and the upper bound using
ε
 = ε	 = ε. We chose these scalings for a better comparability, since the (ε	, 3)-
net in the upper-bound case contains more sample points and therefore yields more
variables than an (ε	, 1)-net. Furthermore, we used scaled versions of the A2 lattice
complemented with additional sample points on the boundary to generate the samples
	 and 
. This construction ensures that both, 	 and 
 are indeed ε	 and ε
-nets
respectively. The obtained bounds are visualized in Fig. 3.

It is apparent, that lower values of ε do not always yield better bounds although
there is a clearly visible trend to close the gap between the bounds as can be expected
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Fig. 2 Optimal configuration for (6a) with ε = 0.014 and a heatmap of the respective f -potential (from
dark blue over green to yellow). The points of the configuration are represented by orange circles

Fig. 3 Upper and lower bounds computed with decreasing values of ε and the respective running optimum
(dashed lines) as well as an approximate polarization of the lower bound configuration

from our convergence results established in Theorems 3.8 and 3.9. A drawback of this
approach is the computational runtime of the respective MIPs, which vastly increases
with the sample size of 
 and 	 from a few seconds if ε = 0.04 to 10 hours for
ε = 0.014.
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Fig. 4 Optimal configurations of (6a) for different A in orange with a heatmap of the respective potential
(from dark blue over green to yellow). The border of the respective shape A is highlighted in blue (from
left to right: ball, triangles, non-convex shape)

Table 1 Computational results of polarizations for exemplary shapes

A Ball Two twisted triangles Non-convex shape
N 7 6 7

lower bound 0.391063 0.381283 0.918088

ε = ε	 = ε
 0.0625 0.025 0.025

computation time in seconds 6145 1238 2020

upper bound 0.942982 0.506328 1.12719

ε = ε	 = ε
 0.0875 0.0375 0.03125

computation time in seconds 6741 858 879

gap ca. 59% ca. 25% ca 19%

As an additional academic example, we use the same approach for different suitable
choices of ε = ε	 = ε
 and different convex, non-convex or even non-connected A
to showcase the wide applicability of our approach. We illustrate the polarizations
derived by the binary approximation of our lower bound MIP (6a) in Fig. 4.

Moreover, we briefly summarize the computational results on these additional
shapes A in Table 1 below. The respective sample widths were chosen such that
the corresponding MIPs could be solved in reasonable time.

We note, that the shape of A significantly impacts the runtime of ourMIP approach.
It seems that the large symmetry group of the ball may contribute to a larger runtime
as good solutions may be found everywhere in the branch-and-bound tree used by
solvers such as Gurobi. If true, symmetry reduction techniques may lead to substantial
improvements.

5 Outlook

We have seen in Sect. 2 that the location of the darkest points and the location of the
points of a locally optimal configuration are intertwined. We suspect that these results
can be extended, in particular by utilizing symmetries of A or requiring A to be convex
or even a polytope. Furthermore, it would be interesting to extend these results to other
choices of D.
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However, it is clear that there will be limitations to this approach. Consider for
example A = D = Sn−1 the unit sphere, where the convexity condition of Theorem
2.1 is not applicable. However, using different techniques, information on the set of
darkest points for certain configurations on Sn−1 has been obtained, e.g. for regular
simplices [8, Thm. 2.4] and for m-stiff and strongly m-sharp configurations in [20,
Thms. 4.3 and 4.5] extending previous results in [2, 21].

In this paper, we have not dealt with explicit computations of locally or globally
optimal point configurations, even on simple sets such as n-gons or the unit ball.
However, numerical experiments suggest that such configurations show some structure
and we hope that extensions of the results in Sect. 2 can be utilized to obtain proof
of optimality for some configurations. Here, we would like to highlight one result
in this direction we are aware of, namely that for certain Riesz potentials of modest
decay and with A being chosen as the closed d-dimensional unit ball, the optimal point
configuration consists of N copies of the origin (see [1, Thm. 14.2.6]). We were able
to observe similar effects in numerical experiments on regular polytopes.

TheMIP hierarchies presented in Sect. 3 give provable upper and lower bounds con-
verging to the optimal solution. However, unsurprisingly computing these bounds for
sufficiently fine samples is very time consuming since MIP is NP-complete. A natural
question is, whether well known techniques from mathematical programming - such
as convex relaxations, inner approximations, column generation or local refinement,
that speed up the computations can be utilized to achieve results for finer samples.
However, most of these techniques only provide approximations of the discussed MIP
hierarchies, which might limit the gain achieved through the finer samples.

Moreover, it might be helpful to carefully fit the choice of the samples to the
specific instance of the problem. For example, if one has a conjecture for an optimal
configuration and/or the correct location of the darkest points, this information can be
fitted into the samples while retaining the ε-net property of the samples. Furthermore,
these ideas might provide a way to use our bounds for analytic proofs of optimality in
highly structured situations.
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