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Abstract
Given positive integers k ≤ d and a finite field F, a set S ⊂ F

d is (k, c)-subspace
evasive if every k-dimensional affine subspace contains at most c elements of S. By
a simple averaging argument, the maximum size of a (k, c)-subspace evasive set is at
most c|F|d−k . When k and d are fixed, and c is sufficiently large, the matching lower
bound �(|F|d−k) is proved by Dvir and Lovett. We provide an alternative proof of
this result using the random algebraic method. We also prove sharp upper bounds on
the size of (k, c)-evasive sets in case d is large, extending results of Ben-Aroya and
Shinkar. The existence of optimal evasive sets has several interesting consequences in
combinatorial geometry. We show that the minimum number of k-dimensional linear

hyperplanes needed to cover the grid [n]d ⊂ R
d is �d

(
n

d(d−k)
d−1

)
, which matches the

upper bound proved by Balko et al., and settles a problem proposed by Brass et al.
Furthermore, we improve the best known lower bound on the maximum number of
incidences between points and hyperplanes in R

d assuming their incidence graph
avoids the complete bipartite graph Kc,c for some large constant c = c(d).
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1 Introduction

Given a finite field F, a set of points S ⊂ F
d is (k, c)-subspace evasive if no k-

dimensional affine subspace contains more than c elements of S. This notion was first
investigated in an influential work of Pudlák and Rödl [18], who observed that explicit
constructions of evasive sets in Fn

2 can be transformed to give explicit constructions of
bipartite Ramsey graphs. In particular, they showed that a (d/2, c)-evasive set S ⊂ F

d
2

can be used to construct a bipartite graph with vertex classes of size |S| containing
no complete or empty bipartite graph with parts of size more than c. Evasive sets also
have application in coding theory in the context of list-decoding, and in combinatorial
geometry, where they can be used to get incidence bounds.

1.1 Evasive Sets and Coding Theory

Error-correcting codes are used for controlling errors in data transmission over noisy
or unreliable communication channels and they were extensively studied in the last 70
years in information theory, computer science and telecommunication. An [m, r , t]-
codeover the field F is a linear subspace L < F

m of dimension r such that theHamming
distance between any two distinct elements of L is at least t , or equivalently, L contains
no nonzero vector with less than t nonzero coordinates. In practice, an [m, r , t]-code
can be used to send r (F-ary) bits of data using m bits, and is capable of correcting
(t −1)/2 faulty bits. In other words, the Hamming balls of radius �(t −1)/2� centered
at the code words of L are disjoint, which gives the celebrated Hamming bound

m ≤ Ot

(
|F| (m−r)

�(t−1)/2� −1
)
(see, e.g., [22]).

Amatrix M ∈ F
(m−r)×m , whose kernel is L , is a parity-check matrix of L . It is easy

to show that L is an [m, r , t]-code if and only if any t − 1 columns of M are linearly
dependent. Therefore, the problem of constructing [m, r , t]-codes is equivalent to the
construction of a set S of m vectors in F

m−r , forming the columns of M , such that
no (t − 2)-dimensional subspace contains t − 1 elements of S. Writing d = m − r
and k = t − 2, the Hamming bound shows that if S ⊂ F

d such that no k-dimensional
linear subspace contains k + 1 elements of S, then

|S| ≤ Ok

(
|F| d

�(k+1)/2� −1
)
. (1)

A list-decoding problem deals with the case when we receive message with more
than (t − 1)/2 faulty bits. In this case we might not be able to uniquely determine the
original message, but we can sometimes output a small list of possibilities. An error
correcting code L ⊂ F

m is (ρ, c) list-decodable if the Hamming ball of radius ρm
around every element of L contains at most c elements of L . In 2011, Guruswami [14]
discovered an important connection between evasive sets and list-decodable codes.
He showed in [14] that if |F| = dO(1/ε2) and there exists S ⊂ F

d such that S is
(1/ε, c)-subspace evasive of size |S| ≥ |F|d(1−ε), then it is possible to construct a
code L ⊂ F

m of size |F|δm which is (1 − δ − 2ε, c) list-decodable.
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Furthermore, Guruswami [14] observed that a random set S of size |F|d−k−δ is(
k, O(kd/δ)

)
-subspace evasive with high probability, and so such a set can be used

to construct list-decodable codes of near optimal capacity. In this setting, one thinks
of k being fixed, while d and (possibly |F|) are large. Taking δ = εd in the above
result implies that a random set of |F|d(1−ε) points is (k, c)-subspace evasive with
c = O(k/ε).Notably, c does not dependon |F|ord. This simple probabilistic argument
vastly outperforms every known explicit construction, so the main focus here is to find
deterministic (k, c)-subspace evasive sets S of size |F|d(1−ε) with c small as possible,
see e.g. [4, 10]. On the other hand, Ben-Aroya and Shinkar [4] proved that when
ε−1 ≤ kO(1), the bound c = O(k/ε) cannot be improved, therefore the probabilistic
construction is optimal. We extend this result, showing that it remains true for every
ε−1 = 2O(k) as well.

Theorem 1.1 Let F be a field, k be a positive integer, and 0 < ε < 1/20, then if
d is sufficiently large with respect to k, the following holds. Let S ⊂ F

d such that
|S| ≥ |F|d(1−ε). Then S is not

(
k, k−log2(1/ε)

8ε

)
-subspace evasive.

Theorem 1.1 shows that if ε−1 = 2k−1, then a set of size more than |F|d(1−ε) is not
(k,�(2k))-evasive, while the result becomes meaningless if ε−1 ≥ 2k . Observe that
the latter is a natural barrier, as in caseF = F2, a k-dimensional affine subspace cannot
contain more than 2k points. Therefore, if one wants to extend Theorem 1.1 beyond
ε−1 ≥ 2k , the field F also has to play some role. This setting, already for k = 1, seems
extremely difficult. Bounding the size of a set inFd

3 containing no three points on a line
is equivalent with the famous Cap set problem, for which the upper bound 2.756d was
recently proved by Ellenberg and Gijswijt [11], following the breakthrough of Croot,
Lev, and Pach [9]. However, similar results are already not known for four points on
a line.

It appears, that the upper bound on evasiveness behaves very differently in the
regime when c is close to k. In this case, we show that the Hamming bound mentioned
above can be used to estimate the size of (k, k + C)-subspace evasive sets, where
C < k/2. Interestingly, the method of proof for this range of parameters is fundamen-
tally different from that in Theorem 1.1. While the proof of this theorem is mostly
combinatorial, relying on a generalization of the Erdős Box theorem [12], the proof
of the following result (such as the proof of the Hamming bound) is based on coding
theory.

Theorem 1.2 Let S ⊂ F
d be (k, k + C)-subspace evasive, where C ≤ k

2 − 1. Then

|S| ≤ 4k|F| d
�k/2(C+1)� .

Using the standard probabilistic argument, one can easily show that the bound in this
theorem is optimal up to a factor of 2 in the exponent.

1.2 Evasive Sets Over Large Fields

Motivated by applications in combinatorial geometry, another interesting setting is
to consider large (k, c)-subspace evasive sets in F

d , where we think of k and d as
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fixed, while |F| is arbitrarily large. Clearly, a simple averaging argument shows that
a (k, c)-subspace evasive set in F

d can have size at most c|F|d−k . As mentioned
above, the probabilistic argument shows that a random set of |F|d−k−δ points is (k, c)-
subspace evasive for δ = �(kd/c). Note that, however, a random set of �d(|F|d−k)

points does intersect many k-dimensional affine subspaces in �d(log |F|) elements
with high probability. Dvir and Lovett [10] (see Theorem 2.4 together with Claim 3.5)
showed that this can be improved, by giving an explicit algebraic construction of a
(k, c)-subspace evasive set of size �(|F|d−k), where c depends only on d and k.

Theorem 1.3 [10] For every pair of positive integers k, d satisfying k ≤ d, there exists
a positive integer c = c(d, k) such that the following holds. For every finite field F,
there exists a (k, c)-subspace evasive set of size |F|d−k/3 in Fd .

To provide a different perspective and for the convenience of the reader, we give
a short, alternative proof of this theorem. Note the striking difference between the
bound of Theorem 1.3 and the lower bounds in case c being small. This leads to
the natural question about the dependence of c(d, k) on the parameters d and k.
The proof of Dvir and Lovett [10] gives c(d, k) = dk (if |F| is sufficiently large),
which is likely to be far from optimal, while our proof gives even worse bounds.
On the other hand, applying Theorem 1.1 with ε = max{ kd , 1

2k−1 }, we get the lower
bound c(d, k) = �(min{d, 2k}). This might raise the question whether c(d, k) can be
bounded by a function of k alone. However, this is not true already for k = 1. Indeed,
if d is sufficiently large with respect to k and F, then the density Hales-Jewett theorem
[13] implies that any subset S ⊂ F

d of size at least 1
|F|k |F|d contains a combinatorial

line, which in turn is also a complete 1-dimensional affine subspace.

1.3 Covering by Subspaces

Theorem 1.3 has a number of interesting applications in combinatorial geometry. The
following problem first appeared in a paper of Brass and Knauer [5] in connection to
point-hyperplane incidences, which we discuss in more detail in the next subsection.
Givenpositive integersn, k, d, cwith k ≤ d, determine themaximumnumber of lattice
points in the grid [n]d = {1, . . . , n}d with no k-dimensional linear or affine subspace
containing more than c of them (overR). Let �(d, k, n, c) denote this maximum in the
linear case, and a(d, k, n, c) in the affine case. Here, we are interested in the behavior
of �(d, k, n, c) and a(d, k, n, c) as a function of n, while we think of k, d, c as fixed.
Clearly,wehavea(d, k, n, c) ≤ cnd−k aswecan cover [n]d bynd−k affinehyperplanes
of dimension k. On the other hand, a probabilistic argument of Brass and Knauer [5]
shows that for every ε > 0 there exists c = c(d, k, ε) such that a(d, k, n, c) ≥ nd−k−ε.
The tight result a(d, k, n, k+1) = �d(nd−k)was only known in the two special cases
when k = 1 or k = d − 1. A straightforward application of Theorem 1.3 lets us close
the gap between the lower and upper bound for every k < d and sufficiently large c.

Theorem 1.4 For every pair of positive integers k, d satisfying k ≤ d, there exists a
positive integer c = c(d, k) such that the following holds. For every positive integer n
there exists a set S ⊂ [n]d of size at least (n/2)d−k such that no k-dimensional affine
hyperplane contains more than c elements of S.
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Indeed, let p be any prime between n/2 and n, which exists by Bertrand’s postulate.
Let c = c(d, k) be the constant guaranteed by Theorem 1.3, and let S0 ⊂ F

d
p be a

set of pd−k ≥ (n/2)d−k vectors such that no k-dimensional affine subspace contains
more than c elements of S0. Setting S to be the set of lattice points in [p]d that are
congruent to the elements of S0 modulo p gives the desired set.

Determining �(d, k, n, c) seems to be more difficult. Brass and Knauer [5] conjec-
tured that �(d, k, n, k) = �d(nd(d−k)/(d−1)). However, this was refuted by Lefmann
[17] for most values of k and d, as he showed that �(d, k, n, k) = Od(nd/�k/2�) (akin
the Hamming bound, mentioned in the previous subsection). Similarly to the affine
case, bounding �(d, k, n, c) is closely related to the problem of bounding g(d, k, n),
which is the minimum number of k-dimensional linear hyperplanes in a covering of
[n]d . Indeed, we trivially have �(d, k, n, c) ≤ cg(d, k, n). The problem of estimating
g(d, k, n) was proposed by Brass et al. [6] (Problem 6 in Chapter 10.2). Bárány et al.
[3] resolved the k = d − 1 case of both problems by showing that �d(nd/(d−1)) =
�(d, d−1, n, d−1) ≤ (d−1)g(d, d−1, n) = Od(nd/(d−1)). In general, Balko et al.
[2] showed that g(d, k, n) = Od(nd(d−k)/(d−1)) and g(d, k, n) > nd(d−k)/(d−1)−o(1),
where the lower bound comes from proving �(d, k, n, c) ≥ nd(d−k)/(d−1)−ε for some
ε = εd,k(c) tending to 0 as c tends to infinity. If k = 1, it was shown by Konyagin and
Sudakov [15] that the o(1) and ε terms can be removed, closing the gap in this case.
Here, we close the gap for all values of k and d.

Theorem 1.5 For every pair of positive integers k, d satisfying k ≤ d, there exist
a positive integer c = c(d, k) and real number C = C(d, k) > 0 such that the
following holds. For every positive integer n there exists a set S ⊂ [n]d of size at least
Cnd(d−k)/(d−1) such that no k-dimensional linear hyperplane contains more than c
elements of S.

Corollary 1.6 Let k, d be positive integers satisfying k < d, then there exists C > 0
such that the following holds for every positive integer n. The number of k-dimensional
hyperplanes in any covering of [n]d is at least Cnd(d−k)/(d−1).

We will give a very short alternative proof of Corollary 1.6 as well, which does not
rely on Theorem 1.5. Finally, let us remark that c = c(d, k) denotes the same function
in Theorems 1.3, 1.4 and 1.5.

1.4 Point-Hyperplane Incidences

One of the fundamental results in combinatorial geometry is the Szemerédi-Trotter
theorem [21], which states that the number of incidences between n points andm lines
is O((mn)2/3 + m + n), and this bound is the best possible. Extending this result to
higher dimensions is a notorious open problem. Given a set of points P and set of
hyperplanes H in R

d , let I (P,H) denote the number of incidences between P and
H, that is, the number of pairs (p, H) ∈ P ×H such that p ∈ H . Note that in R3, by
taking n points on a single line andm planes containing this line, we have a collection
of n points andm planes withmn incidences. Therefore, in order to avoid this triviality,
we forbid a complete bipartite graph Kc,c in the incidence graph of the configuration.
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I.e., if P is a set of n points andH is a set ofm hyperplanes inRd , we are interested in
themaximum of I (P,H) as a function ofm and n assuming there are no c hyperplanes
containing the same c points. Let f (d, n,m, c) denote this maximum.

It follows from works of Chazelle [8], Brass and Knauer [5] and Apfelbaum and
Sharir [1] that

f (d, n,m, c) = Od,c((mn)1−1/(d+1) + m + n).

However, this bound is only known to be sharp in case d = 2. Brass and Knauer [5]
observed that large sets of lattice points satisfying the conditions of Theorems 1.4 and
1.5 can be used to provide lower bounds for f (d, n,m, c). For every pair of integers
m and n, and real number ε > 0, they showed that there exists c such that

f (d, n,m, c) ≥

⎧
⎪⎨

⎪⎩

(mn)1−2/(d+3)−ε if d is odd and d > 3,

(mn)1−2(d+1)/(d+2)2−ε if d is even,

�((mn)7/10) if d = 3.

By improving the known lower bounds on �(d, k, n, c), Balko et al. [2] improved the
lower bounds on f (d, n,m, c) as well for d ≥ 4. By using Theorems 1.4 and 1.5, we
further improve their result, and as these theorems are optimal (up to the value of c),
we reach the full potential of the approach outlined by Brass and Knauer [5].

Theorem 1.7 For every positive integer d there exists c such that the following holds.
Let m, n be positive integers, then there exists a set of n points P and a set of m
hyperplanes H in Rd such that the incidence graph of P and H is Kc,c-free, and

I (P,H) ≥
{

�d((mn)1−(2d+3)/(d+2)(d+3)) if d is odd,

�d((mn)1−(2d2+d−2)/(d+2)(d2+2d−2)) if d is even.

In certain asymmetric settings, i.e when n is much larger than m, better bounds are
known, see [19].

The rest of this paper is organized as follows. In Sect. 2, we prove Theorems 1.1
and 1.4. Then, in Sect. 3, we prove Theorem 1.3. In Sect. 4, we prove Theorem 1.5, and
give an alternative proof of Corollary 1.6. Finally, in Sect. 5, we give a proof sketch
of Theorem 1.7.

2 Lower Bounds for Evasiveness

In this section, we prove Theorems 1.1 and 1.4. In order to prove Theorem 1.1, we
consider a variant of the Erdős Box theorem [12]. This theorem is a generalization of
the Kővári-Sós-Turán theorem [16], providing upper bounds on the maximum number
of edges of an r -partite r -uniform hypergraph with parts of size n containing no copy
of the complete r -partite r -uniform hypergraph Ks1,...,sr . As we require a version
of the Box theorem in which the parts of the host hypergraph have different sizes
(which is not a standard setting), we present a short proof of the result that we need.
With slight abuse of notation, given an r -uniform r -partite hypergraph H with vertex
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classes V1, . . . , Vr , we view edges of H as both r -element subsets of the vertex set,
and elements of the Cartesian product V1 × · · · × Vr . We also denote by X (s) all
s-element subsets of the set X .

Lemma 2.1 Let r and s1, . . . , sr ≥ 2 be positive integers. Let H be an r-partite r-

uniform hypergraph with vertex classes V1, . . . , Vr such that |Vi | ≥ s2i |Vr |
1

si ...sr−1 for
i ∈ [r − 1]. If H has at least

2s
1

s1 ...sr−1
r |V1| . . . |Vr−1||Vr |1−

1
s1 ...sr−1

edges, then there exists S1 ⊂ V1, . . . , Sr ⊂ Vr such that |Si | = si for i ∈ [r ], and
S1 × · · · × Sr ⊂ E(H).

Proof We prove this by induction on r . In case r = 1, H has at least 2s1 edges, so the
statement is true. Let us assume that r ≥ 2. Let U = V2 × · · · × Vr and let

t ≥ 2s
1

s1 ...sr−1
r |V1| . . . |Vr−1||Vr |1−

1
s1 ...sr−1

be the number of edges of H . For each f ∈ U , let d( f ) denote the number of edges
of H containing f . Also, for every set of vertices W ⊂ V1, let

N (W ) = { f ∈ U : ∀v ∈ W , {v} ∪ f ∈ E(H)}.

Then we have the following equality:

∑

W∈V (s1)

1

|N (W )| =
∑

f ∈U

(
d( f )

s1

)
.

By the convexity of the function
( x
s1

)
, and recalling that

∑
f ∈U d( f ) = t , we can write

the following inequality:

∑

f ∈U

(
d( f )

s1

)
≥ |U |

(
t/|U |
s1

)
≥ t s1

2s1!|U |s1−1 .

The last inequality holds by the condition t/|U | ≥ 2|V1||Vr |−
1

s1 ...sr−1 > 2s21 . There-

fore, by the pigeonhole principle, there exists S1 ∈ V (s1)
1 such that

|N (S1)| ≥ t s1

2s1!|U |s1−1
(|V1|
s1

) ≥ t s1

2|V1|s1 |U |s1−1 ≥ 2s
1

s2 ...sr−1
r |V2| . . . |Vr−1||Vr |1−

1
s2 ...sr−1

Let H ′ be the (r−1)-partite (r−1)-uniform hypergraphwith vertex classes V2, . . . , Vr
and set of edges E(H ′) = N (S1). Then we can apply our induction hypothesis to
conclude that there exist S2 ⊂ V2, . . . , Sr ⊂ Vr such that |Si | = si for i = 2, . . . , r ,
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and S2 × · · · × Sr ⊂ E(H ′). But then S1 × · · · × Sr ⊂ V1 × · · · × Vr , so S1, . . . , Sr
satisfy the required properties. ��

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let us introduce some parameters. Let r = �log2(1/ε)� − 1,
then we may assume that r ≤ k, otherwise the statement of the theorem is vacuous.

For i ∈ [r − 1], let ti = 
 d2i+1−r

3 �, and set T = t1 + · · · + tr−1. Observe that T < 2d
3 ,

assuming d is sufficiently large with respect to r . Furthermore, for i = 1, . . . , r−1, let
Vi = F

ti , and let Vr = F
d−T . We will view F

d as the Cartesian product V1 ×· · ·×Vr .
Define the r -partite r -uniform hypergraph H on the vertex classes V1, . . . , Vr such
that v ∈ V1 × · · · × Vr is an edge if v ∈ S.

We would like to apply Lemma 2.1 with s1 = · · · = sr−1 = 2 and sr = k − r + 2
to the hypergraph H to find suitable sets S1, . . . , Sr . However, in order to do this, we
need to verify that H satisfies the conditions of the lemma. First of all, for i ∈ [r − 1],
we have

|Vi | = |F|ti ≥ |F| d2
i+1−r
3 ≥ 4|F|(d−T )2i−r = s2i |Vr |

1
si ...sr−1 ,

where the second inequality holds assuming d is sufficiently large with respect to r .
Furthermore, note that 1

8ε < s1 . . . sr−1 = 2r−1 ≤ 1
4ε , and

d − T

s1 . . . sr−1
≥ 4ε(d − T ) >

4εd

3
.

Therefore, we can write

2s
1

s1 ...sr−1
r |V1| . . . |Vr−1||Vr |1−

1
s1 ...sr−1 < 2k8ε|F|d(1−4ε/3) ≤ |S|.

Here, the last inequality holds by assuming d is sufficiently large with respect to k.
Thus, the conditions of Lemma 2.1 are satisfied, so we can find S1 ⊂ V1, . . . , Sr ⊂ Vr
such that |Si | = si for i ∈ [r ], and W = S1 × · · · × Sr ⊂ S. Let Si = {ui , vi } for
i ∈ [r −1], and let Sr = {w0 . . . wk−r+1}. Given w ∈ Vi for some i ∈ [r ], let w′ ∈ F

d

denote the vector which agrees with w on Vi , and vanishes on all other coordinates.
Then W is contained in the affine subspace

(

w′
0 +

r−1∑

i=1

u′
1

)

+ span〈{v′
i − u′

i : i ∈ [r − 1]} ∪ {w′
i − w′

0 : i ∈ [k − r + 1]}〉,

which clearly has dimension atmost k. Finally, as |W | = 2r−1(k−r+1) >
k−log2(1/ε)

8ε ,

this shows that S is not (k, k−log2(1/ε)
8ε )-subspace evasive. ��

Finally, let us present the proof of Theorem 1.2.
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Proof of Theorem 1.2 For the convenience of the reader, we first recall the proof of the
Hamming bound, that is (1). Let S ⊂ F

d be a set of vectors such that no k-dimensional
linear subspace contains k + 1 elements. Without loss of generality, assume that S
spans Fd . Let M ∈ F

d×|S| be a matrix, whose columns are the elements of S. Then
L = ker(M) < F

|S| does not contain a vector with at most k+1 non-zero coordinates,
which implies that L is an [|S|, |S| − d, k + 2]-code. Hence, the Hamming balls of
radius r = � k+1

2 � around the elements of L are disjoint. The size of such a ball is at

least (|F| − 1)r
(|S|
r

) ≥ 2−r |F|r (|S|
r

)
, which gives that |L| · 2−r |F|r (|S|

r

) ≤ |F||S|. From
this, we get

(|S|
r

) ≤ 2r |F|d−r , which further implies |S| ≤ 2k|F|d/r−1.
Now let us turn to the proof of Theorem 1.2. Write k = k1 + · · · + kC+1, where

ki ∈ {� k
C+1�, 
 k

C+1�} for i ∈ [C + 1]. Note that � ki+1
2 � > � k

2(C+1)�. Hence, by the

above discussion, if |S| ≥ 2k|F| d
�k/2(C+1)� + k + C + 1, we can find disjoint subsets

W1, . . . ,WC+1 ⊂ S such that |Wi | = ki + 1 and Wi spans a linear subspace of
dimension at most ki for i ∈ [C + 1]. Indeed, select W1, . . . ,WC+1 one-by-one, at
each step deleting the selected set from S. But then W = W1 ∪ · · · ∪ WC+1 spans a
linear subspace of dimension at most k, and |W | = k + C + 1, showing that S is not
(k, k + C)-evasive. ��

3 Optimal Constructions of Evasive Sets

In this section, we give an alternative proof of Theorem 1.3. Our proof is based on the
random algebraic method pioneered by Bukh, and uses the ideas from his paper [7].
With slight abuse of notation, let us exchange k with d − k for our (and the reader’s)
future convenience, so we prove the following analogue of Theorem 1.3.

Theorem 3.1 For every pair of positive integers k, d satisfying k ≤ d, there exists a
positive integer c = c(d, d − k) such that the following holds. For every finite field F,
there exists a (d − k, c)-subspace evasive (multi-)set of size |F|k in Fd .

Let D = (d+1)k+1, p = |F| (so p is a prime power), and letQD < F[x1, . . . , xk]
denote the space of polynomials of (total) degree at most D on k variables. Write

	D = {α ∈ N
k : α(1) + · · · + α(k) ≤ D},

which is the set of possible exponents of the monomials of the polynomials in QD .
Let q1, . . . , qd be random elements of QD chosen independently from the uniform
distribution, and set q = (q1, . . . , qd). Our goal is to show that the set

S = {q(x) : x ∈ F
k
p}

has the property that the no (d − k)-dimensional affine subspace of Fd contains more
than c elements of H with high probability, if c is sufficiently large with respect to k
and d.

We prepare the proof of this with a number of claims. First, let us state three simple
observations that we will use repeatedly.
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(i) If M ∈ F
k×d has rank k, and v ∈ F

d is chosen randomly from the uniform
distribution, then Mv is uniformly distributed in Fk .

(ii) If X1, . . . , Xd are uniformly distributed random variables in F, then X1, . . . , Xd

are independent if and only if (X1, . . . , Xd) is uniformly distributed in Fd .
(iii) If X1, . . . , Xd are independent, uniformly distributed random variables on F, and

Y1, . . . ,Yd are random variables on F such that Xi and Y j are independent for any
i, j ∈ [d], then X1 +Y1, . . . , Xd +Yd are independent and uniformly distributed.

Claim 3.2 Let v1, . . . , vk ∈ F
d be linearly independent vectors. Then the polynomials

〈q, v1〉, . . . , 〈q, vk〉 are independent and uniformly distributed in QD.

Proof Let M ∈ F
d×k be the matrix, whose rows are v1, . . . , vk . For α ∈ 	D and

i ∈ [d], let ci,α be the coefficient of the monomial xα = xα(1)
1 . . . xα(k)

k in qi , and let
cα = (c1,α, . . . , cd,α). Observe that the d · |	D| random variables (ci,α)i∈[d],α∈	D are
independent and uniformly distributed in F.

The coefficient of xα in 〈q, vi 〉 is (Mcα)(i). As Mcα is uniformly distributed in Fk

and (cα)α∈	D are independent, this proves the claim. ��
Claim 3.3 Let z ∈ F

k and i ∈ [d]. Then qi (z) is uniformly distributed in F.
Proof This follows as the constant term of qi is uniformly distributed in F. ��
Claim 3.4 Let s ≤ min{D, |F|1/2}, and let z1, . . . , zs ∈ F

k be pairwise distinct vectors.
Then the d · s random variables (qi (z j ))i∈[d], j∈[s] are independent.

Proof First, suppose that the first coordinates of the vectors z1, . . . , zs are pairwise
distinct. For α ∈ {0, 1, . . . , s − 1} and i ∈ [d], let ci,α be the coefficient of xα

1 in
qi . Also, let ci = (ci,0, . . . , ci,s−1) and yi = (1, zi (1), zi (1)2, . . . , zi (1)s−1). Then
y1, . . . , ys are linearly independent, using that z1(1), . . . , zs(1) are pairwise distinct,
and so the Vandermonde determinant is nonzero. Let M ∈ F

s×s
p be the matrix whose

rows are y1, . . . , ys . Then M has rank s, so Mci is uniformly distributed in F
s
p. As

c1, . . . , cd are independent, we get that the d · s numbers ((Mci )( j))i∈[d], j∈[s] are
independent. But qi (z j ) = Xi, j + Yi, j , where Xi, j = (Mci )( j), and Xi, j and Yi ′, j ′
are independent (since these variables depend on disjoint sets of random coefficients),
hence (qi (z j ))i∈[d], j∈[s] are independent as well (see (iii)).

Now consider the general case. We show that there exists an invertible matrix M ∈
F
k×k such thatMz1, . . . , Mzs havepairwise distinct first coordinates.AsM is a change

of basis, the polynomial q ′
i defined as q

′
i (x) = qi (M−1x) is also uniformly distributed

in Qp,D , so then we are done by the previous argument. Choose M randomly from
the uniform distribution on all invertible matrices. Then for 1 ≤ i < j ≤ s, we have
P(Mzi (1) = Mz j (1)) = (|F|k−1 − 1)/(|F|k − 1) < 1/|F| as M(zi − z j ) is uniformly
distributed on Fk \{0}. Hence, byMarkov’s inequality, the probability that there exists
1 ≤ i < j ≤ s such that Mzi (1) = Mz j (1) is at most

(s
2

)
/|F| < 1, implying the

existence of the desired matrix M . ��
Let V be a (d − k)-dimensional affine subspace of Fd and let z ∈ F

k . Let I (z, V )

be the indicator random variable of the event {q(z) ∈ V }. Then there exist k linearly
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independent vectors v1, . . . , vk ∈ F
d and b ∈ F

k such that I (z, V ) = 1 if and only if
〈q(z), vi 〉 = b(i) for every i ∈ [k]. Furthermore, set

N (V ) =
∑

z∈Fk
I (z, V ).

Let e1, . . . , ed ∈ F
d be the unit basis, that is, ei ( j) = 1 if i = j , and ei ( j) = 0

otherwise. Let E be the (d − k)-dimensional linear subspace with normal vectors
e1, . . . , ek . By Claim 3.2 and 3.3, N (V ) has the same distribution as N (E), so for
simplicity, write N = N (E) and I (z) = I (z, E). Also, observe that I (z) is the
indicator random variable of the event q1(z) = · · · = qk(z) = 0. Therefore, by Claim
3.3 and 3.4, we have that P(I (z) = 1) = 1/|F|k , and if s ≤ min{D, |F|1/2} and
z1, . . . , zs ∈ F

k are distinct, then I (z1), . . . , I (zs) are independent.

Claim 3.5 Let s ≤ min{D, |F|1/2}. Then E(Ns) ≤ ss+1

Proof We can write

E(Ns) =
∑

z1,...,zs∈Fkp
E(I (z1) . . . I (zs)).

Here, the s-wise independence of the variables I (z) guarantees that E(I (z1) . . . I (zs))
= |F|−kr , where r is the number of different elements among z1, . . . , zs . The number
of choices of (z1, . . . , zs) containing r distinct entries is at most rs pkr (as there are
at most |F|kr choices for the r vectors, and each r -tuple of vectors yields at most rs

such s-tuples). Hence, we arrive to the bound

E(Ns) ≤
s∑

r=1

rs |F|kr · |F|−kr < ss+1.

��
A crucial ingredient in the proof is the following fact from algebraic geometry,

which says that a variety in F
k
p contains either at most a constant number of points

(depending only on the degree of the variety), or at least �(p) points. In our case,
this means that N is either bounded by a constant, or at least �(p). But as the higher
moments of N are bounded by a constant, it is very unlikely that N = �(p).

Lemma 3.6 [7] For every k and D there exists a constant c such that the following
holds. Suppose that q1, . . . , qk ∈ F[x1, . . . , xk] are polynomials of degree at most D.
Then the size of the variety

W = {x ∈ F
k : q1(x) = · · · = qk(x) = 0}

is either at most c, or at least |F| − c|F|1/2.
Now everything is prepared to prove our main theorem.
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Proof of Theorem 3.1 Clearly, it is enough to prove the theorem in case |F| is suffi-
ciently large with respect to d and k. Let c be the constant given by Lemma 3.6 (with
respect to k and D), and suppose that |F| > max{(2c)2, (2D)D+1}.

We show that the multiset S = {q(z) : z ∈ F
k} satisfies the assertion of the theorem

with positive probability. Let V be a (d − k)-dimensional affine subspace of Fd . Then
|V ∩S| = N (V ), so by Claim 3.5 applied with s = D, we haveE(|V ∩S|D) ≤ DD+1.
Applying Markov’s inequality, for every λ > 0, we have

P(|V ∩ S| ≥ λ) ≤ P(|V ∩ S|D ≥ λD) ≤ DD+1

λD
.

But note that by Lemma 3.6, we have either |V ∩ S| ≤ c, or |V ∩ S| ≥ |F|− c|F|1/2 >

|F|/2. Hence, we can further write

P(|V ∩ S| > c) = P

(
|V ∩ S| ≥ |F|

2

)
≤ (2D)D+1

|F|D .

The number of different (d−k)-dimensional affine subspaces in Fd is at most (|F|d)k ·
|F|k = |F|(d+1)k , as there are at most (|F|d)k choices for the k normal vectors, and
at most |F|k translations. Therefore, the expected number of hyperplanes V violating
|V ∩ S| ≤ c is at most

|F|(d+1)k · (2D)D+1

|F|D ≤ (2D)D+1

|F| < 1,

recalling that D = (d + 1)k + 1. This finishes the proof. ��

4 Covering by Hyperplanes

In this section, we prove Theorem 1.5, and provide and alternative proof of Corollary
1.6.

Given a prime p and vectors x, y ∈ F
d
p, write x ∼ y if there exists λ ∈ Fp\{0}

such that x = λy. A crucial observation is that the ∼ equivalence class of each
vector contains an element, whose every coordinate is contained in the interval
[−p(d−1)/d , p(d−1)/d ]. This follows fromDirichlet’s theoremon simultaneous approx-
imations (see e.g. [20], Chapter 2, Theorem 1A), but we also provide a simple proof
for completeness.

Lemma 4.1 Let d, n be positive integers, let p ≤ nd/(d−1) be a prime, and let x ∈
F
d
p \ {0}. Then there exists y ∈ F

d
p such that x ∼ y and y(i) ∈ [−n, n] for i ∈ [d].

Proof For every z ∈ F
d
p and positive integer t , define the “ball of radius t centered at

z” as

Bt (z) = {v ∈ F
d
p : ∀i ∈ [d], v(i) − z(i) ∈ [−t, t]}.
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Then for t ≤ (p − 1)/2, we have |Bt (z)| = (2t + 1)d . Let t = p(d−1)/d/2, then t
satisfies p · (2t + 1)d > pd . Hence, by the pigeonhole principle, there exists λ1 �=
λ2 ∈ Fp such that Bt (λ1x) ∩ Bt (λ2x) �= ∅. But then setting y = (λ1 − λ2)x �= 0, we
have x ∼ y and y(i) ∈ [−2t, 2t] ⊂ [−n, n]. ��
Proof of Theorem 1.5 Let p be a prime such that nd/(d−1)/2 < p < nd/(d−1), which
exists by Bertrand’s postulate. Let c = c(d, k) be the constant provided by Theorem
1.3, and let S0 ⊂ F

d
p be a multiset of pd−k vectors such that no k-dimensional (linear)

subspace contains more than c elements of S0. By Lemma 4.1, for every x ∈ S0 there
exists x∗ ∈ [−n, n]d such that x∗ ≡ λx (mod p) for some λ �= 0. In particular, no
k-dimensional linear hyperplane contains more than c elements of S∗ = {x∗ : x ∈ S0}.
By the pigeonhole principle, there exists S′ ⊂ S∗ of size at least pd−k/3d such that
every element of S′ have the same sign-pattern. Let S be the set of vectors we get after
changing the 0 entries of the elements of S′ to 1, and multiplying the negative coordi-
nates by -1. Then S is contained in [n]d , it has at least pd−k/3d ≥ nd(d−k)/(d−1)/6d

elements, and it is easy to check that no k-dimensional linear hyperplane contains
more than c elements of S. ��
Proof of Corollary 1.6 For slight convenience, we consider the grid [−n, n]d instead of
[n]d . This does not change the problem up to the value of C for the following reason.
If [n]d can be covered by N linear hyperplanes of dimension k, then [−n, n]d can
be covered by 3d N linear hyperplanes of dimension k, as we can partition [−n, n]d
into 3d parts with respect to the signs of the vectors, and each part requires at most N
hyperplanes.

Let p be a prime such that nd/(d−1)/2 < p < nd/(d−1), which exists by Bertrand’s
postulate. For every x ∈ F

d
p, let x

∗ ∈ [−n, n]d be an arbitrary vector such that x ∼ x∗,
and let

S = {x∗ : x ∈ F
d
p \ {0}} ⊂ [−n, n]d .

Then |S| = (pd − 1)/(p − 1) ≥ pd−1.
Suppose that S′ ⊂ S spans a linear hyperplane of dimension at most k overR. Then

S′ spans a subspace of Fd
p of dimension at most k. As S′ contains at most one element

of each equivalence class of ∼, we get that |S′| ≤ (pk − 1)/(p− 1) ≤ 2pk−1. Hence,
any covering of S with linear hyperplanes contains at least |S|/2pk−1 ≥ pd−k/2 ≥
nd(d−k)/(d−1)/2k+1 elements. ��

5 Incidences

As the proof of Theorem 1.7 is essentially identical to the proofs of [5] and [2], let us
only give a very brief outline of it.

Proof sketch of Theorem 1.7 Let k = �d/2� − 1, n0 ≈ n1/(d−k) and m0 ≈
(m/n0)(d−1)/(dk+2d−1). Let P ⊂ [n0]d be a maximal set of lattice points such that
no k-dimensional affine subspace contains more than c1 = c(d, k) points of P , then
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|P| ≈ nd−k
0 ≈ n by Theorem 1.4. Also, let N ⊂ [m0]d be a maximal set of lat-

tice points such that no (d − k − 1)-dimensional linear subspace contains more than
c2 = c(d, d−k−1) points of N , then |N | ≈ md(k+1)/(d−1)

0 by Theorem 1.5. LetH be
the set of all hyperplanes whose normal vector is in N and contains at least one point of
P . Then |H| � m0n0|N | ≈ m as the scalar product 〈x, y〉 for any x ∈ P and y ∈ N is
contained in [dm0n0]. Furthermore, the incidence graph of (P,H) is Kc1+1,c2+1-free,
as the intersection of any c2 + 1 elements of H is an at most a k-dimensional affine
hyperplane. Finally, I (P,H) = |P||N |, as for each y ∈ N , the hyperplanes inH with
normal vector y form a partition of P . Plugging in our bounds on |P| and |N | gives the
desired result. See [2] for the precise calculations, that give almost the same bounds.
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