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Abstract
Thenotion of generalized rank in the context ofmultiparameter persistence has become
an important ingredient for defining interesting homological structures such as gen-
eralized persistence diagrams. However, its efficient computation has not yet been
studied in the literature. We show that the generalized rank over a finite interval I
of a Z2-indexed persistence module M is equal to the generalized rank of the zigzag
module that is induced on a certain path in I tracing mostly its boundary. Hence,
we can compute the generalized rank of M over I by computing the barcode of the
zigzag module obtained by restricting to that path. If M is the homology of a bifil-
tration F of t simplices (while accounting for multi-criticality) and I consists of t
points, this computation takes O(tω) time where ω ∈ [2, 2.373) is the exponent of
matrix multiplication. We apply this result to obtain an improved algorithm for the
following problem. Given a bifiltration inducing a module M , determine whether M is
interval decomposable and, if so, compute all intervals supporting its indecomposable
summands.
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1 Introduction

In Topological Data Analysis (TDA) one of the central tasks is that of decomposing
persistence modules into direct sums of indecomposables. In the case of a persistence
module M over the integers Z, which implies that M is isomorphic to a direct sum of
intervalmodules I([bα, dα]), for integers bα ≤ dα andα in some index set A [1, 2]. The
multiset of intervals {[bα, dα], α ∈ A} that appear in this decomposition constitutes
the persistence diagram, or equivalently, the barcode of M—a central object in TDA
[3, 4].

There are many situations in which data naturally induce persistence modules over
posets which are different fromZ [5–14]. Unfortunately, the situation already becomes
‘wild’ when the domain poset is Z2. In that situation, one must contend with the fact
that a direct analogue of the notion of persistence diagrams may not exist [8], namely
it may not be possible to obtain a lossless up-to-isomorphism representation of the
module as a direct sum of interval modules.

Much energy has been put into finding ways in which one can extract incomplete
but still stable invariants from persistence modules M : Zd (orRd ) → vec (which
we will refer to as a Zd -module). Biasotti et al. [15] considered the restriction of an
Rd -module to lines with direction vectors in the positive orthant.1 This was further
developed by Lesnick and Wright in the RIVET project [16] which facilitates the
interactive visualization of Z2-modules. Cai et al. [17] considered a certain elder-
rule on the Z2-modules which arise in multiparameter clustering. Other efforts have
attempted to identify algebraic conditions guaranteeing that M can be decomposed
into interval modules of varying degrees of complexity. This has been fully realized
in [18, 19] in the case when the intervals in question are rectangles. The case of more
complicated intervals has been approached in [20–22] through the lens of Möbius
inversion.

The notion ofMöbius inversion was first explicitly recognized in the TDA literature
by Patel in [23] through the reinterpretation of the persistence diagram of a Z-module
as the Möbius inversion of its rank function. Patel’s work was then extended by Kim
andMémoli [22] to the setting ofmodules defined over any suitable locally finite poset.
They generalized the rank invariant via the limit-to-colimit map over subposets and
then conveniently expressed its Möbius inversion. In fact the limit-to-colimit map was
suggested by Amit Patel to the authors of [22] who in [24] used it to define a notion
of rank invariant for zigzag modules. Chambers and Letscher [25] also considered a
notion of persistent homology over directed acyclic graphs using the limit-to-colimit
map. Asashiba et al. [20] study the case of modules defined on an m × n grid and
propose a high-level algorithm for computing both their generalized rank function and

1 When d = 2 this means lines with positive slope.
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Fig. 1 Generalized rank via zigzag persistence. Let M be a Z2-module. (A) Standard rank: Let p ≤ q in
Z2. The rank of the structure map from p to q coincides with the multiplicity of full bars (red) over the
diagonal path, which is three. (B) Generalized rank: Let I be an interval of Z2. Let us consider the zigzag
poset ∂ I : p1 ≤ (p0 ∨ p1) ≥ p0 ≤ q0 ≥ (q0 ∧ q1) ≤ q1. The generalized rank of M over I is equal to the
multiplicity of full bars (red) in the zigzag module M∂ I , which is two (Theorem 3.12) (note: by definition,
the zigzag poset ∂ I does not fully inherit the partial order on Z2. For example, the partial order on ∂ I does
not contain the pair (p1, q1) whereas p1 ≤ q1 in Z2)

theirMöbius inversions with the goal of providing an approximation of a givenmodule
by interval decomposables. Asashiba et al. [26] tackle the interval decomposability of
a given Zd -module via quiver representation theory.

One fundamental algorithmic problem is that of determining whether a given Z2-
module is interval decomposable, and if so, computing the intervals. There are some
existing solutions to this problem in the literature. Suppose that the inputZ2-module is
induced by a bifiltration (Definition 4.1) comprising insertions of at most t simplices
on a grid of cardinality O(t). First, the decomposition algorithm by Dey and Xin [27]
can produce all indecomposables from such a module in O(t2ω+1) time (see [28] for
comments about its implementation) where ω ∈ [2, 2.373) is the exponent of matrix
multiplication. Given these indecomposables, one could then test whether they are
indeed interval modules. However, the algorithm requires that the input module be
such that no two generators or relations in the module have the same grade. Then,
Asashiba et al. [26] give an algorithm which requires enumerating an exponential
number (in t) of intervals. Finally, the algorithm by Meataxe sidesteps both of the
above issues, but incurs a worst-case cost of O(t18) as explained in [27].

See also [29–33] for related recent work.
Contributions.
One of our key results is as follows. Let M be a Z2-module. We prove that the gen-
eralized rank of M over any finite interval I in Z2 can be computed using the zigzag
persistence barcode of the restriction of M to a certain zigzag path within I (Theo-
rem 3.12). See Fig. 1 for an illustration. By utilizing this theorem, we establish two
algorithms described subsequently.
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Assume that the input is a filtrationF of a simplicial complex K over an interval I of
Z2 such that I and K consist of O(t) points and simplices, respectively. The filtration
can be multicritical, i.e. for any simplex σ ∈ K , the subset of points in I at which σ

is present can admit multiple minimal points. When the filtration F is multicritical,
we assume that

∑
σ∈K n(σ ) = O(t) where n(σ ) is the number of minimal points in

I at which σ is present.
Let MF be the persistence module that is obtained by applying the homology

functor to the filtration F .

• Given thatMF is interval decomposable, we provide an algorithm Interval (page
19) to compute the barcode of MF in time O(tω+2) (Proposition 4.15).

• We provide an algorithm IsIntervalDecomp (page 23) to decide the interval
decomposability of MF in time O(t3ω+2) (Proposition 4.17).

2 Preliminaries

In Sect. 2.1, we review the notion of interval decomposability of persistence modules.
In Sect. 2.2, we review the notions of generalized rank invariant and generalized per-
sistence diagram. In Sect. 2.3, we discuss how to compute the limit and the colimit of
a given functor P → vec.

2.1 PersistenceModules and Their Decompositions

We fix a certain field F and every vector space in this paper is over F. Let vec denote
the category of finite dimensional vector spaces and linear maps.

Let P be a poset. We regard P as the category that has points of P as objects. Also,
for any p, q ∈ P , there exists a unique morphism p → q if and only if p ≤ q. For
a positive integer d, let Zd be given the partial order defined by (a1, a2, . . . , ad) ≤
(b1, b2, . . . , bd) if and only if ai ≤ bi for i = 1, 2, . . . , d.

A (P-indexed) persistence module is any functor M : P → vec (which we will
simply refer to as a P-module). In other words, to each p ∈ P , a vector space Mp

is associated, and to each pair p ≤ q in P , a linear map ϕM (p, q) : Mp → Mq

is associated. Importantly, whenever p ≤ q ≤ r in P , it must be that ϕM (p, r) =
ϕM (q, r) ◦ ϕM (p, q).

We say that a pair of p, q ∈ P is comparable if either p ≤ q or q ≤ p.

Definition 2.1 ([34]) An interval I of P is a subset I ⊆ P such that:

(i) I is nonempty.
(ii) If p, q ∈ I and p ≤ r ≤ q, then r ∈ I .
(iii) I is connected, i.e. for any p, q ∈ I , there is a sequence p = p0, p1, · · · , p� = q

of elements of I with pi and pi+1 comparable for 0 ≤ i ≤ � − 1.

By Int(P)we denote the set of all finite intervals of P .When P is finite and connected,
P ∈ Int(P) will be referred to as the full interval.
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For an interval I of P , the interval module II : P → vec is defined as

II (p) =
{

F if p ∈ I ,

0 otherwise,
ϕII (p, q) =

{
idF if p, q ∈ I , p ≤ q,

0 otherwise.

Definition 2.2 LetM be any P-module. A submodule N ofM is defined by subspaces
Np ⊆ Mp such that ϕM (p, q)(Np) ⊆ Nq for all p, q ∈ P with p ≤ q. These
conditions guarantee that N itself is a P-module, with the structure maps given by the
restrictions ϕM (p, q)|Np . In this case we write N ≤ M .

A submodule N is a summand of M if there exists a submodule N ′ which is
complementary to N , i.e. Mp = Np ⊕ N ′

p for all p. In that case, we say that M is a
direct sum of N , N ′ and write M ∼= N ⊕ N ′. Note that this direct sum is an internal
direct sum.

The (external)direct sumM1⊕M2 of given P-modulesM1 andM2 is the P-module
where (M⊕N )p = Mp⊕Np for p ∈ P and ϕM⊕N (p, q) = ϕM (p, q)⊕ϕN (p, q) for
p ≤ q in P . A nonzero P-module M is indecomposable if whenever M = M1 ⊕ M2
for some P-modules M1 and M2, either M1 = 0 or M2 = 0.

Definition 2.3 A P-module M is called interval decomposable if M is isomorphic
to a direct sum of interval modules, i.e. there exists an indexing set J such that
M ∼= ⊕

j∈J II j (external direct sum). In this case, the multiset {I j : j ∈ J } is called
the barcode of M , which will be denoted by barc(M).

The Azumaya–Krull–Remak-Schmidt theorem [35] guarantees that barc(M) is well-
defined, i.e. the multiset {I j : j ∈ J } is unique.

Consider a zigzag poset of n points, •1 ↔ •2 ↔ . . . •n−1 ↔ •n where ↔ stands
for either ≤ or ≥. A functor from a zigzag poset to vec is called a zigzag module [6].
Any zigzag module is interval decomposable [1] and thus admits a barcode.

The following proposition directly follows from the Azumaya–Krull–Remak–
Schmidt theorem and will be useful in Sect. 4.

Proposition 2.4 Let M : P → vec be interval decomposable and let N ≤ M be a
summand of M (Definition 2.2). Then, M/N is interval decomposable.

Proof It suffices to show that M ∼= N ⊕ (M/N ) (since M is interval decomposable,
this isomorphism and Azumaya-Krull-Remak-Schmidt’s theorem [35] guarantee that
M/N is also interval decomposable). Let ι : N ↪→ M be the canonical inclusion.
Since N is a summand of M , there exists a complementary submodule N ′ ≤ M with
M = N ⊕ N ′ (internal direct sum). For the inclusion ι : N ′ ↪→ M and the projection
π : M → M/N , the composition π ◦ ι is an isomorphism, completing the proof. ��

2.2 Generalized Rank Invariant and Generalized Persistence Diagrams

Throughout this section, let P be a finite connected poset. Consider any P-module
M . Then M admits a limit lim←− M = (L, (πp : L → Mp)p∈P ) and a colimit lim−→ M =
(C, (i p : Mp → C)p∈P ); see Appendix 1. For every p ≤ q in P , we have
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ϕM (p ≤ q) ◦ πp = πq and iq ◦ ϕM (p ≤ q) = i p.

By the connectedness of P , we have i p ◦ πp = iq ◦ πq : L → C for any p, q ∈ P .
This equality ensures the validity of the following definition.

Definition 2.5 ([22]) The canonical limit-to-colimit map ψM : lim←− M → lim−→ M is
the linear map i p ◦ πp for any p ∈ P . The generalized rank of M is rank(M) :=
rank(ψM ).

The rank of M counts the multiplicity of the fully supported interval modules in a
direct sum decomposition of M .

Theorem 2.6 ([25, Lem. 3.1])The rank of M is equal to the number of indecomposable
summands of M which are isomorphic to the interval module IP .

Definition 2.7 The (Int)-generalized rank invariant of M is the map rkI(M) :
Int(P) → Z≥0 defined as I �→ rank(M |I ), where M |I is the restriction of M to
I .

Remark 2.8 (Additivity) Given any P-modules M and N , it is not hard to show that
rank(M ⊕ N ) = rank(M) + rank(N ). This implies that rkI(M ⊕ N ) = rkI(M) +
rkI(N ).

Definition 2.9 The (Int)-generalized persistence diagram of M is the unique2 func-
tion dgmI(M) : Int(P) → Z that satisfies, for any I ∈ Int(P),

rkI(M)(I ) =
∑

J⊇I
J∈Int(P)

dgmI(M)(J ).

The following is a slight variation of [22, Thm. 3.14] and [20, Thm. 5.10].

Theorem 2.10 If a given M : P → vec is interval decomposable, then for all I ∈
Int(P), dgmI(M)(I ) is equal to the multiplicity of I in barc(M).

Proof It is not hard to verify that for any I , J ∈ Int(P),

rkI(IJ )(I ) =
{
1, J ⊇ I

0 else.

For J ∈ Int(P), let μJ ∈ Z≥0 be the multiplicity of J in barc(M). We have M ∼=⊕

J∈Int(P)

I
μJ
J where I

μJ
J is the direct sum of μJ copies of IJ . Then, by Theorem 2.6

and Remark 2.8, we have that for all I ∈ Int(P)

rkI(M)(I ) = rkI

⎛

⎝
⊕

J∈Int(P)

I
μJ
J

⎞

⎠ (I ) =
∑

J∈Int(P)

μJ · rkI(IJ )(I ) =
∑

J⊇I
J∈Int(P)

μJ .

2 The existence and uniqueness are guaranteed by properties of the Möbius inversion formula [36, 37].
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Fig. 2 A For the given interval I of Z2, we have nbdI(I ) = {p, p′}. For A = {p, p′}, the set A ∪ I is not
an interval of Z2. B The points in the shaded region form A ∪ I

By the uniqueness of dgmI(M) mentioned in Definition 2.9, dgmI(M)(I ) = μI

for all I ∈ Int(P). ��
In the rest of this subsection, we consider P to be a finite interval of the product

poset Z2. Recall that Int(Z2) denotes the set of finite intervals of Z2.

Definition 2.11 For any I ∈ Int(Z2), we define nbdI(I ) := {p ∈ Z2\I : I ∪ {p} ∈
Int(Z2)}.

Note that nbdI(I ) is nonempty [20, Prop. 3.2]. When A ⊆ nbdI(I ) contains more
than one point, A∪ I is not necessarily an interval of Z2. However, there always exists
a unique smallest interval that contains A ∪ I , which is denoted by A ∪ I . See Fig. 2
for an illustrative example.

Remark 2.12 ([20, Thm. 5.3]) If in Definition 2.9 we assume that P is a finite interval
of Z2, then we have that for every I ∈ Int(P),3

dgmI(M)(I ) = rkI(M)(I ) +
∑

A⊆nbdI(I )∩P
A �=∅

(−1)|A|rkI(M)

(

A ∪ I

)

. (1)

2.3 Canonical Constructions of Limits and Colimits

Let M be any P-module.

Notation 2.13 Let p, q ∈ P and let vp ∈ Mp and vq ∈ Mq . We write vp ∼ vq if p
and q are comparable, and either vp is mapped to vq via ϕM (p, q) or vq is mapped to
vp via ϕM (q, p).

The following proposition gives a standard way of constructing a limit and a colimit
of a P-module M . Since it is well-known, we do not prove it (see for example [38,
Chap. 5]).

3 In [20], only the case P = {1, . . . ,m} × {1, . . . , n} ⊂ Z2 was considered. However, it is not difficult to
check that Eq. (1) is still valid for any finite interval P in Z2 and any subinterval I ⊆ P .
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Proposition 2.14 (i) The limit of M is (isomorphic to) the pair
(
W , (πp)p∈P

)
where

W :=
⎧
⎨

⎩
(vp)p∈P ∈

∏

p∈P

Mp : ∀p ≤ q in P, vp ∼ vq

⎫
⎬

⎭
(2)

and for each p ∈ P, the map πp : W → Mp is the canonical projection. An
element of W is called a section of M.4

(ii) The colimit of M is (isomorphic to) the pair
(
U , (i p)p∈P

)
described as follows:

For p ∈ P, let the map jp : Mp ↪→ ⊕
p∈P Mp be the canonical injection. U is the

quotient
(⊕

p∈P Mp

)
/T , where T is the subspace of

⊕
p∈P Mp that is generated

by the vectors of the form jp(vp) − jq(vq), vp ∼ vq , the map i p : Mp → U is
the composition ρ ◦ jp, where ρ is the quotient map

⊕
p∈P Mp → U.

Setup 1 In the rest of the paper, limits and colimits of a P-module M will all be
constructed as in Proposition 2.14.

3 Computing Generalized Rank via Boundary Zigzags

In Sect. 3.1 we introduce the notions of lower and upper fences of a poset. In Sect. 3.2,
we introduce the notion of boundary cap ∂ I of a finite interval I ofZ2, which is a path,
a certain sequence of points in I . In Sect. 3.3, we show that the rank of any functor
M : I → vec can be obtained by computing the barcode of the zigzag module over
the path ∂ I .

3.1 Lower and Upper Fences of a Poset

Let P be any connected poset. Given any p ∈ P , by p↓, we denote the set of all
elements of P that are less than or equal to p. Dually p↑ is defined as the set of all
elements of P that are greater than or equal to p.

Definition 3.1 A subposet L ⊂ P (resp.U ⊂ P) is called a lower (resp. upper) fence
of P if L is connected, and for any q ∈ P , the intersection L ∩ q↓ (resp. U ∩ q↑) is
nonempty and connected.

The following proposition is a crucial milestone towards establishing our main
result, Theorem 3.12.

Proposition 3.2 Let L and U be a lower and an upper fences of a connected poset
P respectively. Given any P-module M, we have lim←− M ∼= lim←− M |L and lim−→ M ∼=
lim−→ M |U .
4 When P is finite,

∏
p∈P Mp = ⊕

p∈P Mp .
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Although this proposition directly follows from the fact that the inclusions L ↪→
P and U ↪→ P are respectively initial and final functors (see [38, Sect. 9.3]), an
elementary and tangible proof is given below, which utilizes the following proposition.

Proposition 3.3 Let M be a P-module and let L ⊂ P be a lower fence. Let v ∈⊕
p∈I Mp. The tuple v belongs to lim←− M if and only if for every p ∈ P, it holds that

vp = ϕM (q, p)(vq) for every q ∈ L such that q ≤ p.

Proof The forward direction is straightforward from the description of lim←− M given in
Proposition 2.14 (i). Let us show the backward direction.Again, by Proposition 2.14 (i)
it suffices to show that for all r ≤ p in P it holds that vp = ϕM (r , p)(vr ). Fix r ≤ p
in P . Since L is a lower fence, there exists q ∈ L such that q ≤ r ≤ p. Then, by
assumption and by functoriality of M , we have

vp = ϕM (q, p)(vq) = (
ϕM (r , p) ◦ ϕM (q, r)

)
(vq)

= ϕM (r , p)
(
ϕM (q, r)(vq)

) = ϕM (r , p)(vr ),

as desired. ��
Proof of Proposition 3.2 We only prove lim←− M ∼= lim←− M |L . It suffices to prove that the
section extension map e : lim←− M |L → lim←− M in (3) is bijective. The injectivity is clear
by definition. The surjectivity follows from the forward direction of the statement in
Proposition 3.3. ��

The canonical isomorphism lim←− M ∼= lim←− M |L in Proposition 3.2 is given by the
canonical section extension e : lim←− M |L → lim←− M . Namely,

e : (vp)p∈L �→ (wq)q∈P , (3)

where for any q ∈ P , the vector wq is defined as ϕM (p, q)(vp) for any p ∈
L ∩ q↓; the connectedness of L ∩ q↓ guarantees that wq is well-defined. Also, if
q ∈ L , then wq = vq . The inverse r := e−1 is the canonical section restriction.
The other isomorphism lim−→ M ∼= lim−→ M |U in Proposition 3.2 is given by the map
i : lim−→ M |U → lim−→ M defined by [vp] �→ [vp] for any p ∈ U and any vp ∈ Mp;
the fact that this map i is well-defined will become clear from Proposition 3.10. Let
us define ξ : lim←− M |L → lim−→ M |U by i−1 ◦ ψM ◦ e. By construction, the following
diagram commutes

lim←− M |L lim−→ M |U

lim←− M lim−→ M,

ξ

e∼= i∼=
ψM

(4)

where ψM is the canonical limit-to-colimit map of M . Hence we have the fact

rank(ψM ) = rank(ξ), (5)

which is useful for proving Theorem 3.12.
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3.2 Boundary Cap of an Interval in Z2

Let I ∈ Int(Z2), i.e. I is a finite interval ofZ2 (Definition 2.1). Bymin(I ) andmax(I ),
we denote the collections of minimal andmaximal elements of I , respectively. In other
words,

min(I ) := {p ∈ I : there is no q ∈ I s.t. q < p},
max(I ) := {p ∈ I : there is no q ∈ I s.t. p < q}.

Note that min(I ) and max(I ) are nonempty and that min(I ) and max(I ) respectively
form an antichain in I , i.e. any two different points in min(I ) (or in max(I )) are not
comparable.

Remark 3.4 (i) The least upper bound and the greatest lower bound of p, q ∈ Z2 are
denoted by p ∨ q and p ∧ q respectively. Let p = (px , py) and q = (qx , qy) in
Z2. Then,

p ∨ q = (max{px , qx },max{py, qy}), p ∧ q = (min{px , qx },min{py, qy}).

(ii) Let I ∈ Int(Z2). Since min(I ) is a finite antichain, we can list the elements of
min(I ) in ascending order of their x-coordinates, i.e. min(I ) := {p0, . . . , pk}
and such that for each i = 0, . . . , k, the x-coordinate of pi is less than that of
pi+1. Similarly, let max(I ) := {q0, . . . , q�} be ordered in ascending order of q j ’s
x-coordinates. We have that p0 ≤ q0 (Fig. 3).

Based on Remark 3.4 (ii) above, we define the following:

Definition 3.5 (Lower and upper zigzags of an interval) Let I , min(I ), and max(I ) be
as in Remark 3.4 (ii). We define the following two zigzag posets (Fig. 3):

min
ZZ

(I ) := {p0 < (p0 ∨ p1) > p1 < (p1 ∨ p2) > · · · < (pk−1 ∨ pk) > pk}
= min(I ) ∪ {pi ∨ pi+1 : i = 0, . . . , k − 1}, (6)

max
ZZ

(I ) := {q0 > (q0 ∧ q1) < q1 > (q1 ∧ q2) < · · · > (q�−1 ∧ q�) > q�}
= max(I ) ∪ {qi ∧ qi+1 : i = 0, . . . , � − 1}. (7)

Note that minZZ(I ) and maxZZ(I ) are lower and upper fences of I respectively.
For p, q ∈ P , let us write p�q if p < q and there is no r ∈ P such that p < r < q.

Similarly, we write p � q if p > q and there is no r ∈ P such that p > r > q.

Definition 3.6 Given a poset P , a path � between two points p, q ∈ P is a sequence
of points p = p0, . . . , pk = q in P such that either pi ≤ pi+1 or pi ≥ pi+1 for every
i ∈ [1, k − 1] (note that there can be a pair i �= j such that pi = p j ). The path � is
said to be monotonic if pi ≤ pi+1 for each i . The path � is called faithful if either
pi � pi+1 or pi � pi+1 for each i .
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(A) (B)

(D) (E)

(C)

∧q0 q1

∧q= 0 q1

∨p0 p1

∨p0 p1

∨p= 0 p1q1
p =0 q0 ∧ q =1 p0q0

p1

p0

p0

p1
p1

p0

q0

q0

q0

q0

q1
q1

Fig. 3 Five different intervals I of Z2. Relations in minZZ(I ) and maxZZ(I ) are indicated by green and
red arrows, respectively. The inequality p0 ≤ q0 is indicated by blue arrows unless p0 = q0. Notice that
∂ I , as defined in equation (8), has cardinality 2, 2, 6, 6, 6 in that order ((A),(B),(C),(D),(E))

Definition 3.7 (Boundary cap of an interval) We define the boundary cap ∂ I of I ∈
Int(Z2) as the path obtained by concatenating minZZ(I ) and maxZZ(I ) in Eqs. (6)
and (7).

∂ I := pk < (pk ∨ pk−1) > pk−1 < · · · > p0︸ ︷︷ ︸
2k+1 terms from minZZ(I )

≤ q0 > (q0 ∧ q1) < q1 > · · · < q�︸ ︷︷ ︸
2�+1 terms from maxZZ(I )

,

(8)

We remark that ∂ I can contain multiple copies of the same point. Namely, there can
be i ∈ [0, k] and j ∈ [0, �] such that either pi = q j (Fig. 3 (A)), pi = q j ∧ q j+1
(Fig. 3 (C)), pi ∨ pi+1 = q j (Figure 3 (C)), or pi ∨ pi+1 = q j ∧ q j+1 (Fig. 3 (D)).

Consider the following zigzag poset of the same length as ∂ I :

ZZ∂ I : •1 < •2 > •3 < · · · > •2k+1︸ ︷︷ ︸
2k+1

< ◦1 > ◦2 < ◦3 > · · · < ◦2�+1︸ ︷︷ ︸
2�+1

. (9)

Still using the notation in Eqs. (8) we have the following order-preserving map

ιI : ZZ∂ I → I (10)

whose image is ∂ I : •1 is sent to pk , •2 is sent to pk ∨ pk−1, . . ., and ◦2�+1 is sent to
q�.
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3.3 Generalized Rank Invariant via Boundary Zigzags

The goal of this section is to establish one of our main results, Theorem 3.12. Let P
be a poset and let M be any P-module.

Definition 3.8 Let � : p0, . . . , pk be a path in P . A (k + 1)-tuple v ∈ ⊕k
i=0 Mpi is

called the section of M along � if vpi ∼ vpi+1 for each i (Notation 2.13).

We remark that a path � can contain multiple copies of the same point in P . The next
example shows that a section v of M along� : p0, . . . , pk does not necessarily belong
to the limit of the restriction of M to the subposet {p0, . . . , pk} ⊆ P .

Example 3.9 Consider M : {(1, 1), (1, 2), (2, 2), (2, 1)}(⊂ Z2) → vec given as fol-
lows.

M(1,2) M(2,2)

M(1,1) M(2,1)

=
F F

F F
2

1

(
1
0

)

1 ( 1 1 )

Consider the path � : (1, 1), (1, 2), (2, 2), (2, 1) which contains all points in the
indexing poset. Then, v := (1, 1, 1, (0, 1)) ∈ M(1,1) ⊕ M(1,2) ⊕ M(2,2) ⊕ M(2,1) is a
section of M along �, while v /∈ lim←− M .

By Proposition 2.14 (ii), we directly have:

Proposition 3.10 Let p, q ∈ P. For any vectors vp ∈ Mp and vq ∈ Mq, [vp] = [vq ]
in5 the colimit lim−→ M if and only if there exist a path � : p = p0, p1, . . . , pn = q in
P and a section v of M along � such that vp = vp and vq = vq .

Setup 2 In the rest of Sect. 3.3, we fix both I ∈ Int(Z2) and a functor M : I →
vec. Also, we identify points in (8) and (9) via ιI .

Definition 3.11 (Zigzag module along ∂ I ) For the map ιI : ZZ∂ I → I in Eq. (10),
we define the zigzag module M∂ I : ZZ∂ I → vec by the composition M ◦ ιI .

We remark that, by Setup 1 and Definition 3.8, each v = (vx )x∈ZZ∂ I ∈ lim←− M∂ I is
an element of

⊕
x∈ZZ∂ I

MιI (x) that is a section M along ∂ I .
One of our main results is the following.

Theorem 3.12 rank(M) is equal to the multiplicity of the full interval in barc(M∂ I ).

5 For simplicity, we write [vp] and [vq ] instead of [ jp(vp)] and [ jq (vq )] respectively where jp : Mp →⊕
r∈P Mr and jq : Mq → ⊕

r∈P Mr are the canonical inclusion maps.
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Proof By Theorem 2.6, it suffices to show that

rank(ψM : lim←− M → lim−→ M) = rank(ψM∂ I : lim←− M∂ I → lim−→ M∂ I ).

Let L := minZZ(I ) and U := maxZZ(I ) which are lower and upper fences of I
respectively. Let us define the maps e, r , i and ξ as described in the paragraph after
Proposition 3.2. Then, by equation (5), it suffices to prove that the rank of ξ equals
the rank of ψM∂ I . To this end, we show that there exist a surjective linear map f :
lim←− M∂ I → lim←− M |L and an injective linear map g : lim−→ M |U → lim−→ M∂ I such that
ψM∂ I = g◦ξ◦ f .Wedefine f as the canonical section restriction (vq)q∈∂ I �→ (vq)q∈L .
We define g as the canonical map, i.e. [vq ] �→ [vq ] for any q ∈ U and any vq ∈ Mq .
By Proposition 3.10 and by construction of M∂ I , the map g is well-defined.

We now show that ψM∂ I = g ◦ ξ ◦ f . Let v := (vq)q∈∂ I ∈ lim←− M∂ I . Then, by
definition of ψM∂ I (Setup 1), the image of v via ψM∂ I is [vq0 ] where q0 ∈ U is defined
as in Remark 3.4 (ii). Also, we have

v
f�−→ (vq)q∈L

ξ�−→ [vq0 ]
( ∈ lim−→ M |U )

g�−→ [vq0 ](∈ lim−→ M∂ I
)
,

which proves the equality ψM∂ I = g ◦ ξ ◦ f .
We claim that f is surjective. Let r ′ : lim←− M → lim←− M∂ I be the canonical section

restriction map (vq)q∈I �→ (vq)q∈∂ I . Then, the restriction r : lim←− M → lim←− M |L , can
be seen as the composition of two restrictions r = f ◦ r ′. Since r is the inverse of the
isomorphism e in diagram (4), r is surjective and thus so is f .

Next we claim that g is injective. Let i ′ : lim−→ M∂ I → lim−→ M be defined by [vq ] �→
[vq ] for any q ∈ ∂ I and any vq ∈ Mq . By Proposition 3.10 and by construction of
M∂ I , the map i ′ is well-defined. Then, for the isomorphism i in diagram (4), we have
i = i ′ ◦ g. This implies that g is injective. ��
Remark 3.13 In Definition 3.7 one may consider the “lower” boundary cap ∂̂ I , as an
alternative to ∂ I :

∂̂ I : p0 < p0 ∨ p1 > p1 < · · · > pk ≤ q� > q� ∧ q�−1 < q�−1 > · · · < q0.

The value rank(M) also equals the multiplicity of the full interval in the barcode of
the zigzag module induced over ∂̂ I .

By Theorem 3.12, we can utilize algorithms for zigzag persistence in order to
compute the generalized rank invariant and the generalized persistence diagram of
any Z2-module that is obtained by applying the homology functor to a simplicial
filtration F over (a subset of) Z2. For this, we complete the boundary cap of a given
interval to a faithful path (i.e. we put the missing monotonic paths between every pair
of consecutive points) and then simply run a zigzag persistence algorithm. Notice that,
ifF satisfies the condition in Setup 3 below, the above mentioned faithful path admits
only O(t) insertions and deletions of simplices in the zigzag filtration and hence the
zigzag persistence algorithms of Milosavljevic et al. [39] and of Dey and Hou [40]
run in time O(tω).
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Remark 3.14 To compute dgmI(M)(I ) by the formula in (1), one needs to consider
termswhose number depends exponentially on the number of neighbors of I . However,
for any interval that has at most O(log t) neighbors, we have 2O(log t) = tc terms
for some constant c > 0. It follows that using O(tω) zigzag persistence algorithm
for computing generalized ranks, we obtain an O(tω+c) algorithm for computing
generalized persistence diagrams of intervals that have at most O(log t) neighbors.

4 Computing Intervals and Detecting Interval Decomposability

When a persistence module M admits a summand N that is isomorphic to an interval
module, N will be called an interval summand of M . In this section, we apply
Theorem 3.12 for computing generalized rank via zigzag to different problems that ask
to find interval summands of an input finite Z2-module: Problems 4.3, 4.6, and 4.16.

Let K be a finite abstract simplicial complex and let sub(K ) be the poset of all
subcomplexes of K , ordered by inclusion.

Definition 4.1 Given any poset P , an order-preservingmapF : P → sub(K ) is called
a (simplicial) filtration (of K over P). When P is either Z2 or an interval of Z2, we
call F a bifiltration.

Setup 3 Throughout Sect. 4, F denotes a filtration of a simplicial complex K
over an interval P of Z2 such that P and K consist of O(t) points and simplices,
respectively. The filtration can be multicritical, i.e., for any simplex σ ∈ K , the
subset of points in P at which σ is present can admit multiple minimal points.
We assume that

∑
σ∈K n(σ ) = O(t) where n(σ ) denotes the number of minimal

points in P at which σ is present.
ByMF : P → vecwe denote themodule induced byF through the homology

functor with coefficients in the field F.

Computing the dimension function.
In all algorithms below, we utilize a subroutine Dim(F , P), which computes the

dimension of the vector space (MF )p for every p ∈ P .

Proposition 4.2 Dim(F , P) can be executed in O(t4) time.

Proof To implement Dim, we maintain a set C which we initialize to be the empty
set. We consider each p ∈ min(P) iteratively and proceed as follows. We reach all
points q ∈ p↑\C from p in a depth first search over paths that are both monotonic
and faithful (Definition 3.6). These paths form a directed tree Q rooted at p (where
the arrows do not zigzag). We run the standard persistence algorithm on the filtration
F restricted to Q with a slight modification so that the branchings in the tree are taken
care of. We traverse the tree Q in a depth first manner and each time we come to a
branching node, we start with the matrix which was computed during the previous
visit of this node. This means that we leave a copy of the reduced matrix at each node
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that we traverse. Let tp equal the maximum of the cardinality of p↑\C and the number
of insertions of simplices over a monotonic path in the directed tree Q. Then, it is easy
to see that tp = O(t) by our assumption on t (based on the description in Setup 3).
At each node q we spend O(t2p) time to copy a matrix of size O(tp) × O(tp). Also,
for each simplex insertion, we spend O(t2p) time to reduce this matrix. Therefore,
in total, each simplex insertion takes O(t2p) = O(t2) time. Considering all minimal
points, we see that, in total we insert only O(t2) simplices. This is because the input
filtration consists of O(t2) insertions (each simplex in the complex K is inserted at
most O(t) times in the filtration) and each insertion is processed only once over all
minimal points. This gives us a total complexity of O(t2) × O(t2) = O(t4). ��

4.1 Detecting Interval Modules

We consider the following problem. Recall that P is a finite interval of Z2.

Problem 4.3 Determine whether MF is isomorphic to the direct sum of a certain num-
ber of copies of IP and if so, report the number of such copies.

Algorithm IsInterval solves Problem 4.3. The correctness of the algorithm fol-
lows from Proposition 4.4. Below, for m ∈ Z≥0 let I

m
P := IP ⊕ IP ⊕ · · · ⊕ IP︸ ︷︷ ︸

m

. In

particular, I
0
P is defined to be the trivial module. Let us recall that (MF )∂P denotes

the zigzag module along the boundary cap ∂P (Definition 3.11).
Algorithm IsInterval(F , P)

• Step 1. Compute zigzag barcode barc((MF )∂P ) and let m be the multiplicity of
the full interval.

• Step 2. Call Dim(F , P) (Computes dim(MF )p for every p ∈ P)
• Step 3. If dim(MF )p = m for each point p ∈ P return m, otherwise return 0
indicating MF has a summand which is not an interval module supported over P .

Recall that vec denotes the category of finite dimensional vector spaces and linear
maps.

Proposition 4.4 Assume that a given M : P → vec has the indecomposable decompo-
sition M ∼= ⊕m

i=1 Mi . Then, every summand Mi is isomorphic to the interval module
IP if and only if rkI(M)(P) = dim Mp = m for all p ∈ P.

Proof By Theorem 2.6, the forward direction is straightforward. Let us show the
backward direction. Since rkI(M)(P) = m, by Theorem 2.6, we have that M ∼=
I
m
P ⊕M ′ where M ′ admits no summand that is isomorphic to IP . Fix any p ∈ P . Then,
m = dim(Mp) = dim((ImP )p)+dim(M ′

p) = m+dim(M ′
p), and hence dim(M ′

p) = 0.
Since p was chosen arbitrarily, M ′ must be trivial. ��
Proposition 4.5 Algorithm IsInterval can be run in O(t4) time.

Proof As we commented earlier, Step 1 computing the zigzag barcode barc((MF )∂P )

can be implemented to run in O(tω) time because it runs on a filtration comprising
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O(t) insertions and deletions of simplices over an index set of size O(t). Step 2 takes
O(t4) time (Proposition 4.2). Step 3 takes only time O(t). This implies that the overall
complexity is O(t4) given that ω < 2.373. ��

4.2 Interval Decomposable Modules and Its Summands

Setup 3 still applies in Sect. 4.2. Next, we consider the problem of computing all
indecomposable summands of MF under the assumption that MF is interval decom-
posable (Definition 2.3).

Problem 4.6 Assume that MF : P → vec is interval decomposable. Find barc(MF ).

We present algorithm Interval to solve Problem 4.6 in O(tω+2) time. This algo-
rithm is eventually used to detect whether a given module is interval decomposable
or not (Problem 4.16). Before describing Interval, we first describe another algo-
rithm TrueInterval. The outcomes of both Interval and TrueInterval are the
same as the barcode of MF in Problem 4.6 (Propositions 4.10 and 4.14). Whereas
TrueInterval is more intuitive, real implementation is accomplished via Interval.

Definition 4.7 Let I(MF ) := {I ∈ Int(P) : rkI(MF )(I ) > 0}. We call I ∈ I(MF )

maximal if there is no J � I in Int(P) such that rkI(MF )(J ) is nonzero.

Proposition 4.8 Assume that MF is interval decomposable and let I ∈ I(MF ) be
maximal. Then, I belongs to barc(MF ) and the multiplicity of I in barc(MF ) is equal
to rkI(MF )(I ).

Proof By assumption, all summands in the sum

∑

A⊆nbdI(I )∩P
A �=∅

(−1)|A|rkI(MF )

(

I ∪ A

)

corresponding to the second term of (1) are zero. Hence, dgmI(MF )(I ) =
rkI(MF )(I ) > 0. SinceMF is interval decomposable, byTheorem2.10, dgmI(MF )(I )
is equal to the multiplicity of I in barc(MF ). Therefore, not only does I belong to
barc(MF ), but also the value rkI(MF )(I ) is equal to themultiplicity of I in barc(MF ).

��
Corollary 4.9 Assume that MF is interval decomposable and let I ∈ I(MF ) be max-
imal. Let μI := rkI(MF )(I ). Then, MF admits a summand N which is isomorphic
to I

μI
I .

Let us now describe a procedure TrueInterval that outputs all indecomposable
summands of a given interval decomposable module. It uses ‘true’ quotient operation
justifying the name. For computational efficiency, we will implement TrueInterval
differently with the algorithm Interval avoiding the quotient operation.

Let M := MF . First we compute dim Mp for every point p ∈ P . Iteratively, we
choose a point p with dim Mp �= 0 and compute a maximal interval I ∈ I(M) con-
taining p. Since M is interval decomposable, by Proposition 4.8 and Corollary 4.9 we
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have that I ∈ barc(M) and that there is a summand N ∼= I
μI
I of M . Consider the quo-

tient module M ′ := M/N . Clearly, this ‘peeling off’ of N reduces the total dimension

of the input module. Namely, dim M ′
p =

{
dim Mp − μI , p ∈ I

dim Mp, p /∈ I .
We continue the

process by replacing M with M ′ until there is no point p ∈ P with dim Mp �= 0 (note
that M ′ is interval decomposable by Proposition 2.4). Since dim M := ∑

p∈P dim Mp

is finite, this process terminates in finitely many steps. By Proposition 2.4 and Corol-
lary 4.9, the outcome of TrueInterval is a list of all intervals in barc(M) with
accurate multiplicities:

Proposition 4.10 Assume that MF is interval decomposable. Let Ii , i = 1, . . . , k
be the intervals computed by TrueInterval. For each i = 1, . . . , k, let μIi :=
rkI(MF )(Ii ). Then, we have MF ∼= ⊕k

i=1 I
μIi
Ii

.

Next, we describe an algorithm Interval that simulates TrueInterval while
avoiding explicit quotienting of MF by its summands.

We associate two variables d(p) and ptlist(p) with each point p ∈ P . Their
roles are described below.

The variable d(p) is a number that equals the original dimension of (MF )p minus
the number of intervals peeled off so far (counted with their multiplicities) which
contained p. It is initialized to dim(MF )p. Each time we compute a maximal interval
I ∈ I(MF ) with multiplicity μI that contains p, we update d(p) := d(p)−μI . This
current value of d(p) keeps track of how many more intervals that contain p still need
to be peeled off by TrueInterval.

The variable ptlist(p) is a list that maintains the set of the intervals containing
p that have been output so far. So, if we have already output intervals, say I1, . . . , Ik ,
which contain p, then ptlist(p) = {I1, . . . , Ik}. While searching for a maximal
interval I , we maintain a variable idlist for I that contains the set of intervals
common to all points in I . So, if I = {p1, . . . , pm}, then idlist = ptlist(p1) ∩
. . . ∩ ptlist(pm) at the end of the search. Initializing idlist with ptlist(p)
of the initial point p, we update it as we explore expanding I . Every time we augment
I with a new point q, we update idlist by taking its intersection with ptlist(q)

associated with q.
We assume a routine Count that takes an idlist as input and gives the total

number of intervals in the idlist counted with their multiplicities. This means
that if idlist = {I1, . . . , Ik}, then Count(idlist) returns the number c :=
μI1 + · · · + μIk .

Notice that, while searching for a maximal interval starting from a point, we keep
considering the original givenmoduleMF sincewedonot implement the true ‘peeling’
(i.e. quotientMF by a submodule). However, wemodify the condition for checking the
maximality of an interval I . We check whether rkI(MF )(I ) > c, that is, whether the
generalized rank of MF over I is larger than the total number of intervals containing
I that would have been peeled off so far by TrueInterval. This idea is implemented
in the following algorithm.
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Algorithm Interval (F : Filtration, P:Poset)

• Step 1. Call Dim(F ,P) and set d(p) := dim(MF )p; ptlist(p) := ∅ for every
p ∈ P

• Step 2. While there exists a p ∈ P with d(p) > 0 do

– Step 2.1 Let I := {p}; idlist := ptlist(p); unmark every q ∈ P
– Step 2.2 If there exists unmarked q ∈ nbdI(I ) with d(q) > 0,6 then

i. templist := idlist ∩ ptlist(q); c :=Count(templist)
ii. If rkI(MF )(I ∪ {q}) > c then7 mark q; set I := I ∪ {q}; idlist :=

idlist ∩ ptlist(q)

iii. go to Step 2.2
– Step 2.3 Output I with multiplicity μI := rkI(MF )(I ) − c
– Step 2.4 For every q ∈ I set d(q) := d(q) − μI and ptlist(q) :=
ptlist(q) ∪ {I }

The output of Interval can be succinctly described as:
Output: {(Ii , μIi ) : i = 1, . . . , k} where Ii ∈ Int(P) and μi is a positive integer for
each i .

Remark 4.11 For each p ∈ P , we have that dim(MF )p =
∑

Ii�p

μi . This equality holds

even when MF is not interval decomposable.

We will show that if MF is interval decomposable, then the output of Interval
coincides with the barcode of MF (Propositions 4.10 and 4.14).

Example 4.12 (Interval with interval decomposable input) Suppose that
MF ∼= II1 ⊕ II2 ⊕ II3 as depicted in Fig. 4 (A). The algorithm Interval yields
{(I1, 1), (I2, 1), (I3, 1)}. In particular, since I1 ⊃ I2 ⊃ I3, Interval outputs (I1, 1),
(I2, 1), and (I3, 1) in order, as depicted in Fig. 5 (A).

Details for Example 4.12 We illustrate how the barcode ofMF is obtained as the output
of Interval. In Step 1, for p = (2, 2), we have d(p) = 3 and ptlist(p) = ∅. For
the first round of the while loop in Step 2, note that q = (2, 1) belongs to nbdI({p})
and thus q can be added to I = {p}. After several rounds of the while loop, we obtain
I1 with μI1 = 1, and for every q ∈ I1 (including p = (2, 2)), d(q) is decreased
by 1. Next, suppose that another search begins at I = {p} and it tries to include
q = (2, 1). We obtain rkI(MF )(I ∪ {q}) = 1 as in the previous round, but now
Count(ptlist(p)∩ptlist(q)) also returns 1 in Step 2.2(i) because the previously
detected interval I1 contains both p and q. Then, the test rkI(MF )(I ∪{q}) > (c = 1)
in Step 2.2(ii) fails and the search proceeds with other points. Again, after several
iterations of successful and unsuccessful attempts to expand I , we obtain the interval

6 When the input MF is interval decomposable, the algorithm outputs the barcode of MF even without the
condition “with d(q) > 0". But, when MF is not interval decomposable, the condition “with d(q) > 0"
ensures that the equality in Remark 4.11 holds.
7 to check rkI(MF )(I ∪ {q}) > c, we invoke Theorem 3.12 and run the zigzag persistence algorithm
described beneath Remark 3.13. For efficiency, one can use zigzag update algorithm in [9] instead of
computing zigzag persistence afresh every time.
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Fig. 4 Modules M, N : {1, 2, 3} × {1, 2} → vec. M is interval decomposable, but N is not

(A)

(B)

(D)

(C)

I1 I2

J1 J2

L1 L2 L3

J1 J2

I3

′ ′

Fig. 5 An illustration for Examples 4.12 and 4.13

I2 with μI2 = 1. After obtaining (I2, μ2), only p = (2, 2) has d(p) = 1 because of
which another round of while loop starting at p outputs the interval I3 = {p}. ��

The algorithm Interval outputs the barcode of an input module MF when MF is
interval decomposable. IfMF is not interval decomposable, the output of the algorithm
Intervalmay not be unique and may not include some interval I even if the interval
module II is a summand of MF .

Example 4.13 (Intervalwith non-interval-decomposable input) Consider the persis-
tence module N depicted in Fig. 4, which is indecomposable and not isomorphic to
an interval module.

(i) When MF ∼= N is the input to Interval, two possible final outputs of Interval
are {(J1, 1), (J2, 1)} and {(J ′

1, 1), (J
′
2, 1)} depicted in Fig. 5 (B) and (C).

(ii) Let MF ∼= N ⊕ II2 be the input to Interval, where II2 is depicted in Fig. 4
(A). Then, one possible final output of Interval is {(L1, 1), (L2, 1), (L3, 1)} as
depicted in Fig. 5 (D). Note that the output does not contain interval I2, even though
II2 is a summand of MF .

Details for Example 4.13(ii) In Step 1 of Interval, for p = (2, 2), we have d(p) = 3
and ptlist(p) = ∅. In Step 2.2, q = (1, 2) belongs to nbdI({p}) and thus q can
be added to I = {p}. Once I becomes {p, q}, after multiple iterations within Step
2.2, I will expand to L1 in Fig. 5 (D). Since rkI(MF )(L1) = 1 and L1 is a maximal
interval (Definition 4.7), the pair of L1 and μL1 = 1 will be a part of the output.
By continuing this process, one possible final output is {(L1, 1), (L2, 1), (L3, 1)} as
depicted in Fig. 5 (D). ��
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Proposition 4.14 If MF is interval decomposable, Interval(F , P) computes all and
only intervals in barc(MF ) with correct multiplicities.

Proof We prove that Interval computes an interval I with multiplicity μI if and
only if TrueInterval(F , P) computes it with the same multiplicity.

(‘if’): We induct on the list of intervals in the order they are computed by TrueIn-
terval. We prove two claims by induction: (i) TrueInterval can be run to explore
the points in P in the same order as Interval while searching for maximal inter-
vals, (ii) if Ii , i = 1, · · · , k, are the intervals computed by TrueInterval with this
chosen order, then Interval also outputs these intervals with the same multiplicities.
Clearly, for i = 1, Interval computes the maximal interval on the same input mod-
ule MF as TrueInterval does. So, clearly, TrueInterval can be made to explore
P as Interval does and hence their outputs are the same. Assume inductively that
the hypotheses hold for i ≥ 1. Then, TrueInterval operates next on the module
Mi+1 := MF/(I

μI1
I1

⊕ · · · ⊕ I
μIi
Ii

) (here each I
μIi
Ii

stands for a summand of MF that

is isomorphic to I
μIi
Ii

by Corollary 4.9). We let TrueInterval explore P in the same
way as Interval does. This is always possible because the outcome of the test for
exploration remains the same in both cases as we argue. The variable d(p) at this
point has the value dim(Mi+1)p and thus both TrueInterval and Interval can
start exploring from the point p if d(p) > 0. So, we let TrueInterval compute the
next maximal interval Ii+1 starting from the point p if Interval starts from p.

Now, when Interval tests for a point q to expand the interval I , we claim that
the result would be the same if TrueInterval tested for q. First of all, the condition
whether I∪{q} is an interval or not does not depend onwhich algorithmwe are execut-
ing. Second, the list supplied toCount in Step 2.2 (i) exactly equals the list of intervals
containing I ∪{q} that Interval has already output. By the inductive hypothesis, this
list is exactly equal to the list of intervals that TrueInterval had already ‘peeled off’.
Therefore, the test rkI(MF )(I ∪ {q}) > c that Interval performs in Step 2.2 (ii) is
exactly the same as the test rkI(Mi+1)(I ∪ {q}) > 0 that TrueInterval would have
performed for the module Mi+1. This establishes that Interval computes the same
interval Ii+1 with the same multiplicity as TrueInterval would have computed on
Mi+1 using the same order of exploration as the inductive hypothesis claims.

(‘only if’): We already know that Interval computes all intervals that TrueIn-
terval computes. We claim that it does not compute any other interval. For intervals
computed by TrueInterval, one has that dim(MF )p = ∑

i (I
μIi
i )p, or equivalently

dim(MF )p = ∑
I∈{I1,...,Ik }s.t .I�p μI . The algorithm Interval decreases the variable

d(p) exactly by the amount on the right-hand side of the equation and is intialized
to dim(MF )p. Therefore, every d(p) becomes equal to dim(MF )p after Interval
computes the intervals that TrueInterval computes. The condition d(p) > 0 in the
while loop prohibits Interval to compute any other interval. ��
Proposition 4.15 Interval(F , P) runs in O(tω+2) time.

Proof Each iteration in the while loop executes a traversal of the graph underlying the
poset P starting from a point p. Each time, we reach a new point q in this traversal,
we execute a zigzag persistence computation on the boundary cap ∂(I ∪ {q}). This
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means, the number of times a zigzag persistence is computed equals the number of
times a point in the poset is considered by the while loop. We claim that this number
is O(t2). Each time a point p is considered by the while loop, either we include
it in an interval that is output (a successful attempt), or we don’t include it in the
expansion of the current interval (unsuccessful attempt) and q appears as a point in
the neighborhood of an interval that is output. The number of times a point is involved
in a successful attempt is at most t because a point can be contained in at most t
intervals (dim(MF )p ≤ t). Similarly, the number of times a point is involved in an
unsuccessful attempt is at most 4t because the point can be in the neighborhood of at
most 4t intervals (at most t intervals for each of its ≤ 4 neighbors). Therefore, each
point participates in at most O(t) computations of zigzag persistence over the entire
while loop. Each zigzag computation takes time O(tω) since the filtration F |∂(I∪{q})
restricted to the boundary cap has length at most t comprising at most t insertions
and deletions of simplices. It follows that the total cost due to zigzag persistence
computation is bounded by O(tω+2).

Now, we analyze the cost of maintaining the lists with each point and with the
intervals under construction. Notice that dim(MF ) = ∑

p∈P dim(MF )p = O(t2)
because there are at most t points in P with dim(MF )p ≤ t for each p ∈ P since F
has at most t simplices. Each while loop iteration maintains a global list, calls Count
on this list, and updates ptlist(q) for some points q ∈ P . The cost of this counting
and updates cannot be more than the order of the final total size

∑
p ptlist(p) of

the lists, which in turn is no more than dim(MF ) = O(t2). Thus, over the entire
while loop we incur O(t4) cost for maintenance of the lists and for the counting based
on them. Also, step 1 takes O(t4) time to compute the dimensions. Thus, we have a
worst-case complexity of O(t4 + tω+2) = O(tω+2) because it is known that ω ≥ 2.

��

4.3 Interval Decomposability

Setup 3 still applies in Sect. 4.3. We consider the following problem.

Problem 4.16 Determine whether the module MF is interval decomposable or not.

If the input module MF is interval decomposable, then the algorithm Interval
computes all intervals in the barcode. However, if the module MF is not interval
decomposable, then the algorithm is not guaranteed to output all interval summands.
We show that Interval still can be used to solveProblem4.16. For thiswe testwhether
each of the output intervals I withmultiplicityμI indeed supports a summand N ∼= I

μI
I

of MF .
To do this we run Algorithm 3 in Asashiba et al. [26] for each of the output intervals

of Interval. Call this algorithmTestIntervalwhichwith an input interval I , returns
μI > 0 if the module I

μI
I is a summand of M and 0 otherwise.

For each of the intervals I with multiplicity μI returned by Interval(F , P) we
test whether TestInterval(I ) returns a non-zero μI . The first time the test fails,
we declare that MF is not interval decomposable. This gives us a polynomial time
algorithm (with complexity O(t3ω+2)) to test whether a module induced by a given
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bifiltration is interval decomposable or not. It is a substantial improvement over the
result of Asashiba et al. [26] who gave an algorithm for tackling the same problem.
Their algorithm cleverly enumerates the intervals in the poset to test, but still tests
exponentiallymany of them and hencemay run in time that is exponential in t . Because
of our algorithm Interval, we can do the same test but only on polynomially many
intervals.
Algorithm IsIntervalDecomp (F , P)

• Step 1. I = {(Ii , μIi )} ← Interval(F , P)
• Step 2. For every Ii ∈ I do

– Step 2.1 μ ← TestInterval(MF ,Ii )
– Step 2.2 If μ �= μIi then output false; quit

• Step 3. output true

Proposition 4.17 IsIntervalDecomp(F , P)

1. returns true if and only if MF is interval decomposable, and
2. takes O(t3ω+2) time.

Proof By the contrapositive of Proposition 4.10, if for any of the computed interval(s)
Ii , i = 1, · · · , k by Interval, I

μIi
Ii

is not a summand of MF , then MF is not interval
decomposable. On the other hand, if every such interval module is a summand of MF ,
then we have that MF ∼= ⊕k

i=1 I
μIi
Ii

because dim(MF )p = ∑k
i dim(I

μIi
Ii

)p for every
p ∈ P .
Time complexity By Proposition 4.15, Step 1 runs in time O(tω+2). We claim that
dim(MF ) = O(t2) (see Proof of Proposition 4.15). Therefore, Interval returns at
most O(t2) intervals. According to the analysis in Asashiba et al. [26], each test in
Step 2.1 takes O(((dim MF )ω + t)tω) = O(t3ω) time and thus O(t3ω+2) in total over
all O(t2) tests which dominates the time complexity of IsIntervalDecomp. ��

4.4 Interval Produces Partial Sections of Indecomposable Summands

The algorithm Interval produces all intervals of an input interval decomposable
module. A natural question is what does the algorithm Interval return on a module
that is not interval decomposable (Fig. 5 (B)). We show that the intervals returned by
the algorithm support “partial” sections of indecomposable summands:

Proposition 4.18 Let I be the set of intervals computed by Interval(F ,P). Then, for
every I ∈ I, there exists a section supported over I of an indecomposable summand
of MF .

The above result follows from the proposition below since Interval outputs an inter-
val I only if rk(MF )(I ) > 0.

Proposition 4.19 Let P be a finite connected poset. Let M be a P-module with an
indecomposable decomposition M ∼= ⊕

j∈L M j for some finite set L. Let I ∈ Int(P).
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If rk(M)(I ) = c > 0, there are j1, . . . , jc ∈ L such that for each t = 1, . . . , c, there
exists a section v of M jt |I that is fully supported, i.e. vp �= 0 for all p ∈ I .8

Proof By the assumption, we have

M |I ∼=
⎛

⎝
⊕

j∈L
M j

⎞

⎠
∣
∣
∣
I

∼=
⊕

j∈L
M j |I .

Note that Mj |I can be decomposable for each j . Let Mj |I have an indecomposable
decomposition

Mj |I ∼=
⊕

k∈K j

M jk,

i.e. each Mjk is an indecomposable I -module. Then M |I has an indecomposable
decomposition

M |I ∼=
⊕

j∈L

⊕

k∈K j

M jk .

Since I is a finite poset and Mp is finite dimensional for each p ∈ P , we have that
lim←− M |I is finite dimensional. Hence the notions of direct product and direct sum
coincide in the category of I -indexed modules. This implies that lim←−(N1 ⊕ N2) ∼=
lim←− N1 ⊕ lim←− N2 (and it is a standard fact that lim−→(N1 ⊕ N2) ∼= lim−→ N1 ⊕ lim−→ N2 [38,
Thm. V.5.1]). Therefore, we have that

c = rk(M)(I ) = rank(M |I ) =
∑

j∈L

∑

k∈K j

rank
(
Mjk

)
.

Since each Mjk is indecomposable, by Theorem 2.6,

rank(Mjk) =
{
1, ifMjk ∼= II

0, otherwise.

Therefore, there exist exactly c distinct pairs ( j, k) such that Mjk ∼= II . Hence, for
each of such ( j, k), we can find a section v := v jk of Mjk that is fully supported over
I . Since Mjk is a summand of Mj |I , v is also a section of Mj |I , as desired. ��

4.5 Barcode Ensemble from Interval

Fix a P-module M= MF as an input to the algorithm Interval. Recall that an
output of Interval with the input M is a collection {(Ii , μIi )}i . This collection may

8 We remark that these sections can be further extended using the structure maps to submodules which
may have larger supports than the original sections.
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change with different choices available during the exploration for computing maximal
intervals. The collection E(M) of all possible outputs of Interval will be called the
barcode ensemble of M . Proposition 4.14 implies:

Corollary 4.20 If E(M) contains more than one collection, then M is not interval
decomposable.

Suppose that a collection C := {(Ii , μIi )}i belongs to E(M). We consider the
interval decomposable module IC := ⊕

i I
μi
Ii

corresponding to C. Fix any interval
J ⊂ P . We define

E(M)(J ) := max
C∈E(M)

rk(IC)(J ).

We remark that rk(IC)(J ) is equal to
∑

i μi where the sum is taken over all i such that
Ii ⊇ J .

A single output of the algorithm Intervalmay fail to capture the generalized rank
invariant of M ; for instance, in Example 4.13 (i), the generalized rank invariant of
the module MF (∼= N ) is different from the generalized rank invariants of

⊕2
i=1 IJi

or
⊕2

i=1 IJ ′
i
. Nevertheless, the barcode ensemble E(M) recovers the generalized rank

invariant of the input module M :

Proposition 4.21 For every interval J ⊆ P, we have

rk(M)(J ) = E(M)(J ).

By the design of the algorithm Interval, the above equality is clearly true when
rk(M)(J ) = 0.

Proof (≥) Letm := rk(M)(J ) and pick anyC = {(Ii , μi ))}i inE(M). By the design of
the algorithm Interval, it is not possible for the sum

∑

i
Ii⊃J

μi (= rk(IC)) to be greater

than m. Since C was arbitrarily chosen in E(M), we have rk(M)(J ) ≥ E(M)(J ).
(≤) Assume that m := E(M)(J ). This implies that there exists C = {(Ii , μi )}i in

E(M) such that rk(IC)(J ) = m. We prove the desired inequality by contradiction.
Suppose that n :=rk(M)(J ) > m. This implies that we can run the while loop (Step
2) at least n times starting from the singleton interval I = {p} for any point p ∈ J . Let
C′ be any final output obtained in this strategy. Then, the output C′ contains intervals
I ′
j containing J with multiplicity μ′

j and we have n = ∑
j μ

′
j . Then, by Theorem 2.6,

we have that rk(IC′)(J ) ≥ n > m, contradicting the definition of E(M)(J ). ��

5 Discussion

Some open questions that follow are:(i) Can we generalize Theorem 3.12 to d-
parameter persistent homology for d > 2? One obstacle is that, for d > 2, the
(minimal) lower and upper fences of an interval I ∈ Int(Zd) are generally not zigzag
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posets. (ii) Can the complexity of the algorithms be improved? (iii) In particular, can
we improve the interval decomposability testing by improving TestInterval which
currently uses an algorithm of Asashiba et al.? (iv) Finally, it would be interesting to
see the use of our results in applications, see e.g. [41] for an application in machine
learning.

Acknowledgements The authors thank the anonymous reviewers for constructive feedback and suggesting
ideas that shortened the proof of Theorem 3.12. This work is supported by NSF Grants CCF-2049010,
CCF-1740761, DMS-1547357, and IIS-1901360.

Funding This work is supported by NSF grants CCF-2049010, CCF-1740761, DMS-1547357, and IIS-
1901360.

Data Availability Data sharing not applicable to this article.

Code Availability Code sharing not applicable to this article.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Limits and Colimits

We recall the notions of limit and colimit from category theory [38]. Recall that a poset
P can be viewed as a category whose objects are the elements of P and morphisms are
the comparable pairs p ≤ q in P . Although limits and colimits are defined for functors
indexed by small categories we restrict our attention to poset-indexed functors. Let C
be any category.

Definition A.1 (Cone) Let F : P → C be a functor. A cone over F is a pair(
L, (πp)p∈P

)
consisting of an object L in C and a collection (πp)p∈P of morphisms

πp : L → F(p) that commute with the arrows in the diagram of F , i.e. if p ≤ q in
P , then πq = F(p ≤ q) ◦ πp in C, i.e. the diagram below commutes.

F(p) F(q)

L

F(p≤q)

πp πq

(11)
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In Definition A.1, the cone
(
L, (πp)p∈P

)
over F is sometimes denoted simply by

L , suppressing the collection (πp)p∈P of morphisms if no confusion can arise. A limit
of F : P → C is a terminal object in the collection of all cones over F :

Definition A.2 (Limit) Let F : P → C be a functor. A limit of F is a cone over F ,

denoted by
(
lim←− F, (πp)p∈P

)
or simply lim←− F , with the following terminal property:

If there is another cone
(
L ′, (π ′

p)p∈P

)
of F , then there is a unique morphism u :

L ′ → lim←− F such that π ′
p = πp ◦ u for all p ∈ P .

It is possible that a functor does not have a limit at all. However, if a functor does
have a limit then the terminal property of the limit guarantees its uniqueness up to
isomorphism. For this reason, we sometimes refer to a limit as the limit of a functor.

Cocones and colimits are defined in a dual manner:

Definition A.3 (Cocone) Let F : P → C be a functor. A cocone over F is a pair(
C, (i p)p∈P

)
consisting of an object C in C and a collection (i p)p∈P of morphisms

i p : F(p) → C that commute with the arrows in the diagram of F , i.e. if p ≤ q in P ,
then i p = iq ◦ F(p ≤ q) in C, i.e. the diagram below commutes.

C

F(p) F(q)

i p

F(p≤q)

iq (12)

In Definition A.3, a cocone
(
C, (i p)p∈P

)
over F is sometimes denoted simply by

C , suppressing the collection (i p)p∈P of morphisms. A colimit of F : P → C is an
initial object in the collection of cocones over F :

Definition A.4 (Colimit) Let F : P → C be a functor. A colimit of F is a cocone,

denoted by
(
lim−→ F, (i p)p∈P

)
or simply lim−→ F , with the following initial property:

If there is another cocone
(
C ′, (i ′p)p∈P

)
of F , then there is a unique morphism u :

lim−→ F → C ′ such that i ′p = u ◦ i p for all p ∈ P .

It is possible that a functor does not have a colimit at all. However, if a functor
does have a colimit then the initial property of the colimit guarantees its uniqueness
up to isomorphism. For this reason, we sometimes refer to a colimit as the colimit of a
functor. It is well-known that if P is finite, then any functor F : P → vec admits both
limit and colimit in vec. Assume that P is also connected. Then, by the commutativity
in (11) and (12), once a cone and a cocone of F are specified, there exists the canonical
map from the cone to the cocone, leading to Definition 2.5.

Remark A.5 Let P be a finite and connected poset. Let Q be a finite and connected
subposet of P . Let us fix any F : P → vec.

(i) For any cone
(
L ′, (π ′

p)p∈P

)
over F , its restriction

(
L ′, (π ′

p)p∈Q
)
is a cone over

the restriction F |Q : Q → vec. Therefore, by the terminal property of the limit
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(
lim←− F |Q, (πq)q∈Q

)
, there exists the unique morphism u : L ′ → lim←− F |Q such

that π ′
q = πq ◦ u for all q ∈ Q.

(ii) For any cocone
(
C ′, (i ′p)p∈P

)
over F , its restriction

(
C ′, (i ′p)p∈Q

)
is a cocone

over the restriction F |Q : Q → vec. Therefore, by the initial property of lim−→ F |Q ,
there exists the unique morphism u : lim−→ F |Q → C ′ such that i ′q = u ◦ iq for all
q ∈ Q.

(iii) By the previous two items, there exist linear maps π : lim←− F → lim←− F |Q and
ι : lim−→ F |Q → lim−→ F such that ψF = ι ◦ ψF |Q ◦ π.

Therefore, rank(F) = rank(ψF ) ≤ rank(ψF |Q ) = rank(F |Q).
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