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Abstract
We study the cone of completely positive (cp) matrices for the first interesting case
n = 5. This is a semialgebraic set for which the polynomial equalities and inequlities
that define its boundary can be derived. We characterize the different loci of this
boundary andwe examine the two open setswith cp-rank 5 or 6.A numerical algorithm
is presented that is fast and able to compute the cp-factorization even for matrices in
the boundary. With our results, many new example cases can be produced and several
insightful numerical experiments are performed that illustrate the difficulty of the
cp-factorization problem.

Keywords Geometry of convex cones · Convex algebraic geometry · Completely
positive matrices · Copositive optimization · Nonnegative matrix factorization

Mathematics Subject Classification 14P10 · 15B48 · 65F30

1 Introduction

Conic optimization is the problem ofminimizing the value of a linear function over the
intersection of a cone and a linear space. Many problems in optimization and geome-
try can be framed in this form and a wide variety of minimization methods have been
developed for different types of cones. Cones that are also semialgebraic sets are of
particular interest, because their boundary can be described by polynomial inequali-
ties. Special relevant cases include polyhedral cones, the cone of positive semidefinite
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matrices, the cone of homogeneous nonnegative polynomials in any number of vari-
ables, or the cone of homogeneous polynomials that are sums of squares.

There aremany natural questions thatmay be asked about such semialgebraic cones.
In order to assess the effectiveness of potential optimization algorithms, we need mea-
sures of the "complicatedness" of the cone. For instance, it is often hard to determine
if a given vector is in a specific cone (the membership problem), and one may wonder
if there are deep reasons for this. One potential approach consists of understanding the
system of polynomial inequalities defining the cone. Then the number of monomials
and their degree can serve as a measure for this hardness. Particularly interesting is the
cone of (homogeneous) sums of squares, which is contained in the cone of nonnegative
polynomials, but the algebraic description of their differences is difficult even in the
smallest interesting cases, see [5, 6].

In this article, we aim to carry out such an analysis for a more complicated cone that
is also of interest in optimization: the collection of completely positive real symmetric
n × n matrices CPn , i.e., real nonnegative n × n matrices A that can be written as
A = BBT, where B is also a nonnegative matrix. This convex cone is dual to the
copositive cone COPn of symmetric matrices whose associated quadratic form is
nonnegative in the nonnegative orthant. These cones appear quite naturally in various
contexts and conic programs on them model a number of concrete applied problems.
See for instance [2] and [3] for thorough introductions to the topic. The cones CPn

and COPn are notably complicated to work with. For instance, determining whether a
givenmatrix is in CPn is a co-NP-complete problem [20]. There are several algorithms
[14, 15] that attempt to factorize these matrices in order to test if they are in CPn , but
these algorithms (both exact and approximate) have a well established number of
drawbacks: they are often slow and/or fail to detect matrices near the boundary of the
cone.

We will look at the cone using tools from algebra and geometry: both CPn and
COPn are known to be semialgebraic. Hence we can use algebraic invariants of the
varieties defining their boundaries as avatars to measure their complexity. We aim to
study low dimensions in detail. For n = 1, 2, 3, 4, the cone CPn coincides with the
cone DNN n of matrices that are positive semidefinite and have nonnegative entries.
Starting at n = 5, the straightforward containment CPn ⊆ DNN n starts being strict.
The boundary of DNN n is generally easy to describe (matrices of low rank and/or
with some zero entries) and it is hence not hard to describe which part of that boundary
is also in CPn . The interesting part is then to describe the boundary of CPn contained
in the interior of DNN n . Additionally, there is a partition of CPn according to what
is called the completely postive rank (cp-rank), dealing with the smallest size of a
nonnegative matrix factorization. The boundaries of the regions are also semialgebraic
and in general quite difficult: it is not known how many parts are in this splitting.

We focus therefore on the smallest interesting case, namely n = 5. We study the
boundary ∂CP5 from an algebraic point of view, finding explicit equations for part of
the boundary and implicit ones for the rest. We use the Hildebrand characterization of
the extreme rays of COP5 to show that the Zariski-closure of the part of the boundary
of CP5 in the interior of DNN 5 is a degree 3900 hypersurface with 24 irreducible
components, 12 of which have degree 320 and 12 degree 5. The explicit polynomials
for the degree 320 parts are probably impossible to compute, but the parametrization
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comes from a simple toric variety, which yields the correct scenario for the novel
implicitization techniques form numerical algebraic geometry [12]. We remark that
the rest of the boundary components are in the boundary of DNN 5 that are either
low rank (and hence have vanishing determinant) or have a zero entry. All in all, the
degree of the Zariski closure of these parts is 5 for the determinantal part and 1 for
each potential entry equal to zero, which is quite low compared to the degree of the
other part.

The algebraic description of the boundary yields a few interesting results for com-
putational experiments: we obtain that the set of matrices with rational entries is dense
in the boundary ∂CP5 with a method of finding an approximation that is (typically)
exactly in the boundary. That is, if we try to find a factorization of a matrix next to
the boundary, we can easily test for which part of the boundary it comes from using
our description of the boundary. The equations we find also yield a recipe to construct
many exact examples in all the components of the boundary as well as computing the
tangent space at any given point. This data allows us to find matrices inDNN 5 \CP5
together with their closest point in ∂CP5.We include a discussion of the cp-rank of the
matrices in the interior of CP5. The possible cp-ranks are known to be 5 or 6 and the
boundary has a Zariski closure that is the vanishing locus of a polynomial. Although
not much is known about this boundary, we highlight some of its properties in order
to pursue some computational experiments.

Next we present a novel numerical method for the approximation of the cp-
factorization. This method is very fast and it is able to approximate factorizations
even of matrices in the boundary of CP5. We carry out a number of experiments to
estimate its performance in the small-dimensional setting n = 5. For instance, in the
part of the boundary that does not coincide with the boundary of DNN 5, the factor-
izations of the matrices are forced to have some zeros. The algorithm easily detects
these zero entries in the factorization and generally finds the correct factorization.
Using this, and with additional knowledge about the boundary separating matrices
of cp-rank 5 and 6, the results of the experiments allow us to formulate a couple of
relevant questions and conjectures.

In short, the strength of this paper is that it combines the theoretical progress
(the derivation of the algebraic equations for the boundary) with an experimental
investigation of some interesting cases. Since the completely positive cone is of great
importance in optimization, it is helpful to obtain this practical insight.

1.1 Notation

We will consider several convex cones contained in the space of real symmetric n× n
matrices. The following cones will be relevant:

• Symn denotes the space of n × n real symmetric matrices.
• Sn is the cone of all positive semidefinite matrices, i.e., matrices M that can be
written as M = XXT for some n × k matrix X .

• Nn is the cone of all symmetric matrices with nonnegative entries.
• DNN n = Sn ∩ Nn denotes the cone of all positive semidefinite matrices with
nonnegative entries. This is sometimes called the doubly nonnegative cone.
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• COPn is the copositive cone of allmatricesM such that vTMv ≥ 0 for all v ∈ R
n≥0.• CPn is the cone of allmatrices A such that there is an×kmatrix Bwith nonnegative

entries and A = BBT. This cone is called the completely positive cone.

These cones are semialgebraic sets, meaning that they can be described by polynomial
inequalities. We are interested in understanding the difference between the cones
CPn ⊆ DNN n as good as we can. Maxfield and Minc [19] showed that the two
cones are equal if and only if n ≤ 4. Thus we will focus in understanding the case
n = 5, i.e., the smallest value of n in which the two cones are different. A particularly
interesting question is to understand the subset ∂CP5 ∩ DNN ◦

5, i.e., the elements in
the boundary of CP5 that lie in the interior of DNN 5.

Endow the space of symmetric matrices with the inner product 〈A, B〉 =
trace(ATB) and the corresponding Frobenius norm ‖A‖ = √〈A, A〉. Then CP and
COP are dual cones in this setting. This will be exploited when we study the boundary
of the cones.

2 The Boundary of CP5

Wewill use the extreme rays in COP5 to parametrize the factorizations of elements in
∂CP5∩DNN ◦

5. After thatwemanipulate these parametrizations to obtain information
about the algebraic boundary of CP5, i.e., about the Zariski closure of ∂CP5∩DNN ◦

5
and its irreducible components. In other words, we reduce the problem to a compu-
tation of images of certain varieties under algebraic maps. This allows us to compute
polynomials defining some of the irreducible components of the algebraic boundary
and to compute the degree of the other components. We further discuss the unique-
ness of completely positive factorizations in the boundary, rational factorizations of
matrices CP5 and the cp-rank partition of CP5.

2.1 The Boundary of COP5

Hildebrand classified all extreme rays of COP5. The theorem goes as follows:

Theorem 2.1 ([17]) Every extreme ray of COP5 is generated by a symmetric matrix
M of one the following four types:

(1) M = vvT, where v ∈ R
5 has positive and negative entries.

(2) M = ei eTj + e j eTi , where {e1, . . . , e5} is the standard basis of R5.

(3) M = PDHDPT, where H is the Horn matrix below, D is a positive diagonal
matrix and P is a permutation matrix.

H =

⎛
⎜⎜⎜⎜⎝

1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠
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(4) M = PDT (�)DPT, where T (�) is a matrix defined in terms of five parameters
below, D is a positive diagonal matrix and P is a permutation matrix. Here

T (�) =

⎛
⎜⎜⎜⎜⎝

1 − cos(θ1) cos(θ1 + θ2) cos(θ4 + θ5) −cos(θ5)
− cos(θ1) 1 − cos(θ2) cos(θ2 + θ3) cos(θ5 + θ1)

cos(θ1 + θ2) − cos(θ2) 1 − cos(θ3) cos(θ3 + θ4)

cos(θ4 + θ5) cos(θ2 + θ3) − cos(θ3) 1 − cos(θ4)
− cos(θ5) cos(θ5 + θ1) cos(θ3 + θ4) − cos(θ4) 1

⎞
⎟⎟⎟⎟⎠

,

(1)

with � = (θ1, θ2, θ3, θ4, θ5) a tuple of positive real numbers satisfying∑5
i=1 θi < π .

This parametrization of the extreme rays in COP5 suggests an approach to under-
stand the algebraic boundary of CP5. In fact, ∂CP5 is the set of matrices A such
that 〈A, X〉 ≥ 0 for all the extreme rays described, with the additional constraint
that equality holds for at least one ray. The part of the boundary shared by CP5 and
DNN 5 is well understood: It consists of low rank matrices and matrices with some
zero entries and corresponds to the types (1) and (2) in the theorem above. We will
focus mainly on the other part of the boundary, namely, the matrices in the interior of
DNN 5 and the boundary of CP5. Therefore, any such A must be invertible, since it
would otherwise be on the boundary of S5 and thus also on the boundary of DNN 5.
Furthermore, it is necessary that the entries of A are all strictly positive to avoid the
boundary of N5. All the matrices in this part of the boundary are either orthogonal
to matrices of the type (3), which we call the Horn orbit, or (4), which we call the
Hildebrand orbit. We will first work out the orthogonality to the parts that ignore the
permutation matrices. With that in mind, the sets of completely positive matrices in
∂CP5 ∩DNN ◦

5 orthogonal to matrices in the Horn or Hildebrand orbit will be called
the Horn and Hildebrand locus respectively.

We begin by mentioning a relevant theorem.

Theorem 2.2 [[22] Section 4] Assume A ∈ ∂CP5 is orthogonal to a matrix in the
Horn orbit or a Hildebrand orbit. Then A = BBT for a nonnegative square matrix
B ∈ R

5×5≥ .

We rely on the above lemma and the following simple remark, exploited heavily
in [19] to bound the completely positive rank in CP5. Assume that A ∈ ∂CP5 is
orthogonal to a matrix M as in parts (3) or (4) in Theorem 2.1. Let B be a nonnegative
factorization of A, i.e., A = BBT. If v1, . . . vk are the columns of B, then vTi Mvi = 0,
i.e., each column of B is a zero of the quadratic form associated to M . Since M is
copositve, this is equivalent to saying that every column is a global minimum of the
quadratic form in the positive orthant R5≥0.

2.2 The Dual of the Orbit of the HornMatrix

The following theorem is hidden in a proof in [22]:
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Theorem 2.3 [[22] Theorem 4.1] Let H be the Horn matrix. A vector v ∈ R
5≥0 is a

solution to the equation vTHv = 0 if and only if it is in the union of cones

K =
5⋃

i=1

cone(ei + ei+1, ei+1 + ei+2),

where the indices are taken modulo 5. Consequently, every matrix in the Horn locus
of ∂CP5 ∩DNN ◦

5 is an invertible matrix A such that the columns of any nonnegative
matrix B for which A = BBT are (linearly independent) elements of K .

Notice that this restricts significantly the possible factor matrices B: the columns
are a choice of five vectors in the union of such cones. Notice furthermore that if two of
the columns are in the same cone, then the product BBT has at least one entry equal to
zero and is consequently in ∂DNN 5. It follows that in the Horn part of the boundary,
the nonnegative factorizations of the matrices must contain exactly one vector in each
cone. Notice that if A = BBT and B̃ is obtained by permuting the columns of B, then
A = B̃ B̃T. Hence, the structure of any factorization is as follows:

Lemma 2.4 Any matrix A orthogonal to H and in ∂CP5 ∩ DNN ◦
5 has a cp-

factorization A = BBT, where B is of the form:

B =

⎛
⎜⎜⎜⎜⎝

z1 0 0 y4 y5 + z5
y1 + z1 z2 0 0 y5

y1 y2 + z2 z3 0 0
0 y2 y3 + z3 z4 0
0 0 y3 y4 + z4 z5

⎞
⎟⎟⎟⎟⎠

. (2)

Here y1, y2, y3, y4, y5, z1, z2, z3, z4, z5 are positive real numbers.

The set of all matrices in Lemma 2.4 is a 10-dimensional relatively open cone in the
space of 5 × 5 matrices. The left action of the diagonal matrices on the factorization
increases the dimension to create a hypersurface in the 15-dimensional spacewhere the
zero patterns are fixed, but the nonzero entries are free. The variety VHorn consisting
of the Zariski closure of the positive matrices orthogonal to DHD for some diagonal
matrix D therefore is a variety in a special 15 dimensional affine subspace of the
space of 5×5 matrices. This produces one of the components of the Zariski closure of
∂CP5∩DNN ◦. The parameters of the factorization matrix and the diagonal matrix D
can be chosen to be positive, which gives us a nonempty part of the boundary: every
choice yields a positive factorization (hence an element of CP5) and an invertible
matrix orthogonal to an extreme ray conjugate to H (hence in the boundary of CP5).
In order to study this further we define some relevant varieties.
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Definition 2.5 Let W ⊆ R
5×5 be the linear subspace of matrices of the form

⎛
⎜⎜⎜⎜⎝

y11 0 0 y41 y51
y12 y22 0 0 y52
y13 y23 y33 0 0
0 y24 y34 y44 0
0 0 y35 y45 y55

⎞
⎟⎟⎟⎟⎠

.

Let ZHorn ⊂ W be the Zariski closure of all matrices of the form DB, where B is a
matrix as in (2) and D is a diagonal matrix with positive entries.

Theorem 2.6 The variety VHorn, i.e. the subvariety of the Zariski closure of ∂CP5 ∩
DNN ◦

5 generated by matrices orthogonal to the matrices of the form DHD, is a
hypersurface contained in the Zariski closure of the image of ZHorn under the map
ϕ : W → Sn given by ϕ(X) = XXT.

Proof ZHorn contains all matrices factorizing the matrices orthogonal to the matrices
of the form DHD, which in turn generate VHorn . The map ϕ encodes these factoriza-
tions so VHorn is contained in the image of ZHorn .

To see that VHorn is a hypersurface notice that the parameters of the matrix in
Lemma 2.4 can be chosen to be arbitrary positive numbers and the diagonal matrix D
can also be chosen to be arbitrary positive. The diagonalmatrices form a 5-dimensional
algebraic torus acting by conjugation on the Horn rays. The stabilizer of this action
consists of scalar multiples of the identity, so the rays (orbits) are parametrized by a
4-dimensional torus. By taking any chart of the 4-dimensional Torus (for example,
choose the last entry to be equal to 1) we get a smooth map from a 14-dimensional
neighborhood in R

14≥0 to the boundary of CP5. A straightforward computation shows
that the rank of this map at a generic point is 14, hence the map is a local homeomor-
phism to its image around that point. This implies that the (Zariski closure of the) image
is 14-dimensional thus VHorn is a hypersurface. Since Zhorn is not 15-dimensional
and contains a copy of the domain of this map it is also a hypersurface.

��
Theorem 2.7 The variety VHorn is the vanishing locus of the polynomial

s(X) = det(H ◦ X). (3)

Here ◦ denotes the Hadamard product of matrices.

Proof One may use the parametrization from Theorem 2.6 to verify that VHorn is
contained in the vanishing locus of s(X). This computation is done by a computer
algebra system. Furthermore, since s(X) is irreducible (because determinants are) its
vanishing locus is a hypersurface containing ZHorn and hence equal to its Zariski
closure. ��
Remark 2.8 There is a good conceptual reason that leads one to guess the equation of
Theorem 2.7. Let K be the convex cone generated by the matrices of the form DHD
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where D is a diagonal matrix. And let K+ be the subcone generated by restricting to
positive diagonal matrices. Notice that K+ is a subcone of K and that the extreme
rays of K are all extreme rays of COP5 and of K . Thus K+ ⊆ COP5. It follows
that the dual K ∗+ contains CP5 and K ∗. Furthermore, the three cones K , K+,DNN 5
have many common rays, so one expects them to share a part of their boundary
with nonempty Euclidean interior (in the induced topology of the boundary). Among
the three cones we can see that K has a particularly simple boundary. Consider the
invertible linear transformation f of Sym5 on itself given by f (X) = H ◦ X . Notice
that f (DHD) = D1D, thus f yields a linear cone K isomorphism to the convex cone
generated by elements of the form D1D, i.e., the conewhose extreme rays are rank one
matrices. This cone is S5 which is self dual and its algebraic boundary is known to be
given by matrices of low rank, i.e., solutions to the equation det(X) = det(1◦ X) = 0.
The linear change of variables yields that K ∗ has a boundary described by (3). Thus
the shared part of the boundary of K ∗, K ∗+ and CP5 satisfies the desired equation of
the theorem.

2.3 The Dual of the Orbit of HildebrandMatrices

The following is implicit in the work of Hildebrand [17, Section 3.2.2]:

Theorem 2.9 Let T (�) be the five parameter matrix defined in (1) with � =
(θ1, θ2, θ3, θ4, θ5) a tuple of positive real numbers satisfying

∑5
i=1 θi < π . A vec-

tor v is a solution to vTT (�)v = 0 if and only if it is a positive multiple of a column
of the matrix

S(�) :=

⎛
⎜⎜⎜⎜⎝

sin(θ5) 0 0 sin(θ2) sin(θ3 + θ4)

sin(θ4 + θ5) sin(θ1) 0 0 sin(θ3)
sin(θ4) sin(θ5 + θ1) sin(θ2) 0 0

0 sin(θ5) sin(θ1 + θ2) sin(θ3) 0
0 0 sin(θ1) sin(θ3 + θ2) sin(θ4)

⎞
⎟⎟⎟⎟⎠

.

As a consequence, we can parametrize the hypersurface dual to all the matrices
of the form DT (�)D by the factor matrices of the form D1S(�)D2 where D1 and
D2 are diagonal matrices. In fact, the actions of D1 and D2 scale the diagonal prod-
ucts proportionally. Thus, with W as in the previous section, we have the following
parametrization:

Theorem 2.10 Let VHi be the subvariety of the Zariski closure of ∂CP5 ∩ DNN ◦
5

generatedby thematrices orthogonal to someelement in the (torus)orbit ofHildebrand
matrices. Then VHi is the Zariski closure of the image of the variety ZHi associated
to the ideal 〈y11y22y33y44y55 − y13y24y35y41y52〉 in the coordinate ring of W, under
the map ϕ from Theorem 2.6.

Proof Notice that the variety Z̃Hi ⊆ W generated by matrices of the form D1S(�)D2
is a hypersurface: there are fifteen parameters in the factorization: Fixing the last entry
of D2 to be equal to one, we get a fourteen dimensional parameter space that maps to
Z̃Hi . One can check with a computer algebra system that the derivative of this map
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has full rank at one point and hence generically. It follows by the implicit function
theorem that the map is a local homeomorphism to its image. Hence the dimension
of Z̃Hi is at least 14. On the other hand, every element of D1S(�)D2 vanishes at
the polynomial y11y22y33y44y55 − y13y24y35y41y52. The variety ZHi is an irreducible
hypersurface (it is affine toric) and contains Z̃Hi . The dimension of ZHi is fourteen
and by irreducibility it contains no proper subvariety of dimension fourteen. It must
therefore coincide with Z̃Hi . ��

The theorem above yields a parametrization of an algebraic component of the
desired boundary. The variety VHi is therefore the implicitization of ZHi under the
map ϕ. However, the standard techniques using Gröbner bases yield no answer. This
is for a good reason, since the numerical implicitization algorithm [12] implemented
in the HomotopyContinuation package in Julia [11], yields the following:

Corollary 2.11 The degree of VHi is 320.

This computation can be certified using interval arithmetics [10]. The degree being
equal to 320means that the expected number of monomials in the polynomial defining

VHi is close to

(
334
14

)
≈ 1024. In particular, the polynomial defining VHi is likely

impossible to write down. Of course, we could be optimistic and hope that the defining
polynomial be very sparse and tractable, but chances of this seem very small.

2.4 The Number of the Factorizations

Our experiments below need control on the number of factorizations. Theorem 4.4 in
[22] says that up to reordering of the columns, there are at most two factorizations for
matrices in the Horn locus and one unique factorization for matrices in the Hildebrand
locus. Up to numerical errors, the experiments below capture this phenomenon.

2.5 Rational Points on @CP5

We now observe that thematrices in ∂CP5 with rational entries are dense in that part of
the boundary. This is a consequence of the theorems in the previous two sections and in
particular this allows for the exact computation of rational matrices in ∂CP5∩DNN ◦

5.
With this in mind, let Sym5(Q) be the set of symmetric matrices with rational entries.
We summarize the result as follows:

Theorem 2.12 The set of rational matrices in ∂CP5 is dense (with the Euclidean
topology), that is, ∂CP5 ⊆ ∂CP5 ∩ Sym5(Q).

Proof Every point in ∂CP5 vanishes in at least one of the irreducible polynomials
generating a component of the Zariski closure of ∂CP5. The points that vanish in at
least two such polynomials lie in a proper subvariety of ∂CP5 that has measure zero.
The complement is therefore a Euclidean dense open subsetU of ∂CP5. For each such
polynomial p the points of ∂CP5 that vanish in p and no other polynomial form a
Euclidean open subsetUp of ∂CP5.U is the union of each of theUp. Thus it suffices
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to show density of the rational points in eachUp. The result is clear in the parts of the
boundary that have low rank or the positive semidefinite cone, so it suffices to prove
density in the Hildebrandt and Horn parts of the boundary.

Let A be a matrix in ∂CP5 ∩DNN ◦
5 that is (only) in the Horn locus. Since A is in

the interior of DNN 5 all the entries are strictly positive. We can approximate it by a
sequence of rational matrices An that is defined as follows: Every entry of An except
for the first one is a rational number of distance less than 1/n to the corresponding
entry in A and the first entry is forced by the determinantal Equation 2.7. This sequence
converges to A.

The set of matrices that are only in the Hildebrand locus is a Euclidean open
subset of the variety VHi . Thus, it suffices to show that we can approximate any
A ∈ ∂CP5 ∩ DNN ◦

5 that is only in the Hildebrand locus by rational matrices in
VHi . We assume that A = BBT is the cp-factorization of A, and we approximate B
by a sequence of rational matrices Bn where again all entries except the first one are
rational numbers of distance less than 1/n to the corresponding entry in B and the first
entry is uniquely determined by the equation defining ZHi as in Theorem 2.10. Then
this sequence converges to B and BnBT

n is a sequence of rational matrices converging
to A. ��

2.6 The Action of the PermutationMatrices

Notice that in parts (3) and (4) of Theorem 2.1, there are some permutation matrices
P that we have ignored so far. To understand all the components of the boundary of
CP5 contained in DNN ◦

5, we have to consider the effect of these matrices, which
permute rows and endow algebraic components of the boundary with an action of the
symmetric group S5. The group acts on the algebraic components of the boundary
by conjugation, and on the space of factorizations by multiplication on the left. This
makes the parametrizations into equivariant maps. Thus what we need to count is the
number of hypersurfaces obtained by acting on ZHorn and ZHi withS5 bymultiplying
with permutation matrices on the left. The orbit-stabilizer theorem says we need to
find how many such matrices fix either variety.

To make this more precise recall that if A ∈ CP5∩DNN ◦
5 and A = BBT, then any

matrix Q ∈ O(5) yields a factorization A = (BQ)(BQ)T. In general, the matrices of
O(5) have negative entries, so preserving positivity is nontrivial and known to fail in
∂CP5 ∩ DNN ◦

5 unless Q is a permutation matrix. In this case Q permutes columns
of B and preserves positivity.

Let two generic points in ∂CP5 ∩ DNN ◦
5 be either in the Zariski closures of the

Horn or the Hildebrand locus. Then they are in the same algebraic component if
the factorizations share the same zero pattern up to this column permutation. This is
because each matrix has at most two nonnegative factorizations and they are known
to satisfy this property [22].

The left action of the symmetric group permutes rows and the condition is satisfied
precisely if the matrices shift rows cyclically or reflect the rows and then shift them
cyclically. It follows that the stabilizer of the algebraic components of ∂CP5∩DNN ◦

5
under theS5-action is a dihedral group and has order 10. As a consequence, the orbit
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of each algebraic component consists of 12 varieties. Putting this together we obtain
the following:

Theorem 2.13 TheZariski closure of the hypersurface ∂CP5∩DNN ◦
5 is the vanishing

locus of a 15 variable polynomial of degree 3900 = (320 + 5)12.

2.7 Completely Positive Rank and the Interior of CP5

Another rather interesting aspect of the cone CPn comes with regard to the so called
cp-rank. Thiswill actually help us understand the cone CP5 inmore detail. Throughout
this section, the topology on CP5 and all of its subsets is the Euclidean topology.

Definition 2.14 The cp-rank cp(A) of a matrix A ∈ CPn is the minimal size k such
that there is a nonnegative n × k matrix B with A = BBT. The cp+-rank cp+(A) of
A is the smallest such k for which B can be taken to have strictly positive entries.

As a corollary of Theorem 2.2, we know that all matrices in ∂CP5 ∩ DNN ◦ can
have cp-rank at most 5. We would like to understand the cp-ranks and cp+-ranks in
the interior of CP5. It is known [7, Thm. 5.1] that they agree generically on an open
subset of the interior of CP5. For that, we consider a few extra subsets of CPn .

Definition 2.15 Let CPRn(k) be the set of all matrices A ∈ CPn such that cp(A) ≤ k.

Theorem 2.16 For every n, k the set CPRn(k) is a closed (not necessarily convex)
cone.

Proof Let Rn×k≥ be the set of all n × k matrices with nonnegative entries and let
ϕ : Rn×k≥ → CPn be given by ϕ(X) = XXT. This is a continuous map whose image
is precisely CPRn(k). Now let A be a matrix in the closure of CPRn(k) and choose
a sequence of matrices {Ai }∞i=1 that converges to A. For each i , pick a matrix Bi in
the preimage of Ai under ϕ. Notice that {Bi }∞i=1 is a sequence of matrices that are

entrywise bounded: indeed, (Bi ) j,� ≤
√∑

m(Bi )2j,m = √
(Ai ) j, j and the diagonal

entries of the matrices Ai are bounded since they converge to A. Thus {Bi }∞i=1 has a
convergent subsequence in the Euclidean topology and this subsequence converges to
a matrix B such that ϕ(B) = A. ��

Our goal is to understand ∂CPR5(5)∩CP◦
5. Since the matrices in this set are in the

interior of CP5, they are all invertible and by Theorem 2.16 their cp-rank is exactly 5.

Corollary 2.17 The intersection ∂CPR5(5)∩CP◦
5 consists entirely of matrices whose

cp-rank is equal to 5 and whose cp+-rank is equal to 6.

Proof The interior of CP5 consists of invertible matrices, meaning that every matrix
in the interior has cp-rank at least 5. Combining [7, Theorem 4.1] together with the
fact that maximal cp-rank in CP5 is equal to 6 [22] tells us that

max{cp+(X) | X ∈ CP◦
5} = max{cp(X) | X ∈ CP◦

5} = 6.
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By [7, Corollary 2.7] and Theorem 2.16, all the points of CPR5(5)\(CPR5(5)◦ ∪
∂CP5) are matrices whose cp-rank is 5 and whose cp+-rank is 6. According to Theo-
rem 2.16, every point in CPR5(5)\(CPR5(5)◦ ∪ CP5) is an accumulation point and
hence an element of ∂CPR5(5) ∩ CP◦

5. ��

We are interested in the factorization of elements in ∂CPR5(5) ∩ CP◦
5. Corollary

2.17 implies that the interior of the cone is contained in the closure of two disjoint
open sets, whose boundary is described in terms of matrices whose factorizations are
quite special. In particular, all of them must have a large number of entries that are
zero.

While figuring out the exact pattern is complicated, there are still a few things that
could be said. By manipulating the zeros as in [13], we can assume that every column
of a 5 × 5 factor matrix contains at least one zero. Furthermore, in a factorization
with the smallest possible number of zeros, there can be no pair of columns such that
the zero entries of one column are also zero entries of the other column, i.e., the zero
pattern of one column cannot be contained in the zero pattern of another.

Since the dimension of the variety ∂CPR5(5)∩CP◦
5 is 14, the number of zeros in the

factorization is between 5 and 11. The possible patterns that fulfill all these constraints
can be classified combinatorially and are many. But even if the zero patterns of such
matrices are known, we still need towork out a number of polynomial equations and an
unknown number of inequalities that parametrize them. This is difficult also due to the
lack of convexity of the relevant cones making it impossible to use duality techniques
as for the boundary of CP5. Furthermore, even though the factorizations should in
principle be unique (in the spirit of Theorem 2.3), there could be other factorizations
that are not nonnegative but very close. This is an issue even in the boundary ∂CP5,
as will be discussed in Sec. 3.2, and it makes the generation of possible examples very
difficult.

Nevertheless, we believe that we can produce exact examples of such matrices, as
will be shown in Sec. 5.5. The numerical experiments suggest that the number of zeros
in the square factorization would be 10 or 11. We remark that having factorizaions
with 11 zeros seems implausible and worth further consideration. On the one hand,
since ∂CPR5(5)∩CP◦

5 is a hypersurface, its dimension is 14 and the matrices with 11
zeros would already provide a parametrization of a component of the Zariski closure of
∂CPR5(5)∩CP◦

5. On the other hand, this boundary remains elusive: Simply inserting
random values into a given zero pattern will not produce a desired factor matrices,
because of the unknown polynomial inequalities. We discuss this in detail in Sec. 5.5.

3 Computing the cp-Factorization

Deciding whether a matrix allows a cp-factorization, much less than computing its cp-
rank, is a co-NP-complete problem [20, 23]. A number of problems that are themselves
NP-hard, such as the clique problem or the standard quadratic problem [16], can be
reformulated to conic programs over CPn . Therefore, it is desirable to compute the
cp-factorization, at least to a certain accuracy.
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Anumber of algorithms for the computation of the completely positive factorization
of a matrix A have been proposed. These algorithms must assume that the cp-rank r
is known and preset. If this choice turns out to be wrong, the algorithm will either not
terminate or it will present a solution that does not fulfill all criteria, i.e., it is either
not symmetric, not nonnegative, or it does not yield the desired matrix.

There are several problems that a numerical algorithm can aim to solve, to some
accuracy or certainty:

• Factorization problem: Given A ∈ CPn , compute A = BBT for given rank r .
• Membership problem: Given A ∈ DNN n , decide if A ∈ CPn .
• Approximation problem: Given A ∈ DNN n \ CPn , find best approximation in
CPn .

• Boundary problem: Given A ∈ CPn , decide if A ∈ ∂CPn . In particular, find the
unique factorization A = BBT.

We can distinguish two general classes of algorithms. The first approach is to begin
with any symmetric factorization A = BBT and then to iteratively alter B ∈ R

n×r

such that it becomes nonnegative. This can for example be done by picking an initial
orthogonal matrix Q ∈ O(r) and projecting it onto the polyhedral cone

P = {R ∈ R
r×r : BR ≥ 0}.

After this, the result will in turn be projected back onto O(r), whereupon the proce-
dure repeats until BQ remains nonnegative and therefore constitutes a solution. This
method has been proposed in [15], it is very fast and it returns an exact solution since
BQ

(
BQ

)T = BBT = A, at least up to numerical accuracy for the representation of
Q. However, it has the severe drawback that the set of orthogonal matrices Q with
BQ ≥ 0 needs to be sufficiently large, or else the algorithm often fails to converge.
In the boundary CPn , the factor matrices have many zeros and therefore this set is
of high codimension in O(r). Thus, if A is (very) close to the boundary ∂CPn , the
algorithm will fail and it cannot be used to distinguish these matrices from the ones
that do not allow a completely positive factorization of rank r .

The alternative approach consists of algorithms that approximate the exact factor-
ization while maintaining symmetry and nonnegativity, see for example [14]. In this
paper, we propose a version of these methods that to our knowledge has not been
applied to the problem at hand, although it uses only standard tools of numerical
approximation. The goal is to minimize the function

f (B) = ∥∥A − BBT
∥∥2.

In order to guarantee nonnegativity of B, we can write its entries as squares, resulting
in B = C ◦C . Together with a factor that simplifies the gradient, we aim to minimize
the smooth function

g(C) = 1

8

∥∥∥A − (
C ◦ C

)(
C ◦ C

)T∥∥∥2.
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Algorithm 1: Trust region scheme for the computation of the cp-factorization.

Input: A ∈ DNN n , initial point C0 ∈ R
n×r≥ , tolerance ε > 0, maximal number of iterations

maxit
k = 0;
while ‖∇g(Ck )‖ > ε and k < maxit do

Perform trust region step Ck+1 := TrustRegion
(
Ck , g, ∇g(Ck )

)
;

k ← k + 1;
end
B = Ck ◦ Ck ;

Output: Approximate factor matrix B ∈ R
n×r≥

This is done using standard tools from numerical optimization. Since we deal with
matrices, theMATLAB-toolboxmanopt allows for an easy implementation and good
performance [9]. We applied the provided trust region scheme, because it proves to
be faster than equally applicable methods like gradient descent or nonlinear conjugate
gradients.1 The only other ingredient that we need is the Euclidean gradient of our
function g, which can be readily given as

∇g(C) =
((
C ◦ C

)(
C ◦ C

)T(
C ◦ C

)) ◦ C −
(
A

(
C ◦ C

)) ◦ C .

See Algorithm 1 for the implementation in pseudo-code.

3.1 Enforcing Zeros

We know that the concept of zero patterns in the factorization plays an important role
in the characterization of the boundary ∂CP5 or CPR5(5) ∩ CP◦

5. For the purpose of
numerical experiments, it can therefore be beneficial to enforce a specific zero pattern
in the solution, for example in order to find a matrix in these sets. Hence, we note that
if the initial point of the optimization, say C0, has a given zero pattern, then so does
the gradient ∇g(C0). Since we use a finite difference approximation of the Hessian,
any next iterate C1 will still have the given zero pattern, and so on. This means that
enforcing a zero pattern in the algorithm can be done by simply starting out with this
pattern. However, we also need to take into consideration that we effectively look for
a solution on the intersection of a linear space with a hypersurface (e.g., a part of the
boundary), which can lead to undesired effects.

3.2 Condition of the Reconstruction Problem

The above approach essentially means that we are trying to find a global minimum
of a polynomial of order 8, resulting in many local minima and possibly in an ill-

1 The trust region method consists of solving a quadratic approximation of the cost function g on a small
trusted region around the current iterate. Its size is adapted throughout the procedure according to prior
performance. In manopt, the Hessian is approximated using finite differences of the gradient. We do not
go into more detail here and simply set the next iterate as Ck+1 := TrustRegion

(
Ck , g, ∇g(Ck )

)
. See [21]

for an accessible introduction into these methods.
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conditioned problem. However, we can simply restart themethod if it does not produce
an actual solution (meaning g(C) = 0). This works as long as we know the cp-rank
of our matrix. Otherwise, the algorithm will produce an approximation of our matrix
and we can use several tries to find the best one. This seems to work well in practice.

The issue of conditioning is more problematic. Naïvely, if g(C) = ε for a small

error ε > 0, one would expect the error ‖B− (
C ◦C)‖ to be of order O(ε

1
8 ), where B

is an exact factorization of A. It seems however that the error of the factor matrices can
sometimes be even larger than that, suggesting that the conditioning of the problem is
worse. We will investigate this issue numerically in Sec. 5.4. Ultimately, the problem
of ill-conditioning is inherent in the problem structure and not in the algorithm itself.
Any algorithm that is subject to numerical noise will suffer from it.

4 Constructing Examples

We aim to test the above algorithm’s performance for the factorization problem, the
membership problem, the approximation problem, and the boundary problem. Using
our knowledge about the boundary in the case n = 5, we can construct more or less
generic matrices in many different parts of the coneDNN 5. First of all, let it be stated
that picking a matrix M ∈ DNN 5, say of fixed Frobenius norm ‖M‖ = 1, uniformly
at random is not entirely trivial. If we just pick 15 nonnegative entries of M on the
upper triangle and normalize, we will most likely not have a positive semidefinite
matrix. This could be remedied with the so-called rejection algorithm, where such
a randomly chosen matrix M ∈ N5 is rejected precisely when it has some negative
eigenvalues. In any case, a generic matrix in DNN 5 will either have cp-rank 5 or 6,
or it will not allow for a completely positive factorization. In the following, we will
discuss several other strategies of how to obtain interesting matrices.

4.1 Matrices in@CP5

The parts of the boundary ∂CP5 that are also in the boundary of DNN 5 are very
easy to reproduce, either by picking a matrix of rank 4 or less, or by keeping one or
many entries equal to zero . We have identified the remaining parts as the Horn and
Hildebrand locus respectively. Since the algebraic and semialgebraic equations that
describe these sets are rather complicated, we have to use an indirect approach and
choose the factor matrices.

In order to obtain points in the Horn locus, one can simply choose 15 variables
x1, . . . , x5, y1, . . . , y5, z1, . . . , z5 (e.g. uniformly at random) and produce a factor
matrix

BHorn =

⎛
⎜⎜⎜⎜⎝

x1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
0 0 0 0 x5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0 y4 y5 + 1
y1 + 1 1 0 0 y5
y1 y2 + 1 1 0 0
0 y2 y3 + 1 1 0
0 0 y3 y4 + 1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

z1 0 0 0 0
0 z2 0 0 0
0 0 z3 0 0
0 0 0 z4 0
0 0 0 0 z5

⎞
⎟⎟⎟⎟⎠

.

(4)

123



Discrete & Computational Geometry (2024) 71:442–466 457

If all variables are chosen to be positive, this will yield an element in the boundary
AHorn = BHorn BT

Horn ∈ VHorn ∩ ∂CP5.
In the case of the Hildebrand locus, this is done similarly by choosing x1, . . . , x5,

θ1, . . . , θ5, z1, . . . , z5 and replacing the middle matrix in (4) by S(�) in (2.9), keeping
in mind that

∑
i θi < π must hold. The resulting matrix AHi = BHi BT

Hi will however
be only approximately in the boundary VHi , since the trigonometric functions can only
be approximated in general. In order to obtain matrices in VHi with rational entries,
we can round all entries of BHi to a given number of digits except for one, which
will then be determined by the fact that y11y22y33y44y55 − y13y24y35y41y52 = 0 must
hold.

4.2 Tangent Spaces of the Boundary and Their Orthogonal Lines

Examples of matrices inDNN 5 that do not allow for a completely positive factoriza-
tion of any rank, i.e., of matrices in DNN 5 \ CP5, are rare. Some are given in [3]. In
theory, all extreme rays of DNN 5 are known and those that are not extreme rays of
CP5 should in principle produce more examples, but obtaining rational matrices this
way could be difficult due to the involvement of trigonometric functions.

With the knowledge of the boundary ∂CP5 ∩ DNN ◦
5, we are able to present a

more systematic procedure to produce such examples for the case of 5 × 5 matrices.
For this, we calculate a normal direction to this part of the boundary. Then, any point
in this direction will be outside CP5. If we take a small enough step, we will often
find cases that are still in DNN 5. We describe this procedure in more detail for the
Hildebrand locus:

Let BHi be the factor matrix as in Sec. 4.1. Theorem 2.10 states that then y52 =
y11y22y33y44y55
y13y24y35y41

and therefore, we have a smooth parametrization ϕ : R14 → VHi ⊂
R
15. Taking the orthogonal complement with respect to the Bombieri-norm in R15 of

the Jacobian ∇ϕ(y) reveals the normal direction in R15.
The same procedure works for the Horn locus, either by using the much more

complicated polynomial equation det(H ◦ X) = 0, or by taking the derivative of
the 15-dimensional parametrization (4) and using the fact that the Jacobian will be
rank-deficient.

4.3 Matrices in CP5 \ CPR5(5)

It is also interesting to obtain matrices of cp-rank 6, i.e., matrices in CP5 \ CPR5(5).
In [22], a Kronecker-structuredmatrix of cp-rank 6 is given. However, it has rank 4 and
it is therefore an element of ∂DNN 5. In order to obtain matrices in the interior, we
can use some small perturbations of these matrices by matrices in the interior of CP5.
Alternatively, a brute force sampling of DNN 5, as performed in the next section,
sometimes (albeit rarely) yields a matrix of cp-rank 6.
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Table 1 Success rate of the factorization for different distances to the Hildebrand locus out of 100 tries
(average time in brackets)

λ 10−5 10−4 10−3 10−2 10−1

Dür, Groetzner [15] 8 (5.7s) 26 (6.1s) 66 (5.5s) 98 (2.0s) 100 (0.2s)

Ding et al. [14] 16 (4.4s) 63 (3.4s) 98 (1.6s) 100 (0.2s) 100 (0.0s)

Pfeffer, Samper 96 (38.0s) 100 (4.6s) 100 (1.4s) 100 (0.6s) 100 (0.4s)

5 Numerical Experiments

We now perform numerical experiments for the aforementioned problems in the case
n = 5, as well as some other experiments that serve to highlight interesting aspects of
the cp-cone. We will use our approximation algorithm and we will see that even for
the smallest nontrivial case, the cp-factorization problem is very complicated.

5.1 Factorization Problem

As a first experiment, we test the performance of our algorithm against the two
aforementioned algorithms in [15] and [14] respectively. It is known that the factor-
ization becomes harder the closer we get to the boundary ∂CP5. Since we are able
to construct matrices in this boundary, we can test the algorithms for different dis-
tances to this boundary. For this, we construct a random matrix in the Hildebrand
locus A ∈ VHi and a random matrix Ã ∈ CP◦

5 (by generating a random factor matrix
B with uniformly distributed entries between 0 and 1 and setting Ã = BBT). We then
apply each algorithm to the matrix λA + (1 − λ) Ã. This is repeated 100 times for
different values of λ and we report the success rate as well as the average CPU time. In
each setting, we run each algorithm 10 times (with different initializations), allowing
for 10,000,000 iteration steps (our algorithm never reaches that limit) and declaring
the factorization successful if the error in the Frobenius norm is smaller than 10−6 for
one of these runs. We used an Intel i7-10510U CPU with 1.80GHz for each core. See
Table 1 for the results. Our algorithm can factorize the matrix for any value of λ (in
almost all cases) while the other two fail for small distances to the boundary. We note
that the algorithm of Ding et al. would often have eventually found the factorization
but it was cut off by the iteration limit. When successful, the three algorithms are
comparable in terms of CPU times (note that we report average CPU times only for
successful attempts).

Next, we test the three algorithms for different sizes n of randomly generated
matrices A ∈ CPn (again setting A = BBT for uniformly random B). We again
run each algorithm 10 times with 10,000,000 iterations and declare the factorization
successful if the Frobenius error is smaller than 10−6. We used the same CPU and
report the success rate out of 100 experiments as well as the average CPU time of the
successful attempts. See Table 2 for the results. Our algorithm finds a factorization for
each matrix size and it is also slightly faster than the other two algorithms. These are
comparable in CPU time but they fail to converge in the given number of iterations
for large matrices.
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Table 2 Success rate of the factorization for different matrix sizes n out of 100 tries (average time in
brackets)

n 5 10 20 30 50

Dür, Groetzner [15] 100 (0.3s) 100 (6.5s) 6 (27.9s) 0 0

Ding et al. [14] 95 (0.3s) 89 (2.3s) 65 (11.1s) 36 (28.3s) 0

Pfeffer, Samper 100 (0.4s) 100 (1.2s) 100 (6.6s) 100 (169.3s) 100 (2006.2s)

Table 3 Occurrences of matrices out of 50000 random draws in DNN 5 with the rejection algorithm

A ∈ DNN 5 A ∈ DNN 5 \ CP5 A ∈ CPR5(5) A ∈ CPR5(6)

50000 8 49991 1

In conclusion, our algorithms outperforms the existing algorithms in terms of suc-
cess rate both when closer to the boundary and for larger matrices. For this reason, we
will only use our own algorithm for the remaining experiments.

5.2 Membership Problem

Given a generic matrix A ∈ DNN 5, can we decide if it allows a cp-factorization for a
given cp-rank r? As discussed above, a generic matrix inDNN 5 can be picked using
the rejection algorithm. In Table 3,we report on the occurrences ofmatrices in different
full-dimensional parts of DNN 5 out of 50000 of such picks. For each pick, we gen-
erated the 15 unique entries of the symmetric matrix A uniformly at random in (0, 1).
Then we calculated the eigenvalues of this matrix and rejected the matrix if any one of
the eigenvalues was negative. Note that we did not normalize the matrix, since linear
scaling does not have an effect on this experiment. The resulting matrix A will be an
element ofDNN 5.We then ran our algorithm10 timeswith cp-rank 5 andwe consider
A ∈ CPR5(5) if the resulting factorization BBT of any of these runs has an error

‖A − BBT‖ < 10−8.

If out of these 10 runs none was successful, we increased the cp-rank to 6 and repeated
the experiment. If again no run produced an error smaller than 10−8, we consider the
matrix A ∈ DNN 5 \ CP5.

We can see that the vast majority of generic matrices in DNN 5 has cp-rank 5. A
small number of matrices does not allow for a cp-factorization and only one matrix
seems to have cp-rank 6. Note that our results are inherently approximate, and the
membership cannot be established with absolute certainty.

5.3 Approximation Problem

Using the method discussed in Sec. 4.2, we can produce examples in DNN \ CP5.
Since the cone is also convex, we know the best approximations in CP5 for these
matrices and we can use our algorithm to try to find them.
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Table 4 Success rate of the approximation out of 100 tries for the computation of a factorization (a) and
for reconstructing the original factor matrix (b) for different distances from the boundary

10−5 10−4 10−3 10−2 10−1

a) b) a) b) a) b) a) b) a) b)

87 66 87 71 74 66 63 57 66 62

Table 4 shows the success rate for this approximation problem. For 100 random
matrices in VHi , we computed the normal directions and perturbed the matrices in
this direction with distances 10−5 up to 10−1. For each distance, we again performed
our algorithm 10 times and reported the approximation successful if the reconstructed
matrix has an error of 10−6. As before, we considered the reconstruction of the factor
matrix successful if the factor matrices exhibited an error of less than 10−3. If at
the beginning we successfully reconstructed the perturbed matrix, we took this as a
sign that we moved into the interior of the cone and thus changed directions for the
following steps.

One can see that the algorithm is able to find the closestmatrix inCP5 inmany cases.
Peculiarly, it also finds the correct factorization more often than in the reconstruction
problem. This is consistent with all our experiments and we suspect that it happens
because the value of the cost function does not tend to zero and the algorithm therefore
does not terminate prematurely. However, the approximation problem seems to be
more difficult and it runs into many local minima. In many cases, we did not find the
original matrix over the 10 attempts. This problem seems to get worse with a larger
distance from the boundary.

5.4 Experiments on the Boundary

As shown, in contrast to [15] and [14], our numerical algorithm allows us to factorize
matrices in ∂CP5. The factorizations of matrices in the Hildebrand locus are unique
and should in principle be reconstructable. Matrices in the Horn locus have exactly
two factorizations, meaning a successful reconstruction of the factor matrices should
occur in about 50% of the attempts. However, as we have discussed in Sec. 3.2, the
factorization problem is ill-conditioned. We will illustrate this with the following
experiment.

Table 5 shows an experiment for the reconstructability of different parts of the
cone. Since the boundary is of lower dimension, a random pick in DNN 5 will never
produce a matrix on the boundary. Therefore, we resort to the procedures presented
in Sec. 4 in order to obtain more or less random elements of ∂CP5.

With these methods, we randomly generated 100 matrices in the interior CP◦
5, the

Horn locus, the Hildebrand locus, the rank-deficient locus, and those containing (at
least) one zero. For each of the matrices we performed our algorithm 10 times and
considered it successful if the reconstructed matrix differs by less than 10−6 from the
original matrix, in terms of Frobenius error. In Table 5, we can see that our algorithm
successfully finds such a factorization in all cases.

123



Discrete & Computational Geometry (2024) 71:442–466 461

Table 5 Success rate of the algorithm out of 100 tries for the computation of a factorization (a) and for
reconstructing the original factor matrix (b) for different parts of CP5

A ∈ CP◦
5 A ∈ VHorn A ∈ VHi rank(A) < 5 ∃(i, j) : Ai, j = 0

a) b) a) b) a) b)

100 0 100 31 100 49 100 100

Furthermore, for matrices in the interior, in the Horn locus, and in the Hildebrand
locus, we can also compare the reconstructed factor matrices. This is not possible for
rank-deficient matrices, because we applied our algorithm with initial rank 5 and the
actual factor matrix has size 5×4. Similarly, we do not know the original factor matrix
for matrices with a zero entry, and therefore we cannot compare our results to it. We
consider the factorization to be successful if the factor matrices differ by less than
an error of 10−3 from the original factors. It is unsurprising that we never find the
original factorization of a matrix in the interior of the cone since there are infinitely
many factorizations. For the Horn locus, we expect a successful reconstruction of the
factormatrices in about 50%of the cases. However, as we can see, this number is lower
due to ill-conditioning of the problem. Similarly, reconstructing the factor matrices of
a matrix in the Hildebrand locus was successful only in about half of the cases, even
though this factorization is unique.

5.5 Numerical Observations on the Boundary@CPR5(5) ∩ CP◦
5

In the previous sections, we have given an exhaustive description of the boundary
∂CP5 of the convex cone CP5. Since the maximal cp-rank of a 5 × 5 matrix is 6, the
only remaining interesting part of the cone is the intersection ∂CPR5(5)∩CP◦

5, which
we briefly discussed in Sec. 2.7. A detailed description of this “interior boundary” is
out of reach even for the case n = 5, because it is not derived from the extreme
rays of the dual problem, nor is the set CPR5(5) convex. With all current tools at our
disposal, it seems like a general description of this set comes down to the combinatorial
evaluation of all possible nonreducible zero patterns as for example done in [17].

Nevertheless, it is possible to make some numerical observations. Given a matrix
A of cp-rank 6 (see Sec. 4.3) and running our algorithm with rank 5, it returns an
approximate factorization of cp-rank 5. If subsequent runswith different random initial
inputs return the same factorization, one can reasonably conclude that this approximate
factorization is in fact unique and thus an element of ∂CPR5(5)∩CP◦

5. In this fashion,
we derived the following interesting example:

We begin with the matrix

A6 =

⎛
⎜⎜⎜⎜⎝

0.4722 . . . 0.1493 . . . 0.0225 . . . 0.1083 . . . 0.0296 . . .

0.1493 . . . 0.3519 . . . 0.1442 . . . 0.0111 . . . 0.1316 . . .

0.0225 . . . 0.1442 . . . 0.4121 . . . 0.2120 . . . 0.0157 . . .

0.1083 . . . 0.0111 . . . 0.2120 . . . 0.2113 . . . 0.0719 . . .

0.0296 . . . 0.1316 . . . 0.0157 . . . 0.0719 . . . 0.4366 . . .

⎞
⎟⎟⎟⎟⎠

.
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This matrix has cp-rank 6. Several runs of our algorithm with rank 5 reveal the best
cp-rank 5 approximation A5, which has the factorization

B5 =

⎛
⎜⎜⎜⎜⎝

0 0.6216 . . . 0.2872 . . . 0.0578 . . . 0
0 0 0.4455 . . . 0.3692 . . . 0.1309 . . .

0.5097 . . . 0 0 0.3904 . . . 0
0.4158 . . . 0.1742 . . . 0 0 0.0902 . . .

0.0310 . . . 0 0.1036 . . . 0 0.6519 . . .

⎞
⎟⎟⎟⎟⎠

.

The matrix A5 is an element of ∂CPR5(5) ∩ CP◦
5 and its factor matrix B5 has 11

zeros. This was consistent throughout all our experiments with ∂CPR5(5)∩CP◦
5. But

since this is a hypersurface of dimension 14, there can be no additional polynomial
equation that defines it, meaning that the other entries of B5 can be altered freely and
we will always get a matrix in ∂CPR5(5) ∩ CP◦

5 (up to semialgebraic equations, i.e.,
inside some possibly small intervals).

In order to verify this observation, we can round the entries of B5 to 2 decimals:

B̃5 =

⎛
⎜⎜⎜⎜⎝

0 0.62 0.29 0.06 0
0 0 0.45 0.37 0.13

0.51 0 0 0.39 0
0.42 0.17 0 0 0.09
0.03 0 0.10 0 0.65

⎞
⎟⎟⎟⎟⎠

.

Applying our algorithm to Ã5 = B̃5 B̃T
5 recovers the factorization B̃5. This strongly

suggests that also A5 ∈ ∂CPR5(5) ∩ CP◦
5 and that this set is in fact fully described

by the zero patterns of the factor matrices.

Remark 5.1 Since the number of nonnegative factorizations of elements in ∂CP5 ∩
DNN ◦

5 and ∂CPR5(5) ∩DNN ◦
5 is finite, all these factorizations are locally rigid in

the sense of [18]. One may wonder if they are also infinitesimally rigid. One of the
main results in Sec. 6 of the article is that any infinitesimally rigid factorization must
have at least 11 entries equal to zero. This implies that matrices in ∂CP5 ∩DNN ◦

5 do
not admit infinitesimally rigid nonnegative factorizations. The situation in CPR5(5)
is different: Some components of the boundary may actually consist of matrices that
have a factorization with 11 zeros. As explained above, we have some candidates for
such components. However, the examples we found fail to be infinitesimally rigid.

5.6 Finding Exact Factorizations

We can also use our algorithm to find exact factorizations of difficult matrices. The
article [8] generates a number of matrices of different sizes with high cp-rank. Our
algorithm was able to find the (approximate) cp-factorization B̃ of the 7 × 7 matrix
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

163 108 27 4 4 27 108
108 163 108 27 4 4 27
27 108 163 108 27 4 4
4 27 108 163 108 27 4
4 4 27 108 163 108 27
27 4 4 27 108 163 108
108 27 4 4 27 108 163

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

that has cp-rank 14, up to an accuracy ‖A − B̃ B̃T‖ ≈ 1.179332674168671 · 10−8.
The peculiar zero pattern together with the fact that many of the entries seemed to be
repeated led us to deduce that the exact factorization is

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
27 51√

27

√
27 0 0 0 0

√
2
3 0 0

√
6

√
6 0 0

0
√
27 51√

27

√
27 0 0 0 0

√
2
3 0 0

√
6

√
6 0

0 0
√
27 51√

27

√
27 0 0 0 0

√
2
3 0 0

√
6

√
6

0 0 0
√
27 51√

27

√
27 0

√
6 0 0

√
2
3 0 0

√
6

0 0 0 0
√
27 51√

27

√
27

√
6

√
6 0 0

√
2
3 0 0

√
27 0 0 0 0

√
27 51√

27
0

√
6

√
6 0 0

√
2
3 0

51√
27

√
27 0 0 0 0

√
27 0 0

√
6

√
6 0 0

√
2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We remark that our algorithm did not produce similar results for the other matrices in
[8], even over many tries, as it seems to run into local minima.

6 Open Questions and Outlook

Before we discuss the conclusions that we derive from our results, we formulate some
of the open problems that we encountered on our way.

The first problem relates to the locus ∂CPR5(5) ∩ CP◦
5, i.e., those matrices that

have cp-rank 5 but cp+-rank 6. Because our evidence is the result of a numerical
approximation algorithm that is also known to be fallible (as we will state next), we
refrain from calling this a conjecture:

Problem 6.1 What are the polynomial inequalities that describe ∂CPR5(5) ∩ CP◦
5?

Are they linear in the entries of the factormatrices, aswe suspect according to Sec. 5.5?

Corollary 5.8 of [7] implies that the number of nonnegative square factorizations of
anymatrix in CPR5(5)∩CP◦

5 is finite. However, since neither CPR5(5) nor CPR5(6)
are convex, answering this question requires a substantially different technique.

The next open problem concerns the numerical ill-posedness of the reconstruction
problem. We know by our experiments that the factorization of matrices near the
boundary is very chaotic: small changes in the matrix A can result in very large
changes in the entries of the factor matrix.
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Problem 6.2 For any ε > 0, do there always exist matrices A, Ã ∈ ∂CP5 with ‖A −
Ã‖ < ε, but, say ‖BBT − B̃ B̃T‖ > 10−3 for the factor matrices? In other words,
can the numerical ill-posedness get arbitrarily bad or are we safe if we allow for a
minimal numerical accuracy?

Notice that if M := {X ∈ R
5×5 : A = XXT} denotes the set of all 5 × 5 possibly

negative factor matrices of A, the orthogonal group acts onM by right multiplication.
Anymatrix in ∂CP5∩DNN ◦

5 has exactly 5 nonnegative factorizations that correspond
to one orbit of the restricted action by the group of 5 × 5 permutation matrices. The
question above pertains to the notion of how close these orbits get to other parts of the
boundary, i.e., can the orbits of some matrices of fixed size get arbitrarily close to the
boundary at a point far from an actual factorization?

Finally, we address a problem that has been open for some time (see [2, Section
4.1]) concerning rational factorizations. There are at least two notions for rational
factorizations, which are somewhat equivalent, but subtle. Say that a matrix A ∈ CPn

with rational entries admits a rational factorization if there is an integer number k,
rational numbers q1, . . . , qk and rational column vectors v1, . . . , vk such that A =∑k

j=1 q j v jv
T
j . Notice that when writing this expression as a factorization the entries

may not be rational, as one has to use the square root of q j to distribute it among the
two vectors. However this turns out be equivalent (see [4, Section 4]) to the existence
of a rational nonnegative n × m matrix C , such that A = CCT. We remark that the
minimal possible values for k and m, in case they exist, may be different and larger
than the cp-rank.

Problem 6.3 Let A ∈ ∂CP5 ∩ DNN ◦
5 have rational entries. Are the square factor-

izations of A rational in either sense?

Given the parametrization of the boundary and the uniquenes of 5×5 factorizations
and the parametrization of the algebraic components of the boundary we could hope
to answer this question entirely in the 5 × 5 case. However, this simplification of
the problem leads to finding rational points on a variety, which is a priori a difficult
question.

We now conclude our paper with a discussion of the implications and the future
outlook. The algebraic description of the boundary ∂CP5 gives us an explanation
for the complicatedness of the boundary: the high degree makes it very hard to
access. Nonetheless, the algebra allows to systematically construct exact matrices in
the boundary which seems to be a useful fact. It furthermore suggests that a description
with the same level of precision for n ≥ 6 is likely hopeless.

It is shown in [1] that the nontrival extreme rays of the cone of 6 × 6 copositive
matrices come in 42 types. In other words, instead of having to deal with two loci, an
analogous analysis of that cone would involve 42 varieties, most of which are expected
to yield varieties of much higher degree than VHi . In short, as dimension grows, the
complexity of the boundary increases in two directions simultaneously: the number
of algebraic components will diverge and each of the resulting varieties will become
harder.

Furthermore, we have so far not found a description of the part ∂CPR5(5) ∩ CP◦
5

and we suspect that a full derivation would come down to figuring out all nonreducible
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zero patterns,whichwould be feasible in principle. But if the number of zeros is smaller
than 11, one also needs to find the associated algebraic equations. This is a difficult
algebraic problem. The lack of convexity of the involved cones makes the description
even harder.
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