
Discrete & Computational Geometry (2024) 71:177–213
https://doi.org/10.1007/s00454-023-00562-5

The Complexity of the Hausdorff Distance

Paul Jungeblut1 · Linda Kleist2 · Tillmann Miltzow3

Received: 24 August 2022 / Revised: 2 June 2023 / Accepted: 8 June 2023 /
Published online: 27 September 2023
© The Author(s) 2023

Abstract
We investigate the computational complexity of computing the Hausdorff distance.
Specifically, we show that the decision problem of whether the Hausdorff distance of
two semi-algebraic sets is bounded by a given threshold is complete for the complexity
class ∀∃<R. This implies that the problem is NP-, co-NP-, ∃R-, and ∀R-hard.

Keywords Hausdorff distance · Semi-algebraic set · Existential theory of the reals ·
Universal existential theory of the reals · Complexity theory

1 Introduction

The question of “how similar are two given objects” occurs in numerous settings. For
three concrete examples, consider Fig. 1.

A typical tool to quantify their similarity is the Hausdorff distance. Two sets have
a small Hausdorff distance if every point of one set is close to some point of the
other set and vice versa. It is well known that the Hausdorff distance appears in many
branches of science. To illustrate the range of use cases, we consider two examples,
for illustrations see Fig. 2 . In mathematics, the Hausdorff distance provides a met-
ric on sets and henceforth also a topology. This topology can be used to discuss
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Fig. 1 How similar are these sets?

(a) Continuous deformation of a cup into a 
doughnut [52]

(b) Quadrangulation of a smooth surface
used for rendering [50]

Fig. 2 The Hausdorff distance in different branches of science

continuous transformations of one set to another [18]. In computer vision and geo-
graphical information science, the Hausdorff distance is used to measure the similarity
between spacial objects [36, 43], for example the quality of quadrangulations of com-
plex 3D models [50]. In this paper, we study the computational complexity of the
Hausdorff distance from a theoretical perspective.

1.1 Problem Definition

The directed Hausdorff distance between two non-empty sets A, B ⊆ R
n is defined

as

�dH(A, B) := sup
a∈A

inf
b∈B

‖a − b‖.

The directed Hausdorff distance between A and B can be interpreted as the smallest
value t � 0 such that the (closed) t-neighborhood of B contains A. Hence, it nicely
captures the intuition of howmuch B has to be expanded uniformly in all directions to
contain A. Note that this definition is not symmetric, so �dH(A, B) and �dH(B, A) may
differ. For an example, consider Fig. 1(a); while A1 ⊆ B1 and thus �dH(A1, B1) = 0,
it holds that �dH(B1, A1) > 0. In contrast, the (undirected) Hausdorff distance is
symmetric and defined as

dH(A, B) := max { �dH(A, B), �dH(B, A)}.

In this paper, we investigate the computational complexity of deciding whether the
Hausdorff distance of two sets is at most a given threshold.
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(a) Two sets of white
and black points in 2

(b) Two sets of blue
and red disks in 2

(c) Two surfaces with different
meshes in 3 , image from [50]

Fig. 3 The Hausdorff distance in simple and more complicated settings

1.2 Semi-Algebraic Sets

The algorithmic complexity of computing the Hausdorff distance clearly depends
on the type of the underlying sets: If both sets consist of finitely many points, their
Hausdorff distance can be easily computed in polynomial time by checking all pairs
of points. However in practice, one often considers infinite sets such as collections of
disks in the plane, cubic splines or surfaces in three (or more) dimensions, see also
Fig. 3.

In this paper we consider semi-algebraic sets. Formally, a semi-algebraic set is the
finite union of basic semi-algebraic sets. A basic semi-algebraic set S is specified by
two families of polynomials P and Q such that

S =
⎧
⎨

⎩
x ∈ R

n
∣
∣
∣

∧

P∈P
P(x) � 0 ∧

∧

Q∈Q
Q(x) < 0

⎫
⎬

⎭
.

Semi-algebraic sets cover clearly the vast majority of practical cases. Simultaneously,
even in supposedly simple cases, i.e., when considering circles, ellipses or cubic
splines, one has to use polynomial equations to describe the sets.

In real algebraic geometry, one usually chooses P,Q ⊆ R[X1, . . . , Xn], i.e., the
polynomials have real valued coefficients. We are interested in determining the com-
putational complexity of computing the Hausdorff distance in the standard bit-model
of computation (you may think of a Turing machine or word RAM machine). Here,
the polynomials describing the two sets A and B are part of the input and given with
finite precision, usually in some binary encoding. Therefore, we cannot handle arbi-
trary real numbers as coefficients for the polynomials inP andQ as this would require
unbounded precision. Throughout this paper, we always assume that the coefficients
are integers (or equivalently rationals) and we describe their encoding in Sect. 2.1.
Thus, we actually consider the problem of computing the Hausdorff distance between
two semi-algebraic subsets of R

n
alg, where Ralg is the real closed field of real algebraic

numbers.
Having said that, assume that we are interested in dH(A, B) for two sets

A := {x ∈ R | √
2 · x2 = 1} and B := {x ∈ R | x = 1}.
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The coefficient
√
2 in the definition of A is obviously neither an integer nor a rational

number and thus does not fulfill above restriction. However, it is possible to define
two new sets

A′ := {(x, u) ∈ R
2 | u > 0 ∧ u2 = 2 ∧ u · x2 = 1} and

B ′ := {(x, u) ∈ R
2 | u > 0 ∧ u2 = 2 ∧ x = 1}

that circumnavigate this problem by adding a new variable u and additional con-
straints enforcing that u = √

2, while having integer coefficients only. It further holds
that dH(A, B) = dH(A′, B ′). Thus, modeling algebraic coefficients is indeed possible
with a small overhead in the description complexity of the considered sets.

1.3 Concrete Example

In order to demonstrate how difficult it is in practice to compute the Hausdorff distance
even between two curves inR

2, let us consider the following example (given by Bernd
Sturmfels at a workshop in Saarbrücken in 2019). The two polynomials

f (x, y) := x4 + y4 + 12x3 + 2y3 − 3xy + 11 and

g(x, y) := 7x4 + 8y4 − 1

define sets A = {(x, y) ∈ R
2 | f (x, y) = 0} and B = {(x, y) ∈ R

2 | g(x, y) = 0}.
For an illustration of A and B, consider the blue and green curve in Fig. 4, respectively.

It can be argued using convexity and continuity that the Hausdorff distance is
attained at points a ∈ A and b ∈ B such that the segment ab is orthogonal to the
tangents at a and b. This yields a set of polynomial equations in four variables.
The system has 240 complex solutions, eight of which are real. These 240 solu-
tions can be computed using computer algebra systems based on Gröbner bases. For
some real solutions (a, b), the segment ab crosses A and B, for example a1b1 as in
Fig. 4. These solutions can be discarded. Among the remaining solutions the points
a2 ≈ (−11.48362,−6.1760) and b2 ≈ (−0.56460,−0.43583) realize the Hausdorff
distance of approximately 12.33591. This approach does not easily generalize to gen-
eral semi-algebraic sets. In the next paragraph, we present a slower, but more general
method.

1.4 General Decision Algorithm

Consider a situation where we are given two semi-algebraic sets A and B as well as a
threshold t ∈ N. The statement �dH(A, B) � t can be encoded into a logical sentence
of the form

∀ ε > 0, a ∈ A . ∃ b ∈ B : ‖a − b‖2 � t2 + ε, (1)

where ε is needed to also consider points in the closure of B. (Instead of using an ε

we would like to write b ∈ B above to denote that b is from the closure B of B.
However, this is syntactically not allowed in these formulas). We can decide the truth
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Fig. 4 The Hausdorff distance between the compact semi-algebraic sets (in blue and green) is attained at
points (a2, b2) such that the segment a2b2 is orthogonal to the tangents at a2 and b2. While the segment
a1b1 is longer than a2b2, the pair (a1, b1) does not realize the Hausdorff distance because the segment
a1b1 crosses both A and B

of this sentence by employing sophisticated algorithms from real algebraic geometry
that can deal with two blocks of quantifiers [11, Chap. 14]. These algorithms are so
slow that they are impractical, even for small instances like the above example. Our
main result roughly states that in general there is little hope for an improvement. To
state this formally, we continue by defining suitable complexity classes.

1.5 Algorithmic Complexity

Let ϕ be a quantifier-free formula in the first-order theory of the reals with free
variables X = (X1, . . . , Xn) and Y = (Y1, . . . ,Ym). See Sect. 2.1 for a formal
definition of the syntax and semantics. For now, think of a set of polynomial equations
and inequalities, called atoms, with integer coefficients in the variables X and Y .
These atoms are combined into a formula ϕ using the logical connectives ∧, ∨, and ¬
(also, parenthesis are allowed). The Universal Existential Theory of the Reals
(UETR) asks to decide whether a sentence of the form

∀ X ∈ R
n . ∃ Y ∈ R

m : ϕ(X ,Y )
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is true. We define the following restriction of UETR: If ϕ does not contain negations
(no ¬) and all atoms are strict inequalities (only <, >, or 
=), then we denote the
corresponding decision problem by Strict-UETR. Of course, Strict-UETR is a
special case of UETR, so it is at most as difficult.

We capture this by defining the complexity classes ∀∃R and ∀∃<R to contain
all decision problems that polynomial-time many-one reduce to UETR and Strict-
UETR, respectively. Let us emphasize again that we work in the bit-model of
computation; all inputs have finite precision and their overall length determines the
size of the problem instance. To the best of our knowledge, ∀∃R was first introduced
by Bürgisser and Cucker [20, Sect. 9] under the name BP0(∀∃) (in the constant-
free Boolean part of the Blum–Shub–Smale model [17]). The notation ∀∃R arised
later in [27] extending the notation from Schaefer and Števankovič [46]. The class
co-∀∃<R = ∃∀�R was first studied by D’Costa et al. [25].

Concerning the relation of these complexity classes, ∀∃<R is contained in ∀∃R

because Strict-UETR is a special case of UETR. It is an intriguing open problem
if those two classes coincide or are different. See Sect. 8 for a short discussion and
a reference to a recent but still unpublished preprint claiming that ∀∃R = ∀∃<R).
We understand the complexity class ∀∃R as a natural extension of the complexity
class ∃R, which is defined similarly to ∀∃R, but contains only existentially and no
universally quantified variables. The class ∃R has gained increasing attention in recent
years, see Sect. 1.7.2.

A word on notation. Below we adhere to the following convention: We use upper case
letters like X ,Y ∈ R

n for real variables and lower case letters like x, y ∈ R
n for real

numbers. Thus, we write ϕ(X) to emphasize that ϕ is a formula with free variables X .
If clear from the context, we often omit the free variables in ϕ though. On the other
hand, ϕ(x) denotes a sentence in which concrete real numbers x were plugged in for
the free variables X . In particular ϕ(x) has no free variables and is therefore either
true or false.

1.6 Problem and Results

We now have all ingredients to state our problem and main results. Let ϕA(X) and
ϕB(X) be quantifier-free formulas with free variables X = (X1, . . . , Xn). Further, let
A := {x ∈ R

n | ϕA(x)}, B := {x ∈ R
n | ϕB(x)}, and let t ∈ N be a natural number.

The Hausdorff problem asks whether dH(A, B) � t . Here the dimension n of the
ambient space of A and B is part of the input. We note that there is a polynomial-
time algorithm for every fixed n, see the related work in Sect. 1.7. Our main result
determines the algorithmic complexity.

Theorem 1.1 The Hausdorff problem is ∀∃<R-complete.

While we discuss the input encoding of ϕA and ϕB in Sect. 2.1, let us briefly note
here that t is encoded in binary. A generalization to t ∈ Q is straightforward, by
representing t as a reduced fraction and encoding the numerator and denominator in
binary. How to generalize further to t ∈ R is not clear as, again, the input must be a
bitstring of finite length.
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Prior to our result, it was not even knownwhether computing theHausdorff distance
is NP-hard. As ∀∃<R contains the complexity classes NP, co-NP, ∃R, and ∀R, our
result implies hardness for these classes. Theorem 1.1 answers an open question posed
by Dobbins et al. [27].

One may wonder whether it is crucial for our results that the Hausdorff problem
asks if the distance is � t rather than < t . We remark that all our proofs work with
tiny modifications also for the case of a strict inequality. Furthermore, our results also
hold for the directed Hausdorff distance. Note that one can compute the undirected
Hausdorff distance trivially, by computing twice the directed Hausdorff distance. Thus
intuitively, the directed Hausdorff distance is computationally at least as hard. Yet, this
is not a many-one reduction, as we need to compute the directed Hausdorff distance
twice.

In the proof of ∀∃<R-hardness for Theorem 1.1, we create instances with some
additional properties. First, our reduction is a gap reduction and the Hausdorff distance
of the obtained instance is either below the threshold t or at least t · 22�(n), where n
denotes the number of variables ofϕA andϕB . Thus, our result also yields the following
inapproximability result:

Corollary 1.2 Let A and B be two semi-algebraic sets in R
n and f (n) = 22o(n). There

is no polynomial-time f (n)-approximation algorithm to compute dH(A, B), unless
P = ∀∃<R.

Second, our reduction can be modified slightly to obtain a Hausdorff instance
in which A and B are described by syntactically simple formulas: First, all atoms
are polynomial equations of bounded degree. Second, there are no disjunctions and
negations. Of course, this comes at an expense, namely an increased number of vari-
ables. The following corollary states that this syntactic simplicity does not make the
Hausdorff problem simpler, instead it remains equally difficult:

Corollary 1.3 TheHausdorff problem remains∀∃<R-complete, even if the two sets A
and B are both described either by

(i) a conjunction of quadratic polynomial equations, or
(ii) a single polynomial equation of degree at most four.

Our last result concerns the complexity class∀∃<R itself. As shown inTheorem1.1,
the complexity class ∀∃<R exactly captures the complexity of the Hausdorff prob-
lem. It is defined via the decision problem Strict-UETR which adds the syntactical
restriction toUETR of only allowing strict inequalities as atoms. There are other com-
plexity classes between ∃R/∀R and ∀∃R, one of them is described by Bürgisser and
Cucker [20]. They define new quantifiers that make topological restrictions to UETR.
Among others they introduce an exotic quantifier ∀∗. Intuitively, ∀∗X ∈ R

n : ϕ(X)

does not require that ϕ(x) holds for all x ∈ R
n but only for all x in a dense subset

of R
n . Formally, ∀∗X ∈ R

n : ϕ(X) is defined as

∀ X ∈ R
n, ε > 0 . ∃ X̃ ∈ R

n : ‖X − X̃‖2 < ε2 ∧ ϕ(X̃).
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For more details, we refer to Sect. 7. Let Exotic-UETR denote the decision problem
whether a sentence of the form

∀∗X ∈ R
n . ∃ Y ∈ R

m : ϕ(X ,Y )

is true, where ϕ is quantifier-free. Then the complexity class ∀∗∃R contains all prob-
lems that many-one reduce to Exotic-UETR. Based on our techniques and developed
tools, we can show that the two complexity classes ∀∗∃R and ∀∃<R are the same.

Theorem 1.4 Exotic-UETR is ∀∃<R-complete. Thus ∀∗∃R = ∀∃<R.

1.7 RelatedWork

This subsection reviews previous work concerning two directions. First, we discuss
the complexity of computing the Hausdorff distance for special sets. Afterwards, we
investigate previous work on the complexity class ∀∃R.

1.7.1 Computing the Hausdorff Distance

The notion of the Hausdorff distance was introduced by Felix Hausdorff in 1914 [31].
Many early works focused on the Hausdorff distance for finite point sets. For a set
of a points and a set of b points in any fixed dimension, the Hausdorff distance can
be computed by checking all pairs, i.e., in time O(ab). In the plane, the runtime can
be improved to O((a + b) log(a + b)) by using Voronoi diagrams [7]. In fact, this
method can be extended to sets consisting of pairwise non-crossing line segments
in the plane, e.g., simple polygons and polygonal chains fulfill this property. If the
polygons are additionally convex, their Hausdorff distance can even be computed in
linear time [10].

More generally, the Hausdorff distance can be computed in polynomial time when-
ever the two sets can be described by a simplicial complex of fixed dimension. Alt et al.
[8, Theorem 3.3] show how to compute the directed Hausdorff distance between two
sets in R

n consisting of a and b k-dimensional simplices in time O(abk+2) (assum-
ing n is constant). Using a Las Vegas algorithm for computing the vertices of the lower
envelope, similar ideas yield an approach with randomized expected time in O(abk+ε)

for k > 1 and every ε > 0 [8, Theorem 3.4]. They additionally present algorithms
with better randomized expected running times for sets of triangles in R

3 and point
sets in R

n .
Given two semi-algebraic sets A, B ⊆ R

n and a threshold value t ∈ N, the Haus-
dorff decision problem can be encoded as a UETR sentence � as already done for
the directed Hausdorff distance in sentence (1) above. Such a sentence can be decided
in time (sd)O(n2) using an algorithm to decide general sentences from the first order
theory of the reals [11, Theorem 14.14]. (Here d denotes the maximum degree of any
polynomial of � and s denotes the number of atoms. Further, use ω = 2 in the state-
ment of [11, Theorem 14.14] as we have two blocks of quantifiers for the Hausdorff
problem.)

123



Discrete & Computational Geometry (2024) 71:177–213 185

In other contexts the two sets are allowed to undergo certain transformations (e.g.
translations) such that the Hausdorff distance is minimized [19]. See Alt [9] for a
survey.

1.7.2 The (Universal) Existential Theory of the Reals

As mentioned above, the complexity class ∀∃R was first studied by Bürgisser and
Cucker who prove complexity results for many decision problems involving cir-
cuits [20]. Dobbins et al. [27, 28] consider ∀∃R in the context of area-universality
of graphs. A plane graph is area-universal if for every assignment of non-negative
reals to the inner faces of a plane graph, there exists a straight-line drawing such that
the area of each inner face equals the assigned number. Dobbins et al. conjecture that
the decision problem whether a given plane graph is area-universal is complete for
∀∃R. They support this conjecture by proving hardness for several related notions [27].
Additionally, for future research directions, they present a number of candidates for
potentially ∀∃R-hard problems. Among them, they asked whether the Hausdorff
problem is ∀∃R-complete. The other candidates exhibit intrinsic connections to the
notions of imprecision, robustness and extendability.

We point out that the computational complexity may also become easier when
asking universal-type questions. For example, it is ∃R-complete to decide whether
a graph is a unit distance graph, i.e., whether it has a straight-line drawing in the
plane in which all edges have the same length [45]. On the other hand, the decision
problem whether for all reasonable assignments of weights to the edges, a graph has
a straight-line drawing in which the edge lengths correspond to the assigned weight
lies in P [13]. Similarly, it is ∃R-complete to decide for a given planar graph for which
some vertices are fixed to the boundary of a polygon (with holes) whether there exists
a planar straight-line drawing inside the polygon [32]. The case of simple polygons is
open. In contrast, there is a polynomial time algorithm to test if a given graph G and a
contained cycle C admit for every simple polygon P , representing C , a straight-line
drawing of G inside P [38].

The complement class ∃∀R was recently investigated by D’Costa et al. [25]. They
show that it is ∃∀�R-complete (where ∃∀�R = co-∀∃<R) to decide for a given
rational matrix A and a compact semi-algebraic set K ⊆ R

n , whether there exists
a starting point x ∈ K such that xn := Anx is contained in K for all n ∈ N. This
and similar problems are generally referred to as escape problems. Another subclass
of ∃∀R, called ∃D ·∀R (here the ∃D restricts the existentially quantified variables
to Boolean instead of real values), was introduced by Blanc and Hansen [16]. They
show that computing evolutionary stable strategies in certain multi-player games is
∃D ·∀R-complete.

The complexity class ∃R has gained a lot of interest in recent years, specifically in
the computational geometry community. It gains its significance because numerous
well-studied problems from diverse areas of theoretical computer science and mathe-
matics have been shown to be complete for this class. Famous examples from discrete
geometry are the recognition of geometric structures, such as unit disk graphs [34],
segment intersection graphs [33], visibility graphs [23], stretchability of pseudoline
arrangements [37, 49], and order type realizability [33]. Other ∃R-complete problems
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are related to graph drawing [32], Nash equilibria [15, 29], geometric packing [6],
the art gallery problem [3], convex covers [2], non-negative matrix factorization [48],
polytopes [26, 42], geometric embeddings of simplicial complexes [5], geometric
linkage constructions [1], training neural networks [4, 14], and continuous constraint
satisfaction problems [35]. We refer the reader to the lecture notes by Matoušek [33]
and surveys bySchaefer [44] andCardinal [22] formore information on the complexity
class ∃R.

1.8 Techniques and Proof Overview

In this subsection, we present the general idea behind the hardness reduction for the
Hausdorff problem. The goal is to convey the intuition and to motivate the technical
intermediate steps needed. The sketched reduction is oversimplified and thus neither
in polynomial time nor fully correct. We point out both of these issues and give first
ideas on how to solve them.

Let � := ∀X ∈ R
n . ∃ Y ∈ R

m : ϕ(X ,Y ) be a Strict-UETR instance. We define
two sets

A := {x ∈ R
n | ∃ Y ∈ R

m : ϕ(x,Y )} and B := R
n

and ask whether dH(A, B) = 0. If � is true, then A = R
n and we have dH(A, B) = 0

because both sets are equal. Otherwise, if � is false, then there exists some x ∈ R
n

for which there is no y ∈ R
m satisfying ϕ(x, y) and we conclude that A � R

n .
In general, we call the set of all x ∈ R

n for which there is no y ∈ R
m satisfying

ϕ(x, y) the counterexamples ⊥(�) of�. One might hope that⊥(�) 
= ∅ is enough to
obtain dH(A, B) > 0. However, this is not the case. To this end, consider the formula
� := ∀X ∈ R . ∃ Y ∈ R : XY > 1, which is false. The set ⊥(�) = {0} contains
only a single element, so we have A = R\{0} and B = R. However, their Hausdorff
distance also evaluates to dH(A, B) = 0. We conclude that above reduction does not
(yet) work, because it may also map no-instances of Strict-UETR to yes-instances
of Hausdorff.

We solve this issue by a preprocessing step that expands the set of counterexamples.
Specifically, Theorem 4.2 establishes a polynomial-time algorithm to transform a
Strict-UETR instance � into an equivalent formula �′ such that the set of coun-
terexamples is either empty (if�′ is true) or contains an open ball of positive radius (if
�′ is false). The radius of the ball serves as a lower bound on the Hausdorff distance
dH(A, B). Thus a reduction starting with �′ is correct. A key tool for this step is that
we can restrict the variable ranges from R

n and R
m to small and compact intervals.

Figure 5 presents an example on how such a range restriction may enlarge the set of
counterexamples from a single point to an interval.

We emphasize that it is not knownwhether such a restriction of the variable ranges is
possible for generalUETR formulas. However, we exploit the fact that Strict-UETR
formulas have a special property that we call ∀-strict; a negation-free and implication-
free formula is ∀-strict if each atom involving universally quantified variables is a
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x

y

(a) Each point (x, y) 2 in the green
open region satisfies xy > 1. Only for
x = 0 (in red) no suitable y exists

x

y

(b) If we restrict the range of Y to
[−1, 1], then for no x [−1, 1] (in red)
a suitable y with xy > 1 exists

Fig. 5 Expanding the set of counterexamples of ∀X ∈ R . ∃ Y ∈ R : XY > 1

strict inequality. Being ∀-strict is a key property of many of the formulas considered
throughout the paper and our proofs crucially rely on it.

A further challenge is given by the definition of the sets A and B. While the descrip-
tion complexity of B depends only on n, the definition of A contains an existential
quantifier. This is troublesome because our definition of the Hausdorff problem
requires quantifier-free formulas as its input, and in general there is no equivalent
quantifier-free formula of polynomial length which describes the set A [24]. We over-
come this issue by taking the existentially quantified variables as additional dimensions
into account. We scale them to a range much smaller than the range of the univer-
sally quantified variables, so that their influence on the Hausdorff distance becomes
negligible. Therefore instead of the above, we work (in Sect. 5) with sets similar to

A := {(x, y) | x ∈ [−C,C]n, y ∈ [−1, 1]m, ϕ(x, y)} and

B := [−C,C]n × {0}m

for some value C that is doubly exponentially large in |�|. This definition of A and B
introduces the new issue that even if� is true, the Hausdorff distance dH(A, B) might
be strictly positive. However, we manage to identify a threshold t ∈ N, such that
dH(A, B) � t if and only if � is true. This completes the proof of ∀∃<R-hardness. In
Sect. 7.1 we also establish ∀∃<R-hardness for t = 0.

1.9 Organization

The remainder of the paper is organized as follows. We introduce preliminaries con-
cerning the first-order theory of the reals in Sect. 2 and essential tools from real
algebraic geometry in Sect. 3. Section 4 presents the result for expanding the set of
counterexamples for ∀-strict formulas. Finally, Sect. 5 contains the ∀∃<R-hardness
proof, followed by the ∀∃<R-membership in Sect. 6. In Sect. 7, we apply our findings
to so-called exotic quantifiers and relate them to ∀∃<R. We conclude with a list of
interesting open problems in Sect. 8.
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2 Preliminaries

In this section, we first introduce the necessary notation and definitions. Afterwards,
we consider the relation between all complexity classes that are relevant for the paper.

2.1 First-Order Theory of the Reals

Let X1, . . . , Xn be variables. A variable is free if it is not bound by a quantifier. An
atom is an expression of the form P ◦ 0 for some polynomial P in these variables and
◦ ∈ {<,�}. Following [46] we restrict the signature over which P is defined to the
symbols {0, 1,+, · , ( , )} as well as symbols for the variables. It is easy to see (and
also shown in [33]) that arbitrary integer coefficients c ∈ N can be encoded using
the binary expansion of c using O(log c) additional symbols. Note that this signature
contains no symbols for exponents and we write Xk just as a shorthand notation for
the k-fold product X · · · X (see again [33] for why this is important).

For n being the number of variables, there are O(n) possible symbols in A. Together
with the logical connectives∧,∨,¬, and the quantifiers ∀ and ∃ required later, each of
these can be encoded by a unique sequence of O(log n) bits. We define the length of
an atom A, denoted by |A|, the be the number of bits required to write it down using
such an encoding.

The total degree of an atom (if written as a sum of monomials) is the maximum
number of occurrences of variables in any monomial. Now that we have atoms, a
formula is either

• an atom A, or
• if ϕ1, ϕ2 are formulas, then their conjunction (ϕ1∧ϕ2), their disjunction (ϕ1∨ϕ2),
and the negation ¬(ϕ1) are formulas, or

• if ϕ(X) is a formula with a free variable X , (∃ X ∈ R : ϕ(X)) and (∀X ∈ R : ϕ(X))

are formulas in which X is bound.

If clear from the context, we usually omit the parenthesis. A sentence is a formula
without free variables and thus either equivalent to true or to false. We denote by QFF
the family of quantifier free formulas. Below we require two subfamilies of QFF,
namely QFF< and QFF� defined to be negation-free and having only atoms involving
< and �, respectively.

The length of a formula ϕ can also be defined inductively: If ϕ is an atom A,
then |ϕ| := |A|. Otherwise, if ϕ is constructed from shorter subformulas ϕ1 (and
possibly ϕ2), then |ϕ| is defined to be the length of the subformulas plus the O(log n)

bits required for each additional symbol (using above binary encoding).
For increased readability we freely use integer coefficients, the minus sign “−”,

exponents, the other binary relations {=, 
=,>,�}, and the implication symbol “⇒”
throughout the paper. All of these can be expressed with the basic symbols introduced
above changing the length of the formula by a logarithmic factor at most, which we
can safely ignore when talking about polynomial-time reductions. As a convention,
we use upper case Greek letters for sentences and use lower case Greek letter for
formulas. We write � ≡ � if the two sentences have the same truth value.
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The first-order theory of the reals is the family of all true sentences. We usually
write blocks of variables, i.e., ∀ X ∈ R

n : ϕ(X). Here X is a shorthand notation for
X = (X1, . . . , Xn). We say that n is the length of X in this case. If all quantifiers of a
formula appear at its beginning, we say it is in prenex normal form. Furthermore, we
can assume that ϕ contains only the logical connectives∧ and∨, because DeMorgan’s
law allows to push all negations (and therefore also implications) down to the atoms
transforming ϕ into negation normal form. Then, the negation can be absorbed by the
atom, i.e., using the equivalence ¬ (P < 0) ≡ −P � 0. This justifies, why QFF◦ for
◦ ∈ {<,�} only contains negation-free formulas by our definition.

Given a formula ϕ(X) with n free variables X , the set S(ϕ) = {x ∈ R
n | ϕ(x)}

is semi-algebraic. The complexity of a semi-algebraic set S is the length of a shortest
quantifier-free formula ϕ, such that S = S(ϕ). We write ϕ ≡ ϕ′ if S(ϕ) = S(ϕ′).

2.2 Complexity Classes

Several complexity classes appear in this paper. Here we discuss their relations among
one another.Wemake use of a helpful lemma from the literature. It allows us to replace
a quantifier-free formula ϕ by a simpler one (at the cost of adding additional variables).
Here and throughout the rest of the paper the notation x � poly(y1, . . . , yk) means
that there is a polynomial p ∈ Z[Y1, . . . ,Yk] such that x � p(y1, . . . , yk).

Lemma 2.1 [46, Lem. 3.2] Let ϕ(X) ∈ QFF be a formula with n free variables X.
Then we can construct either of the following in polynomial time:

(i) Integers �,m � poly(|ϕ|) and for i ∈ {1, . . . ,m} a polynomial Fi : R
n+� → R

with integer coefficients of degree at most 2 such that

{x ∈ R
n | ϕ(x)} =

{

x ∈ R
n | ∃ Y ∈ R

� :
m∧

i=1

Fi (x,Y ) = 0

}

.

(ii) An integer k � poly(|ϕ|) andapolynomial F : R
n+k → Rwith integer coefficients

of degree at most 4 such that

{x ∈ R
n | ϕ(x)} = {x ∈ R

n | ∃ Y ∈ R
k : F(x,Y ) = 0}.

For any fixed ◦ ∈ {<,�}, we denote by ∀∃◦R the subset of ∀∃R containing all
decision problems that polynomial-time many-one reduce to a UETR-instance whose
quantifier-free parts are contained in QFF◦. Similarly, for ◦ ∈ {<,�}, we denote the
corresponding subsets of ∃R and ∀R by ∃◦R and ∀◦R, respectively. The following
lemma summarizes what we know about the relation between the complexity classes
∀∃<R, ∀∃�R, and ∀∃R as well as their relation to the well-studied classes NP, co-NP,
∃R, ∀R, and PSPACE.

Lemma 2.2 The following inclusions hold:

PSPACE
NP

co-NP

∃R

∀R
∀∃R∀∃<R

⊆

⊆
⊆ ⊆

⊆
⊆

=∀∃≤R
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Proof The inclusion NP ⊆ ∃R was first presented by Shor [49]. This directly implies
co-NP ⊆ ∀R (because ∀R = co-∃R). For ◦ ∈ {<,�} the inclusion ∀∃◦R ⊆ ∀∃R

follows by definition because the left hand side is just a special case of the right hand
side. Using that ∃<R = ∃R [46, Theorem 4.1], the same argument can be used for
∃R ⊆ ∀∃<R. Canny first established ∀∃R ⊆ PSPACE in his seminal paper [21]. To
show that ∀∃R ⊆ ∀∃�R, consider a UETR instance

� :≡ ∀X ∈ R
n . ∃ Y ∈ R

m : ϕ(X ,Y ).

We apply Lemma 2.1 to ϕ and obtain in polynomial time an integer k � poly(|ϕ|)
and a polynomial F : R

n+m+k → R, such that

� :≡ ∀X ∈ R
n . ∃ Y ∈ R

m+k : F(X ,Y ) � 0 ∧ −F(X ,Y ) � 0,

is equivalent to �. Note that both atoms use �. Lastly, let us consider the inclu-
sion ∀R ⊆ ∀∃<R. Note that ∀R = ∀<R (because two complexity classes are equal
whenever their complement classes are equal and ∃R = ∃�R is known [46]). Now
∀<R ⊆ ∀∃<R again follows by definition. ��

3 Toolbox for Semi-Algebraic Sets

In this section, we first introduce tools from real algebraic geometry, and then show
how the ranges of quantifiers can be bounded.

3.1 Tools Borrowed from Real Algebraic Geometry

We review two sophisticated results from algebraic geometry, namely singly exponen-
tial quantifier elimination and the so called Ball Theorem.While quantifier elimination
provides equivalent quantifier-free formulas of bounded length, theBall Theoremguar-
antees that every non-empty semi-algebraic set contains an element not too far from
the origin.

We start with a result on quantifier-elimination which originates from a series of
articles by Renegar [39–41]. Let us stress that the time complexity of this algorithm
is singly exponential and not doubly exponential for every fixed number of quantifier
alternations.

Theorem 3.1 [11, Thm. 14.16]Let X1, . . . , Xk,Y be blocks of real variables where Xi

has length ni , Y has length m, formula ϕ(X1, . . . , Xk,Y ) ∈ QFF has s atoms and
Qi ∈ {∃,∀} is a quantifier for all i = 1, . . . , k. Further, let d be the maximum total
degree of any polynomial of ϕ(X1, . . . , Xk,Y ). Then for any formula

�(Y ) :≡ Q1X1 ∈ R
n1 . . . Qk Xk ∈ R

nk : ϕ(X1, . . . , Xk,Y )

there is an equivalent quantifier-free formula of size at most

s(n1+1)···(nk+1)(m+1)dO(n1)···O(nk )O(m).
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Throughout the paper we use the following corollary of Theorem 3.1 which is
already stated by D’Costa et al. [25]. It is weaker but easier to work with.

Corollary 3.2 [25] Let �(Y ) be as in Theorem 3.1 of length L = |ϕ(X1, . . . , Xk,Y )|.
Then for some constant α ∈ R independent of�, there exists an equivalent quantifier-
free formula of size at most

Lαk+1(n1+1)···(nk+1)(m+1).

The Ball Theorem was first discovered by Vorob’ev [51] and Grigor’ev and Vorob-
jov [30]. (Vorob’ev and Vorobjov are two different transcriptions of the same name
from the Cyrillic to the Latin alphabet.) Explicit bounds on the distance are given by
Basu and Roy [12]. We use a formulation from Schaefer and Štefankovič [46].

Ball Theorem 3.3 [46, Cor. 3.1] Every non-empty semi-algebraic set in R
n of com-

plexity at most L � 4 contains a point of distance at most 2L8n from the origin.

Recall that for any quantifier-free formula ϕ(X) with free variables X ∈ R
n , the

set S := {x ∈ R
n | ϕ(X)} is semi-algebraic. It follows from Theorem 3.3 that

∃ X ∈ R
n : ϕ(X) is equivalent to ∃ X ∈ [−2L8n

, 2L8n ]n : ϕ(X). This is how we are
going to use the Ball Theorem 3.3 throughout this paper.

Below we use Corollary 3.2 and Theorem 3.3, proving a lemma that is stated in
[25, Lemma 14] for two quantifiers. We are interested in a generalization to more
quantifiers. The proof for the k quantifiers goes along the same lines as the proof for
two quantifiers.

Lemma 3.4 Let X1, . . . , Xk be blocks of variables where Xi has length ni � 1 and
let ϕ(ε, X1, . . . , Xk) ∈ QFF with L := |ϕ|. For Qi ∈ {∃,∀} consider the set

S := {ε > 0 | Q1X1 ∈ R
n1 . . . Qk Xk ∈ R

nk : ϕ(ε, X1, . . . , Xk)}.

If S is non-empty, then there is an ε∗ ∈ S such that for some constant β ∈ R we have

ε∗ � 2−Lβk+2(n1+1)···(nk+1)
.

Proof Let �(ε) be the subformula Q1X1 ∈ R
n1 . . . Qk Xk ∈ R

nk : ϕ(ε, X1, . . . , Xk).
By Corollary 3.2, there is a constant α ∈ R and a quantifier-free formula φ(ε) of
length

|φ(ε)| � L2αk+1(n1+1)···(nk+1)

such that S = {ε > 0 | φ(ε)}. Let d be the maximum degree of any polynomial in φ

and δ be a new variable. We replace each atom P(ε) ◦ 0 (where ◦ ∈ {<,�}) of φ by
δd P(1/δ) ◦ 0 and denote the new formula by ψ(δ). Then for ε > 0 it follows that
φ(ε) is true if and only if for δ = 1/ε the sentence ψ(δ) is true. We get

∃ ε > 0 : φ(ε) ≡ ∃ δ > 0 : ψ(δ).
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To obtain an upper bound on |ψ(δ)|, note that the length of each atom increases by a
factor of at most d, which is obviously at most |φ(ε)|. We conclude that

|ψ(δ)| � |φ(ε)| · d � |φ(ε)|2.

If S is non-empty, then ∃ δ > 0 : ψ(δ) is true. By Theorem 3.3, there is some δ∗ such
that ψ(δ∗) is true and δ∗ � 2|ψ(δ)|8. We get that

δ∗ � 2|ψ(δ)|8 � 2|φ(ε)|16 � 2L
32αk+1(n1+1)···(nk+1) � 2L

βk+2(n1+1)···(nk+1)
,

where β := max {32, α} is a real constant independent of the input. The result follows
for ε∗ := 1/δ∗. ��

The next lemma will be used frequently to scale (some dimensions of) semi-
algebraic sets. For some N ∈ N and N + 1 variables U = (U0, . . . ,UN ) it considers
the following formula:

χ(U ) :≡ (2 ·U0 = 1) ∧
N∧

i=1

(Ui = U 2
i−1). (2)

Lemma 3.5 For u ∈ [−1, 1]N+1 formula χ(u) is true if and only if ui = 2−2i.

Proof The if-part is trivial. The only-if-part follows from a simple induction. ��

3.2 Bounding the Ranges of the Quantifiers

In the following, we show how to restrict the ranges of the variables. This was first
done by D’Costa et al. [25] in the context of their ∃∀�R-complete escape problem.
Lemmas 3.6 and 3.7 below are stated in our setting, but their proofs directly follow
the ideas in [25].

As a first step,we restrict the universally quantified variables. Thisworks for general
UETR instances without any further requirements on the formula.

Lemma 3.6 Let X and Y be blocks of variables with n := |X | and m := |Y |, let
ϕ(X ,Y ) ∈ QFF and let

� :≡ ∀ X ∈ R
n . ∃ Y ∈ R

m : ϕ(X ,Y ).

Then there exists an integer N � poly(n,m, |ϕ|), such that for C := 22N the sentence

� :≡ ∀ X ∈ [−C,C]n . ∃ Y ∈ R
m : ϕ(X ,Y )

is equivalent to �.
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Proof We rewrite � via a double negation to get

� ≡ ¬ (∃ X ∈ R
n .∀Y ∈ R

m : ¬ϕ(X ,Y )
)

and let L := |¬ϕ| denote the length of the quantifier-free part. By Corollary 3.2 there
is a constant α ∈ R and a quantifier-free formula ψ(X) such that � is equivalent to
¬ (∃ X ∈ R

n : ψ(X)), where

|ψ | � Lα2(n+1)(m+1) = 2α2(n+1)(m+1) log L .

Assuming that {x ∈ R
n | ψ(x)} is non-empty, Theorem 3.3 yields that it contains a

point of distance at most

D := 2|ψ |8n � 2(2α2(n+1)(m+1) log L )8n = 22
8α2n(n+1)(m+1) log L

from the origin. Let N = �8α2n(n + 1)(m + 1) log L� � poly(n,m, log L) �
poly(n,m, |ϕ|). Then it holds that C := 22N � D. It follows that

¬� ≡ ¬ (∃ X ∈ R
n : ψ(X))

≡ ¬ (∃ X ∈ [−C,C]n : ψ(X))

≡ ¬ (∃ X ∈ [−C,C]n .∀Y ∈ R
m : ϕ(X ,Y ))

≡ ¬�

and therefore � ≡ �. ��
In a second step, we additionally restrict the existentially quantified variables.

Before we do so, we show that this may be impossible in general (without changing
its true/false value). To this end, consider the following example:

∀ X ∈ R . ∃ Y ∈ R : X = 0 ∨ XY = 1.

This sentence is clearly true as either X = 0 or if X 
= 0 we may define Y := 1/X .
This remains true if we restrict the range of X , e.g., to [−10, 10]. However, note that
1/X with X ∈ [−10, 10] may be arbitrarily large (or small). Consequently, we cannot
restrict the range of Y to any interval. In the following, we show how the ranges can be
restricted in case of ∀-strict formulas. Requiring the formula to be ∀-strict is a slight
generalization of the corresponding statement shown in [25] (where the formula is
required to be strict). This more general case is crucial for our proofs in Sects. 6 and 7.

Lemma 3.7 Let X and Y be blocks of variables with n := |X | and m := |Y |, and
ϕ(X ,Y ) ∈ QFF. Further, let N be an integer and C := 22N . Then for a ∀-strict
sentence

� :≡ ∀ X ∈ [−C,C]n . ∃ Y ∈ R
m : ϕ(X ,Y )
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there is an integer M � poly (n,m, N , |ϕ|) such that for D := 22M the sentence

� :≡ ∀ X ∈ [−C,C]n . ∃ Y ∈ [−D, D]m : ϕ(X ,Y )

is equivalent to �.

Proof If � is false, then there exists an x ∈ [−C,C]n such that no y ∈ R
m satisfies

ϕ(x, y). In particular, no y ∈ [−D, D]m ⊆ R
m satisfies ϕ(x, y). Thus,� is also false.

In the remainder of the proof we assume that � is true. The proof consists of two
steps. First we show that an upper bound D for the existentially quantified variables
indeed exists. In a second step, we use the Ball Theorem 3.3 to compute an upper
bound for D.

For the first step, let S = [−C,C]n . Sentence � being true implies that for each
x ∈ S there is a y(x) ∈ R

m such that ϕ(x, y(x)) is true. Even stronger, as ϕ is ∀-strict,
we even find an ε(x) > 0, such that for all x̃ ∈ S with ‖x − x̃‖ < ε(x) we get that
ϕ(̃x, y(x)) is true. Recall that we denote by Bn(x, r) = {̃x ∈ R

n | ‖x̃ − x‖ < r} the
open ball with center x and radius r in R

n . Then {Bn(x, ε(x)) | x ∈ S} is an open
cover of S. As S is compact, it has a finite subcover Bn(x1, ε(x1)), . . . , Bn(xs, ε(xs)).
Now, given some x ∈ S, there is an i ∈ {1, . . . , s}, such that ϕ(x, y(xi )) is true. We
define ymax := max {‖y(x1)‖∞, . . . , ‖y(xs)‖∞}. Then, for all D � ymax formula �

implies

∃ D > 0 . ∀ X ∈ [−C,C]n . ∃ Y ∈ R
m :

m∧

i=1

|Yi | � D ∧ ϕ(X ,Y ),

proving the existence of an upper bound D for the existentially quantified variables.
The second step is to obtain a bound on D. We first need to construct C = 22N

inside the formula. For this, letU = (U0, . . . ,UN ) be N + 1 new variables and χ(U )

be the formula (2). Recall that by Lemma 3.5, χ(u) is true if and only if ui = 2−2i .
Further, eachUi can be trivially restricted to be in [−1, 1]. Using χ(U ), we can rewrite
the above sentence as

∃ D > 0 . ∀ X ∈ R
n, U ∈ [−1, 1]N+1 . ∃ Y ∈ R

m :
(

χ(U ) ∧
n∧

i=1

|Xi |UN � 1

)

⇒
m∧

i=1

|Yi | � D ∧ ϕ(X ,Y ).

From here on, bounding D is a straightforward application of the Ball Theorem 3.3:
Let L be the length of the subformula behind the existential quantification of D. By
Corollary 3.2 there is a constant α ∈ R and a quantifier-free formula ψ(D), such
that above sentence is equivalent to ∃ D > 0 : ψ(D) where |ψ | � L2α3(n+N+2)(m+1).
Then Theorem 3.3 yields the following upper bound for D:

D � 2|ψ(D)| � 2(L2α3(n+N+2)(m+1))8n = 22
16α3n(n+N+2)(m+1) log L

.
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Lastly, we choose M � �16α3n(n + N + 2)(m + 1) log L� to be the smallest integer
such that D � 22M . Note that M � poly(n,m, N , log L) � poly(n,m, N , |ϕ|) as
required. ��

4 Counterexamples of STRICT-UETR

Let us recall the definition of counterexamples here that was already motivated in
Sect. 1.8. Given a sentence � :≡ ∀ X ∈ R

n . ∃ Y ∈ R
m : ϕ(X ,Y ) we call

⊥(�) := {x ∈ R
n | ∀Y ∈ R

m : ¬ϕ(x,Y )}

its counterexamples. The counterexamples of � are exactly the values x ∈ R
n for

which there is no y ∈ R
m such that ϕ(x, y) is true. The main result of this section,

Theorem 4.2, is that we can transform a Strict-UETR instance � into an equivalent
formula� for which⊥(�) is either empty or contains an open ball. The main tools for
this are the range restrictions from Sect. 3.2 and the following lemma from calculus.

Lemma 4.1 Let S and T be compact sets and f : S×T → R be a continuous function.
Then g : S → R, x �→ miny∈T { f (x, y)}, is continuous over S.
Proof We first observe that by compactness of S and T , their Cartesian product S×T
is compact as well. Thus, because f is continuous on S×T , it is even uniformly
continuous, i.e., for every ε > 0 there is a δ > 0, such that for every two points
(x, y), (̃x, ỹ) ∈ S×T we have | f (x, y)− f (̃x, ỹ)| < εwhenever ‖(x, y) − (̃x, ỹ)‖ <

δ. Now consider x, x̃ ∈ S with ‖x − x̃‖ < δ. We have

g(̃x) − g(x) = g(̃x) − f (x, y) (for some y ∈ T )

< g(̃x) − ( f (̃x, y) − ε) (by uniform continuity)

� g(̃x) − (g(̃x) − ε) (by definition of g)

= ε.

By exchanging the role of x and x̃ , we get g(x)− g(̃x) < ε. Combined, we obtain that
|g(x) − g(̃x)| < ε for all x, x̃ ∈ S with ‖x − x̃‖ < δ. It follows that g is continuous
on S. ��

With these tools at hand, we are able to tackle the main result of this section.

Theorem 4.2 Given a Strict-UETR instance�, we can construct in polynomial time
an equivalent UETR instance � of the form

∀ X ∈ [−1, 1]n . ∃ Y ∈ [−1, 1]� : ψ(X ,Y ),

such that ⊥(�) is either empty or contains an n-dimensional open ball.

Before proving Theorem 4.2 in full generality, let us illustrate the key idea with
an example for a very simple Strict-UETR instance � having only a single atom.
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This already shows how bounding the ranges of the quantifiers expands the set of
counterexamples while not yet requiring the technical calculus arguments that are
required to handle more than one atom.

In our example we consider the Strict-UETR instance

� :≡ ∀ X ∈ R . ∃ Y ∈ R : XY < 0.

Note that � is a no-instance with ⊥(�) = {0}, i.e., there is only a single coun-
terexample. We start by introducing a new existentially quantified variable Z (in
general we would add one variable per atom) and rewrite each atom P < 0 as
∃ Z ∈ R : Z2P + 1 < 0. In our case we get

�1 :≡ ∀ X ∈ R . ∃ Y ∈ R, Z ∈ R : Z2 · XY + 1 < 0.

It holds that � ≡ �1 and even stronger that ⊥(�) = ⊥(�1) = {0}. While this
transformation may look innocent, it is very powerful. The key insight is as follows:
Once we bound the range of Z to some compact interval [−D, D], this requires
XY < −1/D2 in order to satisfy the atom. This is stronger than just requiring XY < 0
and expands the set of counterexamples. To see this in action, we apply Lemmas 3.6
and 3.7 and get integer constants C and D such that �1 is equivalent to

�2 :≡ ∀ X ∈ [−C,C] . ∃ Y ∈ [−D, D], Z ∈ [−D, D] : Z2 · XY + 1 < 0

and further⊥(�2) ⊇ ⊥(�1)∩[−C,C]. It remains to argue that⊥(�2) indeed contains
an open ball.

Consider some x ∈ (0,C], for which y, z ∈ [−D, D] does z2 · xy + 1 < 0 hold?
Neither of y, z may be zero and y must be negative (as z2 is always positive). Then
z2 · xy + 1 < 0 is equivalent to xy < −1/z2. Further, we get

− xD � xy < − 1

z2
� − 1

D2 .

It follows that −xD < −1/D2 and thus x > 1/D3. This means that (0, 1/D3] ⊆
⊥(�2) and this interval contains an open ball.

Proof of Theorem 4.2 The proof is split into two parts. First, we construct � from �.
Afterwards, we show that ⊥(�) has the desired properties.

Construction of �. Each atom of the sentence

� :≡ ∀ X ∈ R
n . ∃ Y ∈ R

m : ϕ<(X ,Y )

with ϕ< ∈ QFF< is of the form P < 0, where P ∈ Z[X ,Y ] is a polynomial. We
replace P < 0 by the equivalent formula ∃ Z ∈ R : Z2P + 1 < 0. Here, Z is a new
variable that is exclusive to this atom. Moving the new existential quantifiers to the
front yields a sentence

�1 :≡ ∀ X ∈ R
n . ∃ Y ∈ R

m, Z ∈ R
k : ϕ′

<(X ,Y , Z)

123



Discrete & Computational Geometry (2024) 71:177–213 197

in prenex normal form. Here, k is the number of atoms in � and ϕ′
< is obtained

from ϕ< by above transformation. Note that in particular, ϕ< and ϕ′
< have exactly the

same logical structure (their only difference lies in the transformed atoms). The length
increases only by a constant amount per atom, so |�1| is linear in |�|. Further, we
have ⊥(�1) = ⊥(�) by construction.

We can apply Lemma3.6 to restrict the ranges of the universally quantified variables
and obtain an integer N � poly(|�1|) such that for C := 22N the sentence �1 is
equivalent to

�2 :≡ ∀ X ∈ [−C,C]n . ∃ Y ∈ R
m, Z ∈ R

k : ϕ′
<(X ,Y , Z).

It holds that ⊥(�2) ⊆ ⊥(�1) and further that ⊥(�2) = ⊥(�1) ∩ [−C,C]n . Each
atom in�2 is a strict inequality. Thus, we can use Lemma 3.7 to also restrict the ranges
of the existentially quantified variables.We obtain another integerM � poly(N , |�2|)
such that for D := 22M above sentence �2 is equivalent to

�3 :≡ ∀ X ∈ [−C,C]n . ∃ Y ∈ [−D, D]m, Z ∈ [−D, D]k : ϕ′
<(X ,Y , Z).

Regarding the counterexamples, we have ⊥(�3) ⊇ ⊥(�2).
The last step is to scale the ranges over which the variables are quantified to the

interval [−1, 1]. To this end, define K := max{N , M}, let U := (U0, . . . ,UK )

be K + 1 new variables and let χ(U ) be the formula (2). Recall that by Lemma 3.5,
for u ∈ [−1, 1]K+1 we have χ(u) if and only if ui = 2−2i . Let d be the maximum
degree of any polynomial in ϕ′

<. We define

� :≡ ∀X ∈ [−1, 1]n . ∃ Y ∈ [−1, 1]m, Z ∈ [−1, 1]k, U ∈ [−1, 1]K :
χ(U ) ∧ Ud

K · ϕ′
<

(
X

UN
,

Y

UM
,

Z

UM

)

,

where X/UN means that every Xi is replaced by Xi/UN (likewise for Y/UM and
Z/UM ). The multiplication of ϕ′

< with Ud
K denotes that both sides of each atom are

multiplied byUd
K . This restores the requirement that each atom is a polynomial inequal-

ity. (Strictly speaking, the obtained formula contains the divisions by UN and UM .
However, because K � N , we can replace any UK · (Xi/UN ) by UK−N Xi , which
does not contain divisions. Likewise, we handle Y/UM and Z/UM .) As this last step
just scaled variables, we conclude that � is equivalent to �3 and therefore also to �.
Further, � has the form required by the statement of the theorem.

Properties of ⊥(�). It remains to show that ⊥(�) is either empty (if � is true) or
contains an n-dimensional open ball (if� is false). Note that scaling variables (as done
to get from �3 to �) also scales the counterexamples; thus, an open ball in ⊥(�3)

maps to an open ball in ⊥(�). It therefore suffices to prove that ⊥(�3) contains an
open ball. As �3 is the simpler formula, we analyze ⊥(�3) below.

By construction, � and �3 are equivalent. Thus, � is true if and only �3 is true. In
particular, ⊥(�) = ∅ implies that ⊥(�3) = ∅. From now on, we assume that �3 is
false. Let x∗ ∈ ⊥(�2) be a counterexample of �2, fixed until the end of the proof. We
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know that x∗ ∈ [−C,C]n (by Lemma 3.6) and also that x∗ ∈ ⊥(�3) (by construction
of �3). We prove below that for some r > 0, all x ∈ [−C,C]n with ‖x∗ − x‖ < r
are counterexamples of �3 as well. If Bn(x∗, r) ⊆ [−C,C]n , then x∗ is the center of
our desired open ball of counterexamples. If Bn(x∗, r) is not completely contained in
[−C,C]n , then any x ′ ∈ Bn(x∗, r) ∩ (−C,C)n can be used instead as the center of a
smaller (but still open) ball of counterexamples.

To simplify the following argument, we further assume that ϕ< (in�) is in disjunc-
tive normal form (DNF), i.e., a disjunction of conjunctions of atoms. By construction,
ϕ′

< is then also in DNF and has exactly the same logical structure. This is justified as
the set of counterexamples is invariant under applications of the distributive law on
the quantifier-free part. Thus, ϕ< and ϕ′

< have exactly the same counterexamples as
their DNFs.

Let C(X ,Y ) := (∧s
i=1 Pi (X ,Y ) < 0

)
be one of the conjunctive clauses of (the

DNF of) ϕ<(X ,Y ). For our fixed counterexample x∗ ∈ ⊥(�2), every conjunctive
clause of ϕ<(x∗,Y ) evaluates to false independently of Y . We get that for all y ∈ R

m

and thus in particular for all y ∈ [−D, D]m that C(x∗, y) is false and that

s∨

i=1

(
Pi (x

∗, y) � 0
)

(3)

is true. Let us point out that for different choices of y ∈ [−D, D]m , different subsets
of the polynomials Pi (x∗, y) may evaluate to non-negative values. We only know that
for every y at least one of the polynomials is non-negative (here it is important that
ϕ<(X ,Y ) is in DNF). To overcome this we combine the polynomials into a single
function.

Each of the Pi ∈ Z[X ,Y ], i ∈ {1, . . . , s}, is a polynomial and thus continuous.
The maximum over a finite number of continuous functions is again continuous, so

Pmax : [−C,C]n×[−D, D]m → R, (x, y) �→ max
i=1,...,s

{Pi (x, y)}

is continuous. It follows from (3) that for our fixed counterexample x∗ and all y ∈
[−D, D]m it holds that

Pmax(x
∗, y) � 0. (4)

Wewant to argue about the value of Pmax at points x in a small neighborhood around x∗.
To this end, we consider the function

P∗ : [−C,C]n → R, x �→ min
y∈[−D,D]m Pmax(x, y),

which eliminates the dependency on y. The sets [−C,C]n and [−D, D]m are compact,
so by Lemma 4.1 function P∗ is again continuous. From (4), we get for our fixed
counterexample x∗ that

P∗(x∗) � 0.
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By the continuity of P∗, for every ε > 0 there exists a δ > 0 such that for all
x ∈ [−C,C]n with ‖x∗ − x‖ < δ we have |P∗(x) − P∗(x∗)| < ε. We choose
ε < 1/D2 and conclude that for a sufficiently small δ > 0 and all x ∈ [−C,C]n with
‖x∗ − x‖ < δ it holds that

P∗(x) > − 1

D2 .

Fix one such x . Going backwards through our chain of defined functions, it follows
for all y ∈ [−D, D]m that Pmax(x, y) > −1/D2 and moreover that

s∨

i=1

Pi (x, y) > − 1

D2 . (5)

Now also fix an arbitrary y ∈ [−D, D]m and choose j ∈ {1, . . . , s} such that
Pj (x, y) > −1/D2. Because A := (Pj (X ,Y ) < 0) is an atom in the DNF
of ϕ<(X ,Y ), there is a corresponding atom A′ := (Z2

j Pj (X ,Y )+ 1 < 0) in the DNF
of ϕ′

<(X ,Y , Z). Recall that Z j is an existentially quantified variable that only appears
in A′. Note that A′ can never be true for Z j = 0. For Z j 
= 0, the atom A′ can be rewrit-
ten as Pj (X ,Y ) < −1/Z2

j . From Z j ∈ [−D, D], we get that Z2
j � D2 and therefore

our considered atom A′ can only ever be satisfied, if Pj (X ,Y ) < −1/Z2
j � −1/D2.

However, by the choice of j and (5),weknow that Pj (x, y) > −1/D2. Thus, because y
was fixed arbitrarily, x must be a counterexample of�3. Additionally, because x ∈ R

n

with ‖x∗ − x‖ < δ was arbitrary, we conclude that all such x are counterexamples
of �3 forming an n-dimensional open ball. ��

5 ∀∃<R-Hardness of HAUSDORFF

We are now able to show ∀∃<R-hardness.

Theorem 5.1 Hausdorff and Directed Hausdorff are ∀∃<R-hard.

Proof Let � be an instance of Strict-UETR. We give a polynomial-time many-one
reduction to an equivalentHausdorff instance. The proof is split into two parts: In the
first part, we transform� into an equivalentUETR instance� whose counterexamples
⊥(�) contain an open ball (if there are any). Sentence � is then used to construct a
Hausdorff instance (A, B, t). The second part then proves that � and (A, B, t) are
indeed equivalent. ��
Constructing Hausdorff instance (A, B, t). The first step is to apply Theorem 4.2
to � and to obtain in polynomial time an equivalent UETR instance

� ′ :≡ ∀ X ∈ [−1, 1]n . ∃ Y ∈ [−1, 1]m : ψ ′(X ,Y ),
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whereψ ′ ∈ QFF.We know that either⊥(� ′) = ∅ (if� ′ is true) or that⊥(� ′) contains
an n-dimensional open ball (if � ′ is false). Based on � ′ we define

ψ(X ,Y ) :≡ ψ ′(X ,Y ) ∨
n∧

i=1

Xi = 0 and

� :≡ ∀ X ∈ [−1, 1]n . ∃ Y ∈ [−1, 1]m : ψ(X ,Y ).

Note that � ′ and � are equivalent: If � ′ is true, then obviously � is also true because
the new condition is added using a logical “or”. If� ′ is false, then⊥(�) = ⊥(� ′)\{�0}.
Since ⊥(� ′) contained an open ball, it follows that ⊥(�) also contains an open ball.
The key idea behind the definition of � is that ⊥(�) is guaranteed to be a strict
subset of R

n . This will be important below to make sure that set A (of theHausdorff
instance we define below) is non-empty.

If � is false, then there is an x ∈ ⊥(�) ⊆ [−1, 1]n , such that Bn(x, r) ⊆ ⊥(�)

for some r > 0. Expressed as a sentence in the first-order theory of the reals we get

∃ r > 0, X ∈ [−1, 1]n . ∀ X̃ ∈ [−1, 1]n, Y ∈ [−1, 1]m :
‖X − X̃‖2< r2 ⇒ ¬ψ(X̃ ,Y ).

Let us denote by L the length of the quantifier-free part of this sentence. We see
that L is clearly polynomial in |�|which by construction is polynomial in |�|. Above
sentence has the form required by Lemma 3.4, and we get a constant β ∈ R such that
the following lower bound for r can be assumed:

r � 2−Lβ4(n+1)(n+m+1)
(6)

Let N � �β4(n + 1)(n + m + 1)� be the smallest integer such that

r ·22N > m. (7)

By (6), it holds that N � poly(n,m, log L) � poly(|�|). Define C := 22N.
The idea now is to scale the universally quantified variables by a factor of C

(so that they are from the interval [−C,C]). This then also scales the set of coun-
terexamples ⊥(�) by C and in particular the radius of the open ball in ⊥(�). Let
U = (U0, . . . ,UN ) ∈ [−1, 1] be N + 1 new variables and χ(U ) be the formula (2).
Recall that by Lemma 3.5, for u ∈ [−1, 1]N+1 we have χ(u) if and only if ui = 2−2i .
With this, we define

φ(X ,Y ,U ) :≡ χ(U ) ∧ ψ(UN X ,Y ),

whereUN X means that every occurrence of Xi in ψ is replaced byUN Xi . Finally we
are ready to define our desired Hausdorff instance:

A := {
(x, y, u) ∈ [−C,C]n×[−1, 1]m×{

2−20}× · · · ×{
2−2N } | φ(x, y, u)

}
,
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B := [−C,C]n×{0}m×{
2−20}× · · · ×{

2−2N }
,

t := m.

Note that this is well defined, because both sets A and B are non-empty. While this is
trivial for B, it holds for A by our construction of φ from �: It always holds that

∅ 
= {0}n×[−1, 1]m×{
2−20}× · · · ×{

2−2N } ⊆ A.

Equivalence of � and (A, B, t). To see that � and (A, B, t) are equivalent, assume
first that � is true. For every point a := (x, y, u) ∈ A it must hold that ui = 2−2i as
this is necessary to satisfy χ(u). Consider the point b := (x, {0}n, u) ∈ B. We get

‖a − b‖ = ‖(x, y, u) − (x, {0}m, u)‖ = ‖y − �0‖ �

√
√
√
√

m∑

i=1

1 = √
m � m = t .

As a was chosen arbitrarily, we get an upper bound for the directed Hausdorff distance
�dH(A, B) � t . On the other hand, consider an arbitrary point b := (x, {0}m, u) ∈ B.
Because � (and therefore �) is true, there is some y ∈ [−1, 1]m such that there is a
point a := (x, y, u) ∈ A. By the same calculation as above, we get �dH(B, A) � t and
thus

dH(A, B) � t . (8)

Now assume that � and � are false. Then there is some x ∈ [−1, 1]n such that there
is an n-dimensional open ball Bn(x, r) ⊆ ⊥(�) (the r here is the one from (6)). By
the construction of A, this corresponds to an open ball of radius Cr in R

n \ A. Let x∗
be the center of this open ball in R

n \ A. Then for b := (x∗, {0}m, u) ∈ B all points
a ∈ A have

‖a − b‖ � Cr > m = t .

It follows that
dH(A, B) � �dH(B, A) � ‖a − b‖ > t . (9)

Equations (8) and (9) prove that dH(A, B) � t (and also �dH(B, A) � t) if and only
if � is true. ��

In the proof of Theorem 5.1, we could choose N ′ := N + 1 instead of N in (7).
Then in the case that � is false, the Hausdorff distance dH(A, B) is at least

22
N+1

r > 22
N+1−2N m = 22

N
m = 22

N
t .

Note that the number of free variables in the formulas describing the resulting sets A
and B equals n +m + N ′ + 1 = �(N ). We created a gap of size 22�(N ) . This implies
the following inapproximability result.
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Corollary 1.2 Let A and B be two semi-algebraic sets in R
n and f (n) = 22o(n). There

is no polynomial-time f (n)-approximation algorithm to compute dH(A, B), unless
P = ∀∃<R.

Another interesting observation is that we can restrict the sets A and B to be
described by syntactically simple formulas. We can express both formulas as a con-
junction of (down to one) polynomial equation(s) with bounded degree at the expense
of adding a polynomial number of new variables.

Corollary 1.3 TheHausdorff problem remains∀∃<R-complete, even if the two sets A
and B are both described either by

(i) a conjunction of quadratic polynomial equations, or
(ii) a single polynomial equation of degree at most four.

Proof Taking the formula ψ in the proof of Theorem 5.1, we apply Lemma 2.1 (i) to
obtain an equivalent new formulaψ ′ (with additional existentially quantified variables)
which is a conjunction of quadratic polynomial equations. Then set A can be defined
usingψ ′ instead ofψ . Set B can be trivially described in the desired form. This shows
statement (i). For (ii), wemodify the above procedure by applying Lemma 2.1 (ii) toψ

to obtain an equivalent formula which is a single polynomial of degree at most four.��

6 ∀∃<R-Membership of HAUSDORFF

This section is devoted to showing the following theorem.

Theorem 6.1 Hausdorff and Directed Hausdorff are contained in ∀∃<R.

Note that ∀∃R-membership has been already shown by Dobbins et al. [27]. The
remainder of this section deals with reformulating a given Hausdorff instance into
a Strict-UETR instance, thereby proving ∀∃<R-membership.

Let (A, B, t) be a Hausdorff instance, where A = {x ∈ R
n | ϕA(x)} and B =

{x ∈ R
n | ϕB(x)} are described by quantifier-free formulas ϕA and ϕB with n free

variables each. For simplicity, we only consider the directed Hausdorff distance here,
namely the question whether

�dH(A, B) := sup
a∈A

inf
b∈B

‖a − b‖ ?
� t .

It is obvious, that dH(A, B) � t if and only if �dH(A, B) � t and �dH(B, A) � t .
So if we can formulate the decision problem for the directed Hausdorff distance as
a Strict-UETR instance, their conjunction is a formula for the general Hausdorff
problem.Assuming that no variable name appears in both operands of this conjunction,
this formula can be converted into prenex normal form by just moving the quantifiers
to the front. From the definition we get that �dH(A, B) � t is equivalent to

∀ ε > 0, a ∈ A . ∃ b ∈ B : ‖a − b‖2 < t2 + ε. (10)
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Let us remark that introducing the real variable ε is necessary to also consider the
points in the closure of B. Moreover, we work with the squared distance between a
and b, because ‖a − b‖ is the square root of a polynomial.

Belowwe transform formula (10) in multiple technical steps into a form that allows
us to apply a recent theorem by D’Costa et al. [25] such that ∀∃<R-membership
follows. Before we do so, we state a few helpful lemmas. These allow us to consider
some of the intermediate steps in isolation, thereby simplifying the needed notation.
Also, Lemma 6.4 below is used again in Sect. 7. The first lemma allows us to transform
a UETR instance of special structure into an equivalent Strict-UETR instance:

Lemma 6.2 Given a UETR instance

� :≡ ∀ X ∈ [−1, 1]n . ∃ Y ∈ [−1, 1]m : ϕ<(X ,Y ) ∨ H(X ,Y ) = 0,

where ϕ<(X ,Y ) ∈ QFF< and H : [−1, 1]n+m → R is a polynomial. Then we can
compute in polynomial time an equivalent Strict-UETR instance.

Proof We first prove that there exists an integer N � poly(|�|), such that the Strict-
UETR instance

� :≡ ∀ X ∈ [−1, 1]n . ∃ Y ∈ [−1, 1]m : ϕ<(X ,Y ) ∨ H(X ,Y )2 < 2−2N

is equivalent to �. In a second step, we construct 2−2N inside the formula.
The direction �⇒ � is trivially true for any N ∈ N. To prove the other direction,

we show its contraposition ¬�⇒ ¬�. Assume that

¬� ≡ ∃ X ∈ [−1, 1]n . ∀Y ∈ [−1, 1]m : ¬ϕ<(X ,Y ) ∧ H(X ,Y )2 > 0

is true. Hence for at least one fixed x ∈ [−1, 1]n we obtain a polynomial H(x,Y )2

that is positive everywhere on [−1, 1]m (the fixed x values are real coefficients for the
variables Y ). Because [−1, 1]m is compact and because polynomials are continuous,
H(x,Y )2 attains its minimum over [−1, 1]m and it follows that

∃ ε > 0 . ∃ X ∈ [−1, 1]n . ∀Y ∈ [−1, 1]m : ¬ϕ<(X ,Y ) ∧ H(X ,Y )2 � ε (11)

is true. Let L be the length of the quantifier-free part in (11). By Lemma 3.4 there is a

constant β ∈ R such that ∃ ε > 0 in (11) can be strengthened to ∃ ε � 2−Lβ4(n+1)(m+1) .
Now choose N � �β4(n + 1)(m + 1)� to be the smallest integer satisfying 2−2N <

2−Lβ4(n+1)(m+1) . Note that N � poly(n,m, log L), so it is polynomial in the input size.
Plugging in the lower bound on ε, we get that ¬� is equivalent to

∃ X ∈ [−1, 1]n . ∀Y ∈ [−1, 1]m : ¬ϕ<(X ,Y ) ∧ H(X ,Y )2 � 2−2N,

which is exactly ¬�. We conclude that � ≡ � as claimed.
To construct a Strict-UETR instance from �, we need to express 2−2N inside the

formula. To this end, introduce N+1 new variablesU = (U0, . . . ,UN ) ∈ [−1, 1]N+1
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and let χ(U ) be the formula (2). Recall that by Lemma 3.5, χ(u) is true if and only
if ui = 2−2i. Including χ(U ) into our formula, we conclude that

∀ X ,U ∈ [−1, 1]n+N+1 . ∃ Y ∈ [−1, 1]m :
¬χ(U ) ∨ ¬ϕ<(X ,Y ) ∨ H(X ,Y )2 < UN

(12)

is equivalent to�. We arrived at a sentence where all variables are restricted to [−1, 1]
and in which all atoms are strict. At this point we use a recent result by D’Costa et
al. [25]. They show that it is ∃∀�R-complete to decide a sentence of the form

∃ X ∈ [−1, 1]n . ∀Y ∈ [−1, 1]m : ϕ�(X ,Y )

with ϕ� ∈ QFF�. Because ∃∀�R = co-∀∃<R, deciding the complements of these
sentences, i.e., sentences of the form

∀ X ∈ [−1, 1]n . ∃ Y ∈ [−1, 1]m : ϕ<(X ,Y )

with ϕ< ∈ QFF< is ∀∃<R-complete. Sentence (12) is of this form. Thus there is a
polynomial-time reduction to an equivalent Strict-UETR instance. ��

The next lemma establishes an upper bound on the value of a polynomial over a
compact domain.

Lemma 6.3 Let P : R
n → R be a polynomial, N be an integer and C := 22N. Then

we can compute in polynomial time an integer K � poly(|P|, N , n) such that for
E := 22K and all x ∈ [−C,C]n it holds that |P(x)| � E.

Proof Because P is a polynomial, |P| is continuous and therefore |P| attains its
maximum over any compact domain. We conclude that

∃ E ∈ R . ∀ X ∈ [−C,C]n : |P(X)| � E

is true. Note that, strictly speaking, we may not use | · | inside the formula. However,
|P(X)| � E is equivalent to P(X) � E ∧ −P(X) � E .

To obtain an upper bound on E , we first need to encode C inside the formula. We
introduce N + 1 new variables U = {U0, . . . ,UN } and let χ(U ) be the formula (2).
Recall that by Lemma 3.5, χ(u) is true if and only if ui = 2−2i. Now we can rewrite
the above formula equivalently as

∃ E ∈ R . ∀ X ∈ R
n . ∃U ∈ R

N+1 :
n∧

i=1

|XiUN | � 1 ⇒ |P(X)| � E .

Let ϕ(E) be the subformula following the quantification of E (starting from ∀) and
L := |ϕ(E)|. Applying quantifier elimination (Corollary 3.2) to ϕ(E), we obtain a
constant α ∈ R and an equivalent, quantifier-free formula ψ(E) of length

|ψ(E)| � L2α3(n+1)(N+2).
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The Ball Theorem 3.3 applied to ∃ E ∈ R : ψ(E) now yields an upper bound for E :

E � 2|ψ |8 � 2L
16α3(n+1)(N+2) = 22

16α3(n+1)(N+2) log(|ψ |)
.

Choose K = �16α3(n + 1)(N + 2) log(|ψ |)�. Obviously, K � poly(log|ψ |, N , n).
Since |ψ | � poly(|P|, n, N ), the claim follows. ��

The above lemma is used to prove the following lemmawhich allows us to transform
some more general UETR instances into equivalent Strict-UETR instances.

Lemma 6.4 Given a UETR instance

∀ ε > 0, X ∈ R
n . ∃ Y ∈ R

m : F(X)2 > 0 ∨ (G(Y ) = 0 ∧ P(X ,Y ) < ε),

where F : R
n → R, G : R

m → R, and P : R
n+m → R are polynomials. Then we can

compute in polynomial time an equivalent Strict-UETR instance.

Proof Via a series ofmanipulations,we transform the given sentence into an equivalent
UETR instance that has the form required by Lemma 6.2. The first step is to move the
condition that ε > 0 into the formula. We obtain an equivalent sentence

∀ ε ∈ R, X ∈ R
n :

(ε > 0) ⇒ (∃ Y ∈ R
n : F(X)2 > 0 ∨ (G(Y ) = 0 ∧ P(X ,Y ) < ε)).

Now we observe that ε > 0 is equivalent to ∃ δ ∈ R : δ2ε − 1 = 0. Incorporating this
yields an equivalent sentence

∀ ε ∈ R, X ∈ R
n : (∃ δ ∈ R : δ2ε − 1 = 0) ⇒
(∃ Y ∈ R

m : F(X)2 > 0 ∨ (G(Y ) = 0 ∧ P(X ,Y ) < ε)).

Rewriting the implication A⇒ B as¬A∨B turns the existential quantifier in front of δ
into a universal quantifier. Furthermore, we replace ¬ (δ2ε −1 = 0) by the equivalent
(δ2ε − 1)2 > 0. We get an equivalent sentence

∀ ε ∈ R, X ∈ R
n : (∀ δ ∈ R : (δ2ε − 1)2 > 0) ∨

(∃ Y ∈ R
m : F(X)2 > 0 ∨ (G(Y ) = 0 ∧ P(X ,Y ) < ε)).

Moving all quantifiers to the front, turns this into an equivalent prenex normal form

∀ ε ∈ R, δ ∈ R, X ∈ R
n . ∃ Y ∈ R

m :
(δ2ε + 1)2 > 0 ∨ F(X)2 > 0 ∨ (G(Y ) = 0 ∧ P(X ,Y ) < ε).

This sentence is ∀-strict, so Lemmas 3.6 and 3.7 are applicable. Thus, there are two
integers N , M bounded by a polynomial in the length of the sentence, such that for
C := 22N and D := 22M all universally quantified variables can be restricted to
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[−C,C] and all existentially quantified variables can be restricted to [−D, D]. We
obtain another equivalent sentence

∀ ε ∈ [−C,C], δ ∈ [−C,C], X ∈ [−C,C]n . ∃ Y ∈ [−D, D]m :
(δ2ε + 1)2 > 0 ∨ F(X)2 > 0 ∨ (G(Y ) = 0 ∧ P(X ,Y ) < ε).

In the next step, we replace the strict inequality P(X ,Y ) < ε by the non-strict
inequality P(X ,Y ) � ε. For this step, we exploit the fact that a continuous func-
tion over a compact domain attains its minimum and maximum. Consequently,
the sentence ∀ ε > 0, X ∈ [−C,C] . ∃ Y ∈ [−D, D] : P(X ,Y ) < ε is (true
if and only if maxX∈[−C,C] minY∈[−D,D] P(X ,Y ) � 0 and thus) equivalent to
∀ ε > 0, X ∈ [−C,C] . Y ∈ [−D, D] : P(X ,Y ) � ε. We obtain the equivalent
sentence

∀ ε ∈ [−C,C], δ ∈ [−C,C], X ∈ [−C,C]n . ∃ Y ∈ [−D, D]m :
(δ2ε + 1)2 > 0 ∨ F(X)2 > 0 ∨ (G(Y ) = 0 ∧ P(X ,Y ) � ε).

Going one step further,we nowwant to express P(X ,Y ) � ε as a polynomial equation.
To this end, we replace it by the equivalent formula ∃ B ∈ R : P(X ,Y )−ε+ B2 = 0.
By Lemma 6.3, we can also bound the range over which B is quantified: We can
compute in polynomial time an integer K � poly (|P|,max {N , M}, n +m + 1) such
that |B| � E := 22K. We get another equivalent sentence

∀ ε ∈ [−C,C], δ ∈ [−C,C], X ∈ [−C,C]n . ∃ Y ∈ [−D, D]m, B ∈ [E, E] :
(δ2ε + 1)2 > 0 ∨ F(X)2 > 0 ∨ (G(Y ) = 0 ∧ P(X ,Y ) − ε + B2 = 0).

At this point we define

ϕ<(ε, δ, X) > 0 := (δ2ε + 1)2 ∨ F(X)2 > 0 and

H(X ,Y , ε, B) := G(Y )2 + (P(X ,Y ) − ε + B2)2.

Note that ϕ< ∈ QFF<. We use these to get the equivalent sentence

∀ ε ∈ [−C,C], δ ∈ [−C,C], X ∈ [−C,C]n . ∃ Y ∈ [−D, D]m, B ∈ [E, E] :
ϕ<(ε, δ, X) ∨ H(X ,Y , ε, B) = 0.

The last step is to scale all variables to be in the interval [−1, 1]. For this, let S :=
max{N , M, K } and introduce S + 1 new variables U = {U0, . . . ,US}. Furthermore,
let χ(U ) be the formula (2). Recall that by Lemma 3.5, χ(u) is true if and only if
ui = 2−2i. We can rewrite our sentence to the equivalent sentence

∀ ε, δ, X ,U ∈ [−1, 1]1+1+n+S+1 . ∃ Y , B ∈ [−1, 1]m+1 :
¬χ(U ) ∨Ud

S · ϕ<

(
ε

US
,

δ

US
,
X

US

)

∨ Ud
S · H

(
X

US
,
Y

US
,

ε

US
,
B

US

)

= 0.
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Here d is the maximum degree of any polynomial in ϕ< and H . By X/US we denote
that every variable Xi is replaced by Xi/US . Multiplying byUd

S makes sure that each
atom remains a polynomial. What we obtained is a UETR instance that has the form
required by Lemma 6.2 (note that ¬χ(U ) is strict). Therefore, we can transform this
into an equivalent Strict-UETR instance in polynomial time. ��

Nowwe finally have all the needed tools to prove Theorem 6.1 which states that the
Hausdorff problem is contained in ∀∃<R. We do this by transforming formula (10)
into the form required by Lemma 6.4. This then yields an equivalent Strict-UETR
instance, thus proving ∀∃<R-membership.

Proof of Theorem 6.1 Recall that �dH(A, B) � t is equivalent to (10), which is

∀ ε > 0, a ∈ A . ∃ b ∈ B : ‖a − b‖2 < t2 + ε.

In a first step, we resolve the shorthand notations a ∈ A and b ∈ B and we obtain

∀ ε > 0, a ∈ R
n : ϕA(a) ⇒ (∃ b ∈ R

n : ϕB(b) ∧ ‖a − b‖2 < t2 + ε).

Next, we consider the (quantifier-free) formulas ϕA(a) and ϕB(b). Using Lemma 2.1,
we obtain in polynomial time two integers k, � and two polynomials FA : R

n+k → R

and FB : R
n+� → R, such that ϕA(a) is equivalent to ∃Ua ∈ R

k : FA(a,Ua) = 0
and similarly ϕB(b) is equivalent to ∃Ub ∈ R

� : FB(b,Ub) = 0. This yields the
equivalent sentence

∀ ε > 0, a ∈ R
n : (∃Ua ∈ R

k : FA(a,Ua) = 0) ⇒
(∃ b ∈ R

n, Ub ∈ R
� : FB(b,Ub) = 0 ∧ ‖a − b‖2 < t2 + ε).

Rewriting the implication X ⇒ Y as¬ X∨Y changes the existential quantifier in front
of Ua into a universal quantifier, which we can move to the front. Also, the equation
gets negated. Substituting ¬ (F(a,Ua) = 0) by F(a,Ua)

2 > 0, we get the equivalent
sentence

∀ ε > 0, a ∈ R
n, Ua ∈ R

k :
FA(a,Ua)

2 > 0 ∨ (∃ b ∈ R
n, Ub ∈ R

� : FB(b,Ub) = 0 ∧ ‖a − b‖2 < t2 + ε).

Lastly, we move the existential quantifier after the universal one and get an equivalent
sentence

∀ ε > 0, a ∈ R
n, Ua ∈ R

k . ∃ b ∈ R
n, Ub ∈ R

� :
FA(a,Ua)

2 > 0 ∨ (FB(b,Ub) = 0 ∧ ‖a − b‖2 < t2 + ε)

in prenex normal form. This sentence has the form required by Lemma 6.2, concluding
the proof. ��
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7 Exotic Quantifiers

In this section, we show an interesting connection of the complexity class ∀∃<R to
a complexity class introduced by Bürgisser and Cucker when studying the computa-
tional complexity of many basic problems regarding semi-algebraic sets [20]. While
they mainly work in the BSS-model, they also consider some problems in the bit-
model of computation (which we use throughout this paper). There, among others,
the complexity classes ∃R, ∀R, and ∀∃R appear under the names BP0(∃), BP0(∀),
and BP0(∀∃), respectively. (Here the BP stands for “binary part” and the superscript 0
denotes that there are no machine constants in the BSS machine.)

They notice that the computational complexity of some natural problems defies
to be classified into this hierarchy of complexity classes. In this paper, we have a
similar situation because we prove that the Hausdorff problem is complete for the
class ∀∃<R, supposedly between ∃R/∀R and ∀∃R. See also the paper by D’Costa
et al. [25], where they show that their escape problem is ∃∀�R-complete, though
supposedly between ∃R/∀R and ∃∀R.

The approach in this paper and in [25] is to make syntactic restrictions to the
quantifier-free parts of the sentences (i.e., allowing only strict inequalities as in
Strict-UETR). This defines new decision problems that in turn are used to define new
complexity classes like ∀∃<R. Bürgisser and Cucker take a different approach. They
define new quantifiers, called exotic quantifiers, that make a topological restriction on
the sentences [20]. Two of them are highly related to our work:

∀∗X ∈ R
n : ϕ(X) :≡ ∀ ε > 0, X ∈ R

n . ∃ X̃ ∈ R
n : ‖X − X̃‖2 < ε ∧ ϕ(X̃),

∃∗X ∈ R
n : ϕ(X) :≡ ∃ ε > 0, X ∈ R

n . ∀ X̃ ∈ R
n : ‖X − X̃‖2 < ε ⇒ ϕ(X̃).

Intuitively, ∀∗X ∈ R
n : ϕ(X) means that ϕ(x) does not need to be true for all x ∈ R

n

but just for all x ∈ D, where D is some dense subset of R
n . Conversely, ∃∗X ∈

R
n : ϕ(X) means that there must be an x ∈ R

n and some radius r > 0, such that for
all x̃ ∈ Bn(x, r) it holds that ϕ(̃x), where Bn(x, r) denotes the n-dimensional open
ball of radius r centered at x . As one would expect, it holds that

¬∀∗X ∈ R
n : ϕ(X) ≡ ∃∗X ∈ R

n : ¬ϕ(X) and

¬∃∗X ∈ R
n : ϕ(X) ≡ ∀∗X ∈ R

n : ¬ϕ(X).

Theorem 1.4, the main theorem of this section, establishes a relation between the
two approaches described above. As it turns out, the topological restrictions on the
formulas by Bürgisser and Cucker are equivalent to the syntactical restrictions done
for example in this paper. For this purpose, let Exotic-UETR denote the decision
problem whether a sentence of the form

∀∗X ∈ R
n . ∃ Y ∈ R

m : ϕ(X ,Y )
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with quantifier-free ϕ is true. Further, we define the complexity class ∀∗∃R to contain
all problems that polynomial-time many-one reduce to Exotic-UETR. We show that
the complexity classes ∀∗∃R and ∀∃<R coincide.

Theorem 1.4 Exotic-UETR is ∀∃<R-complete. Thus ∀∗∃R = ∀∃<R.

Proof The ∀∃<R-hardness of Exotic-UETR follows directly from Theorem 4.2. For
a given Strict-UETR instance

� :≡ ∀ X ∈ R
n . ∃ Y ∈ R

m : ϕ<(X ,Y )

with ϕ< ∈ QFF<, Theorem 4.2 allows to compute in polynomial time an equivalent
UETR instance

� :≡ ∀ X ∈ R
k . ∃ Y ∈ R

� : ψ(X ,Y )

with ψ ∈ QFF. Recall that on the one hand, if � is false, then the set of counterex-
amples ⊥(�) contains an open ball. On the other hand, if � is true, then ⊥(�) = ∅.
Therefore, � is true if and only if it is true for a dense subset of R

k . It follows that the
∀-quantifier can be replaced by the exotic ∀∗-quantifier in � and we get

� ≡ � ≡ ∀∗X ∈ R
k . ∃ Y ∈ R

� : ψ(X ,Y ).

Consequently, Exotic-UETR is ∀∃<R-hard.

To prove that Exotic-UETR is contained in ∀∃<R, we transform

∀∗X ∈ R
n . ∃ Y ∈ R

m : ϕ(X ,Y )

in polynomial time into an equivalent sentence of the form required byLemma6.4. This
lemmaallowsus to construct an equivalent Strict-UETR instance in polynomial time,
thereby proving ∀∃<R-membership. We start by expressing the exotic quantifier ∀∗
in terms of classical quantifiers ∀ and ∃, obtaining an equivalent sentence

∀ ε > 0, X ∈ R
n . ∃ X0 ∈ R

n, Y ∈ R
m : ‖X − X0‖2 < ε ∧ ϕ(X0,Y ).

By Lemma 2.1 we can compute in polynomial time an integer k and a polynomial
G : R

n+m+k → R such that ϕ(X0,Y ) is equivalent to ∃U ∈ R
k : G(X0,Y ,U ) = 0.

Plugging this into above sentence, we get another equivalent sentence

∀ ε > 0, X ∈ R
n . ∃ X0 ∈ R

n, Y ∈ R
m, U ∈ R

k :
‖X − X0‖2 < ε ∧ G(X0,Y ,U ) = 0.

This has the form required by Lemma 6.4. Hence, ∀∃<R-membership follows. ��
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7.1 Applications to the HAUSDORFF Problem

We now use our insights to establish the exact computational complexity of
Euclidean Relative Denseness (ERD) which was left as an open problem by
Bürgisser and Cucker [20]. In ERD, we are given two semi-algebraic sets A and B
and wonder whether A is contained in the closure of B, which is denoted by B. Note
that ERD is equivalent to deciding whether �dH(A, B) = 0. Bürgisser and Cucker
show:

Theorem 7.1 [20, Cor. 5.6] ERD is in ∀∃R and ∀∗∃R-hard.

They prove this in the BSS-model, but the same proof also works in the bit-
model. Building upon our insights, we are able to determine the exact computational
complexity of ERD (in the bit-model).

Theorem 7.2 ERD is ∀∃<R-complete.

Proof By Theorem 1.4 and ∀∗∃R-hardness from Theorem 7.1, it follows that ERD
is ∀∃<R-hard. Further, Theorem 6.1 implies that ERD is contained in ∀∃<R.
Consequently, ERD is ∀∃<R-complete. ��

Moreover, we remark that ∀∃<R-hardness of ERD implies ∀∃<R-hardness of the
general directed Hausdorff problem (for any distance t � 0): Given an instance
A, B ⊆ R

n of ERD, we define A′ := (A, 0) ⊆ R
n+1 and B ′ := (B, 1) ⊆ R

n+1. Then
�dH(A, B) = 0 if and only if �dH(A′, B ′) � 1.

8 Open Problems

We showed that the Hausdorff problem is ∀∃<R complete. We conclude the paper
with a list of interesting open questions:

While ∃R = ∃�R = ∃<R and ∀R = ∀�R = ∀<R are known [46], similar results
are unknown for higher levels of the hierarchy. In this context, we are particularly
interested in the following question:

Problem 1 Are the two complexity classes ∀∃<R and ∀∃R actually the same?

Regarding Problem 1, we are not aware of any algorithms that are more efficient if the
atoms are restricted to strict polynomial inequalities only. An answer to this question
is interesting in its own right. In a recent and still unpublished preprint Schaefer and
Štefankovič [47] claim that ∀∃R = ∀∃<R. This would also answer our second open
problem.

Problem 2 What is the computational complexity of deciding ∀-strict UETR
instances?

By definition, deciding ∀-strict UETR instances is ∀∃<R-hard and in ∀∃R. The most
important tools for showing ∀∃<R-membership in this paper and also in [25] are
the range restrictions for the quantified variables (Lemmas 3.6 and 3.7). These are
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still applicable to ∀-strict formulas. However, this seems not enough to transform an
arbitrary ∀-strictUETR instance efficiently into an equivalent Strict-UETR instance,
in which all atoms are not negated and are strict inequalities. If this can be done, then
this would significantly simplify the proof of Lemma 6.4 (and therefore Theorem 6.1
proving that Hausdorff is in ∀∃<R).

Our third open problem concerns even more restricted versions of the Hausdorff
problem that remain hard. As already noted in Corollary 1.3, Hausdorff remains
∀∃<R-hard if all atoms in the formulas describing A and B are quadratic equations.

Problem 3 What is the most restricted version of the Hausdorff problem that is still
∀∃<R-hard?

There are several directions to explore on Problem 3. Identifying meaningful restric-
tions on the sets A and B might lead to an easier problem. For example, it is
∀R-complete to decide if closed semi-algebraic sets A, B have Hausdorff distance
exactly zero (they do if and only if A = B):

Theorem 8.1 Deciding if two semi-algebraic sets are equal is ∀R-complete.

Proof Given quantifier-free formulas ϕA(X) and ϕB(X), it holds that A = B if and
only if ∀ X ∈ R

n :ϕA(X)⇔ ϕB(X). This shows ∀R-membership. To prove ∀R-
hardness, note that the sentence ∀ X ∈ R

n : ϕ(X) is equivalent to deciding whether

{x ∈ R
n | ϕ(x)} ?= R

n . ��
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