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Abstract
Consider a finite collection of affine hyperplanes in R

d . The hyperplanes dissect R
d

into finitelymany polyhedral chambers. For a point x ∈ R
d and a chamber P themetric

projection of x onto P is the unique point y ∈ P minimizing the Euclidean distance
to x . The metric projection is contained in the relative interior of a uniquely defined
face of P whose dimension is denoted by dim(x, P). We prove that for every given
k ∈ {0, . . . , d}, the number of chambers P for which dim(x, P) = k does not depend
on the choice of x , with an exception of someLebesgue null set.Moreover, this number
is equal to the absolute value of the k-th coefficient of the characteristic polynomial of
the hyperplane arrangement. In a special case of reflection arrangements, this proves
a conjecture of Drton and Klivans [A geometric interpretation of the characteristic
polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138(8), 2873–2887
(2010)].
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1 Introduction and Statement of Results

1.1 Introduction

The starting point of the present paper is the following conjecture of Drton and Kli-
vans [7, Conjecture 6]. Consider a finite reflection groupW acting on R

d . The mirror
hyperplanes of the reflecting elements ofW dissect R

d into isometric cones or cham-
bers. Let C be one of these cones. Take some k ∈ {0, . . . , d}. A point x ∈ R

d is said
to have a k-dimensional projection onto C if the unique element y ∈ C minimizing
the Euclidean distance to x is contained in a k-dimensional face of C but not in a face
of smaller dimension. For example, points in the interior of C have a d-dimensional
projection onto C .

Conjecture 1.1 (Drton and Klivans [7]) For a “generic” point x ∈ R
d , the number

of points in the orbit {gx : g ∈ W } having a k-dimensional projection onto C is
constant, that is independent of x. Moreover, this number equals the absolute value ak

of the coefficient of tk in the characteristic polynomial of the reflection arrangement.

Drton and Klivans [7] observed that in the case of reflection groups of type A their
conjecture follows from the work of Miles [19], proved it for reflection groups of
types B and D, and gave further partial results on the conjecture including numerical
evidence for its validity in the case of exceptional reflection groups. Somewhat later,
Klivans and Swartz [16] proved that if x is chosen at random according to a rotationally
invariant distribution on R

d , then the conjecture of Drton and Klivans is true on
average, that is the expected number of points in the orbit {gx : g ∈ W } having a
k-dimensional projection onto C equals ak .

The aim of the present paper is to prove Conjecture 1.1 in a much more general
setting of arbitrary affine hyperplane arrangements. After collecting the necessary
definitions in Sect. 1.2 we shall state our main results in Sect. 1.3.

1.2 Definitions

Apolyhedral set inR
d is an intersection of finitelymany closed half-spaces.Abounded

polyhedral set is called a polytope. If the hyperplanes bounding the half-spaces pass
through the origin, the intersection of these half-spaces is called a polyhedral cone,
or just a cone. We denote byFk(P) the set of all k-dimensional faces of a polyhedral
set P ⊂ R

d , for all k ∈ {0, . . . , d}. For example, F0(P) is the set of vertices of P ,
while Fd(P) = {P} provided P has non-empty interior. The set of all faces of P of
whatever dimension is then denoted by F (P) = ⋃d

k=0 Fk(P). The relative interior
of a face F , denoted by relint F , consists of all points belonging to F but not to a face
of strictly smaller dimension. It is known that any polyhedral set is a disjoint union of
the relative interiors of its faces:

P =
⋃
·

F∈F (P)

relint F . (1)
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For more information on polyhedral sets and their faces we refer to [20, Sections 7.2
and 7.3], [21] and [26, Chapters 1 and 2]. Polyhedral sets form a subclass of the family
of closed convex sets; for the face structure in this more general setting we refer to
[22, §2.1 and §2.4].

Given a polyhedral set P and a point x ∈ R
d , there is a uniquely defined point

minimizing the Euclidean distance ‖x − y‖ among all y ∈ P . This point, denoted
by πP (x), is called the metric projection of x onto P . For example, if x ∈ P , then
πP (x) = x . By (1), the metric projection πP (x) is contained in a relative interior of a
uniquely defined face F of P . If the dimension of F is k, we say that the point x has
a k-dimensional metric projection onto P and write dim(x, P) = k.

Next we need to recall some basic facts about hyperplane arrangements referring
to [25] and [3, Section 1.7] for more information. Let A = {H1, . . . , Hm} be an
affine hyperplane arrangement in R

d , that is a collection of pairwise distinct affine
hyperplanes H1, . . . , Hm in R

d . In general, the hyperplanes are not required to pass
through the origin, but if they all do, the arrangement is called linear (or central). The
connected components of the complement R

d\⋃m
i=1 Hi are called open chambers,

while their closures are called closed chambers ofA . The closed chambers are poly-
hedral sets which cover R

d and have disjoint interiors. The collection of all closed1

chambers will be denoted by R(A ). If not otherwise stated, the word “chamber”
always refers to a closed chamber in the sequel. The characteristic polynomial of the
affine hyperplane arrangement A may be defined by the following Whitney formula
[25, Theorem 2.4]:

χA (t) =
∑

B⊂A :⋂

H∈B
H �=∅

(−1)#Bt
dim

(
⋂

H∈B
H

)

. (2)

Here, #B denotes the number of elements in B. The empty set B = ∅, for which
the corresponding intersection of hyperplanes is defined to be R

d , contributes the
term td to the above sum. The notation ⊂ is also used in the cases of equality in this
paper. The classical Zaslavsky formulae [25, Theorem 2.5] state that the total number
of chambers is given by #R(A ) = (−1)dχA (−1), while the number of bounded
chambers is equal to (−1)rankA χA (1), where rankA is the dimension of the linear
space spanned by the normals to the hyperplanes of A . For the coefficients of the
characteristic polynomial it will be convenient to use the notation

χA (t) =
d∑

k=0

(−1)d−kaktk . (3)

1 This convention deviates from the standard notation [25], whereR(A ) is the collection of open chambers,
but will be convenient for the purposes of the present paper.
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1.3 Main Result

We are now ready to state a simplified version of our main result.

Theorem 1.2 Let A be an affine hyperplane arrangement in R
d whose characteristic

polynomial χA (t) is written in the form (3). Take some k ∈ {0, . . . , d}. Then,

#{P ∈ R(A ) : dim(x, P) = k} = ak

for every x ∈ R
d outside a certain exceptional set which is a finite union of affine

hyperplanes.

Example 1.3 (Zaslavsky’s first formula) Let us show that Theorem 1.2 generalizes
Zaslavsky’s first formula #R(A ) = (−1)dχA (−1). Take some point x ∈ R

d outside
the exceptional set. On the one hand, for every chamber P ∈ R(A ) there is a unique
face whose relative interior contains the metric projection πP (x), hence interchanging
the order of summation we get

d∑

k=0

#{P ∈ R(A ) : dim(x, P) = k} =
∑

P∈R(A )

d∑

k=0

1{dim(x,P)=k}

=
∑

P∈R(A )

1 = #R(A ).

On the other hand, the sum on the left-hand side equals
∑d

k=0 ak by Theorem 1.2.
Altogether, we arrive at #R(A ) = ∑d

k=0 ak , which is Zaslavsky’s first formula.

Example 1.4 (Reflection arrangements) Consider a finite reflection group W acting
on R

d . This means that W is a finite group generated by reflections with respect to
linear hyperplanes; see the books [10] and [13] for the necessary background. The
associated reflection arrangement consists of all hyperplanes H with the property that
the reflectionwith respect to H belongs toW . Letχ(t) be the characteristic polynomial
of this arrangement and C one of its chambers. Drton and Klivans [7, Conjecture 6]
conjectured that for a “generic” point x ∈ R

d the number of group elements g ∈ W
with dim(gx, C) = k is equal to the absolute value of the coefficient of tk in χ(t), for
all k ∈ {0, . . . , d}. This conjecture is an easy consequence of Theorem 1.2. Indeed,
since every g ∈ W is an isometry, dim(gx, C) equals dim(x, g−1C). If g runs through
all elements ofW , then g−1C runs through all chambers of the reflection arrangement,
and the conjecture follows from Theorem 1.2. Note that the characteristic polynomials
of the reflection arrangements are known explicitly; see, e.g., [3, page 124].

Remark 1.5 Theorem 1.2 has been obtained by [17, Corollary 5.13]. Our proof is quite
different and more elementary.

Let us now restate Theorem1.2 in amore explicit form involving a concrete descrip-
tion of the exceptional set. First we need to define the notions of tangent and normal
cones. Let
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pos A :=
{

m∑

i=1

λi ai : m ∈ N, a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0

}

.

denote the positive hull of a set A ⊂ R
d . The tangent cone of a polyhedral set P at its

face F ∈ F (P) is defined by

TF (P) = pos{p − f0 : p ∈ P} = {u ∈ R
d : ∃δ > 0 : f0 + δu ∈ P}, (4)

where f0 is an arbitrary point in relint F . It is known that this definition does not
depend on the choice of f0 and that TF (P) is a polyhedral cone. Moreover, TF (P)

contains the linear subspace aff F − f0, where aff F is the affine hull of F , i.e., the
minimal affine subspace containing F . For a polyhedral cone C ⊂ R

d , its polar cone
is defined by

C◦ = {z ∈ R
d : 〈z, y〉 ≤ 0 for all y ∈ C},

where 〈·, ·〉 denotes the standard Euclidean scalar product on R
d . The normal cone of

a polyhedral set P at its face F ∈ F (P) is defined as the polar cone of the tangent
cone:

NF (P) = (TF (P))◦.

By definition, NF (P) is a polyhedral cone contained in (aff F)⊥, the orthogonal
complement of aff F . Here, the orthogonal complement of an affine subspace A ⊂ R

d

is the linear subspace

A⊥ = {z ∈ R
d : 〈z, y〉 = 0 for all y ∈ A}.

Now, the metric projection of a point x ∈ R
d onto a polyhedral set P satisfies

πP (x) ∈ F for a face F ∈ F (P) if and only if x ∈ F + NF (P). Here, A + B =
{a + b : a ∈ A, b ∈ B} is the Minkowski sum of the sets A, B ⊂ R

d , which in our
special case is even orthogonal meaning that every vector from NF (P) is orthogonal
to every vector from F . Similarly, we have

πP (x) ∈ relint F ⇐⇒ x ∈ (relint F) + NF (P).

Let int A denote the interior of a set A, and let ∂ A = A\ int A be the boundary of
A. We are now ready to restate our main result in a more explicit form.

Theorem 1.6 Let A be an affine hyperplane arrangement in R
d whose characteristic

polynomial χA (t) is written in the form (3). Then, for every k ∈ {0, . . . , d} we have

ϕk(x) :=
∑

P∈R(A )

∑

F∈Fk (P)

1F+NF (P)(x) = ak, for all x ∈ R
d\Ek, (5)
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where the exceptional set Ek is given by

Ek =
⋃

P∈R(A )

⋃

F∈Fk (P)

∂(F + NF (P)). (6)

Also, we have ϕk(x) ≥ ak for every x ∈ R
d .

An equivalent representation of the set Ek , implying that it is a finite union of affine
hyperplanes, will be given below; see (42) and (43).

Example 1.7 Let us consider a simple example showing that the exceptional set cannot
be removed from the statement of Theorem1.6. Consider an arrangementA consisting
of the coordinate axes {x1 = 0} and {x2 = 0} in R

2. There are four chambers and the
characteristic polynomial is given by χA (t) = (t − 1)2. It is easy to check that the
functions ϕ0 and ϕ1 defined in (5) are given by

ϕ0(x1, x2) = 1 + 1{x1=0} + 1{x2=0} + 1{x1=x2=0}, ϕ1(x1, x2) = 2ϕ0(x1, x2).

These functions are strictly larger than a0 = 1 and a1 = 2 on the exceptional set
E1 = E2 = {x1 = 0} ∪ {x2 = 0}.
Remark 1.8 (Similar identities) It is interesting to compare Theorem 1.6 to the follow-
ing identity: For every polyhedral set P ⊂ R

d we have

d∑

k=0

∑

F∈Fk (P)

(−1)k1F−NF (P)(x) =
{
1, if P is bounded,

0, if P is unbounded and line-free,
(7)

for all x ∈ R
d , without an exceptional set. Various versions of this formula valid out-

side a certain exceptional sets of Lebesgue measure 0 have been obtained starting with
the work of McMullen [18, page 249]; see [24, Proof of Theorem 6.5.5], [8, Hilfs-
satz 4.3.2], [9], [11, Corollary 2.25 on page 89]. The exceptional set has been removed
independently in [23] (for polyhedral cones) and in [12] (for general polyhedral sets).
Cowan [4] proved another identity for alternating sums of indicator functions of con-
vex hulls. The exceptional set in Cowan’s identity has been subsequently removed in
[14].

2 Implications and Extensions of theMain Result

2.1 Conic Intrinsic Volumes and Characteristic Polynomials

As another consequence of our result we can re-derive a formula due to Klivans
and Swartz [16, Theorem 5] which expresses the coefficients of the characteristic
polynomial of a linear hyperplane arrangement through the conic intrinsic volumes of
its chambers. Let us first define conic intrinsic volumes; see [24, Sect. 6.5] and [1, 2]
for more details. Let ξ be a random vector having an arbitrary rotationally invariant
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distribution on R
d . As examples, one can think of the uniform distribution on the unit

sphere inR
d or the standard normal distribution. The k-th conic intrinsic volume νk(C)

of a polyhedral cone C ⊂ R
d is defined as the probability that the metric projection

of ξ onto C belongs to a relative interior of a k-dimensional face of C , that is

νk(C) = P[dim(ξ, C) = k], k ∈ {0, . . . , d}.

To state the formula of Klivans and Swartz [16, Theorem 5], consider a linear hyper-
plane arrangement, i.e., a finite collection A = {H1, . . . , Hm} of hyperplanes in R

d

passing through the origin. The hyperplanes dissect R
d into finitely many polyhedral

cones (the chambers of the arrangement). The formula of Klivans and Swartz [16,
Theorem 5] states that for every k ∈ {0, . . . , d} the sum of νk(C) over all chambers
is equal to the absolute value of the k-th coefficient of the characteristic polynomial
χA (t), namely

∑

C∈R(A )

νk(C) = ak, for all k ∈ {0, . . . , d}. (8)

For proofs and extensions of the Klivans–Swartz formula see [15, Theorem 4.1],
[1, Section 6] and [23, Equation (15) andTheorem1.2]. To see that (8) is a consequence
of our results, note that by Theorem 1.2 applied with x replaced by ξ ,

∑

C∈R(A )

1{dim(ξ,C)=k} = ak with probability 1.

Taking the expectation and interchanging it with the sum yields (8). Thus, in the setting
of linear arrangements, our result can be seen as an a.s. version of the Klivans–Swartz
formula.

2.2 Extension to j-th Level Characteristic Polynomials

Let us finally mention one simple extension of the above results. LetL (A ) be the set
of all non-empty intersections of hyperplanes fromA . By convention, thewhole space
R

d is also included in L (A ) as an intersection of the empty collection. Take some
j ∈ {0, . . . , d} and letL j (A ) denote the set of all j-dimensional affine subspaces in
L (A ). The restriction of the arrangement A to the subspace L ∈ L (A ) is defined
as

A L = {H ∩ L : H ∈ A , H ∩ L �= L, H ∩ L �= ∅},

which is an affine hyperplane arrangement in the ambient space L . Note that it may
happen that H1 ∩ L = H2 ∩ L for some different H1, H2 ∈ A , in which case the
corresponding hyperplane is listed just once in the arrangement A L .
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Now, the j-th level characteristic polynomial of A may be defined as

χA , j (t) =
∑

L∈L j (A )

χA L (t). (9)

We refer to [1, Section 2.4.1] for this and other equivalent definitions. Note that in the
case j = d we recover the usual characteristic polynomial χA (t). For the coefficients
of the j-th level characteristic polynomial we use the notation

χA , j (t) =
j∑

k=0

(−1) j−kak j t
k . (10)

Recall thatR(A ) denotes the set of all closed chambers generated by the arrangement
A . For j ∈ {0, . . . , d}, letR j (A ) be the set of all j-dimensional faces of all chambers,
that is

R j (A ) =
⋃

P∈R(A )

F j (P).

The j-th level extension of Theorem 1.6 reads as follows.

Theorem 2.1 Let A be an affine hyperplane arrangement in R
d whose j-th level

characteristic polynomial χA , j (t) is written in the form (10). Then, for every j ∈
{0, . . . , d} and k ∈ {0, . . . , j} we have

∑

P∈R j (A )

∑

F∈Fk (P)

1F+NF (P)(x) = akj , for all x ∈ R
d\Ekj ,

where the exceptional set Ek j is given by

Ekj =
⋃

P∈R j (A )

⋃

F∈Fk (P)

∂(F + NF (P)). (11)

Proof of Theorem 2.1 assuming Theorem 1.6 Consider any L ∈ L j (A) and apply The-
orem 1.6 to the hyperplane arrangement A L in the ambient space L . This yields

∑

P∈R j (A ):
P⊂L

∑

F∈Fk (P)

1F+(NF (P)∩L0)(z) = ak,L , for all z ∈ L\Ek,L , (12)

where L0 := L −πL(0) is a shift of the affine subspace L that contains the origin, the
ak,L ’s are defined by the formulae

χA L (t) =
j∑

k=0

(−1) j−kak,L tk (13)
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and the exceptional sets Ek,L ⊂ L are given by

Ek,L =
⋃

P∈R j (A ):
P⊂L

⋃

F∈Fk(P)

∂L(F + (NF (P) ∩ L0)). (14)

Here, ∂L denotes the boundary operator in the ambient space L . Note that in (12) the
normal coneof F ∈ Fk(P) in the ambient space L is represented as NF (P)∩L0,where
NF (P) denotes the normal cone in the ambient spaceR

d . Also, we have the orthogonal
sum decomposition NF (P) = (NF (P) ∩ L0) + L⊥. Hence, we can rewrite (12) as

∑

P∈R j (A ):
P⊂L

∑

F∈Fk (P)

1F+NF (P)(x) = ak,L , for all x ∈ R
d\(Ek,L + L⊥). (15)

Since each j-dimensional face P ∈ R j (A ) is contained in a unique affine subspace
L ∈ L j (A ), we can take the sum over all such L arriving at

∑

P∈R j (A )

∑

F∈Fk (P)

1F+NF (P)(x)

=
∑

L∈L j (A )

∑

P∈R j (A ):
P⊂L

∑

F∈Fk(P)

1F+NF (P)(x) =
∑

L∈L j (A )

ak,L

for all x ∈ R
d outside the following exceptional set:

⋃

L∈L j (A )

(Ek,L + L⊥) =
⋃

L∈L j (A )

⋃

P∈R j (A ):
P⊂L

⋃

F∈Fk(P)

(
∂L(F + (NF (P) ∩ L0))+L⊥)

=
⋃

P∈R j (A )

⋃

F∈Fk(P)

∂(F + NF (P)) = Ekj .

Here, we used that ∂L(A)+ L⊥ = ∂(A+ L⊥) for every set A ⊂ L . It follows from (9),
(10), (13) that

∑

L∈L j (A )

ak,L = akj ,

which completes the proof. ��
Remark 2.2 Using almost the same argument as in Sect. 2.1, Theorem 2.1 yields the
following j-th level extension of the Klivans–Swartz formula obtained in [1, Theo-
rem 6.1] and [23, Equation (15)]:

∑

P∈R j (A )

νk(P) = akj , for all j ∈ {0, . . . , d}, k ∈ {0, . . . , j}. (16)
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3 Proof of Theorem 1.6

The remaining part of this paper is devoted to the proof of Theorem 1.6 which we
shall subdivide into several steps. In Step 1 we prove Theorem 1.6 for k = 0 and linear
arrangements. In Steps 2, 3, 4 we reduce the general case to this special case. Finally,
in Step 5 we simplify the representation of the exceptional set.

Step 1.We start with a proposition which, as we shall see in Remark 3.3 below, implies
Theorem 1.6 for linear hyperplane arrangements in the special case k = 0. Recall that
the polar cone of a polyhedral cone C ⊂ R

d is defined by

C◦ = {z ∈ R
d : 〈z, y〉 ≤ 0 for all y ∈ C}.

It is known that C◦◦ = C ; see [1, Proposition 2.3]. The lineality space of a cone
C is the largest linear space contained in C and is explicitly given by C ∩ (−C).
It is known that the linear space spanned by the polar cone C◦ coincides with the
orthogonal complement of the lineality space of C ; see, e.g., [1, Proposition 2.5] for
a more general statement. In particular, the lineality space of C is trivial (i.e., equal
to {0}) if and only if C◦ has non-empty interior.

Proposition 3.1 Let A be a linear hyperplane arrangement in R
d . Then,

∑

C∈R(A )

1C◦(x) = a0, for all x ∈ R
d\E∗

0 , (17)

where a0 is defined by (2) and (3) and the exceptional set E∗
0 is given by

E∗
0 :=

⋃

L∈L (A )\{0}
L⊥ =

⋃

C∈R(A )

∂(C◦). (18)

Proof Since for linear arrangements C �→ −C defines a bijective self-map of R(A )

and since (−C)◦ = −(C◦), we have
∑

C∈R(A )

1C◦(x) =
∑

C∈R(A )

1−C◦(x), for all x ∈ R
d .

Therefore, it suffices to prove that

∑

C∈R(A )

(1C◦(x) + 1−C◦(x)) = 2a0, for all x ∈ R
d\E∗

0 .

Since every cone C ∈ R(A ) is full-dimensional, implying that the polar cone has
trivial lineality space C◦ ∩ (−C◦) = {0}, it suffices to prove that

∑

C∈R(A )

1C◦∪−C◦(x) = 2a0, for all x ∈ R
d\E∗

0 .
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Let L(x) := {λx : λ ∈ R} be the 1-dimensional line generated by x ∈ R
d\{0}. Then,

x ∈ C◦ ∪ −C◦ if and only if L ∩ C◦ �= {0}. It therefore suffices to prove that
∑

C∈R(A )

1{L(x)∩C◦ �={0}} = 2a0, for all x ∈ R
d\E∗

0 .

In a slightly different form, this result is contained in [23, Theorem 1.2, Equation (16)].
For completeness, we provide a proof. By the Farkas lemma [1, Lemma 2.4], L(x) ∩
C◦ �= {0} is equivalent to L(x)⊥ ∩ int C = ∅. Thus, we need to show that

∑

C∈R(A )

1{L(x)⊥∩int C=∅} = 2a0, for all x ∈ R
d\E∗

0 . (19)

ByZaslavsky’s first formula, the total number of chambers ofA is given by #R(A ) =
(−1)dχA (−1) = ∑d

k=0 ak . By Zaslavsky’s second formula, χA (1) = 0 (because
there are no bounded chambers in a linear arrangement). Hence,

∑d
k=0(−1)kak = 0

and it follows that #R(A ) = 2
∑[d/2]

k=0 a2k . In view of this, it suffices to show that

∑

C∈R(A )

1{L(x)⊥∩int C �=∅} = 2
[d/2]∑

k=1

a2k, for all x ∈ R
d\E∗

0 . (20)

This identity is known [15, Theorem 3.3] provided that the hyperplane L(x)⊥ is in
general position with respect to the arrangement A . By definition [15, Section 3.1],
the general position condition means that for every L ∈ L (A ) with L �= {0}, we
have dim(L ∩ L(x)⊥) = dim L − 1. This is the same as to require that L is not a
subset of L(x)⊥ or, equivalently, that x /∈ L⊥. So, the above identity holds for all x ∈
R

d\⋃
L∈L (A )\{0}(L⊥), which completes the proof of (17). The second representation

of the exceptional set E∗
0 in (18) was mentioned just for completeness. We shall prove

it in Lemma 3.8 without using it before. ��
Lemma 3.2 Let A be a linear hyperplane arrangement in R

d . Then,

∑

C∈R(A )

1C◦(x) ≥ a0, for all x ∈ R
d .

Proof Theproof of Proposition 3.1 applieswithminimalmodifications. Indeed, by [15,
Lemma 3.5, Equation (38)] (note thatR(A ) denotes the collection of open chambers
there), the equality in (20) has to be replaced by the inequality ≤, which means that
the equality in (19) should be replaced by ≥. The rest of the proof applies. ��
Remark 3.3 With Proposition 3.1 at hand, we can prove Theorem 1.6 for k = 0
provided the arrangement A is linear. Assume first that A is essential, i.e., it has
full rank meaning that

⋂
H∈A H = {0}. Then, F = {0} is the only 0-dimensional face

of every chamber C ∈ R(A ). The normal cone of C at this face is N{0}(C) = C◦.
Hence, the case k = 0 of Theorem 1.6 follows from Proposition 3.1 and Lemma 3.2.
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In the case of a non-essential linear arrangement, that is if L∗ := ⋂
H∈A H �= {0},

Theorem 1.6 becomes trivial for k = 0 as there are no 0-dimensional faces and the
zeroth coefficient of χA (t) vanishes by its definition (2). Proposition 3.1 also becomes
trivial since the polar coneC◦ of every chamberC is contained in L⊥∗ , which coincides
with the exceptional set

⋃
L∈L (A )\{0}(L⊥). Since a0 = 0, both sides of (17) vanish

for x /∈ L⊥∗ .

Remark 3.4 In the special case of reflection arrangements, Proposition 3.1 can be found
in the paper of Denham [6, Theorem 2]; see also [5] for a related work.

Step 2. We are interested in the function

ϕk(x) =
∑

P∈R(A )

∑

F∈Fk(P)

1F+NF (P)(x), x ∈ R
d .

In this step we shall split ϕk(x) into contributions, denoted by ϕL(x), of faces lying
in a common k-dimensional linear space L . First of all note that in the case k = d
we trivially have ϕd(x) = 1 for all x ∈ R

d\⋃
H∈A H . In the following, fix some

k ∈ {0, . . . , d − 1}. Recall that R j (A ) = ⋃
P∈R(A ) F j (P) is the set of all j-

dimensional faces of all chambers ofA (without repetitions). Interchanging the order
of summation, we may write

ϕk(x) =
∑

F∈Rk(A )

∑

P∈R(A ):
F∈Fk (P)

1F+NF (P)(x).

Recall also that L (A ) is the set of all non-empty intersections of hyperplanes from
A and that Lk(A ) is the set of all k-dimensional affine subspaces in L (A ). Since
each k-dimensional face F ∈ Rk(A ) is contained in a unique k-dimensional affine
subspace L ∈ Lk(A ), wemay split the sum in the above formula forϕk(x) as follows:

ϕk(x) =
∑

L∈Lk (A )

ϕL(x), (21)

where for each L ∈ Lk(A ) we define

ϕL(x) =
∑

F∈Rk (A ):
F⊂L

∑

P∈R(A ):
F∈Fk (P)

1F+NF (P)(x). (22)

Step 3. In this step we shall prove that for every k ∈ {0, . . . , d − 1} and every
L ∈ Lk(A ) the function ϕL(x) defined in (22) is constant outside the exceptional set

E(L) := E ′(L) ∪ E ′′(L), (23)
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where

E ′(L) :=
⋃

Lk−1∈Lk−1(A ):
Lk−1⊂L

(Lk−1 + L⊥) and E ′′(L) :=
⋃

Lk+1∈Lk+1(A ):
Lk+1⊃L

(L⊥
k+1 + L).

(24)

For k = 0 we put E ′(L) := ∅. Note that E(L) is a finite union of affine hyperplanes.
Moreover, we shall identify the value of the constant in terms of the characteristic
polynomial of some hyperplane arrangement in L⊥, the orthogonal complement of L .
The final result will be stated in Proposition 3.5 at the end of this step.

First we need to introduce some notation. Recall that 〈·, ·〉 denotes the standard
Euclidean scalar product on R

d . Let the affine hyperplanes H1, . . . , Hm constituting
the arrangement A be given by the equations

Hi = {z ∈ R
d : 〈z, yi 〉 = ci }, i ∈ {1, . . . , m},

for some vectors y1, . . . , ym ∈ R
d\{0} and some scalars c1, . . . , cm ∈ R. Every closed

chamber of the arrangement A can be represented in the form

P = {z ∈ R
d : ε1(〈z, y1〉 − c1) ≤ 0, . . . , εm(〈z, ym〉 − cm) ≤ 0}

with a suitable choice of ε1, . . . , εm ∈ {−1,+1}. Conversely, every set of the above
form defines a closed chamber provided its interior is non-empty. Note in passing that
the interior of this chamber is represented by the corresponding strict inequalities as
follows:

int P = {z ∈ R
d : ε1(〈z, y1〉 − c1) < 0, . . . , εm(〈z, ym〉 − cm) < 0}.

Finally, the chambers determinedby twodifferent tuples (ε1, . . . , εm) and (ε′
1, . . . , ε

′
m)

have disjoint interiors. Indeed, if the tuples differ in the i-th component, then any point
z in the relative interior of one chamber satisfies 〈z, yi 〉 < ci , whereas the points in
the relative interior of the other chamber satisfy the converse inequality.

Fix some k-dimensional affine subspace L ∈ Lk(A ), where k ∈ {0, . . . , d − 1}.
It can be written in the form

L = {z ∈ R
d : 〈z, yi 〉 = ci for all i ∈ I }

for a suitable subset I ⊂ {1, . . . , m}. Without restriction of generality we may assume
that L passes through the origin (otherwise we could translate everything). It follows
that ci = 0 for i ∈ I . Moreover, after renumbering (if necessary) the hyperplanes and
their defining equations, we may assume that the linear subspace L is given by the
equations

L = {z ∈ R
d : 〈z, y1〉 = 0, . . . , 〈z, y�〉 = 0} (25)
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for some � ∈ {d − k, . . . , m}. Finally, without loss of generality we may assume that
Hi ∩ L is a strict subset of L for all i ∈ {� + 1, . . . , m} since otherwise we could
include the defining equation of Hi into the list on the right-hand side of (25).

Take any point x ∈ R
d\E(L), wherewe recall that E(L) is defined by (23) and (24).

The orthogonal projection of x onto the linear subspace L , denoted by πL(x), is
contained in the relative interior of some uniquely defined face G ∈ ⋃k

p=0 Rp(A )

with G ⊂ L . In fact, we even have G ∈ Rk(A ) because if the dimension of G would
be strictly smaller than k, we could find some Lk−1 ∈ Lk−1(A )with G ⊂ Lk−1 ⊂ L .
This would contradict the assumption x /∈ E ′(L). So, we have

πL(x) ∈ relint G, G ∈ Rk(A ), G ⊂ L.

Then, the definition of ϕL(x) given in (22) simplifies as follows:

ϕL(x) =
∑

P∈R(A ):
G∈Fk (P)

1G+NG (P)(x). (26)

Indeed, for every F ∈ Rk(A ) and P ∈ R(A ) with F ⊂ L , F ∈ Fk(P) and F �= G
we have x /∈ F + NF (P), which follows from the fact that x ∈ relint G + L⊥, while
relint G ∩ F = ∅ and NF (P) ⊂ L⊥. This means that all terms with F �= G do not
contribute to the right-hand side of (22).

By changing, if necessary, the signs of some yi ’s and the corresponding ci ’s, we
may assume that the face G is given as follows:

G = {z ∈ L : 〈z, y�+1〉 ≤ c�+1, . . . , 〈z, ym〉 ≤ cm} (27)

= {z ∈ R
d : 〈z, y1〉 = 0, . . . , 〈z, y�〉 = 0, 〈z, y�+1〉 ≤ c�+1, . . . , 〈z, ym〉 ≤ cm}.

The relative interior of G is given by the following strict inequalities:

relint G = {z ∈ L : 〈z, y�+1〉 < c�+1, . . . , 〈z, ym〉 < cm}
= {z ∈ R

d : 〈z, y1〉 = 0, . . . , 〈z, y�〉 = 0,

〈z, y�+1〉 < c�+1, . . . , 〈z, ym〉 < cm}.
(28)

Let now P ∈ R(A ) be a closed chamber such that G ∈ Fk(P). Then, there exist
some ε1, . . . , ε� ∈ {−1,+1} such that P is given by

P = Pε1,...,ε�
:= {z ∈ R

d : ε1〈z, y1〉 ≤ 0, . . . , ε�〈z, y�〉 ≤ 0,

〈z, y�+1〉 ≤ c�+1, . . . , 〈z, ym〉 ≤ cm}. (29)

Conversely, if for some ε1, . . . , ε� ∈ {−1,+1} the interior of the set Pε1,...,ε�
defined

above is non-empty, then Pε1,...,ε�
is a chamber in R(A ) and it contains G as a k-
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dimensional face. Hence, we can rewrite (26) as follows:

ϕL(x) =
∑

ε1,...,ε�∈{−1,+1}:
int Pε1,...,ε�

�=∅

1G+NG (Pε1,...,ε�
)(x).

Write x = πL(x) + πL⊥(x) as a sum of its orthogonal projections πL(x) and πL⊥(x)

onto L and L⊥, respectively. Since πL(x) ∈ G ⊂ L and NG(Pε1,...,ε�
) ⊂ L⊥, we

arrive at

ϕL(x) =
∑

ε1,...,ε�∈{−1,+1}:
int Pε1,...,ε�

�=∅

1NG (Pε1,...,ε�
)

(
πL⊥(x)

)
. (30)

Let us now characterize first the tangent and then the normal cone of the face G in
the polyhedral set Pε1,...,ε�

. Take some z0 ∈ relint G. Then, by (28),

〈z0, y1〉 = 0, . . . , 〈z0, y�〉 = 0, 〈z0, y�+1〉 < c�+1, . . . , 〈z0, ym〉 < cm . (31)

By definition, see (4), the tangent cone is given by

TG(Pε1,...,ε�
) = {u ∈ R

d : ∃δ > 0 : z0 + δu ∈ Pε1,...,ε�
}.

It follows from this definition together with (29) and (31) that

TG(Pε1,...,ε�
) = {u ∈ R

d : 〈u, ε1y1〉 ≤ 0, . . . , 〈u, ε�y�〉 ≤ 0}.

Note that the linear span of y1, . . . , y� is L⊥ by (25). The tangent cone TG(Pε1,...,ε�
)

contains the linear space L . Let us now restrict our attention to the space L⊥ and define
the cone

Tε1,...,εl :={u ∈ L⊥ : 〈u, ε1y1〉≤0, . . . , 〈u, ε�y�〉 ≤ 0}=TG(Pε1,...,ε�
) ∩ L⊥ ⊂ L⊥.

(32)

Then, the tangent cone TG(Pε1,...,ε�
) can be represented as the direct orthogonal sum

TG(Pε1,...,ε�
) = L + Tε1,...,εl , Tε1,...,εl ⊂ L⊥.

Taking the polar cone, we obtain the normal cone of the face G in the polyhedral set
Pε1,...,ε�

:

NG(Pε1,...,ε�
) = L⊥ ∩ T ◦

ε1,...,εl
. (33)

That is, NG(Pε1,...,ε�
) is just the polar cone of Tε1,...,εl taken with respect to the ambient

space L⊥. Although we shall not use this fact in the sequel, let us mention that the
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normal cone can be represented as the positive hull

NG(Pε1,...,ε�
) = pos(ε1y1, . . . , ε�y�) = {λ1ε1y1 + . . . + λ�ε�y� : λ1, . . . , λ� ≥ 0}.

In the following, we shall argue that those cones of the form Tε1,...,εl that have non-
empty interior are the chambers of a certain linear hyperplane arrangement A (L) in
L⊥. The polar cones of these chambers are the normal cones NG(Pε1,...,ε�

). It is crucial
that this arrangement is completely determined by y1, . . . , y� and does not depend on
G ⊂ L . Applying Proposition 3.1, we shall prove that ϕL(x) is constant outside some
explicit exceptional Lebesgue null set.

Let us be more precise. First of all, note that the vectors y1, . . . , y� are pairwise
different. Indeed, if two of them would be equal, say y1 = y2, then (in view of
c1 = c2 = 0) the corresponding hyperplanes H1 and H2 would be equal, which is
prohibited by the definition of the hyperplane arrangement. Therefore, the orthogonal
complements of the vectors y1, . . . , y� (taken with respect to the ambient space L⊥)
are also pairwise different and define a linear hyperplane arrangement in L⊥ which
we denote by

A (L) := {L⊥ ∩ y⊥
1 , . . . , L⊥ ∩ y⊥

� }. (34)

Since the linear span of y1, . . . , y� is L⊥ by (25), this arrangement is essential, that
is the intersection of its hyperplanes is {0}. The chambers of the arrangement A (L)

are those of the cones Tε1,...,ε�
, (ε1, . . . , ε�) ∈ {−1,+1}�, defined in (32), that have

non-empty interior in L⊥. Note also that A (L) is uniquely determined by the choice
of L ∈ Lk(A ) and does not depend on G.

Now we claim that for (ε1, . . . , ε�) ∈ {−1,+1}� the relative interior of the cone
Tε1,...,ε�

is non-empty if and only if the interior of the polyhedral set Pε1,...,ε�
is non-

empty. If int Pε1,...,ε�
is non-empty, then it has dimension d, G ∈ Fk(P), and the

tangent cone TG(Pε1,...,ε�
) is strictly larger than the linear space L (because the latter

has dimension k < d). It follows from (32) that relint Tε1,...,ε�
�= ∅. Conversely, if

relint Tε1,...,ε�
�= ∅, then Tε1,...,ε�

has the same dimension as L⊥, while G has the
same dimension as L . It follows that the dimension of Pε1,...,ε�

is d, thus its interior is
non-empty.

From the above it follows that the formula for the function ϕL stated in (30) can be
written as the following sum over the chambers of the arrangement A (L):

ϕL(x) =
∑

C∈R(A (L))

1C◦(πL⊥(x)). (35)

We are now going to apply Proposition 3.1 to the hyperplane arrangement A (L)

in the ambient space L⊥. This is possible provided πL⊥(x) does not belong to the
exceptional set E∗

0 defined in Proposition 3.1. In our setting of the ambient space L⊥,
the exceptional set is given by

E∗
0 =

⋃

M∈L (A (L))\{0}
(M⊥ ∩ L⊥). (36)
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Each linear subspace M ∈ L (A (L))\{0} has the form M = (
⋂

i∈I y⊥
i )∩L⊥ for some

set I ⊂ {1, . . . , �}. Then, the corresponding orthogonal complement M⊥ ∩ L⊥ has
the form lin{yi : i ∈ I }, where lin A denotes the linear subspace spanned by the set A.
Moreover, the condition M �= {0} is equivalent to the condition lin{yi : i ∈ I } �= L⊥.
Since the linear span of the vectors y1, . . . , y� is L⊥ by (25), any linear subspace of the
form lin{yi : i ∈ I } �= L⊥ is contained in a linear subspace of the form lin{yi : i ∈ I ′},
for some I ′ ⊂ {1, . . . , �} satisfying the following condition:

dim lin{yi : i ∈ I ′} = #I ′ = dim L⊥ − 1 = d − k − 1. (37)

Therefore, we have

E∗
0 =

⋃

I ′⊂{1,...,�}:
(37) holds

lin{yi : i ∈ I ′}.

Given I ′ ⊂ {1, . . . , �} such that (37) holds, define the linear subspace

Lk+1 := {z ∈ R
d : 〈z, yi 〉 = 0 for all i ∈ I ′} ⊂ R

d . (38)

Then, Lk+1 is non-empty since L ⊂ Lk+1 and, moreover, the dimension of Lk+1
equals k + 1, that is Lk+1 ∈ Lk+1(A ) (recall that the case k = d has been excluded
from the very beginning). Conversely, every Lk+1 ∈ Lk+1(A ) containing L can be
represented in the form (38) with some I ′ ⊂ {1, . . . , �} satisfying (37). Taking into
account that lin{yi : i ∈ I ′} = L⊥

k+1, it follows that

E∗
0 =

⋃

Lk+1∈Lk+1(A ):
Lk+1⊃L

L⊥
k+1 ⊂ L⊥. (39)

Proposition 3.1 applies to all x ∈ R
d such that πL⊥(x) /∈ E∗

0 . This is equivalent to the
condition that x is outside the set

⋃

Lk+1∈Lk+1(A ):
Lk+1⊃L

(L⊥
k+1 + L),

which coincides with the set E ′′(L) introduced in (24).
Applying Proposition 3.1 and Lemma 3.2 with the ambient space L⊥ to the right-

hand side of (35), we arrive at the following result.

Proposition 3.5 Let A be an affine hyperplane arrangement in R
d . Fix some k ∈

{0, . . . , d − 1} and L ∈ Lk(A ). Then, the function ϕL defined in (22) satisfies

ϕL(x) = a0(L), for every x ∈ R
d\E(L),
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where the exceptional set E(L) is given by (23) and (24), and a0(L) is (−1)d−k times
the zeroth coefficient of the characteristic polynomial of the linear arrangement A (L)

in L⊥ defined by (34). Also, for all x ∈ R
d we have ϕL(x) ≥ a0(L).

Step 4. Now we are going to show that ϕk(x) = ak for all x ∈ R
d outside some

exceptional set. Let us first write down a more explicit expression for a0(L) appearing
in Proposition 3.5. Recalling the definition of the characteristic polynomial, see (2),
we can write

χA (L)(t) =
∑

J⊂{1,...,�}
(−1)#J tdim L⊥−rank{y j : j∈J },

where rank{y j : j ∈ J } denotes the dimension of the linear span of a system of vectors
{y j : j ∈ J }. Taking the zeroth coefficient of this polynomial and multiplying it with
(−1)d−k , we can write Proposition 3.5 as follows:

ϕL(x) = a0(L) = (−1)d−k
∑

J⊂{1,...,�}:
lin{y j : j∈J }=L⊥

(−1)#J , for all x ∈ R
d\E(L).

Recalling the representation of L stated in (25), we see that a set of vectors {y j : j ∈ J }
with J ⊂ {1, . . . , �} contributes to the above sum if and only if L = ⋂

j∈J Hj .
Moreover, a set J ⊂ {1, . . . , m}which is not completely contained in {1, . . . , �} cannot
satisfy L = ⋂

j∈J Hj since Hj ∩ L is a strict subset of L for all j ∈ {� + 1, . . . , m};
see the discussion after (25). Therefore, we can rewrite the above sum as follows:

ϕL(x) = (−1)d−k
∑

J⊂{1,...,m}:
L=⋂

j∈J Hj

(−1)#J = (−1)d−k
∑

B⊂A :⋂
H∈B H=L

(−1)#B,

for all x ∈ R
d\E(L). Taking the sum over all k-dimensional affine subspaces L ∈

Lk(A ) generated by the arrangement A and recalling (21), we arrive at

ϕk(x) =
∑

L∈Lk (A )

ϕL(x) = (−1)d−k
∑

B⊂A :
dim(

⋂
H∈B H)=k

(−1)#B, (40)

for all x ∈ R
d such that

x /∈
⋃

L∈Lk (A )

E(L) =
⋃

L∈Lk (A )

(E ′(L) ∪ E ′′(L)) (41)
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with

E ′(L) =
⋃

Lk−1∈Lk−1(A ):
Lk−1⊂L

(Lk−1 + L⊥), E ′′(L) =
⋃

Lk+1∈Lk+1(A ):
Lk+1⊃L

(L⊥
k+1 + L).

(42)

By the definition of the characteristic polynomialχA (t), see (2) and (3), the right-hand
side of (40) is nothing but ak . So, ϕk(x) = ak for all x ∈ R

d satisfying (41). If (41)
is not satisfied, we can use the inequality ϕL(x) ≥ a0(L) to prove that ϕk(x) ≥ ak .

Step 5. To complete the proof of Theorem 1.6, it remains to check the following
equality of the exceptional sets:

⋃

L∈Lk (A )

(E ′(L) ∪ E ′′(L)) =
⋃

P∈R(A )

⋃

G∈Fk (P)

∂(G + NG(P)), (43)

for all k ∈ {0, . . . , d − 1}. We need some preparatory lemmas.

Lemma 3.6 Let A = {H1, . . . , Hm} be a linear hyperplane arrangement in R
d . Sup-

pose that A is of full rank meaning that
⋂m

i=1 Hi = {0}. Then,
⋃

C∈R(A )(C
◦) = R

d .

Proof By Lemma 3.2 it suffices to show that a0 > 0. By Proposition 3.1, the function
ϕ0(x) = ∑

C∈R(A ) 1C◦(x) is Lebesgue-a.e. equal to a0, hence a0 ≥ 0. Since the
arrangement is of full rank, the lineality space of each chamber is trivial, that is
C ∩ (−C) = {0}. This implies that the polar cone C◦ has non-empty interior, hence
the the function ϕ0(x) cannot be a.e. 0 implying that a0 �= 0. ��
Lemma 3.7 Let C ⊂ R

d be a polyhedral cone with a trivial lineality space, that
is C ∩ (−C) = {0}. Let v ∈ R

d\{0} be a vector. Then, at least one of the cones
pos(C ∪ {+v}) or pos(C ∪ {−v}) has a trivial lineality space.

Proof It follows from C ∩ (−C) = {0} that there exists ε ∈ {−1,+1} such that
εv /∈ −C . We claim that pos(C ∪{εv}) has a trivial lineality space. To prove this, take
some w such that both +w and −w are contained in pos(C ∪ {εv}). We then have
w = z1 + λ1εv = −z2 − λ2εv for some z1, z2 ∈ C and λ1, λ2 ≥ 0. If λ1 = λ2 = 0,
then z1 = −z2 implying that z1 = z2 = 0 and thus w = 0. So, let λ1 + λ2 > 0. Then,
we have εv = −(z1 + z2)/(λ1 + λ2) ∈ −C, a contradiction. ��
Lemma 3.8 LetA = {H1, . . . , Hm} be a linear hyperplane arrangement in R

d . Then,

⋃

L∈L (A )\{0}
L⊥ =

⋃

C∈R(A )

∂(C◦). (44)

Proof If A is not essential meaning that L∗ := ⋂m
i=1 Hi �= {0}, then the left-hand

side of (44) equals L⊥∗ . On the other hand, the cones C◦ are contained in L⊥∗ , satisfy
∂(C◦) = C◦, and cover the space L⊥∗ by Lemma 3.6 applied to the ambient space L⊥∗ ,
thus proving that (44) holds.
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In the following let A be of full rank meaning that
⋂m

i=1 Hi = {0}. Let
H1 = y⊥

1 , . . . , Hm = y⊥
m for some vectors y1, . . . , ym ∈ R

d\{0}. The linear span
of y1, . . . , ym is R

d since the arrangement has full rank. Any subspace L ∈ L (A )

has the form L = ⋂
i∈I Hi = lin{yi : i ∈ I }⊥ for some set I ⊂ {1, . . . , m}. The

corresponding orthogonal complement is L⊥ = lin{yi : i ∈ I }. It follows that
⋃

L∈L (A )\{0}
L⊥ =

⋃

I⊂{1,...,m}:
lin{yi :i∈I }�=R

d

lin{yi : i ∈ I }.

To complete the proof, we need to show that

⋃

I⊂{1,...,m}:
lin{yi :i∈I }�=R

d

lin{yi : i ∈ I } =
⋃

C∈R(A )

∂(C◦). (45)

To prove the inclusion ⊂, let v ∈ lin{yi : i ∈ I } �= R
d for some I ⊂ {1, . . . , m}.

By first extending I and then excluding the superfluous linearly dependent elements,
we may assume that M := lin{yi : i ∈ I } has dimension d − 1 and that the vectors
{yi : i ∈ I } are linearly independent. We can find εi ∈ {−1,+1}, for all i ∈ I , such
that v ∈ pos{εi yi : i ∈ I }. Let M+ and M− be the closed half-spaces in which the
hyperplane M dissects R

d . Let J1, respectively J2, be the set of all j ∈ {1, . . . , m}\I
such that y j ∈ M , respectively y j ∈ R

d\M . The cone pos{εi yi : i ∈ I } ⊂ M has a
trivial lineality space because {εi yi : i ∈ I } is a basis of M . By inductively applying
Lemma 3.7 in the ambient space M , we can find ε j ∈ {−1,+1}, for all j ∈ J1,
such that the cone D := pos{εi yi : i ∈ I ∪ J1} ⊂ M has a trivial lineality space.
Furthermore, for every j ∈ J2 we can find ε j ∈ {−1,+1} such that ε j y j ∈ int M+.
With the signs ε1, . . . , εm ∈ {−1,+1} constructed as above, we consider the cone

C := {z ∈ R
d : 〈z, ε1y1〉 ≤ 0, . . . , 〈z, εm ym〉 ≤ 0}. (46)

The polar cone is the positive hull

C◦ = pos{ε1y1, . . . , εm ym}. (47)

By construction, C◦ ⊂ M+ and C◦ ∩ M = D. Also, the cone C◦ has a trivial lineality
space because ±w ∈ C◦ would imply ±w ∈ C◦ ∩ M = D, which implies w = 0
because D has a trivial lineality space by construction. By polarity, C has non-empty
interior. It follows that C is a chamber of the arrangement R(A ). By construction,
C◦ ⊂ M+ and v ∈ C◦ ∩ M , hence v ∈ ∂(C◦), thus completing the proof of the
inclusion ⊂ in (45).

To prove the inclusion ⊃ in (45), take any C ∈ R(A ) and any v ∈ ∂(C◦). Then, C
andC◦ must be of the same form as in (46) and (47).Moreover, sinceC has non-empty
interior, the lineality space of the cone C◦ is trivial. If v ∈ ∂(C◦), then v ∈ F for
some face F ∈ F (C◦) of dimension d − 1. Let I be the set of all i ∈ {1, . . . , m}
with εi yi ∈ F . Then, we have lin{εi yi : i ∈ I } = lin F , which contains v and does
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not coincide with R
d . It follows that v belongs to the left-hand side of (45), thus

completing the proof. ��

Now we are in position to prove (43). We have

⋃

P∈R(A )

⋃

G∈Fk (P)

∂(G + NG(P))

=
⋃

L∈Lk (A )

⋃

G∈Rk (A ):
G⊂L

⋃

P∈R(A ):
G∈Fk (P)

((∂G + NG(P)) ∪ (G + ∂ NG(P)))

=
⋃

L∈Lk (A )

(H ′(L) ∪ H ′′(L))

with

H ′(L) =
⋃

G∈Rk (A ):
G⊂L

(
∂G +

⋃

P∈R(A ):
G∈Fk (P)

NG(P)
)
,

H ′′(L) =
⋃

G∈Rk (A ):
G⊂L

(
G +

⋃

P∈R(A ):
G∈Fk (P)

∂ NG(P)
)
.

We claim that H ′(L) = E ′(L). To prove this it suffices to show that for every
G ∈ Rk(A ) such that G ⊂ L we have

⋃
P∈R(A ):G∈Fk (P) NG(P) = L⊥. In (33) we

characterized the normal cones NG(P) as the polar cones of the chambers of some
essential (full rank) linear hyperplane arrangement A (L) in L⊥. These polar cones
cover L⊥ by Lemma 3.6, thus proving the claim.

It remains to show that H ′′(L) = E ′′(L). To this end, it suffices to prove that for
every G ∈ Rk(A ) such that G ⊂ L we have

⋃

P∈R(A ):
G∈Fk (P)

∂ NG(P) =
⋃

Lk+1∈Lk+1(A ):
Lk+1⊃L

L⊥
k+1. (48)

Again, recall from (33) that the normal cones NG(P) are the polar cones of the
chambers of the linear full-rank hyperplane arrangement A (L) = {y⊥

1 ∩ L⊥, . . . ,

y⊥
� ∩ L⊥} in L⊥. Applying Lemma 3.8 to this arrangement, we obtain

⋃

P∈R(A ):
G∈Fk (P)

∂ NG(P) =
⋃

M∈L (A (L))\{0}
(M⊥ ∩ L⊥).

The right-hand side coincides with the set E∗
0 defined in (36). Thus, the claim (48)

follows from the identity already established in (39). �
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