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Abstract
For d ∈ N, a compact sphere packing of Euclidean space R

d is a set of spheres in
R

d with disjoint interiors so that the contact hypergraph of the packing is the vertex
schemeof a homogeneous simpliciald-complex that covers all ofRd .We aremotivated
by the question: For d, n ∈ N with d, n ≥ 2, how many configurations of numbers
0 < r0 < r1 < · · · < rn−1 = 1 can occur as the radii of spheres in a compact
sphere packing of Rd wherein there occur exactly n sizes of sphere? We introduce
what we call ‘heteroperturbative sets’ of labeled triangulations of unit spheres and we
discuss the existence of non-trivial examples of heteroperturbative sets. For a fixed
heteroperturbative set, we discuss how a compact sphere packing may be associated to
the heteroperturbative set or not. We proceed to show, for d, n ∈ N with d, n ≥ 2 and
for a fixed heteroperturbative set, that the collection of all configurations of n distinct
positive numbers that can occur as the radii of spheres in a compact packing is finite,
when taken over all compact sphere packings of Rd which have exactly n sizes of
sphere and which are associated to the fixed heteroperturbative set.
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1 Introduction

Sphere packing in general has many connections to other branches of mathematics,
see for example [4]. Consider the disc packing in Fig. 1. Such a packing is called
‘compact’ (we give a precise definition later). Apart from being objects of purely
mathematical interest, some compact packings have been observed to arise in self-
assembled nano-structures: Compare the nine compact disc packings from [9] with
electron micrographs from the non-mathematical literature [2], [14] and [1]. Compact
sphere and disc packings are therefore of special interest, not just within mathematics,
but also in other scientific disciplines.

In this paper we are motivated by the following question: For d, n ∈ N with
d, n ≥ 2, how many configurations of numbers 0 < r0 < r1 < · · · < rn−1 = 1 can
occur as the radii of spheres in a compact sphere packing of Rd wherein there occur
exactly n sizes of sphere?

Let d ∈ N. By a sphere packing p of Euclidean space R
d , we mean a family of

spheres with pairwise disjoint interiors in R
d . By radii(p) we denote the set of all

positive real numbers that occur as radii of spheres from p.
The contact hypergraph of a sphere packing p ofRd is defined as follows: The vertex

set is taken as the set of all the centers of spheres in the packing p. As hyperedges,
we take exactly the subsets E of the vertex set that have cardinality at most d + 1
and that satisfy both of the following two conditions: Firstly, for every pair of distinct
vertices a and b from the set E , the corresponding spheres in p that respectively have
a and b as centers are mutually tangent. Secondly, if any vertex of the hypergraph is
an element of the convex hull of the set E , then this vertex is an element of E .

We say a sphere packing p in Euclidean space Rd is compact if the contact hyper-
graph is exactly the vertex scheme of a homogeneous1 simplicial d-complex in R

d

whose underlying space is homeomorphic to R
d through the identity map. We call

this homogeneous simplicial d-complex the packing complex of the compact sphere
packing p. Intuitively speaking, Rd is tesselated by the d-simplices in the packing
complex (cf. Fig. 1).

In this paper we restrict our view to compact sphere packings p satisfying
|radii(p)| < ∞ and max radii(p) = 1. With d, n ∈ N we define

�d,n :=
{
radii(p)

∣∣∣∣ p a compact sphere packing of Rd

|radii(p)| = n, max radii(p) = 1

}
.

Our work in this paper is motivated by the following conjecture.

Conjecture 1.1 For all d, n ∈ N with d, n ≥ 2, the set �d,n is finite.

Although this conjecture remains open in full generality, some certain special cases
have been resolved and we discuss them shortly.

In this paper we prove a general result that can be used to show, for all d, n ∈ N

with d, n ≥ 2, that certain subsets of �d,n are finite. To this end, in Sect. 2.4, we

1 Here ‘homogeneous’ means that every simplex of the complex is contained in a d-simplex that is also in
the complex.
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Fig. 1 One of the 164 compact packings of R2 by discs with three sizes from [8, Packing 54], here with its
packing complex overlaid.

define what we call heteroperturbative sets of labeled triangulations of unit spheres
(of any dimension). Roughly, what this means is that, if a spherical triangulation from
a heteroperturbative set is perturbed while preserving its combinatorics, then one
edge must grow in length, and one edge must shrink in length (cf. Sect. 2.4). Every
sphere in a compact sphere packing in R

d has canonically associated to it a labeled
triangulation of the unit sphere in R

d (cf. Sect. 2.5). For a heteroperturbative set S of
labeled triangulations of unit spheres and a compact sphere packing p in R

d , we say
that p is associated to S if every sphere from p has its canonical associated labeled
triangulation being an element of S.

Our main result in this paper is:

Theorem 1.2 For all d, n ∈ N with d, n ≥ 2 and S any heteroperturbative set of
labeled triangulations of unit spheres, the set

�d,n(S) :=
⎧⎨
⎩radii(p)

∣∣∣∣∣∣
p a compact sphere packing in R

d ,

p is associated to S,
|radii(p)| = n, max radii(p) = 1

⎫⎬
⎭

is finite.

It is easily seen that the set of all triangulations of the unit circle in R
2 is het-

eroperturbative (cf. Example 2.3), so the special case for d = 2 of Conjecture 1.1 is
proven by applying Theorem 1.2 (this is the main result of [12]). However, the set
all triangulations of the unit sphere in R3 is not heteroperturbative (cf. Example 2.4).
Therefore, to be able to apply Theorem 1.2 in attacking Conjecture 1.1 for d = 3, one
is required to find an appropriate proper subset of the set of all labelled triangulations
of the unit sphere in R3, and additionally, prove that it is heteroperturbative.

In general it is difficult to determine if a set of triangulations of unit spheres is
heteroperturbative. A consequence of recent work by Winter [15, Cor. 4.13] shows
that the set, that we denoteW (cf. Example 2.6), of all triangulations of unit spheres of
any dimension that are determined from inscribed convex polytopes that contain the
center of their circumsphere in the interior, is heteroperturbative. Hence, non-trivial
heteroperturbative sets do exist, and by extension, Theorem 1.2 shows that non-trivial
and fairly interesting subsets of �d,n are finite.
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We also exhibit a set of labeled spherical triangulations, denoted Q, that is such
that �d,n = �d,n(Q) for all d, n ≥ 2 (cf. Sect. 2.4). Clearly, a proof that Q is
heteroperturbative would, through application of Theorem 1.2, immediately prove
Conjecture 1.1. However, whether or not Q is heteroperturbative is an open problem
to the best of our knowledge.

Before continuing, we briefly remark on some relevant history regarding the family
of sets �d,n for d, n ∈ N.

It is easily seen that |�1,n| = ∞ for all n ≥ 2 and that |�2,1| = 1. For dimensions
d ≥ 3, regular simplices do not tesselate Rd , because 2π is not an integer multiple of
the dihedral angles occurring in a regular d-simplex [3, Rem. 2]. Hence |�d,1| = 0 for
all dimensions d ≥ 3. In particular, the famous E8 and Leech lattice sphere packings
(cf. [4]) are not compact packings.

For dimension 2, in 2006, Kennedy showed that |�2,2| = 9 by computing all
elements of the set �2,2 [9]. Determining |�2,3| turned out to be more challenging
and took a number of years. A finite bound for |�2,3| was determined by the second
named author in [11], and working roughly at the same time �2,3 was computed and
was shown to have 164 elements by Fernique, Hashemi, and Sizova in [8]. A crucial
ingredient in showing that |�2,3| is finite is the following result:

Lemma 1.3 [8, Lem. 6.1] There exists a constant K > 0 so that every compact disc
packing p of R2 with radii(p) = {r0, r1, r2} satisfying 0 < r0 < r1 < r2 = 1 is such
that

K ≤ r0
r1

.

We specifically make note of the order of the quantifiers in the above result. The
constant K is independent of the choice of compact packing with discs of three sizes
and can be taken to be min{r0 : {r0, 1} ∈ �2,2}. That the ratio of the small and
medium size discs in a compact packing with three sizes of discs is related to the radii
that occur in compact packings with two sizes of discs is indicative that an inductive
argument may be used to glean information on the sets �2,n for n > 3. Exploiting
this idea in [12], the corresponding author showed that |�2,n| is finite for all n ≥ 2.
Although the cardinality of these sets could be shown to be finite, the methods in [12]
are non-constructive and do not produce quantitative bounds on the cardinality of the
sets �2,n for n ≥ 2.

For dimension 3, in [5, 7], Fernique computed �3,2 and �3,3 which respectively
were shown to have cardinality 1 and 4. Fernique himself calls his results disappointing
for the reason that, in three dimensions, compact packings of spheres of two or three
sizes arise only through the filling of interstitial holes of close-packings of unit spheres.
This is in contrast to the case in two dimensions where, for example, there exists a
rich variety of compact disc packings with three sizes of discs that do not arise from
compact disc packings with two sizes of discs through merely filling in interstitial
holes with discs (cf. [8]). This contrast in richness raises the following question:

Question 1.4 Does there exist a dimension greater than two that admits a compact
packing of spheres with two or more sizes which does not arise through filling inter-
stitial holes in a lattice packing of unit spheres?
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Throughout this paper we make use of standard terminology regarding simplicial
complexes and related concepts. The reader unfamiliar with the terminology may find
definitions in [13]. The specific standard termswemake use of are: simplicial complex,
k-skeleton of a simplicial complex, abstract simplicial complex, the underlying (topo-
logical) space of a simplicial complex, the vertex scheme of a simplicial complex (i.e.,
the abstract simplicial complex that results from forgetting all geometric information
of the simplicial complex), isomorphism of abstract simplicial complexes, the closed
star of a vertex in a simplicial complex, the link of a vertex in a simplicial complex.

We now describe the path toward proving Theorem 1.2. Themain flavor follows that
of [12]. Before giving more detail, we briefly describe the idea, which consists of three
main parts. For a fixed dimension d, firstly we define an abstract discrete structure that
is shown to always occur in every compact packing (cf. Sect. 3). Secondly, we show
that if such an abstract discrete structure arises from a compact packing associated to
some heteroperturbative set of labeled triangulations of unit spheres, then this structure
uniquely determines the radii of spheres in the compact packing (cf. Sect. 4). Thirdly,
we show that if such an abstract discrete structure arises from a compact packing with
n sizes of spheres that is associated to some fixed heteroperturbative set, then there
exists a bound on the size of the structure and, more importantly, this bound can be
chosen so as to depend only on the number of sizes of spheres n and the dimension d,
and independently of any particular packing (cf. Sect. 6). We note that, although these
bounds are shown to exist, the argument to show their existence is non-constructive.
We conclude that only finitely many such abstract discrete structures can arise from
compact packings associated to a heteroperturbative set, and the ones which do arise
in this way uniquely determine the radii in a compact packing associated to some
heteroperturbative set. This establishes Theorem 1.2.

We now move to describing the content of this paper in more detail.
Preliminary definitions and results are described in a number of subsections of

Sect. 2. In Sect. 2.1, we introduce what we call packing codes. These are abstract sim-
plicial complexes with labeled vertices that will be used to abstractly describe a sphere
and its neighbors in a compact packing. We introduce angle symbols, realizations, and
realizers in Sect. 2.2. Angle symbols are used to abstractly represent angles in the tri-
angle formed by connecting the centers of three mutually tangent spheres with disjoint
interiors and indeterminate radii. A realization by a realizer assigns specific values to
indeterminates in formal arithmetic expressions. Typically realized expressions will
be expressions involving angle symbols derived from packing codes. An important
result is Lemma 2.1, which establishes a monotone relationship between realizers and
the values of realized angle symbols. This result is used later, as a first ingredient, in
proving both Theorem 4.3 and Lemma 5.2, which we are yet to discuss. In Sect. 2.3,
we define what we mean by a spherical simplicial complex and by a triangulation of
the unit sphere in R

d . We prove an easy lemma (Lemma 2.2) regarding the geometry
of spherical triangulations of unit spheres. Although easy, this result is nevertheless
crucial to be able to apply Winter’s results from [15] in the subsequent section. Sec-
tion2.4 sees definition of what we call heteroperturbative sets (of labeled spherical
triangulations of unit spheres) and we present a few relevant examples, non-examples,
and conjectured heteropertubative sets. In particular, we show that the sets T2 andW
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(Examples 2.3 and 2.6) are heteroperturbative, thatT3 (Example 2.4) is not heteroper-
turbative, and we conjecture thatQ (Definition 2.7) is heteroperturbative. In Sect. 2.5,
we discuss how a compact packing p of spheres in R

d is canonically labeled, deter-
mines a canonical realizer, and how each sphere in p canonically determines a labeled
spherical triangulation of the unit sphere Rd , and by further forgetting the geometric
structure of the labeled triangulation, the sphere canonically determines a packing
code associated to the sphere.

In Sect. 3, we define what we call a fundamental set of packing codes. We show
that every compact packing gives rise to such a fundamental set of packing codes (cf.
Theorem 3.2 and Fig. 5).

The main result in Sect. 4 is Theorem 4.3, showing that the radii of spheres in
a compact packing associated a heteroperturbative set is uniquely determined by
any fundamental set of packing codes that arises from the packing. As mentioned,
Lemma 2.1 is used together with the defining property of a heteroperturbative set to
prove Lemma 4.1 which shows how the existence of labeled spherical triangulations
in a heteroperturbative set that are combinatorially equivalent to packing codes from
a fundamental set and whose edge lengths are determined through a realizer, actually
uniquely determines the realizer. Lemma 4.2 shows that labeled spherical triangula-
tions as required in Lemma 4.1 always exist in every compact packing.

The Bootstrapping Lemma (Lemma 5.2) is proven in Sect. 5. This lemma is a gener-
alization of Lemma 1.3 and is whatmakes the induction stepwork in a strong induction
toward proving the main technical result of the paper, Lemma 6.7, from whence the
name. The Bootstrapping Lemma relates the ratios of some of the values of two real-
izers under certain assumptions of the existence of labeled spherical triangulations
of unit spheres from a heteroperturbative set that are combinatorially equivalent to
a packing code from fundamental set. Again as mentioned, Lemma 2.1 along with
the defining property of a heteroperturbative set is used in proving The Bootstrapping
Lemma.

Section 6 sees the proof of the main result of this paper, Theorem 1.2. For d, n ∈ N

with d, n ≥ 2 and a heteroperturbative set S, we introduce what we call an n-essential
set for S in dimension d, which adds further technical conditions on a fundamental
set, related to the existence of two realizers ρ and σ and of labeled triangulations
from S relating the two realizers ρ and σ to each other. We observe that these further
conditions are automatically satisfied by fundamental sets that arise from an actual
compact packing in Rd associated to S with n sizes of spheres: The canonical labeled
triangulations associated to spheres in the packing are taken, and for σ and ρ we
take both equal to the canonical realizer for the packing. This observation, along
with the previous observation that radii of the spheres in the packing being uniquely
determined by the fundamental set (Lemma 4.1), thus shows that the cardinality of
�d,n(S) is at most the cardinality of the set, denoted Ed,n(S), of all n-essential sets
for S in dimension d, (cf. Lemma 6.2). For any fixed d, we thus proceed to show that
the set Ed,n(S) is finite through strong induction on the number n. As the base step of
a strong induction, we show that the set Ed,2(S) is finite (cf. Lemma 6.3). Lemma 6.7,
the strong induction step, is the main technical result. Given that the sets Ed,k(S) are
finite for all k ∈ {2, . . . , n − 1}, using The Bootstrapping Lemma (Lemma 5.2), we
show that the set Ed,n(S) is finite by bounding the size of any element of Ed,n(S) using
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only features of the finitely many elements in
⋃n−1

k=2 Ed,k(S). This proves the main
result of this paper in Corollary 6.9.

2 Preliminaries

2.1 Packing Codes

Let d ∈ N with d ≥ 2. Let � be any set of symbols. By a d-dimensional packing
code over �, or just a packing code, we mean a symbol c : T , with c ∈ � and T an
abstract homogeneous simplicial (d − 1)-complex with vertices labeled by elements
from �. In a packing code c : T , we call c the center and T the neighbor complex
of the packing code. For a vertex v in T we denote its label by λv ∈ �. We define
λ(T ) := {λv : v a vertex in T }. By C(�), we denote the set of all d-dimensional
packing codes. The dependence on the dimension d is suppressed in the notation
C(�), but this should not cause confusion as d is fixed at all times.

2.2 Angle Symbols and Realizations

Let � be any set of symbols. For symbols a, b, c ∈ � we denote the formal symbol

ca
b := arccos

(
(c + a)2 + (c + b)2 − (a + b)2

2(c + a)(c + b)

)
.

We call ca
b an angle symbol (over �). We always regard elements from � in an angle

symbol as indeterminates. With three mutually tangent spheres with pairwise disjoint
interiors, with centers labeled a, b, and c forming a triangle, the symbol ca

b is meant
to abstractly represent the magnitude of the angle formed at c (cf. Fig. 2). In the angle
symbol ca

b , we call c the vertex of the symbol ca
b .

Wedefine a realizer to be amap ρ : � → (0,∞). Given a realizer ρ : � → (0,∞)

and a formal arithmetic expression E , with symbols from �, we denote by E |ρ the
expression E with every symbol s ∈ � occurring in E replaced by ρ(s). We call E |ρ
the realization of E by ρ.

An important result that we use multiple times in this paper is the following lemma
that establishes a specific monotone relationship between realizers and realized angle
symbols when the values of the realizer is kept constant on the vertex of the angle
symbol.

Lemma 2.1 Let � be any finite set of symbols and let a, b, c ∈ � with c �= a. Let
ρ : � → (0,∞) and let ν : � → [0,∞) be a non-zero function.

1. The map (0,∞) � t 	→ ca
b |tρ is constant.

2. If ν(c) = 0 and ν(a) > 0, then the map [0,∞) � t 	→ ca
b |ρ+tν is strictly

increasing.
3. If ν(c) = ν(a) = ν(b) = 0, then the map [0,∞) � t 	→ ca

b |ρ+tν is constant.
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Fig. 2 The angle represented by the angle symbol ca
b .

Proof With distinct symbols a, b, c, d ∈ �, taking partial derivatives of the expression
cb

a toward the indicated symbol, we obtain the following:

∂acb
a = ∂aca

b =
√

bc
(c+a)

√
a
√

a+b+c
,

∂acc
a = ∂aca

c = c
(c+a)

√
a2+2ac

,

∂aca
a = 2

√
c

(c+a)
√
2a+c

,

∂ccb
a = ∂cca

b = − (a+b+2c)
√

ab
(c2+ab+ac+bc)

√
c
√

a+b+c
,

∂ccc
a = ∂cca

c = − a
(c+a)

√
a2+2ac

,

∂dca
b = 0,

∂dca
c = 0,

∂dca
a = 0,

∂dcc
c = 0,

∂ccc
c = 0.

It is easily seen from the definition of the expression ca
b that the map (0,∞) � t 	→

ca
b |tρ is constant.
Let t ∈ [0,∞) be arbitrary. Assuming ν(c) = 0, then the directional derivative of

map (0,∞)S � σ 	→ α(x)|σ at ρ + tν in the direction of ν is a positive scalar multiple
of

∑
s∈�

(∂sca
b)|ρ+tν ν(s) =

∑
s∈�\{c}

(∂sca
b)|ρ+tν ν(s) ≥ 0.

Assuming further that ν(a) > 0, then at least one term of the above summation is non-
zero, and hence the map [0,∞) � t 	→ ca

b |ρ+tν is strictly increasing. On the other
hand, assuming ν(c) = ν(a) = ν(b) = 0 then every term in the above summation is
zero, and hence the map [0,∞) � t 	→ ca

b |ρ+tν is constant. ��

2.3 Spherical Triangulations of Unit Spheres

Let d ≥ 2, 1 ≤ k ≤ d. Let G ⊆ R
d be a set of k points with 0 /∈ G so that so that

G ∪ {0} is affinely independent. By the spherical (k − 1)-simplex (defined by G) we
mean the central projection of the (k − 1)-simplex defined by G to the unit sphere
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of Rd centered at 0. Since 0 /∈ G, the spherical (k − 1)-simplex is homeomorphic
to the simplex defined by G through central projection, and all faces of the spherical
(k − 1)-simplex are contained in great spheres of the unit sphere of Rd of appropriate
dimension.

By a spherical simplicial complex, we mean a simplicial complex, except with all
simplices in the complex being spherical simplices rather than usual simplices. By a
spherical triangulation of the unit sphere in R

d , we mean a homogeneous spherical
simplicial (d − 1)-complex so that the underlying space of the spherical simplicial
complex is homeomorphic to the unit sphere through the identitymap, i.e., the spherical
(d − 1)-simplices of the spherical simplicial complex tesselate the unit sphere of Rd .

We will say a spherical triangulation is combinatorially equivalent to an abstract
simplicial complex A if the vertex scheme of the spherical triangulation is isomor-
phic to the abstract simplicial complex A. By overloading the term, we will say two
spherical triangulations are combinatorially equivalent if the vertex schemes of both
triangulations are isomorphic to the same abstract simplicial complex.

We will say that two combinatorially equivalent spherical triangulations P and Q
are edge-isometric if, with respect to the geodesic metric on the unit sphere, every
edge of P is equally long to the corresponding edge of Q.

Before proceeding, we prove an elementary result regarding spherical triangula-
tions.

Lemma 2.2 Let d ≥ 2 and let P be a spherical triangulation of the unit sphere of Rd .

1. There exists no hyperplane H ⊆ R
d (through the origin) so that all vertices of P

lie in one of the two closed half-spaces determined by H.

2. The interior of the closed convex hull of all vertices from P is non-empty.

3. The center of the unit sphere, i.e. the origin, is contained in the interior of the
closed convex hull of all vertices from P.

Proof We prove (1). Suppose H is a hyperplane so that all vertices of P lie in one of
the two closed half-spaces determined by H . By our definition of spherical simplices
through central projection, all simplices inRd that define the spherical simplices of P
lie in this same closed half-space. There thus exists a point on the unit sphere in the
opposite open half-space of H , that is not covered by P . We conclude that no such
hyperplane H exists.

We prove (2). Suppose that the closed convex hull C of all vertices from P has
empty interior. Then C is contained in some affine hyperplane H of Rd . Hence C lies
inside, or to one side of the hyperplane through the origin parallel to H , contradicting
(1).

We prove (3). Suppose that the closed convex hull C of all vertices of P does not
contain the center of the unit sphere as an interior point. There are two possibilities,
either the center is a boundary point of C , or is an exterior point of C . By (2), C has
non-empty interior. In both cases, using either the Supporting Hyperplane Theorem
or the Separation Theorem (see for instance [10, Thms. 2 and 3, p. 133]), there exists
a hyperplane so that all vertices of P lie in one of the two closed half-spaces defined
by this hyperplane, contradicting (1). ��
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2.4 Labeled Spherical Triangulations and Heteroperturbative Sets

By T we denote the set of all labeled spherical triangulations of unit spheres of any
finite dimension with the center of the unit sphere (the origin) and all vertices of the
triangulation carrying labels from N ∪ {0}. For P ∈ T and vertex v in P , we define
the notation λv to denote the label in N ∪ {0} of the vertex v in P .

Let P, Q ∈ T.We say P and Q are combinatorially equivalent with identical labels
if P and Q are combinatorially equivalent and all pairs of the corresponding vertices
of P and Q and their centers carry identical labels. This notion is an equivalence
relation on T and we denote the equivalence class of P in T by [P].

We introduce the term ‘heteroperturbative’ subset of T, which we define formally
in the next paragraph but first describe intuitively to hopefully aid the reader’s under-
standing. Informally, a heteroperturbative subset of T is such that if one perturbs a
labeled spherical triangulation from the heteroperturbative set, (while retaining its
combinatorial structure and also remaining inside the heteroperturbative set), there
must exist an edge of the triangulation that grows in length and another edge that
shrinks in length.

Formally, let S ⊆ T and let R ∈ S. For P ∈ [R] ∩ S and Q ∈ S, we say that
Q is a perturbation of P if Q ∈ [R] ∩ S and P is not edge-isometric to Q. We say
the equivalence class [R] ∩ S in S is heteroperturbative, if the following holds for
any pair P, Q ∈ [R]: If P and Q are not edge-isometric, then there exist two pairs of
respectively corresponding edges, uv and xy of P , and u′v′ and x ′y′ of Q, so that, with
respect to the geodesicmetric on the unit sphere, the edge uv in P is strictly longer than
the corresponding edge u′v′ in Q; and, on the other hand, the edge xy in P is strictly
shorter than the corresponding edge x ′y′ in Q. We say that S is a heteroperturbative
set (of labeled spherical triangulations of unit spheres) if all equivalence classes in S
are heteroperturbative.

Whether non-trivial/sufficiently interesting heteroperturbative sets even exist is an
obvious question, which we now briefly discuss.

It is an easy exercise to see that the set of all triangulations of the unit circle in R2

is heteroperturbative:

Example 2.3 Define T2 ⊆ T as all labeled spherical triangulations of the unit circle in
R
2. The geodesic lengths of all edges in a triangulation from T2 sum to 2π . Hence,

for any P ∈ T2, we cannot have all edges in a perturbation of P grow (shrink) as this
would mean that the sum of the edge lengths in the perturbation sum to strictly more
(less) than 2π . We note that here the labels on vertices are superfluous.

In contrast to the case for R2, the set of all labeled triangulations of the unit sphere
in R3 is not heteroperturbative, as the following example demonstrates:

Example 2.4 Define T3 ⊆ T as all labeled spherical triangulations of the unit sphere
in R

3. Triangulating the unit sphere in R
3 with an equatorial strip of bisected darts

(cf. Fig. 3) shows that T3 is not heteroperturbative.

An interesting heteroperturbative set of spherical triangulations arises as a conse-
quence of recent work byWinter on convex polytopes from [15]. The following result
is an easy consequence of [15, Cor. 4.13]:
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Fig. 3 The set T3 is not heteroperturbative. Triangulate the unit sphere of R3 with an equatorial strip of bi-
sected darts as indicated on the left of the figure. By rotating the vertices and edges on the equator around the
polar axis we obtain a combinatorially equivalent triangulation, as on the right. On the right, with respect to
the geodesic metric on the sphere, some edges have increased in length when compared to the corresponding
edges on the left, but no edge on the right has decreased in length when compared to the corresponding
edge on the left.

Theorem 2.5 (Winter) Let d ≥ 2 and let Y and Z be combinatorially equivalent
convex polytopes inscribed by the unit sphere of Rd so that the origin is contained in
the interior of Z. If there exists an edge in Z that is strictly shorter (with respect to
Euclidean norm) than the corresponding edge of Y , then there exists an edge of Z that
is strictly longer (with respect to Euclidean norm) than the corresponding edge of Y .

Example 2.6 Define the set W ⊆ T as all spherical triangulations P ∈ T of a unit
sphere of any finite dimension d ≥ 2 for which the convex hull of the vertex set of P
forms a simplicial polytope whose face lattice is isomorphic, as a simplicial complex,
to the spherical triangulation P through central projection onto the unit sphere. By
strict monotonicity of arcsin there exists a strictly monotone relationship between the
length of an edge of the polytope and the geodesic length of the corresponding edge
of the triangulation P . By Lemma 2.2, the convex hull of the vertex set of P contains
the center of the unit sphere as an interior point, and hence by Theorem 2.5,W is seen
to be heteroperturbative. Again, here the labels on vertices are superfluous.

We point out that W as defined in the previous example is a proper subset of T.
Although it is easily seen that T2 ⊆ W, the same is not true for T3, (cf. Fig. 4), as
the face lattice of convex hull of the vertices of a spherical triangulation in R3 can be
different to the vertex scheme of the triangulation.

A directly relevant set of spherical triangulations is the one we now define.

Definition 2.7 Define the set Q ⊆ T to be all labeled spherical triangulations P ∈ T
for which there exists a monotone map ρ : N∪{0} → (0,∞) so that, with c ∈ N∪{0}
denoting the label attached to the center of the unit sphere in P , both of the following
conditions hold:

1. For all pairs of distinct vertices v and w of P (whether connected by an edge or
not), the geodesic distance in the unit sphere from v to w is at least cλv

λw|ρ .
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Fig. 4 The vertex scheme of a spherical triangulation of the unit sphere inR3 need not be isomorphic to face
lattice of the polytope obtained as the convex hull of all vertices of the trangulation. Consider an octahedral
triangulation of the unit sphere of R3 with the vertex at the north pole moved slightly down on one of the
meridians so as to not be lie on the vertical line through the origin. We split this meridian into two rather
“skinny” triangles as in the figure on the left. However, two vertices X and Y can then “see” each other over
the chord connecting the vertices T and B. It is then seen that the face lattice of the polytope formed as the
convex hull of the vertices of the triangulation is not isomorphic to the vertex scheme of the triangulation.

2. For all edges vw in P , the geodesic length in the unit sphere of of vw is exactly
cλv
λw|ρ .

Intuitively, such a labeled spherical triangulation triangulation P ∈ Q describes
an arrangement of spheres around a central sphere, and with tangencies compatible
with the labeled spherical triangulation P in the following way: The central sphere,
centered at the origin, has radius ρ(c). By scaling, every vertex v of P corresponds to a
point of tangency on the central sphere with a neighboring sphere of radius ρ(λv). The
first condition of Definition 2.7 ensures that the spheres of respective radii ρ(λv) and
ρ(λw) that are tangent to the central sphere at points corresponding to respectively v

and w have disjoint interiors. The second condition of Definition 2.7 ensures that the
spheres with respective radii ρ(λv) and ρ(λw) that are tangent to the central sphere
at the points corresponding to v and w are tangent to each other.

By construction, canonically labeled spherical triangulations (cf. Sect. 2.5) that arise
in any compact sphere packing p are members of Q. A natural question is whether or
not Q is heteroperturbative.

Conjecture 2.8 The set Q of labeled spherical triangulations, as defined in Defini-
tion 2.7, is heteroperturbative.

A proof of Conjecture 2.8 together with Theorem 1.2 will immediately provide a
proof of Conjecture 1.1.

2.5 Canonical Labelings, Canonical Realizers, Canonical Spherical Triangulations,
and Packing Codes Determined by Compact Sphere Packings

Let d, n ∈ N with d, n ≥ 2. Let q be any collection of spheres in R
d with radii(q) =

{r0, r1, . . . , rn−1} satisfying 0 < r0 < r1 < · · · < rn−1. By the canonical labeling of
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q, wemean attaching the label j ∈ {0, . . . , n−1} to the center of every sphere of radius
r j in q. With � := {0, . . . , n − 1}, we define the canonical realizer ρ : � → (0,∞)

of q as ρ( j) := r j , for all j ∈ �.
Let p be any compact sphere packing of Rd with |radii(p)| = n that is canonically

labeled by � := {0, . . . , n − 1}. Fix any sphere A ∈ p. Since the underlying space of
the packing complex of p is homeomorphic toRd through the identity map, the center
of the sphere A is an interior point of the union of the closed star of the center of the
sphere A (as a set inRd as a topological space).We obtain a labeled triangulation of the
sphere A by centrally projecting the link of the center of A in the packing complex of
p onto the surface of the sphere A and carrying the labels of vertices along. Let a ∈ �

denote the label attached to the center of the sphere A. By scaling and translating we
obtain a labeled spherical triangulation of the unit sphere of Rd in T and we call this
the canonical labeled triangulation associated to the sphere A ∈ p. Let TA be the
abstract simplicial complex obtained as the vertex scheme of the canonical labeled
triangulation of the sphere A by forgetting all geometric information, but retaining
all labels on the vertices. Then a : TA is a d-dimensional packing code over �, and
we call a : TA the canonical packing code associated to the sphere A. We define
code(A) := a : TA and codes(p) := {code(A) ∈ C(�)| A ∈ p} .

3 Fundamental Sets of Packing Codes

In this section, we define what we call fundamental sets of packing codes. These
structures are always present as a subset of all the packing codes obtained from a
compact sphere packing (cf. Theorem 3.2). In Fig. 5 we display an example of a
fundamental set determined by a compact packing in two dimensions.

Fundamental sets allow us to firstly show that the combinatorics of a compact pack-
ing associated to a heteroperturbative set uniquely determine the radii of the spheres
occurring in the packing (cf. Sect. 4), and to secondly establish The Bootstrapping
Lemma in Sect. 5 relating ratios of values of realizers under the condition of existence
of appropriate labeled spherical triangulations from a heteroperturbative set who are
combinatorially equivalent with identical labels to the codes in the fundamental set.

Definition 3.1 Letd, n ∈ Nwithd, n ≥ 2 and� := {0, . . . , n−1}. LetC ⊆ C(�).We
will say thatC is a fundamental set (of packing codes) if {c | c : T ∈ C} = {0, . . . , n−
2} and for every non-empty set K ⊆ {0, . . . , n − 2} there exists a code c : T ∈ C so
that c ∈ K and there exists a vertex from T that has label that is not an element of K ,
i.e., λ(T )\K �= ∅.
Theorem 3.2 Let d, n ∈ N with d, n ≥ 2 and � := {1, . . . , n − 1}. Let p be a
canonically labeled compact sphere packing in R

d with |radii(p)| = n. The set C :=
{c : T ∈ codes(p)| c ≤ n − 2} is a fundamental set.

Proof Since |radii(p)| = n, we have {c| c : T ∈ C} = {0, . . . , n − 2}. Suppose there
exists a non-empty set K ⊆ {0, . . . , n − 2} so that for all c : T ∈ C with c ∈ K
we have that λ(T )\K = ∅. As there exists a sphere labeled by an element from K ,
and every sphere in p labeled by an element from K only has neighbors labeled by
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Fig. 5 The figure displays a compact packing p of R2 from [6] with five sizes of discs. The canonical
labeling of the packing is overlaid. Packing codes associated to compact disc packings in two dimensions
have cycles as their neighbor complexes. We can therefore succinctly express the neighbor complexes of
such codes as just the string of labels on the vertices in the order that the vertices occur in the cycle. From
the figure, we thus read off the set codes(p) (modulo reflection and rotation) as:⎧⎨

⎩
0 : 43142, 1 : 421230,
2 : 431140, 3 : 434210,

4 : 3320120

⎫⎬
⎭ .

The conclusion of Theorem 3.2 is that {c : T ∈ codes(p)| c ≤ 3} is a fundamental set. This can be easily
verified directly.

elements from K , we conclude that all spheres in pmust be labeled by elements from
K . But this yields the contradiction n = |radii(p)| = |K | < n. We conclude that C is
fundamental. ��

4 Uniqueness of Radii in Compact Packings Associated to a
Heteroperturbative Set

In this section our goal is to prove Theorem 4.3 that shows, for some fixed heteroper-
turbative set S, that the combinatorics of a compact packing associated to S uniquely
determines the radii of the spheres in the packing.

The following lemma should be seen as a generalization of the result [12, Thm. 4.2]
to higher dimensions. The argument is essentially the same, proceeding through appli-
cation of Lemma 2.1 and leveraging the defining property of heteroperturbative sets.

Lemma 4.1 Let d, n ∈ N with d, n ≥ 2 and � := {0, . . . , n − 1}. Let S be a het-
eroperturbative set of labeled spherical triangulations of unit spheres. Let C ⊆ C(�)

be a fundamental set. Let ρ, σ ∈ {τ : � → (0,∞) : τ(n − 1) = 1} and assume,
for all c : Tc ∈ C, that there exist spherical triangulations Pc, Qc ∈ S that are both
combinatorially equivalent to Tc with identical labels and are such that, for every edge
vw in Tc, the corresponding edges of the triangulations Pc and Qc respectively have
geodesic lengths cλv

λw|ρ and cλv
λw|σ . Then ρ = σ .

Proof We proceed by contradiction: Suppose that ρ �= σ . Define t0 := sup{t > 0 :
∀ j ∈ �, tσ( j) < ρ( j)} and J := { j ∈ � : t0σ( j) = ρ( j)}. Note that the set J is not
empty, else t0 cannot be the supremum of the set {t > 0 : ∀ j ∈ �, tσ( j) < ρ( j)}.
Further, since ρ(n − 1) = σ(n − 1) = 1, we have that n − 1 /∈ J . Since C is
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fundamental, there exists a code k : Tk ∈ C with k ∈ J and some vertex p of Tk so
that λp /∈ J . Define ν := ρ − t0σ . The map ν takes on non-negative values and the
support of ν is exactly �\J . By Lemma 2.1, for every edge vw of Tk ,

kλv
λw|σ = kλv

λw|t0σ = kλv
λw|t0σ+0ν ≤ kλv

λw|t0σ+1ν = kλv
λw|ρ.

Therefore no edge of Pk is strictly shorter that the corresponding edge of Qk . Fur-
thermore, since λp /∈ J , again by Lemma 2.1, at least one of the above inequalities
is strict, implying that an edge of Pk is strictly longer than the corresponding edge of
Qk . Hence Pk and Qk are not edge-isometric, while living in the same equivalence
class in the heteroperturbative set S. This implies the existence of an edge in Pk that is
strictly shorter that the corresponding edge of Qk , contrary to our earlier remark that
this is not the case. Consequently the supposition ρ �= σ is false, and we conclude
that ρ = σ . ��

Lemma 4.2 Let d, n ∈ N with d, n ≥ 2 and define � := {0, . . . , n − 1}. Let p be a
canonically labeled compact sphere packing inRd with |radii(p)| = n and normalized
so that max radii(p) = 1. Let ρ : � → (0, 1] denote the canonical realizer of the
packing p. The canonical labeled triangulation associated to any sphere in p (by using
the canonical realizer ρ) is an element of the set Q, as in Definition 2.7.

Proof This follows from construction as discussed in Sect. 2.4. ��

Theorem 4.3 Let d, n ∈ N with d, n ≥ 2 and define � := {0, . . . , n − 1}. Let S be
a heteroperturbative set of labeled spherical triangulations of unit spheres. Let p be
a canonically labeled compact sphere packing in R

d with |radii(p)| = n, normalized
so that max radii(p) = 1, and so that the canonical labeled spherical triangulation
associated to every sphere from p is an element of S. Let C ⊆ codes(p) be a funda-
mental set. The canonical realizer ρ : � → (0, 1] of the packing p is the unique map
in {τ : � → (0,∞) : τ(n − 1) = 1} so that, for every c : Tc ∈ C, there exists a
spherical triangulation Pc ∈ S that is combinatorially equivalent to Tc with identical
labels and is such that for every edge vw of Tc the corresponding edge in Pc has length
cλv
λw|ρ .

Proof By Lemma 4.2, the canonical realizer ρ of p is such that for every c : Tc ∈
C , there exists a spherical triangulation Pc ∈ G (the canonical labeled spherical
triangulation of some sphere from p) that is combinatorially equivalent to Tc with
identical labels and is such that, for every edge vw of Tc, the corresponding edge in
Pc has length cλv

λw|ρ . But the canonical labeled spherical triangulation of all spheres
in p are all assumed to be elements of S. Therefore the canonical realizer ρ satisfies
the stated condition.

By Lemma 4.1 the canonical realizer ρ is the only map in {τ : � → (0,∞) :
τ(n − 1) = 1} satisfying this condition. ��
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5 The Bootstrapping Lemma

This section sees the proof of The Bootstrapping Lemma (Lemma 5.2). This result is
a crucial ingredient in the induction step of the strong induction performed in proving
the main technical result of this paper (Lemma 6.7). Lemma 5.2 is analogous to [12,
Lem. 5.1].

We introduce the following admittedly tortuously abused notation for which the
authors apologize. The reason for its introduction is to be able to succinctly express
how realizers relate to labeled spherical triangulations of the unit sphere in this section
and in the subsequent section.

Definition 5.1 Let � be any set of symbols and let c : Tc ∈ C(�). Let P ∈ T be any
labeled spherical triangulation of the unit sphere and let ρ : � → (0,∞) be any map.

By the notation

ρ �
c:Tc

P

we mean the following: Firstly, P is combinatorially equivalent to Tc with identical
labelings, and secondly, for all pairs of distinct vertices v,w of Tc (not necessarily
connected by an edge), the geodesic distance in the unit sphere between the vertices
corresponding to v and w in P is at least cλv

λw|ρ .
By the notation

ρ �
c:Tc

P

we mean the following: Firstly, P is combinatorially equivalent to Tc with identical
labelings, and secondly, for all edges vw of Tc, the geodesic length in the unit sphere
of the corresponding edge in P is least cλv

λw|ρ .
The meaning of the notation

P �
c:Tc

ρ and P �
c:Tc

ρ

is defined to be the same as above, but with the words ‘at least’ are replaced with the
words ‘at most’.

Lemma 5.2 (The Bootstrapping Lemma) Let d, n ∈ N with d, n ≥ 2 and � :=
{0, . . . , n − 1}. Let S be a heteroperturbative set of labeled spherical triangulations
of unit spheres. Let C ⊆ C(�) be a fundamental set. If ρ, σ : � → (0,∞) are such
that, for all c : Tc ∈ C there exist triangulations Pc, Qc ∈ S so that ρ �

c:Tc

Pc and

Qc �
c:Tc

σ , as in Definition 5.1, then

σ(n − 2)

σ (n − 1)
≤ ρ(n − 2)

ρ(n − 1)
.
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Proof Assume ρ, σ : � → (0,∞) are such that, for all c : Tc ∈ C there exist
triangulations Pc, Qc ∈ S so that ρ �

c:Tc

Pc and Qc �
c:Tc

σ .

If there exists some t ∈ (0,∞) so that ρ = tσ , then we immediately obtain

σ(n − 2)

σ (n − 1)
= tσ(n − 2)

tσ(n − 1)
= ρ(n − 2)

ρ(n − 1)
.

We hence assume, for all t ∈ (0,∞) that ρ �= tσ .
Define t0 := sup{t ∈ (0,∞) : ∀ j ∈ �, tσ( j) < ρ( j)} > 0 and

J := { j ∈ � : t0σ( j) = ρ( j)}.

We note that J is not empty, otherwise t0 cannot be the supremum of the set {t ∈
(0,∞) : ∀ j ∈ �, tσ( j) < ρ( j)}. Also, since for all t ∈ (0,∞) we have ρ �= tσ , we
have that J is a proper subset of �.

There are two cases: Either n − 1 ∈ J or n − 1 /∈ J . We show that we must have
n − 1 ∈ J through obtaining a contradiction in the other case.

Suppose that n − 1 /∈ J , hence J ⊆ {0, . . . , n − 2}. Since C is a fundamental
set, there exists some k : Tk ∈ C that has some vertex p in Tk with λp /∈ J . Define
ν := ρ − t0σ , which can be seen to be non-negative and have support exactly equal
to �\J . By Lemma 2.1, for all edges vw in Tk , we have

kλv
λw|σ = kλv

λw|t0σ = kλv
λw|t0σ+0ν ≤ kλv

λw|t0σ+1ν = kλv
λw|ρ.

Since ρ �
c:Tc

Pk and Qk �
c:Tc

σ , by the above chain of inequalities, all edges of Pk are

longer or equal in length to the corresponding edges in Qk . Since λp /∈ J , again by
Lemma 2.1, at least one of the above inequalities is strict. Therefore Pk and Qk are not
edge-isometric, but belong to the same equivalence class in the heteroperturbative set
S, and therefore there exists an edge of Pk that is strictly shorter than the corresponding
edge of Qk . This is in contradiction with the earlier remark that all edges of Pk are
longer or equal in length to the corresponding edges in Qk . We conclude that we must
have n − 1 ∈ J .

With n − 1 ∈ J , we have t0σ(n − 1) = ρ(n − 1) and t0σ(n − 2) ≤ ρ(n − 2).
Hence, we obtain

σ(n − 2)

σ (n − 1)
= t0σ(n − 2)

t0σ(n − 1)
= t0σ(n − 2)

ρ(n − 1)
≤ ρ(n − 2)

ρ(n − 1)
.

��

6 Essential Sets and Proof of theMain Result

In this section, we prove our main result Theorem 1.2 through the main technical
results of this paper. The arguments in this section have the proof of Lemma 1.3 in [8,
Lem. 6.1] as their germ, and closely follows [12, Sect. 6].
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We start with the following definition:

Definition 6.1 Let d, n ∈ N with d, n ≥ 2 and � := {0, . . . , n − 1}. Let S be a
heteroperturbative set of labeled spherical triangulations of unit spheres. We say a
fundamental set C ⊆ C(�) is an n-essential set for S in dimension d if there exist
monotone maps ρ, σ : � → (0,∞) so that, for every c : Tc ∈ C , the set

{
P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}

is non-empty. We denote the set of all n-essential sets for S in dimension d by Ed,n(S).

Definition 6.1 places further conditions on fundamental sets. In showing that these
extra conditions are automatically satisfiedby fundamental sets that arise fromcompact
packings associated to the heteroperturbative set S, we can show that the cardinality of
the set�d,n(S) is bounded above by the cardinality of the set Ed,n(S) (cf. Lemma 6.2).
The aim in this section is thus to show, for d, n ∈ N with d, n ≥ 2 and any hetero-
perturbative set S, that the set Ed,n(S) is finite (cf. Corollaries 6.8 and 6.9). This is
achieved through a strong induction arglument by showing first showing Ed,2(S) is
finite, and subsequently showing that Ed,n(S) is finite under assumption that all the
‘lower’ sets Ed,k(S) with k ∈ {2, 3, . . . , n − 1} are finite (cf. Lemmas 6.3 and 6.7).

Before we continue, at the request of the anonymous referee, we explain some
more of the intuition behind this section. Admittedly, our choice of Definition 6.1 may
appear somewhat opaque. The reason for this apparent opacity is likely the process
at arriving at this definition through the trial and error approach taken toward proving
the results in this section without first having a concrete definition of an essential set.
Only after the results in this section had been refined by trial and error, could one
see exactly what the “correct”2 definition of an essential set must be. The conditions
placed on the elements of Ed,n(S) by Definition 6.1 along with the notations,� and�,
were then chosen in exactly such a way so as to be able to precisely relate an element
in Ed,n(S) to elements in the ‘lower’ sets Ed,k(S) for k ∈ {2, 3, . . . , n −1} through the
↓-operation (cf. Definition 6.4 and Lemmas 6.5 and 6.6). Furthermore, the conditions
from Definition 6.1 were chosen such that, in relating an element C from Ed,n(S)

through the↓-operation to elements in the ‘lower’ setsEd,k(S) for k ∈ {2, 3, . . . , n−1},
allows for obtaining information on the map ρ for C in terms of the σ ’s from the lower
essential sets through application of The Bootstrapping Lemma (Lemma 5.2). This
idea forms the heart of the proof of Lemma 6.7.

We now proceed with the technical details of this section.

Lemma 6.2 Let d, n ∈ N with d, n ≥ 2. Let S be a heteroperturbative set of labeled
spherical triangulations of unit spheres. The set �d,n(S) has cardinality at most that
of the set Ed,n(S).

2 By “correct” in this context wemean: Firstly, the cardinality of Ed,n(S) bounds the cardinality of�d,n(S).
And secondly, the definition of Ed,n(S) allows for proof of the main result through application of The
Bootstrapping Lemma in as elegant a manner as is possible.
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Proof Let p be a canonically labeled compact sphere packing inRd with |radii(p)| = n
so that max radii(p) = 1 and such that the canonical labeled triangulation of the unit
sphere associated to every sphere in p is an element of S. By Theorem 3.2 there exists
a fundamental set C ⊆ codes(p). Taking both maps ρ and σ in Definition 6.1 as equal
to the canonical realizer of p and applying Lemma 4.2, we see that for all c : Tc ∈ C ,

the set

{
P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}
is non-empty and hence C is an n-essential set for S

in dimension d.
Let q be another canonically labeled compact sphere packing in R

d satisfying
|radii(q)| = n withmax radii(q) = 1, is such thatC ⊆ codes(q), and has the canonical
labeled triangulation of the unit sphere associated to every sphere in q being an element
of S. By Lemma 4.3, the canonical realizers of the packings p and q are equal.

We conclude that each compact packing associated to S determines at least one
element of the set Ed,n(S), and each element of the set Ed,n(S) determines at most one
element of �d,n(S). Therefore �d,n(S) has cardinality at most that of the cardinality
of the set Ed,n(S). ��
Lemma 6.3 Let d ∈ N with d ≥ 2. Let S be a heteroperturbative set of labeled
spherical triangulations of unit spheres. The set Ed,2(S) of all 2-essential sets for S in
dimension d is finite.

Proof Let C ⊆ C({0, 1}) be any 2-essential set for S in dimension d. Since C is
fundamental, for all c : Tc ∈ C we have c = 0. Further, there exist monotone maps

ρ, σ : {0, 1} → (0,∞) so that for all c : Tc ∈ C the set

{
P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}
is

non-empty. Since ρ is monotone, we have that π/3 ≤ 000|ρ, 010|ρ, 011|ρ . Hence, for all
c : Tc ∈ C , every spherical triangulation from the set

{
P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}
has a

geodesic distance of at least π/3 between all pairs of distinct vertices.
By compactness of the unit sphere S ⊆ R

d , we let N ∈ N be the least car-
dinality of a cover of S by geodesic open balls of radius π/6 with centers on S.
But then for all codes c : Tc ∈ C no labeled spherical triangulation from the set{

P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}
can have more than N vertices otherwise there would exist

two distinct vertices strictly closer than π/3. Hence in every code 0 : Tc ∈ C , the
neighbor complex T has at most N vertices. We conclude that the set of all 2-essential
sets or S in dimension d, Ed,2(S), has cardinality at most that of the powerset of the
finite set {0 : T ∈ C({0, 1})| |vertex set of T | ≤ N } . ��
Definition 6.4 Let � denote any totally ordered set of symbols. For any structure T
labeled by elements from �, for s ∈ �, by T ↓s we mean a relabeling of T in which
all labels occurring in T that are strictly larger than s are replaced by s.

Lemma 6.5 For any k ∈ N, define �k := {0, . . . , k − 1}. Let d, n ∈ N with d, n ≥ 2.
If C ⊆ C(�n) is fundamental, then for any k ∈ N with 2 ≤ k ≤ n, the set Ck :=
{c : Tc ↓k−1| c : Tc ∈ C, c ≤ k − 2} ⊆ C(�k) is fundamental.
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Proof Let 2 ≤ k ≤ n. Since C is fundamental we have that, {c | c : T ∈ Ck} =
{0, . . . , k − 2}. Let K be a non-empty subset of {0, . . . , k − 2} ⊆ {0, . . . , n − 2}.
Since C is fundamental there exists some c : T ∈ C so that c ∈ K , but with some
p ∈ λ(T )\K . There are two cases, p ≥ k − 1 and p < k − 1. In the case that
p ≥ k − 1, then p ↓k−1= k − 1 /∈ K , so that c : T ↓k−1∈ Ck is such that c ∈ K ,
with p ↓k−1∈ λ(T ↓k−1)\K . On the other hand, if p < k − 1, then p ↓k−1= p /∈ K ,
and c : T ↓k−1∈ Ck is such that p = p ↓k−1∈ λ(T ↓k−1)\K . We conclude that Ck

is fundamental. ��
Lemma 6.6 For any k ∈ N, define �k := {0, . . . , k − 1}. Let d, n ∈ N with d, n ≥ 2.
Let S be a heteroperturbative set of labeled spherical triangulations of unit spheres.
If C ⊆ C(�n) is an element of Ed,n(S), then for any k ∈ N with 2 ≤ k ≤ n, the set
Ck := {c : Tc ↓k−1| c : Tc ∈ C, c ≤ k − 2} ⊆ C(�k) is an element of Ed,k(S).

Proof Assume that C ⊆ C(�n) is an n-essential set for S in dimension d. Let σ, ρ :
�n → (0,∞) be monotone maps so that for all c : Tc ∈ C the set

{
P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}

is non-empty.
Let k ∈ {2, . . . , n}, and define Ck := {c : Tc ↓k−1| c : Tc ∈ C, c ≤ k − 2} ⊆

C(�k). By Lemma 6.5, the set Ck is fundamental. Define ρ′, σ ′ : �k → (0,∞) as

ρ′(s) :=
{

ρ(s) s < k − 1

ρ(k − 1) s = k − 1
(s ∈ �k)

and

σ ′(s) :=
{

σ(s) s < k − 1

σ(n − 1) s = k − 1
(s ∈ �k).

Since ρ and σ are both monotone, so are ρ′ and σ ′. Furthermore, we note, for all
c ∈ {0, . . . , k − 2} and a, b ∈ �, that

ca
b ↓k−1 |ρ′ ≤ ca

b |ρ and ca
b |σ ≤ ca

b ↓k−1 |σ ′ .

Therefore, for all c : Tc ↓k−1∈ Ck ,

∅ �=
{

P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}
⊆

{
P ∈ S

∣∣∣∣ ρ′ �
c:Tc↓k−1

P �
c:Tc↓k−1

σ ′
}

.

Therefore Ck is a k-essential set for S in dimension d. ��
Lemma 6.7 Let d, n ∈ N with d, n ≥ 2. Let S be a heteroperturbative set of labeled
spherical triangulations of unit spheres. If, for all k ∈ {2, . . . , n − 1}, the set Ed,k(S)

is finite, then the set Ed,n(S) is finite.
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Proof For any k ∈ N, define �k := {0, . . . , k − 1}.
Assume for all k ∈ {2, . . . , n − 1} that the set Ed,k(S) is finite. For every k ∈

{2, . . . , n −1} and every one of the finitely many D ∈ Ed,k(S), we fix monotone maps
σD, ρD : �k → (0,∞) as in Definition 6.1 so that, for all c : Tc ∈ D, we have

{
P ∈ S

∣∣∣∣ ρD �
c:Tc

P �
c:Tc

σD

}
�= ∅.

For every k ∈ {2, . . . , n − 1}, define

Kk−2 := min

{
σD(k − 2)

σD(k − 1)

∣∣∣∣ D ∈ Ed,k(S)

}
∈ (0, 1].

Let C ∈ C(�n) be any element of the set Ed,n(S). By Definition 6.1, there exist
monotone maps σ, ρ : �n → (0,∞) so that, for every c : Tc ∈ C , we have

{
P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}
�= ∅.

For each k ∈ {2, . . . , n − 1}, by Lemma 6.6, the set

Ck := {c : Tc ↓k−1| c : Tc ∈ C, c ≤ k − 2} ⊆ C(�k)

is an element of Ed,k(S), and hence, for all c : Tc ↓k−1∈ Ck , we have

∅ �=
{

P ∈ S

∣∣∣∣ ρCk �
Tc↓k−1

P �
Tc↓k−1

σCk

}
⊆

{
P ∈ S

∣∣∣∣ P �
Tc↓k−1

σCk

}
.

On the other hand, for each k ∈ {2, . . . , n − 1}, let ρk denote the restriction of ρ to
�k . Then, for all c : Tc ↓k−1∈ Ck , by observing that for all a, b ∈ {0, . . . , n − 1}, we
have ca

b ↓k−1 |ρk ≤ ca
b |ρ , and hence obtain

∅ �=
{

P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}
⊆

{
P ∈ S

∣∣∣∣ ρk �
c:Tc↓k−1

P

}
.

As, for each k ∈ {2, . . . , n − 1}, both the sets

{
P ∈ S

∣∣∣∣ P �
Tc↓k−1

σCk

}
and

{
P ∈ S

∣∣∣∣ ρk �
c:Tc↓k−1

P

}
.

are non-empty, and because ρk �
c:Tc↓k−1

P implies ρk �
Tc↓k−1

P , we apply The Boot-

strapping Lemma (Lemma 5.2) to obtain, for each k ∈ {2, . . . , n − 1}, that
σCk (n − 2)

σCk (n − 1)
≤ ρk(n − 2)

ρk(n − 1)
.
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Therefore, for each k ∈ {2, . . . , n − 1},

Kk−2 = min

{
σD(k − 2)

σD(k − 1)

∣∣∣∣ D ∈ Ed,k(S)

}
≤ σCk (k − 2)

σCk (k − 1)
≤ ρk(k − 2)

ρk(k − 1)
= ρ(k − 2)

ρ(k − 1)
.

Now, from

0 < K0 ≤ ρ(0)

ρ(1)
, 0 < K1 ≤ ρ(1)

ρ(2)
, . . . , 0 < Kn−3 ≤ ρ(n − 3)

ρ(n − 2)
,

we obtain

0 <

⎛
⎝k−3∏

j=0

K j

⎞
⎠ ≤ ρ(0)

ρ(n − 2)
.

Define

κ(s) :=
{(∏k−3

j=0 K j

)
s = 0

1 s = n − 2
(s ∈ {0, n − 2}).

Then

0 < (n − 2)00|κ ≤ (n − 2)00|ρ ,

and since ρ is monotone, for all a, b, c ∈ �n , with c ≤ n − 2, we thus have that
(n−2)00|κ ≤ (n−2)00|ρ ≤ ca

b |ρ.Hence, for all c : Tc ∈ C , we have that no triangulation

from

{
P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}
can have distinct vertices closer than (n−2)00|κ to each

other with respect to the geodesic metric on the unit sphere in Rd .
By compactness of the unit sphere S ⊆ R

d , we set N ∈ N to be the least cardinality
that an open cover of S with open geodesic balls of radius (n − 2)00|κ/2 can have. We
crucially note here that the number N is independent of the choice of the element C
from the set Ed,n(S), and depends only on the finitely many elements in

⋃n−1
k=2 Ed,k(S).

Therefore, for every c : Tc ∈ C , each triangulation from

{
P ∈ S

∣∣∣∣ ρ �
c:Tc

P �
c:Tc

σ

}

and hence also Tc can have at most N vertices.
We conclude, for each of the elements c : Tc in any C ∈ Ed,n(S), that the number

of vertices that Tc can have is at most N . Hence the cardinality of the set Ed,n(S) is at
most the cardinality of the power set of the finite set

{
c : T ∈ C({0, . . . , n − 1})

∣∣∣∣ c ≤ n − 2,
|vertex set of T | ≤ N

}
.

��

123



Discrete & Computational Geometry

Fig. 6 Consider the compact packing inR3 from [5, Thm. 1] with spheres with radii
√
3/2−1 (red),

√
2−1

(green), and 1 (yellow). The canonical labeled spherical triangulation associated to the largest spheres in
such a packing are not elements of W (cf. Example 2.6). On a large sphere, the points of contact of the
medium and small neighboring spheres can “see” each other over the chord connecting points of contact
of other neighboring large spheres. This can be observed on the inscribed nonconvex polyhedron in the
figure on the right, whose central projection onto the circumscribing sphere, coincides with the canonical
spherical triangulation associated to a large sphere from this packing

Corollary 6.8 Let d, n ∈ N with d, n ≥ 2. Let S be a heteroperturbative set of labeled
spherical triangulations of unit spheres. The set Ed,n(S) is finite.

Proof This is immediate by strong induction using Lemmas 6.3 and 6.7. ��
This allows us to prove our main result, Theorem 1.2, in the following corollary:

Corollary 6.9 Let d, n ∈ N with d, n ≥ 2. Let S be a heteroperturbative set of labeled
spherical triangulations of unit spheres. The set �d,n(S) is finite.

Proof This follows from combining Lemma 6.2 and Corollary 6.8. ��
As discussed previously, the set W (cf. Example 2.6) is heteroperturbative, yielding
the following result showing that a fairly interesting subset of�d,n is finite in general:

Corollary 6.10 Let d, n ∈ N with d, n ≥ 2. With W, as defined in Example 2.6, the set
�d,n(W) is finite.

Furthermore, as discussed, T2 (cf. Example 2.3) is also heteroperturbative (in fact
T2 ⊆ W), and since �2,n = �2,n(T2) we regain the previously known the case for
dimension two:

Corollary 6.11 Let n ∈ N with n ≥ 2. The set �2,n is finite.

Given Corollary 6.10, one may hope that the canonical labeled spherical triangu-
lations obtained from compact packings of any dimension are always elements of
W, thereby resolving Conjecture 1.1 in full generality. This seen to be the case for
compact disc packings in R

2 and is seen, ex post facto, to be the case for compact
sphere packings in R

3 with two sizes of sphere, cf. [7]. However this is not true in
general. Some of the known compact packings in R

3 with three sizes of sphere have
spheres with associated canonical labeled triangulations of the unit sphere that are not
contained inW. An example is presented in Fig. 6 which exhibits the same pathology
as described in Fig. 4.
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