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Abstract
Fix p ∈ [1,∞), K ∈ (0,∞), and a probability measure μ. We prove that for every
n ∈ N, ε ∈ (0, 1), and x1, . . . , xn ∈ L p(μ) with

∥
∥maxi∈{1,...,n} |xi |

∥
∥
L p(μ)

≤ K , there

exist d ≤ 32e2(2K )2p log n
ε2

and vectors y1, . . . , yn ∈ �dp such that

∀ i, j ∈ {1, . . . , n}, ‖xi − x j‖p
L p(μ) − ε ≤ ‖yi − y j‖p

�dp
≤ ‖xi − x j‖p

L p(μ) + ε.

Moreover, the argument implies the existence of a greedy algorithm which outputs
{yi }ni=1 after receiving {xi }ni=1 as input. The proof relies on a derandomized version of
Maurey’s empirical method (1981) combined with a combinatorial idea of Ball (1990)
and a suitable change of measure. Motivated by the above embedding, we introduce
the notion of ε-isometric dimension reduction of the unit ball BE of a normed space
(E, ‖ · ‖E ) and we prove that B�p does not admit ε-isometric dimension reduction by
linear operators for any value of p �= 2.
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1 Introduction

1.1 Metric Dimension Reduction

Using standard terminology frommetric embeddings (see [38]), we say that amapping
between metric spaces f : (M, dM) → (N, dN) is a bi-Lipschitz embedding with
distortion at most α ∈ [1,∞) if there exists a scaling factor σ ∈ (0,∞) such that

∀x, y ∈ M, σdM(x, y) ≤ dN
(

f (x), f (y)
) ≤ ασdM(x, y). (1)

Throughout this paper, we shall denote by �dp the linear space Rd equipped with the
p-norm,

∀a = (a1, . . . , ad) ∈ R
d , ‖a‖�dp

=
( d

∑

i=1

|ai |p
)1/p

. (2)

The classical Johnson–Lindenstrauss lemma [21] asserts that if (H, ‖·‖H) is a Hilbert
space and x1, . . . , xn ∈ H, then for every ε ∈ (0, 1) there exists d ≤ C log n

ε2
and

y1, . . . , yn ∈ �d2 such that

∀i, j ∈ {1, . . . , n}, ‖xi − x j‖H ≤ ‖yi − y j‖�d2
≤ (1 + ε) · ‖xi − x j‖H, (3)

where C ∈ (0,∞) is a universal constant. In the above embedding terminology, the
Johnson–Lindenstrauss lemma states that for every ε ∈ (0, 1), n ∈ N, and d ≥ C log n

ε2
,

any n-point subset of Hilbert space admits a bi-Lipschitz embedding into �d2 with
distortion at most 1 + ε. In order to prove their result, Johnson and Lindenstrauss
introduced in [21] the influential random projection method that has since had many
important applications in metric geometry and theoretical computer science and kick-
started the field of metric dimension reduction (see the recent survey [36] of Naor)
which lies at the intersection of those two subjects.

Following [36], we say that an infinite dimensional Banach space (E, ‖·‖E ) admits
bi-Lipschitz dimension reduction if there existsα = α(E) ∈ [1,∞) such that for every
n ∈ N, there exists kn = kn(E, α) ∈ N satisfying

lim
n→∞

log kn
log n

= 0 (4)

and such that anyn-point subsetSof E admits a bi-Lipschitz embeddingwith distortion
at most α in a finite-dimensional linear subspace F of E with dimF ≤ kn . The only
non-Hilbertian space that is known to admit bi-Lipschitz dimension reduction is the
2-convexification of the classical Tsirelson space, as proven by Johnson and Naor in
[22]. Turning to negative results, Matoušek proved in [32] the impossibility of bi-
Lipschitz dimension reduction in �∞, whereas Brinkman and Charikar [10] (see also
[30] for a shorter proof) constructed an n-point subset of �1 which does not admit
a bi-Lipschitz embedding into any no(1)-dimensional subspace of �1. Their theorem
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was recently refined by Naor et al. [37] who showed that the same n-point subset of �1
does not embed into any no(1)-dimensional subspace of the trace class S1 (see also the
striking recent work [41] of Regev and Vidick, where the impossibility of polynomial
almost isometric dimension reduction in S1 is established). We refer to [36, Thm. 16]
for a summary of the best known bounds quantifying the aforementioned qualitative
statements. Despite the lapse of almost four decades since the proof of the Johnson–
Lindenstrauss lemma, the following natural question remains stubbornly open.

Question 1.1 For which values of p /∈ {1, 2,∞} does �p admit bi-Lipschitz dimension
reduction?

1.2 Dimensionality and Structure

An important feature of the formalism of bi-Lipschitz dimension reduction in aBanach
space E is that both the distortion α(E) of the embedding and the dimension kn(E, α)

of the target subspace F are independent of the given n-point subset S of E . Nev-
ertheless, there are instances in which one can construct delicate embeddings whose
distortion or the dimension of their targets depends on subtle geometric parameters of
S. For instance, we mention an important theorem of Schechtman [42, Thm. 5] (which
built on work of Klartag and Mendelson [26]) who constructed a linear embedding of
an arbitrary subset S of �2 into any Banach space E whose distortion depends only on
the Gaussian width of S and the �-norm of the identity operator idE : E → E . In the
special case that E is a Hilbert space, a substantially richer family of such embeddings
was devised in [31].

Let μ be a probability measure. For a subset S of L p(μ), we shall denote

I(S)
def= ∥

∥max
x∈S

|x |∥∥L p(μ)
(5)

and we will say that S is K-incompressible1 if I(S) ≤ K . The main contribution of the
present paper is the following dimensionality reduction theorem for incompressible
subsets of L p(μ) which, in contrast to all the results discussed earlier, is valid for any
value of p ∈ [1,∞).

Theorem 1.2 (ε-isometric dimension reduction for incompressible subsets of L p(μ))
Fix parameters p ∈ [1,∞), n ∈ N, K ∈ (0,∞) and let {xi }ni=1 be a K -incompressible
family of vectors in L p(μ) for some probability measure μ. Then for every ε ∈ (0, 1),

there exist d ∈ N with d ≤ 32e2(2K )2p log n
ε2

and points y1, . . . , yn ∈ �dp such that

∀i, j ∈ {1, . . . , n}, ‖xi − x j‖p
L p(μ) − ε ≤ ‖yi − y j‖p

�dp
≤ ‖xi − x j‖p

L p(μ) + ε.

(6)

1 The terminology is borrowed by the standard use of the term “incompressible vector” from randommatrix
theory, which refers to points on the unit sphere ofRn which are far from the coordinate vectors e1, . . . , en .
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Besides the appearance of the incompressibility parameter K in the bound for the
dimension d of the target space, Theorem 1.2 differs from the Johnson–Lindenstrauss
lemma in that the error in (6) is additive rather than multiplicative. Recall that a map
between metric spaces f : (M, dM) → (N, dN) is called an ε-isometric embedding
if

∀ x, y ∈ M,
∣
∣dN

(

f (x), f (y)
) − dM(x, y)

∣
∣ ≤ ε. (7)

Embeddings with additive errors occur naturally in metric geometry and, more specif-
ically, in metric dimension reduction (see e.g. [44, Sect. 9.3]).Wemention for instance
a result [40, Thm. 1.5] of Plan and Vershynin who showed that any subset S of the
unit sphere in �n2 admits a δ-isometric embedding into the d-dimensional Hamming
cube ({−1, 1}d , ‖ · ‖1), where d depends polynomially on δ−1 and the Gaussian width
of S. In the above embedding terminology and in view of the elementary inequality
|α − β| ≤ |α p − β p|1/p which holds for every α, β > 0, Theorem 1.2 asserts that
any n-point K -incompressible subset of L p(μ) admits an ε1/p-isometric embedding
into �dp for the above choice of dimension d. For further occurrences of ε-isometric
embeddings in the dimensionality reduction and compressed sensing literatures, we
refer to [8, 19, 20, 31, 40, 44] and the references therein.

1.3 Method of Proof

A large part of the (vast) literature on metric dimension reduction focuses on showing
that a typical low-rank linear operator chosen randomly from a specific ensemble acts
as an approximate isometry on a given set S with high probability. For subsets S of
Euclidean space, this principle has been confirmed for random projections [12, 14,
21, 36], matrices with Gaussian [15, 16, 42], Rademacher [1, 5], and subgaussian
[13, 17, 26, 31] entries, randomizations of matrices with the RIP [27] as well as
more computationally efficient models [2, 3, 9, 24, 33] which are based on sparse
matrices. Beyond its inherent interest as an �p-dimension reduction theorem (albeit,
for specific configurations of points), Theorem1.2 also differs from the aforementioned
works in its method of proof. The core of the argument, rather than sampling from
a random matrix ensemble, relies on Maurey’s empirical method [39] (see Sect. 2.1)
which is a dimension-free way to approximate points in bounded convex subsets of
Banach spaces by convex combinations of extreme points with prescribed length. An
application of the method to the positive cone of L p-distance matrices (the use of
which in this context is inspired by classical work of Ball [6]) equipped with the
supremum norm allows us to deduce (see Proposition 2.1) the conclusion of Theorem
1.2 under the stronger assumption that

K ≥ max
i∈{1,...,n} ‖xi‖L∞(μ). (8)

While Maurey’s empirical method is an a priori existential statement that is proven via
the probabilistic method, recent works (see [7, 18]) have focused on derandomizing
its proof for specific Banach spaces. In the setting of Theorem 1.2, we can use these
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tools to show (see Corollary 2.7) that there exists a greedy algorithmwhich receives as
input the high-dimensional data {xi }ni=1 and produces as output the low-dimensional
points {yi }ni=1. Finally, using a suitable change of measure [34] (see Sect. 2.3) we are
able to relax the stronger assumption (8) to that of K -incompressibility and derive
the conclusion of Theorem 1.2. Finally, we emphasize that, in contrast to most of the
dimension reduction algorithms (randomized or not) discussed earlier, the one which
gives Theorem 1.2 is not oblivious but is rather tailored to the specific configuration
of points {xi }ni=1 as it relies on the use of Maurey’s empirical method.

1.4 "-Isometric Dimension Reduction

Given two moduli ω,	 : [0,∞) → [0,∞), we say (following [36]) that a Banach
space (E, ‖ · ‖E ) admits metric dimension reduction with moduli (ω,	) if for any
n ∈ N there exists kn = kn(E) ∈ N with kn = no(1) as n → ∞ such that for any
x1, . . . , xn ∈ E , there exist a subspace F of E with dimF ≤ kn and y1, . . . , yn ∈ F
satisfying

∀i, j ∈ {1, . . . , n}, ω(‖xi − x j‖E ) ≤ ‖yi − y j‖E ≤ 	(‖xi − x j‖E ). (9)

In view of Theorem 1.2, we would be interested in formulating a suitable notion of
dimension reduction via ε-isometric embeddings which would be fitting to the moduli
appearing in (6).

Remark 1.3 Let a, b ∈ (0,∞), suppose that ω,	 : [0,∞) → [0,∞) are two moduli
satisfying

lim
t→∞

ω(t)

t
= a and lim

t→∞
	(t)

t
= b (10)

and that the Banach space (E, ‖ · ‖E ) admits metric dimension reduction with moduli
(ω,	). Fix n ∈ N and x1, . . . , xn ∈ E . Applying the assumption (9) to the points
sx1, . . . , sxn where s >> 1, we deduce that there exist points y1(s), . . . , yn(s) in a
kn-dimensional subspace F(s) of E such that

∀i, j ∈ {1, . . . , n}, ω(s‖xi − x j‖E ) ≤ ∥
∥yi (s) − y j (s)

∥
∥
E ≤ 	(s‖xi − x j‖E ).

(11)

For any η ∈ (0, 1), we can then choose s large enough (as a function of η and the xi )
such that

∀i, j ∈ {1, . . . , n}, (1 − η)a‖xi −x j‖E ≤ ‖yi (s) − y j (s)‖E
s

≤(1+η)b‖xi −x j‖E .

(12)

Therefore, we conclude that E also admits bi-Lipschitz dimension reduction (with
distortion b/a).
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This simple scaling argument suggests that any reasonable notion of ε-isometric
dimension reduction can differ from the corresponding bi-Lipschitz theory only in
small scales, thus motivating the following definition. We denote by BE the unit ball
of a normed space (E, ‖ · ‖E ).

Definition 1.4 (ε-isometric dimension reduction) Fix ε ∈ (0, 1), r ∈ (0,∞) and let
(E, ‖·‖E ) be an infinite-dimensional Banach space.We say thatBE admits ε-isometric
dimension reduction with power r if for every n ∈ N there exists kn = krn(E, ε) ∈ N

with kn = no(1) as n → ∞ for which the following condition holds. For every n points
x1, . . . , xn ∈ BE there exist a linear subspace F of E with dimF ≤ kn and points
y1, . . . , yn ∈ F satisfying

∀i, j ∈ {1, . . . , n}, ‖xi − x j‖rE − ε ≤ ‖yi − y j‖rE ≤ ‖xi − x j‖rE + ε. (13)

The fact that even high-dimensional infinite subsets of Euclidean space �2 may
admit ε-isometric embeddings into low-dimensional subspaces follows from the addi-
tive version of the Johnson–Lindenstrauss lemma, first proven by Liaw, Mehrabian,
Plan, and Vershynin [31] (see also [44, Prop. 9.3.2]). In contrast to that, combining the
scaling argument of Remark 1.3 with the fact that any d-dimensional subspace of �2
is isometric to �d2 , we deduce that if kn(ε) is the least dimension such that any n points

in �2 embed ε-isometrically in �
kn(ε)
2 , then kn(ε) = n − 1. This justifies the restriction

of Definition 1.4 to the unit ball BE of E .
It is clear from the definitions that if a Banach space E admits bi-Lipschitz dimen-

sion reduction with distortion 1+ε
1−ε

, where ε ∈ (0, 1), then BE admits 2ε-isometric
dimension reduction with power r = 1. The ε-isometric analogue of Question 1.1
deserves further investigation.

Question 1.5 For which values of p �= 2 doesB�p admit ε-isometric dimension reduc-
tion?

Even though the K -incompressibility assumption of Theorem 1.2 may a priori
seem restrictive, it is satisfied for most configurations of points in B�p . Suppose that
n, N ∈ N such that N is polynomial2 in n. Then, standard considerations show that
with high probability, a uniformly chosen n-point subset S of N 1/pB�Np

is O(log n)1/p-
incompressible. We refer to Remark 2.4 for more information on this and related
generic properties of finite subsets of rescaled p-balls.

1.5 "-Isometric Dimension Reduction by Linear Maps

A close inspection of the proof of Theorem 1.2 (see Remark 2.6) reveals that in fact
the low-dimensional points {yi }ni=1 can be realized as images of the initial data {xi }ni=1
under a carefully chosen linear operator. Nevertheless, wewill show that for any p �= 2
and n large enough, there exists an n-point subset of B�p whose image under any fixed

2 This relation between the parameters n, N is natural as any n-point subset of �p embeds isometrically in
�Np with N = (n

2
) + 1 by Ball’s isometric embedding theorem [6].
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linear ε-isometric embedding has rank which is linear in n. In fact, we shall prove the
following more general statement which refines a theorem that Lee, Mendel and Naor
proved in [29] for bi-Lipschitz embeddings.

Theorem 1.6 (Impossibility of linear dimension reduction in B�p ) Fix p �= 2 and two
moduli ω,	 : [0,∞) → [0,∞) with ω(1) > 0. For arbitrarily large n ∈ N, there
exists an n-point subset Sn,p ofB�p such that the following holds. If T : span(Sn,p) →
�dp is a linear operator satisfying

∀x, y ∈ Sn,p, ω(‖x − y‖�p ) ≤ ‖T x − T y‖�dp
≤ 	(‖x − y‖�p ), (14)

then d ≥
(

ω(1)
	(1)

) 2p
|p−2| · n−1

2 .

2 Proof of Theorem 1.2

Wesay that a normed space (E, ‖·‖E ) hasRademacher type p if there exists a universal
constant T ∈ (0,∞) such that for every n ∈ N and every x1, . . . , xn ∈ E ,

1

2n
∑

ε∈{−1,1}n

∥
∥
∥

n
∑

i=1

εi xi
∥
∥
∥

p

E
≤ T p

n
∑

i=1

‖xi‖p
E . (15)

The least constant T such that (15) is satisfied is denoted by Tp(E). A standard sym-
metrization argument (see [28, Prop. 9.11]) shows that if X1, . . . , Xn are independent
E-valued random variables with E[Xi ] = 0 for every i ∈ {1, . . . , n}, then

E

∥
∥
∥

n
∑

i=1

Xi

∥
∥
∥

p

E
≤ (

2Tp(E)
)p

n
∑

i=1

E‖Xi‖p
E . (16)

2.1 Maurey’s Empirical Method and Its Algorithmic Counterparts

A classical theorem of Carathéodory asserts that if T is a subset of Rm , then any
point z in the convex hull conv(T) (that is, a convex combination of finitely many
elements of T) can be expressed as a convex combination of at most m + 1 points of
T. Maurey’s empirical method is a powerful dimension-free approximate version of
Carathéodory’s theorem, first popularized in [39], that has numerous applications in
geometry and theoretical computer science. Let (E, ‖·‖E ) be aBanach space, consider
a bounded subset T of E and fix z ∈ conv(T). Since z is a convex combination of
elements of T, there exist m ∈ N, λ1, . . . , λm ∈ (0,∞), and t1, . . . , tm ∈ T such that

m
∑

k=1

λk = 1 and z =
m

∑

k=1

λk tk . (17)
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Let X be an E-valued discrete random variable with P{X = tk} = λk for all k ∈
{1, . . . ,m} and consider X1, . . . , Xd i.i.d. copies of X . Then, conditions (17) ensure
that X is well defined and E[X ] = z. Therefore, applying the Rademacher type
condition (16) to the centered random variables {Xs − z}ds=1 and normalizing, we get

E

∥
∥
∥
1

d

d
∑

s=1

Xs − z
∥
∥
∥

p

E
≤ (2Tp(E))p

d p−1 E‖X − z‖p
E . (18)

Since X takes values in T, if T ⊆ RBE , we then deduce that there exist x1, . . . , xd ∈ T

such that

∥
∥
∥
1

d

d
∑

s=1

xs − z
∥
∥
∥
E

≤ 4RTp(E)

d1−1/p . (19)

While the above argument is probabilistic, recent works have focused on deran-
domizing Maurey’s sampling lemma for smaller classes of Banach spaces, thus
constructing deterministic algorithms which output the empirical approximation
x1+...+xd

d of z. The first result in this direction is due to Barman [7] who treated the
case that E is an Lr (μ)-space, r ∈ (1,∞). This assumption was recently generalized
by Ivanov in [18] who built a greedy algorithm which constructs the desired empirical
mean in an arbitrary p-uniformly smooth space.

2.2 Dimension Reduction in Lp(�) for Uniformly BoundedVectors

With Maurey’s empirical method at hand, we are ready to proceed to the first part
of the proof of Theorem 1.2, namely the ε-isometric dimension reduction property
of L p(μ) under the strong assumption that the given point set consists of functions
which are bounded in L∞(μ).

Proposition 2.1 Fix p ∈ [1,∞), n ∈ N and let {xi }ni=1 be a family of vectors in L p(μ)

for some probability measure μ. Denote by L = maxi∈{1,...,n} ‖xi‖L∞(μ) ∈ [0,∞].
Then for every ε ∈ (0, 1), there exist d ∈ N with d ≤ 32e2(2L)2p log n

ε2
and y1, . . . , yn ∈

�dp such that

∀i, j ∈ {1, . . . , n}, ‖xi−x j‖p
L p(μ)−ε ≤ ‖yi−y j‖p

�dp
≤ ‖xi−x j‖p

L p(μ) + ε. (20)

Proof We shall identify �
(n2)∞ with the vector space of all symmetric n×n real matrices

with 0 on the diagonal equipped with the supremum norm. Consider the set

Cp = {(‖zi − z j‖p
L p(ρ)

)

i, j=1,...,n : ρ is a probability measure and

z1, . . . , zn ∈ L p(ρ)
} ⊆ �

(n2)∞ . (21)
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It is obvious that Cp is a cone in the sense that Cp = λCp for every λ > 0 but moreover
Cp is convex. To see this, consider A, B ∈ Cp, probability spaces (	1, ρ1), (	2, ρ2),
and vectors {zi }ni=1, {wi }ni=1 in L p(ρ1) and L p(ρ2) respectively such that

∀i, j ∈ {1, . . . , n}, Ai j = ‖zi − z j‖p
L p(ρ1)

and Bi j = ‖wi − w j‖p
L p(ρ2)

. (22)

Fix λ ∈ (0, 1) and consider the disjoint union 	1 � 	2 of 	1 and 	2 equipped
with the probability measure ρ(λ) = λρ1 + (1 − λ)ρ2. Then, by (22) the functions
ζi : 	1 � 	2 → R given by ζi |	1 = zi and ζi |	2 = wi , where i ∈ {1, . . . , n}, belong
to L p(ρ(λ)) and satisfy the conditions

∀i, j ∈ {1, . . . , n}, ‖ζi − ζ j‖p
L p(ρ(λ)) = λ‖zi − z j‖p

L p(ρ1)
+ (1 − λ)‖wi − w j‖p

L p(ρ2)

= λAi j + (1 − λ)Bi j , (23)

which ensure that λA + (1 − λ)B ∈ Cp, making Cp a convex cone. Consider the
embeddingM : L p(μ)n → Cp mapping a vector z = (z1, . . . , zn) to the correspond-
ing distance matrix, i.e.

∀i, j ∈ {1, . . . , n}, M(z)i j = ‖zi − z j‖p
L p(μ). (24)

By Ball’s isometric embedding theorem [6], x1, . . . , xn have isometric images in �Np
with N = (n

2

)+1. Without loss of generality we will thus assume that the given points
x1, . . . , xn ∈ L p(μ) are simple functions (that is, each of them takes only finitely
many values) with ‖xi‖L∞(μ) ≤ L . Let {S1, . . . , Sm} be a partition of the underlying
measure space such that each function xi is constant on each Sk and suppose that
xi |Sk = a(i, k) ∈ [−L, L] for i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}. Then, for every
i, j ∈ {1, . . . , n}, we have

M(x)i j =
m

∑

k=1

∫

Sk
|xi − x j |p dμ =

m
∑

k=1

μ(Sk) · ∣
∣a(i, k) − a( j, k)

∣
∣p

=
m

∑

k=1

μ(Sk) M
(

y(k)
)

i j , (25)

where y(k)
def= (a(1, k), . . . , a(n, k)) ∈ L p(μ)n is a vector whose components are

constant functions. As μ is a probability measure and {S1, . . . , Sm} is a partition,
identity (25) implies that

M(x) ∈ conv
{

M
(

y(k)
) : k ∈ {1, . . . ,m}} ⊆ �

(n2)∞ . (26)

Observe that since a(i, k) ∈ [−L, L] for every i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, we
have

∀k ∈ {1, . . . ,m}, ∥
∥M

(

y(k)
)∥
∥

�
(n2)∞

= max
i, j∈{1,...,n}

∣
∣a(i, k)−a( j, k)

∣
∣p ≤ (2L)p. (27)
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Moreover, �
(n2)∞ is e-isomorphic to �

(n2)
pn where pn = log

(n
2

)

. It is well-known (see [28,
Chap. 9]) that T2(�p) ≤ √

p − 1 for every p ≥ 2 and thus

T2
(

�
(n2)∞

) ≤ e
√

pn − 1 <

√

2e2 log n. (28)

Applying Maurey’s sampling lemma (Sect. 2.1) while taking into account (27) and
(28), we deduce that for every d ≥ 1 there exist k1, . . . , kd ∈ {1, . . . ,m} such that

∥
∥
∥
1

d

d
∑

s=1

M
(

y(ks)
) − M(x)

∥
∥
∥

�
(n2)∞

≤ 2p+ 5
2 eL p√log n√

d
. (29)

Therefore, if ε ∈ (0, 1) is such that d ≥ 32e2(2 L)2p log n
ε2

we then have

∀i, j ∈ {1, . . . , n},
∣
∣
∣
1

d

d
∑

s=1

∣
∣a(i, ks) − a( j, ks)

∣
∣
p − ‖xi − x j‖p

L p(μ)

∣
∣
∣ ≤ ε. (30)

Finally, consider for each i ∈ {1, . . . , n} a vector yi = (yi (1), . . . , yi (d)) ∈ �dp given
by

∀s ∈ {1, . . . , d}, yi (s) = a(i, ks)

d1/p
(31)

and notice that (30) can be equivalently rewritten as

∀i, j ∈ {1, . . . , n}, ‖xi − x j‖p
L p(μ) − ε ≤ ‖yi − y j‖p

�dp
≤ ‖xi − x j‖p

L p(μ) + ε,

(32)

concluding the proof of the proposition. �
Remark 2.2 It is worth emphasizing that the coordinates of the vectors y1, . . . , yn pro-
duced in Proposition 2.1 consist (up to rescaling) of values of the functions x1, . . . , xn .
Such low-dimensional embeddings via sampling are a central object of study in approx-
imation theory, see e.g. the recent survey [25] and the references therein.

The additive version of the Johnson–Lindenstrauss lemma, first observed in [31] as a
consequence of a deep matrix deviation inequality (see also [44, Chap. 9]), asserts that
for every n-point subset X = {x1, . . . , xn} of a Hilbert space H and every ε ∈ (0, 1),

there exist d ≤ Cw(X)2

ε2
and points y1, . . . , yn ∈ �d2 such that

∀i, j ∈ {1, . . . , n}, ‖xi − x j‖H − ε ≤ ‖yi − y j‖�d2
≤ ‖xi − x j‖H + ε, (33)

wherew(X) is the mean width ofX. We will now observe that the spherical symmetry
of B�2 allows us to deduce a similar conclusion for points in BH by removing the
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incompressibility assumption from Proposition 2.1 when p = 2. We shall use the
standard notation LN

p for the space L p(μN ) where μN is the normalized counting
measure on the finite set {1, . . . , N }, that is

∀a = (a1, . . . , aN ) ∈ R
N , ‖a‖LN

p

def=
( 1

N

N
∑

i=1

|ai |p
)1/p

. (34)

Observe that for 0 < p < q ≤ ∞, we have BLN
q

⊆ BLN
p
.

Corollary 2.3 There exists a universal constant C ∈ (0,∞) such that the following
statement holds. Fix n ∈ N and let {xi }ni=1 be a family of vectors in BH for some

Hilbert space H. Then for every ε ∈ (0, 1), there exist d ∈ N with d ≤ C(log n)3

ε4
and

points y1, . . . , yn ∈ �d2 such that

∀i, j ∈ {1, . . . , n}, ‖xi − x j‖H − ε ≤ ‖yi − y j‖�d2
≤ ‖xi − x j‖H + ε. (35)

Before proceeding to the derivation of (35) we emphasize that since the given
points {xi }ni=1 belong to BH, Corollary 2.3 is formally weaker than the Johnson–
Lindenstrauss lemma. However we include it here since it differs from [21] in that
the low-dimensional point set {yi }ni=1 is not obtained as an image of {xi }ni=1 under a
typical low-rank matrix from a specific ensemble.

Proof of Corollary 2.3 Since any n-point subset {x1, . . . , xn} ofH embeds linearly and
isometrically in Ln

2, we assume that x1, . . . , xn ∈ BLn
2
. We will need the following

claim.

Claim. Suppose that X1, . . . , Xn are (not necessarily independent) random vectors,
each uniformly distributed on the unit sphere Sn−1 of Ln

2. Then, for some universal
constant S ∈ (0,∞),

E
[

max
i∈{1,...,n} ‖Xi‖Ln∞

] ≤ S
√

log n, (36)

Proof of the Claim By a standard estimate of Schechtman and Zinn [43, Thm. 3], for
a uniformly distributed random vector X on the unit sphere Sn−1 of Ln

2, we have

∀t ≥ γ1
√

log n, P
{‖X‖Ln∞ > t

} ≤ e−γ2t2 (37)

for some absolute constants γ1, γ2 ∈ (0,∞). Let W
def= maxi∈{1,...,n} ‖Xi‖Ln∞ and

notice that

∀ K ∈ (γ1,∞), E[W ] =
∫ ∞

0
P{W>t} dt≤K

√

log n+
∫ ∞

K
√
log n

P{W>t} dt . (38)
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By the union bound, we have

∀t > 0, P{W > t} ≤
n

∑

i=1

P{Xi > t} = nP{X1 > t}. (39)

Combining (38) and (39), we therefore get

E[W ] ≤ K
√

log n + n
∫

K
√
log n

P{X1 > t} dt (37)≤ K
√

log n + n
∫ ∞

K
√
log n

e−γ2t2 dt

= K
√

log n + n
√

log n
∫ ∞

K
n−γ2u2 du

= K
√

log n + √

log n
∫ ∞

K
n1−γ2u2 du.

(40)

Choosing K > γ1 such that K 2γ2 > 1, the exponent in the last integrand becomes
negative, thus

E[W ] ≤ K
√

log n + 2
√

log n
∫ ∞

K
2−γ2u2 du ≤ S

√

log n (41)

for a large enough constant S ∈ (0,∞) and the claim follows.

Now let U ∈ O(n) be a uniformly chosen random rotation on R
n . The aforemen-

tioned claim shows that since‖xi‖Ln
2

≤ 1 for every i ∈ {1, . . . , n}, writing x̂i = xi‖xi‖Ln2
,

we have the estimate

E
[

max
i∈{1,...,n} ‖Uxi‖Ln∞

] ≤ E
[

max
i∈{1,...,n} ‖U x̂i‖Ln∞

] ≤ S
√

log n. (42)

Therefore, by (42) and Proposition 2.1 there exist a constant C ∈ (0,∞) and a

rotation U ∈ O(n) such that for every ε ∈ (0, 1) there exist d ≤ C(log n)3

ε4
and points

y1, . . . , yn ∈ �d2 for which

∀i, j ∈ {1, . . . , n}, ‖Uxi −Ux j‖2Ln
2
−ε2 ≤ ‖yi−y j‖2�d2≤‖Uxi−Ux j‖2Ln

2
+ε2.

(43)

Since ‖Ua −Ub‖Ln
2

= ‖a − b‖Ln
2
for every a, b ∈ Ln

2, the conclusion follows by the

elementary inequality |α − β| ≤ √|α2 − β2| which holds for every positive numbers
α, β ∈ (0,∞). �
Remark 2.4 Fix p ∈ [1,∞). The isometric embedding theorem of Ball [6] asserts
that any n-point subset of �p admits an isometric embedding into �Np where N =
(n
2

) + 1. Suppose, more generally, that n, N ∈ N are such that N is polynomial in n.
Considerations in the spirit of the proof ofCorollary 2.3 (e.g. relying on [43]) then show
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that if x1, . . . , xn are independent uniformly random points in BLN
p
, then the random

set {x1, . . . , xn} is O(log n)1/p-incompressible. In other words, incompressibility is
a generic property of random n-point subsets of BLN

p
. On the other hand, a typical

n-point subset ofBLN
p
is known to be approximately a simplex due towork ofArias-de-

Reyna, Ball, and Villa [4] and so, in particular, it can be bi-Lipschitzly embedded in
O(log n) dimensions.

2.3 Factorization and Proof of Theorem 1.2

Observe that Proposition 2.1 is rather non-canonical as the conclusion depends on
the pairwise distances between the points {xi }ni=1 in L p(μ) whereas the bound on the
dimension depends on L = maxi ‖xi‖L∞(μ). In order to deduce Theorem 1.2 from
this (a priori weaker) statement we shall leverage the fact that Proposition 2.1 holds for
any probability measure μ by optimizing this parameter L over all lattice-isomorphic
images of {xi }ni=1. The optimal such change of measure which allows us to replace L
by ‖maxi |xi |‖L p(μ) is a special case of a classical factorization theorem of Maurey
(see [34] or [23, Thm. 5] for the general statement), whose short proof we include for
completeness.

Proposition 2.5 Fix n ∈ N, p ∈ (0,∞), and a probability space (	,μ). For every
points x1, . . . , xn ∈ L p(μ), there exists a nonnegative density function f : 	 → R+
supported on the support of maxi |xi | such that if ν is the probability measure on 	

given by dν
dμ = f , then

max
i∈{1,...,n}

∥
∥xi f

−1/p
∥
∥
L∞(ν)

≤ ∥
∥ max
i∈{1,...,n} |xi |

∥
∥
L p(μ)

. (44)

Proof Let V = supp(maxi |xi |) ⊆ 	 and define the change of measure f as

∀ω ∈ 	, f (ω)
def= maxi∈{1,...,n} |xi (ω)|p

∫

	
maxi∈{1,...,n} |xi (θ)|p dθ

. (45)

Then, (44) is elementary to check. �
We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 Fix a K -incompressible family of vectors x1, . . . , xn ∈ L p(	,μ)

and let V = supp(maxi |xi |) ⊆ 	. Denote by f : 	 → R+ the change of density
from Proposition 2.5. If dν

dμ = f , then the linear operator T : L p(V , μ) → L p(	, ν)

given by Tg = f −1/pg is (trivially) a linear isometry. Therefore, Proposition 2.1 and

(44) show that there exist d ∈ N with d ≤ 32e2(2K )2p log n
ε2

and points y1, . . . , yn ∈ �dp
such that the condition

‖xi − x j‖p
L p(μ) − ε = ‖T xi − T x j‖p

L p(ν) − ε ≤ ‖yi − y j‖p
�dp

≤ ‖T xi − T x j‖p
L p(ν) + ε = ‖xi − x j‖p

L p(μ) + ε, (46)
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is satisfied for every i, j ∈ {1, . . . , n}. This concludes the proof of Theorem 1.2.

Remark 2.6 A careful inspection of the proof of Theorem 1.2 reveals that the low-
dimensional points {yi }ni=1 can be obtained as images of the given points {xi }ni=1
under a linear transformation. Indeed, starting from a K -incompressible family of
points {xi }ni=1 in L p(	,μ), we use Proposition 2.5 to find a change of measure
T : L p(V , μ) → L p(	, ν) such that {T xi }ni=1 satisfy the stronger assumption of

Proposition 2.1. Then, for some d ∈ N with d ≤ 32e2(2K )2p log n
ε2

we find pairwise
disjoint measurable subsets S1, . . . , Sd of 	, each with positive measure, such that if
S : L p(	, ν) → �dp is the linear map

∀z ∈ L p(	, ν), Sz
def= 1

d1/p

( 1

μ(S1)

∫

S1
z dν, . . . ,

1

μ(Sd)

∫

Sd
z dν

)

∈ �dp, (47)

then the points {yi }ni=1 = {(S ◦ T )xi }ni=1 ⊆ �dp satisfy the desired conclusion (6).

We conclude this section by observing that the argument leading to Theorem 1.2 is
constructive.

Corollary 2.7 In the setting of Theorem 1.2, there exists a greedy algorithm which
receives as input the high-dimensional points {xi }ni=1 and produces as output the
low-dimensional points {yi }ni=1.

Proof As the density (45) is explicitly defined, the linear operator T : L p(V , μ) →
L p(	, ν) can also be efficiently constructed. On the other hand, in order to con-
struct the operator S defined by (47) one needs to find the corresponding partition
{S1, . . . , Sd} and this was achieved in Proposition 2.1 via an application of Maurey’s
sampling lemma to the cone Cp ⊆ �N∞ where N = (n

2

)

. As �N∞ is e-isomorphic to the 2-
uniformly smooth space �Nlog N , Ivanov’s result from [18] implies that the construction
can be implemented by a greedy algorithm. �

Analysis of the algorithm. The only nontrivial algorithmic task in our dimensionality
reduction result is the implementation of Maurey’s approximate Carathéodory theo-
rem. In the special case of �p spaces, various constructive proofs of Maurey’s lemma
are known [7, 11, 35], each of which allows for an analysis of the algorithm’s running
time. Assume that the initial points x1, . . . , xn ∈ B�mp

for some finite m. Implement-
ing, for instance, the mirror descent algorithm of [35, Thm. 3.5] on the convex hull
ofM(y(1)), . . . ,M(y(m)) appearing in the proof of Theorem 1.2, the corresponding
indices k1, . . . , kd can be produced in time O(mn2 log n/ε2). Therefore, assuming
that the points x1, . . . , xn a priori lie in a poly(n)-dimensional space (as is reasonable
by Ball’s embedding theorem), the output points y1, . . . , yn can be constructed in time
poly(n, 1/ε).
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3 Proof of Theorem 1.6

In this section we prove Theorem 1.6. The constructed subset of B�p which does not
embed linearly into �dp for small d is a slight modification of the one considered in
[29].

Proof of Theorem 1.6 Fixm ∈ N and denote by {wi }2mi=1 the rows of the 2
m ×2m Walsh

matrix and by {ei }2mi=1 the coordinate basis vectors of R
2m . Consider the n-point set

Sn,p = {0} ∪ {e1, . . . , e2m } ∪ {
w1
2m/p , . . . ,

w2m

2m/p

} ⊆ B�2
m
p

(48)

where n = 2m+1 + 1 and suppose that T : �2
m

p → �dp is a linear operator such that

∀x, y ∈ Sn,p, ω(‖x − y‖�2
m
p

) ≤ ‖T x − T y‖�dp
≤ 	(‖x − y‖�2

m
p

). (49)

Assume first that 1 ≤ p < 2. If we write wi = ∑2m
j=1 wi ( j)e j then by orthogonality

of {wi }2mi=1,

2m
∑

i=1

‖Twi‖2�d2 =
2m
∑

i=1

∥
∥
∥

2m
∑

j=1

wi ( j)T e j
∥
∥
∥

2

�d2

=
2m
∑

j,k=1

〈w j , wk〉〈T e j , T ek〉

= 2m
2m
∑

j=1

‖T e j‖2�d2 . (50)

By assumption (49) on T , we have

∀ j ∈ {1, . . . , 2m}, ‖T e j‖2�d2 ≤ ‖T e j‖2�dp ≤ 	(1)2 (51)

and

∀ j ∈ {1, . . . , 2m}, ‖Tw j‖2�d2≥2
2m
p d− 2−p

p
∥
∥T

( w j

2m/p

)∥
∥
2
�dp

≥2
2m
p d− 2−p

p ω(1)2. (52)

Combining (50), (51), and (52) we deduce that

2m(1+ 2
p )d− 2−p

p ω(1)2 ≤ 4m	(1)2, (53)

which is equivalent to d ≥
(

ω(1)
	(1)

) 2p
2−p

2m =
(

ω(1)
	(1)

) 2p
|p−2| · n−1

2 . The case p > 2 is

treated similarly.

Remark 3.1 The point set Sn,p considered in the proof of Theorem 1.6 for p �= 2
is O(n1/p) incompressible and does not admit a linear 1

2 -isometric embedding in
fewer than 	(n) dimensions. This shows that the dimension of the linear embedding
exhibited in Theorem 1.2 has to be of order at least 	(K p) up to lower order terms.
This should be compared with the O(K 2p log n) upper bound of Theorem 1.2.
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