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Abstract
A (convex) polytope P ⊂ R

d and its edge-graph GP can have very distinct symmetry
properties, in that the edge-graph can be much more symmetric than the polytope. In
this article we ask whether this can be “rectified” by coloring the vertices and edges
ofGP , that is, whether we can find such a coloring so that the combinatorial symmetry
group of the colored edge-graph is actually isomorphic (in a natural way) to the linear
or orthogonal symmetry group of the polytope. As it turns out, such colorings exist
and some of them can be constructed quite naturally. However, actually proving that
they “capture polytopal symmetries” involves applying rather unexpected techniques
from the intersection of convex geometry and spectral graph theory.

Keywords Convex polytopes · Linear symmetries · Orthogonal symmetries ·
Edge-graph · Graph coloring · Graph symmetries

Mathematics Subject Classification 51M20 · 52B05 · 52B11 · 52B15 · 05C50

1 Introduction

In the context of this article, a polytope P ⊂ R
d will always be a convex polytope,

that is, P is the convex hull of finitely many points. A geometric symmetry of P is a
transformation of the ambient space from a certain pre-chosen base group that fixes the
polytope set-wise. Various base groups can be considered, such as Euclidean, affine
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or projective transformations. For this article we focus on

AutGL(P) := {T ∈ GL(Rd) | T P = P} and

AutO(P) := {T ∈ O(Rd) | T P = P},

the linear and orthogonal symmetry group of P , for which each symmetry also fixes
the origin. This is the most convenient choice for our setting, but the reader might as
well assume the polytopes to be suitably translated to have maximal symmetry.

While initially defined geometrically, one can ask whether it is possible to cap-
ture these symmetry groups combinatorially. This could mean to identify a purely
combinatorial object C whose combinatorial symmetry group Aut(C) is isomorphic to
AutGL(P) resp. AutO(P) in a natural way. For example, consider the edge-graph GP

of the polytope. Every, say, linear symmetry T ∈ AutGL(P) induces a distinct com-
binatorial symmetry σT ∈ Aut(GP ) of the edge-graph (see Fig. 1). In other words,
the edge-graph is at least as symmetric as the polytope. Usually however, it is strictly
more symmetric and is therefore unsuited for “capturing the polytope’s symmetries”
in our sense.

In this article we ask whether this can be fixed by coloring the vertices and edges
of the edge-graph, thereby encoding further geometric information, and hopefully
creating a combinatorial object that is exactly as symmetric as P (see Fig. 2). As
we shall see, this is indeed possible, but proving this requires us to involve rather
unexpected techniques from the intersection of convex geometry and spectral graph
theory.
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Fig. 1 The clockwise 120◦-rotational symmetry of the hexagon permutes its vertices. This permutation
corresponds to a combinatorial symmetry σ = (135)(246) of the edge-graph. Not every combinatorial
symmetry of GP comes from such a geometric symmetry, e.g. (123456) ∈ Aut(GP ). The polygon is
therefore strictly less symmetric than its edge-graph

Fig. 2 Various hexagons, and to each a coloring of its edge-graph that gives it “the same symmetries” as
the polygon
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We believe that this finding is surprising for at least two reasons. First, it is estab-
lished wisdom that the edge-graph of a general polytope in dimension d ≥ 4 carries
only little information about the full combinatorics or even the dimension of the poly-
tope, even for polytopes with “relatively few” edges (such as hypercubes [8]). Thus,
whether the geometric symmetries of P can be captured by coloring only the edges
and vertices of P (instead of, say, also higher dimensional faces) should be at least
controversial. Second, the analogous statement turns out to be wrong in more general
geometric settings (e.g. for graph embeddings, see Example 2.6). In fact, our proof
for the existence of these colorings is based on a construction by Ivan Izmestiev [7],
which relies heavily on the convexity of P . Because of this, it is unclear whether our
result generalizes to even some form of non-convex polytopes or polytopal complexes.

Our investigation is in part motivated from a result by Bremner et al. [2, 3]: given
a polytope P ⊂ R

d with n vertices, the authors construct a coloring of the complete
graph Kn , so that the symmetry group of the colored graph is isomorphic to AutGL(P)

(see Sect. 2.1). We can interpret this as follows: if we are allowed to color not only the
vertices and edges of P , but also other pairs of vertices without a direct counterpart
in the polytope’s combinatorics, then “capturing the polytope’s symmetries” is indeed
possible. The major result of our article is then that coloring these “non-geometric
edges” is not actually necessary.

Related questions for 3-dimensional polytopes have also been studied by Morozov
[11]. In his article he considered edge-length preserving symmetries of the edge-graph.
In our setting, this corresponds to preserving a coloring of GP in which each edge
is colored according to its length in P . Morozov shows that if each face of P ⊂ R

3

is inscribed in a circle (e.g. if P is itself inscribed in a sphere, which means that all
vertices of P lie on this sphere), then this coloring indeed captures the polytope’s
orthogonal symmetries.

We reiterate this introduction in a more formal manner.

1.1 Notation and Setting

Throughout the text we let P ⊂ R
d denote a convex polytope that is full-dimensional

(i.e., not contained in any proper affine subspace of R
d ) and contains the origin in its

interior (i.e., 0 ∈ int(P)). By Fδ(P) we denote the set of δ-dimensional faces of P .
We assume a fixed enumeration v1, . . . , vn ∈ F0(P) of the polytope’s vertices. In
particular, n will always denote the number of the vertices.

The edge-graph of P is the finite simple graph GP = (V , E) with vertex set V =
{1, . . . , n} and edge set E ⊆ (V

2

)
. We implicitly assume that i ∈ V corresponds to the

vertex vi ∈ F0(P), and that i j ∈ E (short for {i, j} ∈ E) if and only if conv{vi , v j } ∈
F1(P). The (combinatorial) symmetry group of GP is defined as1

Aut(GP ) = {σ ∈ Sym(V ) | i j ∈ E ⇔ σ(i)σ ( j) ∈ E} ⊆ Sym(V ),

where Sym(V ) denotes the symmetric group, i.e., the group of permutations of the
vertex set V .

1 For convenience, notions like the symmetry group, colorings, the adjacency matrix, etc. are only intro-
duced for the edge-graph, but it is understood that they apply to more general graphs as well.
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A coloring of GP is a map c : V ·∪ E → C that assign colors to both vertices and
edges, where C denotes an arbitrary set of colors. The pair (GP , c) is then a colored
edge-graph and will be abbreviated by Gc

P . Its combinatorial symmetry group is

Aut(Gc
P ) :=

{
σ ∈ Aut(GP )

∣∣∣
c(i) = c(σ (i)) for all i ∈ V
c(i j) = c(σ (i)σ ( j)) for all i j ∈ E

}
.

If σ ∈ Aut(Gc
P ), we also say that σ preserves the coloring c. The colored adjacency

matrix of Gc
P is the matrix Ac ∈ (C ∪ {0})n×n with entries

Ac
i j :=

⎧
⎪⎨

⎪⎩

c(i) if i = j,

c(i j) if i j ∈ E,

0 otherwise.

We explicitly allow for 0 ∈ C, which causes no problems as we never try to read
the graph structure from the colored adjacency matrix. Given the graph structure, the
coloring however is uniquely determined by Ac.

A geometric symmetry T ∈ AutGL(P) maps vertices of P onto vertices of P and
therefore induces a permutation σT ∈ Sym(V ) on the vertex set, that is,

T vi = vσT (i), for all i ∈ V .

Since T also maps edges of P onto edges of P , we have σT ∈ Aut(GP ). Recall that P
is full-dimensional, hence σT determines T uniquely, and we can think of AutGL(P)

as a subgroup of Aut(GP ). For convenience we shall simply write σ ∈ AutGL(P) if
σ = σT for some T ∈ AutGL(P).

The inclusion AutGL(P) ⊆ Aut(GP ) can be phrased as “the edge-graph GP is
at least as symmetric as P”. In general however GP is strictly more symmetric, i.e.,
AutGL(P) � Aut(GP ). Our hope is to find a suitable coloring c : V ·∪ E → C that
“destroys the additional symmetries”, so that we have AutGL(P) ∼= Aut(Gc

P ), where
the isomorphism is the inclusion. We say that c captures the linear symmetries of P .
To establish AutGL(P) ∼= Aut(Gc

P ), two inclusions need to be checked:

– AutGL(P) ⊆ Aut(Gc
P ): while always true for an uncolored graph, a coloringmight

break this inclusion.Wemust make sure that the colored edge-graph is still at least
as symmetric as the polytope.

– AutGL(P) ⊇ Aut(Gc
P ): for each σ ∈ Aut(Gc

P ) we need to construct a linear
symmetry Tσ ∈ AutGL(P) with Tσ vi = vσ(i) for all i ∈ V .

The discussion also applies verbatim to the orthogonal symmetry group AutO(P). In
particular, we shall write AutO(P) ⊆ Aut(GP ), and σ ∈ AutO(P) if σ = σT for
some T ∈ AutO(P). We say that a coloring c captures the orthogonal symmetries
if AutO(P) ∼= Aut(GP ) via inclusion. The main results of this article are explicit
constructions for

– colorings that capture linear symmetries (Theorem 4.7),
– colorings that capture orthogonal symmetries (Theorem 5.2).
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P
GP GP

Fig. 3 A hexagon and its edge-graph colored with the metric coloring (middle, Sect. 2.1) resp. the orbit
coloring (right, Sect. 2.2)

1.2 Overview

In Sect. 2 we introduce the metric coloring and the orbit coloring, two very natural
candidates for capturing certain polytopal symmetries. In this section we do not show
that either coloring capture linear or orthogonal symmetries, but we establish relevant
properties used in the upcoming sections. In Sect. 3 we derive a sufficient condition
for a coloring of the form c : V ·∪ E → R (the colors are real numbers) to capture
linear symmetries. The criterion will be in terms of the eigenspaces of the (colored)
adjacency matrix of the edge-graph. We shall call this the “linear algebra criterion”. In
Sect. 4 we introduce the Izmestiev coloring (based on a construction by Ivan Izmestiev
[7]) and we show that it satisfies the “linear algebra criterion” from Sect. 3.We thereby
establish the existence of afirst coloring that captures linear symmetries (Theorem4.7).
As a corollary we find that the orbit coloring captures linear symmetries as well
(Theorem 4.8). In Sect. 5 we show that a combination of the Izmestiev coloring and
the metric coloring captures orthogonal symmetries (Theorem 5.2).

2 Two Useful Colorings

This section is preliminary, in that we introduce two natural colorings of the edge-
graph, the metric coloring and the orbit coloring, without establishing either coloring
as capturing polytopal symmetries. In fact, this is an open question for the metric
coloring (see Question 6.6). The orbit coloring captures polytopal symmetries, but we
are not able to show this right away. Both colorings will play a role in the upcoming
sections. Figure 3 shows a polygon and its edge-graph with either coloring applied.

2.1 TheMetric Coloring

It is a well-known folklore result that a combinatorial symmetry σ ∈ Aut(GP )

corresponds to a Euclidean symmetry of the polytope if and only if ‖vi − v j‖ =
‖vσ(i) − vσ( j)‖ for all distinct i, j ∈ V . If in addition ‖vi‖ = ‖vσ(i)‖ for all i ∈ V ,
then also σ ∈ AutO(P). This can be stated using colorings:
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Theorem 2.1 Given a polytope P ⊂ R
d with vertex set F0(P) = {v1, . . . , vn}. Con-

sider the coloring c on the complete graph Kn with

c(i) := ‖vi‖2, for all i ∈ {1, . . . , n},
c(i j) := 〈vi , v j 〉, for all distinct i, j ∈ {1, . . . , n}.

Then Aut(K c
n )

∼= AutO(P).2

For convenience reasons (see below) we used the inner product 〈vi , v j 〉 in place of
‖vi − v j‖ to color the edges, which is easily seen to give an equivalent result.

The strength of this result lies in its immediate applicability: constructing this
“complete metric coloring” requires no knowledge of the edge-graph (which is usually
hard to come by), but only the vertex coordinates of P .3 In practice this is probably
one of the best tools for explicitly computing the orthogonal symmetries of a polytope
(or, in fact, of a general point configuration).

From a theoretical and aesthetic perspective however, this construction has the
shortcoming of containing massively redundant data and stepping outside the combi-
natorial structure of the polytope (we assign color to vertex pairs that are not edges
of the polytope). Naturally, we ask whether one can get away with coloring fewer
of these “non-edges”, ideally only the actual edges of the edge-graph. Based on this
hope we define the following:

Definition 2.2 The metric coloring of GP is the coloring m : V ·∪ E → R with

m(i) := ‖vi‖2, for all i ∈ V ,

m(i j) := 〈vi , v j 〉, for all i j ∈ E .

Whether the metric coloring captures orthogonal symmetries is an open question
(see also Question 6.6). Our reason for introducing it anyway is that in Sect. 5 the
metric coloring will be one ingredient to a coloring that indeed captures orthogonal
symmetries.

We close by mentioning that linear symmetries can be captured by quite similar
ideas. Note first that the complete metric coloring of Kn in Theorem 2.1 can also be
given via its colored adjacency matrix Ac = ���, where � := (v1, . . . , vn) ∈ R

d×n

is the matrix the columns of which are the vertex coordinates of P . It was shown in
[2, Thm. 2] that using Ac = �†� instead captures the linear symmetries, where
�† ∈ R

n×d is the Moore–Penrose pseudo inverse of �.
We recollect the adjacency matrix versions:

Theorem 2.3 Let K c
n be the colored complete graphwith colored adjacencymatrix A

c.

(i) If Ac = ���, then Aut(K c
n )

∼= AutO(P) (see Theorem 2.1).

2 A coloring whose colors are real numbers is still a purely combinatorial object. These numbers are just
used for a concise definition and could be replaced by any other finite set of distinguishable values. The
only information used from the coloring (in the form of the combinatorial symmetry group of the colored
graph) is whether two vertices/edges are of the same or a different color.
3 If P is given inH-representation, one can apply Theorem 2.1 to compute the orthogonal symmetry group
of the dual polytope P◦, which is identical to AutO(P) as a matrix group.
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(ii) If Ac = �†�, then Aut(K c
n )

∼= AutGL(P) (see [2, Thm. 2]).

The theory developed in Sect. 3 (Example 3.3) allows us to include a short proof of
Theorem 2.3 (ii) (essentially equivalent to the proof given in [4, Cor. 3.2]).

2.2 The Orbit Coloring

Acoloring c that captures, say, linear symmetriesmust assign the same color to vertices
and edges in the same AutGL(P)-orbit, as otherwise Aut(Gc

P ) cannot act transitively
on the points in each orbit. This is exactly what guarantees the inclusion AutGL(P) ⊆
Aut(Gc

P ). The coloring that takes this idea to the extreme is the orbit coloring:

Definition 2.4 The (linear) orbit coloring o of GP assigns the same color to vertices
(resp. edges) of GP if and only if the corresponding vertices (resp. edges) of P are in
the same AutGL(P)-orbit.

An analogous coloring can be defined for orthogonal symmetries, which we shall call
the orthogonal orbit coloring of GP , still denoted by o. For the sake of conciseness,
this section only discusses the (linear) orbit coloring, but all statements carry over to
the orthogonal version in the obvious way.

A coloring c is said to be finer than a coloring c̄ if

c(i) = c(ı̂) �⇒ j c̄(i) = c̄(ı̂), for all i, ı̂ ∈ V ,

c(i j) = c(ı̂ ĵ ) �⇒ c̄(i j) = c̄(ı̂ ĵ ), for all i j, ı̂ ĵ ∈ E .

Conversely, c̄ is said to be coarser than c. So the following three statements emerge
as equivalent necessary criteria for a coloring c to capture linear symmetries:

– Gc
P is at least as symmetric as P .

– AutGL(P) ⊆ Aut(Gc
P ).

– c is coarser than the orbit coloring.

As we shall prove in Sect. 4 (Theorem 4.8), the orbit coloring indeed captures linear
symmetries and is therefore the finest coloring with this property. However, this is
surprisingly hard to show directly. Our eventual indirect proof of this fact will make
use of the following:

Lemma 2.5 If there is any coloring that captures linear symmetries, then so does the
orbit coloring o.

Proof Clearly AutGL(P) ⊆ Aut(Go
P ). For the converse assume that c is a coloring

which captures linear symmetries, in particular,Aut(Gc
P ) ⊆ AutGL(P). Since o is finer

than c, and since joining color classes can only increase the amount of combinatorial
symmetries, we find

Aut(Go
P ) ⊆ Aut(Gc

P ) ⊆ AutGL(P).

Thus AutGL(P) ∼= Aut(Go
P ). ��
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Note that for general graph embeddings the orbit coloring does not always capture the
geometric symmetries of the embedding.

Example 2.6 Consider the complete bipartite graph K4,4 with vertex set V1 ·∪ V2 =
{1, 2, 3, 4} ·∪ {5, 6, 7, 8} and an embedding into R

4 defined as follows:

v1 = (+1, 0, 0, 0), v5 = (0, 0,+1, 0),

v2 = (0,+1, 0, 0), v6 = (0, 0, 0,+1),

v3 = (−1, 0, 0, 0), v7 = (0, 0,−1, 0),

v4 = (0,−1, 0, 0), v8 = (0, 0, 0,−1).

One can verify that the linear symmetry group of this embedding acts transitively on
the vertices as well as the edges. Thus, a coloring c that is at least as symmetric as the
graph embedding must assign the same color to all vertices, and like-wise, the same
color to all edges. That is, Aut(K c

4,4) = Aut(K4,4). However, one can also see that the
given embedding has a strictly smaller symmetry group than Aut(K4,4). For example,
σ := (12) ∈ Aut(K4,4) cannot be realized as a geometric symmetry.

3 A Linear Algebra Criterion for Capturing Symmetries

For this section fix a coloring c : V ·∪ E → Cwith AutGL(P) ⊆ Aut(Gc
P ). The goal is

to derive a sufficient criterion for c to ensure the opposite inclusion and thus capturing
of linear symmetries. Recall that this amounts to showing that for each combinatorial
symmetry σ ∈ Aut(Gc

P ) we can find a linear symmetry Tσ ∈ AutGL(P) with

Tσ vi = vσ(i) for all i ∈ V . (1)

Let us investigate the difficulties in constructing these transformations.
First, note that we can express (1) for all i ∈ V simultaneously by rewriting it into

a single matrix equation as follows:

Tσ (v1, . . . , vn) = (vσ(1), . . . , vσ(n)) = (v1, . . . , vn)�σ ,

where �σ ∈ Perm(n) denotes the corresponding permutation matrix.4 If we define
� := (v1, . . . , vn) ∈ R

d×n as the matrix in which the polytope’s vertices vi appear as
columns, this further compactifies to

Tσ � = ��σ . (2)

This equation will be our benchmark: every ansatz for defining the transformations
Tσ must satisfy (2), which is then also sufficient.

4 We chose to define �σ so that on multiplication from left it permutes the rows as prescribed by σ . We
emphasize that this, counter-intuitively, means (�σ v)i = vσ−1(i) for a vector v ∈ R

n .
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Now, if � were invertible, we could just solve (2) for Tσ , satisfying (2) “by force”.
However, � ∈ R

d×n is not a square matrix (since P is full-dimensional, we have
n ≥ d + 1). Another hope to “solve for Tσ ” is to use the Moore–Penrose pseudo
inverse of �: the matrix �† ∈ R

n×d whose columns form a dual basis to the rows
of �, in particular, ��† = Idd . This suggests the following ansatz:

Tσ := ��σ �†. (3)

When does this ansatz satisfy (2)? We compute

Tσ �
(3)= ��σ �†� = ��σ πU , (4)

where πU := �†� is the orthogonal projector onto the subspaceU := span�† ⊆ R
n .

To arrive at (2) wewould need to get rid of the projectorπU on the right side of (4). The
main result of this section gives a sufficient criterion, the “linear algebra criterion”, for
when this is possible, expressed in terms of spectral properties of the colored adjacency
matrix.

Theorem 3.1 Let c : V ·∪ E → R be a coloring of GP with AutGL(P) ⊆ Aut(Gc
P ).

If U := span�† is an eigenspace of the colored adjacency matrix Ac ∈ R
n×n, then c

captures the linear symmetries of P.

Proof Fix a combinatorial symmetry σ ∈ Aut(Gc
P ). Recall the following well-known

property of the colored adjacency matrix Ac: if σ ∈ Aut(Gc
P ), then

�σ A
c = Ac�σ .

Now, if Ac and �σ commute then the eigenspaces of Ac (including U ) are invariant
subspaces of �σ , i.e., �σU = U . Equivalently, �σ commutes with the projector πU .
This suffices to show that the map Tσ := ��σ �† satisfies (2):

Tσ � = ��σ �†� = ��σ πU = �πU�σ = �(�†�)�σ =
Idd︷ ︸︸ ︷

(��†) ��σ = ��σ .

Hence, the map σ �→ Tσ defines the desired inclusion Aut(Gc
P ) ⊆ AutGL(P). ��

It might not be immediately obvious howTheorem 3.1 is a helpful reformulation of the
problem. To apply it we need to construct a matrix Ac with two very special properties:
first, Ac must be a (colored) adjacency matrix of the edge-graph GP , that is, it must
have non-zero entries only where GP has edges. Second, we need to ensure that Ac

has U as an eigenspace. It is not even clear that these two conditions are compatible.
We come back to this in the next section.

Remark 3.2 While we are mainly interested in the polytopal case, Theorem 3.1 could
have been stated in much greater generality: the proof does not use that GP is the
edge-graph of a polytope or that the columns of � are in convex position. We address
this again in the outlook (see Remark 6.5) and the following example.
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Fig. 4 Several instances of the generalized dual P◦(c) of the cube (the usual polar dual of the cube is the
regular octahedron; the second from the left). The polytopes differ by a single facet-defining plane being
shifted along its normal vector

Example 3.3 Consider the “obvious” matrix Ac with eigenspace U := span�†:

Ac := �†�.

This matrix has most likely no zero-entries and is therefore not a colored adjacency
matrix of GP (except if GP is the complete graph). However, it is exactly the colored
adjacency matrix of the complete metric coloring as discussed in Theorem 2.3 (ii).
As noted in Remark 3.2, our “linear algebra criterion” can be applied nevertheless:
consider the colored complete graph K c

n with colored adjacency matrix Ac. Then
Theorem 3.1 directly implies Theorem 2.3 (ii) (this short proof is essentially equivalent
to the one given in [4, Cor. 3.2]).

4 The Izmestiev Coloring

In this section we introduce a coloring of GP which satisfies the “linear algebra
condition” Theorem 3.1. This coloring is based on a construction by Izmestiev [7] and
we shall call it the Izmestiev coloring. The coloring is built in a quite unintuitive way.
First, we need to recall that for a polytope P with 0 ∈ int(P) the polar dual P◦ is
defined as

P◦ := {x ∈ R
d | 〈x, vi 〉 ≤ 1 for all i ∈ V }.

We generalize this notion: for a vector c = (c1, . . . , cn) ∈ R
n let

P◦(c) := {x ∈ R
d | 〈x, vi 〉 ≤ ci for all i ∈ V }.

Then P◦(1, . . . , 1) = P◦ and P◦(c) is obtained from P◦ by shifting facets along their
normal vectors (see Fig. 4).

In the following, vol(C) denotes the relative volume (relative to the affine hull
of C) of a compact convex set C ⊂ R

d .

Theorem 4.1 [Izmestiev [7, Thm. 2.4]] For a polytope P ⊂ R
d with 0 ∈ int(P)

consider the matrix M ∈ R
n×n (which we shall call the Izmestiev matrix of P) with

components

Mi j := ∂2vol(P◦(c))
∂ci∂c j

∣∣∣
c=(1,...,1)

.
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(In particular, vol(P◦(c)) is two times continuously differentiable at c.) M then has
the following properties:

(i) Mi j < 0 whenever i j ∈ E.
(ii) Mi j = 0 whenever i j /∈ E and i �= j .
(iii) M has a unique negative eigenvalue of multiplicity one.
(iv) M�� = 0, where � = (v1, . . . , vn) ∈ R

d×n is the matrix introduced in (2).
(v) dim ker M = d.

Remark 4.2 In the words of [7], the matrix M constructed in Theorem 4.1 is aColin de
Verdièrematrix of the edge-graph, that is, amatrix satisfying a certain list of properties,
including (i), (ii), and (iii), and the so-called strong Arnold property (for details, see
e.g. [6]). Among the Colin de Verdière matrices, one usually cares about the ones
with the largest possible kernel. The dimension of this largest kernel is known as the
Colin de Verdière graph invariant μ(GP ) [6], and Theorem 4.1 (v) then shows that
μ(GP ) ≥ d. This is not too surprising and was known before. However, the result of
Izmestiev is remarkable for a different reason: it shows that there is a Colin de Verdière
matrix whose kernel has dimension exactly d (property (v)) and that is compatible with
the geometry of P (property (iv)).

Remark 4.3 Izmestiev also shows that the matrix M can be expressed in terms of
simple geometric properties of the polytope: for i j ∈ E let fi j ∈ Fd−2(P◦) be the
dual face to the edge conv{vi , v j } ∈ F1(P). Then

Mi j = − vol( fi j )

‖vi‖ · ‖v j‖ · sin∠(vi , v j )
.

Definition 4.4 The Izmestiev coloring I : V ·∪ E → R of GP is defined by

I(i) := Mii , for all i ∈ V ,

I(i j) := Mi j , for all i j ∈ E,

where M ∈ R
n×n is the Izmestiev matrix of P .

Observation 4.5 Since Mi j = 0 whenever i j /∈ E and i �= j (by Theorem 4.1 (ii)), the
colored adjacency matrix AI of GI

P is exactly the Izmestiev matrix M.

To apply the “linear algebra criterion” Theorem 3.1 we first need to show that GI
P is

at least as symmetric as P . This is straightforward if we use that the Izmestiev matrix
is a linear invariant of P . We include a proof for completeness:

Proposition 4.6 AutGL(P) ⊆ Aut(GI
P ).

Proof Fix a linear symmetry T ∈ AutGL(P) and let σT ∈ Aut(GP ) be the induced
combinatorial symmetry of the edge-graph. We need to show that σT preserves the
Izmestiev coloring, that is, σT ∈ Aut(GI

P ). This requires two ingredients. For the
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first one, one checks that the generalized polar dual P◦(c) (like the usual polar dual)
satisfies

(T P)◦(c) = T−�P◦(c),

which yields

vol ((T P)◦(c)) = |det(T−�)| · vol(P◦(c)) = vol(P◦(c)), (5)

where we use that det (T−�) = det(T ) = ±1 holds for all linear transformations in a
finite matrix group such as AutGL(P). The second ingredient is the following:

(T P)◦(c) = {x ∈ R
d | 〈x, T vi 〉 ≤ ci for all i ∈ V }

= {x ∈ R
d | 〈x, vσT (i)〉 ≤ ci for all i ∈ V } (6)

= {
x ∈ R

d | 〈x, vi 〉 ≤ c
σ−1
T (i) for all i ∈ V

} = P◦(�σT c).
5

Putting everything together, we can show I(i) = I(σT (i)) for all i ∈ V , and equiva-
lently for edges. We show both at the same time by proving Mi j = MσT (i)σT ( j) for all
i, j ∈ {1, . . . , n}:

Mi j = ∂2vol(P◦(c))
∂ci ∂c j

∣∣∣
c=c0

= ∂2vol(P◦(�σ c))

∂cσT (i) ∂cσT ( j)

∣∣∣
c=c0

(6)= ∂2vol((T P)◦(c))
∂cσT (i) ∂cσT ( j)

∣∣∣
c=c0

(5)= ∂2vol(P◦(c))
∂cσT (i) ∂cσT ( j)

∣∣∣
c=c0

= MσT (i)σT ( j),

where we set c0 := (1, . . . , 1) ∈ R
n . ��

Theorem 4.7 The Izmestiev coloring captures the linear symmetries of P.

Proof By Theorem 4.6, the Izmestiev coloring I is at least as symmetric as P , and so
we can try to apply the “linear algebra criterion” (Theorem 3.1) to show that I captures
linear symmetries. That is, we need to show thatU := span�† is an eigenspace of the
colored adjacency matrix AI of GI

P . Recall that A
I is exactly the Izmestiev matrix

(Theorem 4.5), and sowe can try to use the various properties of thismatrix established
in Theorem 4.1.

First, U = span�† = span�� (since the columns of �� and �† are dual bases
of U ), and so Theorem 4.1 (iv) can be read as U ⊆ ker AI. Second, we have both
dimU = rank� = d (since P is full-dimensional) and dim ker AI = d (by Theorem
4.1 (v)). Comparing dimensions, we thus have U = ker AI. We conclude that U is
an eigenspace of AI (namely, the eigenspace to eigenvalue 0). The “linear algebra
criterion” Theorem 3.1 then asserts that I captures the linear symmetries of P . ��

5Recall that �σ was defined so that (�σ v)i = vσ−1(i) for a vector v ∈ R
n .
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By Theorem 2.5, if there is any coloring that captures linear symmetries, then the orbit
coloring does so as well:

Corollary 4.8 The orbit coloring captures the linear symmetries of P.

Remark 4.9 While the orbit coloring was quickly established as the finest coloring
that captures linear symmetries, determining a coarsest coloring with this property
(which might not be unique) seems like a challenging task. The Izmestiev coloring is
in general neither the finest nor a coarsest coloring of this kind.

5 Capturing Orthogonal Symmetries

For this sectionwe consider the orthogonal symmetry groupAutO(P) and all notations
without an explicit hint to the kind of symmetry (such as the orbit coloring o) implicitly
refer to their orthogonal versions.

Recall the metric coloring m : V ·∪ E → R (Definition 2.2) with

m(i) = ‖vi‖2, for all i ∈ V ,

m(i j) = 〈vi , v j 〉, for all i j ∈ E .

The inclusion AutO(P) ⊆ Aut(Gm
P ) is easy to see. And while we consider m a

promising candidate for actually capturing orthogonal symmetries, we are yet unable
to prove the inclusion in the other direction (see Question 6.6). Nevertheless, we
can show that combining the metric coloring with a coloring that captures linear
symmetries suffices to capture orthogonal symmetries.

Definition 5.1 Given two colorings c : V ·∪ E → C and c̄ : V ·∪ E → C, the product
coloring c× c̄ : V ·∪ E → C×C is defined by

(c× c̄)(i) := (c(i), c̄(i)), for all i ∈ V ,

(c× c̄)(i j) := (c(i j), c̄(i j)), for all i j ∈ E .

The essential (and straightforward to verify) property of the product coloring is

Aut(Gc×c̄
P ) = Aut(Gc

P ) ∩ Aut(G c̄
P ), (7)

from which we immediately see that if both Gc
P and G c̄

P are at least as symmetric
as P , then the same holds for Gc×c̄

P .

Theorem 5.2 If a coloring c captures linear symmetries, then the product coloring
c×m captures orthogonal symmetries.

Proof The inclusion AutO(GP ) ⊆ Aut(Gc×m
P ) follows immediately from (7) and the

fact that respective inclusions hold for c and m. It remains to verify the inclusion in
the other direction. For that, fix σ ∈ Aut(Gc×m

P ). Since c captures linear symmetries,
and by (7) we have σ ∈ Aut(Gc

P ) ⊆ AutGL(P), that is, σ corresponds to a linear
symmetry Tσ ∈ AutGL(P). It remains to show Tσ ∈ O(Rd).
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It suffices to verify 〈Tσ vi , Tσ v j 〉 = 〈vi , v j 〉 for every two i, j ∈ V (since P is
full-dimensional and therefore its vertices contain a basis). Thus, let us fix i, j ∈ V
and define B := {k ∈ V | i = k or ik ∈ E}. Note that {vk | k ∈ B} already contains
a basis of R

d and so v j can be written as

v j =
∑

k∈B
αkvk

for some coefficients αk ∈ R. Then

〈Tσ vi , Tσ v j 〉 =
∑

k∈B
αk〈Tσ vi , Tσ vk〉

=
∑

k∈B
αk〈vσ(i), vσ(k)〉 (∗)=

∑

k∈B
αk〈vi , vk〉 = 〈vi , v j 〉

follows, where in (∗) we used that for k ∈ B either i = k or ik ∈ E , and that σ

preserves the metric coloring. Thus, Tσ is orthogonal. ��
By (the orthogonal version of) Theorem 2.5, if there is any coloring that captures
orthogonal symmetries, then so does the orthogonal orbit coloring (and it is the finest
coloring with this property).

Corollary 5.3 The orthogonal orbit coloring captures orthogonal symmetries.

Remark 5.4 Similarly to the linear case we can give an explicit formula to translate
a combinatorial symmetry σ ∈ Aut(Gc

P ), where c captures orthogonal symmetries,
into an actual orthogonal symmetry:

Tσ := ��σ ��,

where� := (v1, . . . , vn) ∈ R
d×n is thematrixwith the polytope’s vertices as columns,

and �σ is the permutation matrix to σ .

6 Outlook, Open Questions, and Further Notes

In this article we have shown that the edge-graph of a convex polytope, while generally
a very weak representative of the polytope’s geometric nature, still has sufficient
structure to let us encode two important types of geometric symmetries: linear and
orthogonal symmetries. We achieved this by coloring the vertices and edges of the
edge-graph.

The first coloring for which we established that it “captures the polytope’s linear
symmetries” was the Izmestiev coloring (Theorem 4.7), based on an ingenious con-
struction by Izmestiev. But we also found that the orbit coloring, a conceptually very
easy coloring, does the job as well (Theorem 4.8). Analogous colorings exist for the
orthogonal symmetries as well (Theorems 5.2 and 5.3).
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In the following we briefly discuss various potential generalizations and follow up
questions concerning these results. This further highlights the very special structure
of convex polytopes that went into our theorems, emphasizing again that these results
are non-trivial to achieve and to generalize. We also want to mention the following
neat consequence for “very symmetric” polytopes:

Corollary 6.1 If P ⊂ R
d is vertex- and edge-transitive (i.e., its linear resp. ortho-

gonal symmetry group has a single orbit on vertices and edges), then P is exactly as
symmetric as its edge-graph.

This observation has previously been made in [5, Thm. 5.2]. No classification of
simultaneously vertex- and edge-transitive polytopes is known so far, and so this fact
might help in the study of this class.

6.1 Capturing Other Types of Symmetries

Besides linear and orthogonal symmetries, there are at least two further common
groups of symmetries associated with a polytope: the projective symmetries and the
combinatorial symmetries (that is, the symmetries of the face lattice). We can ask
whether those too can be captured by a colored edge-graph:

Question 6.2 Is there a coloring c : V ·∪ E → C that captures projective resp. combi-
natorial symmetries:

Aut(Gc
P ) ∼= AutPGL(P) resp. Aut(Gc

P ) ∼= AutComb(P) ?

There might be a general strategy derived from the following inclusion chain of the
symmetry groups:

AutO(P) ⊆ AutGL(P) ⊆ AutPGL(P) ⊆ AutComb(P).

As it turns out, having solved the coloring problem further to the left in the chain can
help to solve the problem further to the right—at least to some degree.

For example, note that every polytope P can be linearly transformed via a trans-
formation T ∈ GL(Rd) so that AutGL(P) = AutO(T P). That is, a coloring of GP

that captures the orthogonal symmetries of T P (which has the same edge-graph)
also captures the linear symmetries of P . In still other words, we solved the problem
of capturing linear symmetries by making use of our ability to capture orthogonal
symmetries.

In our approach, we have not made use of this because we needed to solve the linear
case before the orthogonal one. However, this can be of use for capturing projective
symmetries. More explicitly, the question is as follows: for every polytope P , is there
a projective transformation T ∈ PGL(Rd) so that AutPGL(P) = AutGL(T P)?

The same approach seems doomed for capturing combinatorial symmetries: there
are polytopes with combinatorial symmetries that cannot be realized geometrically
([1] discusses the case of a combinatorial symmetry that cannot be made linear; to our
knowledge, realizing them as projective symmetries remains to be discussed).
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6.2 Edge-Only Coloring

For capturing the symmetries of certain 2-dimensional polytopes it is necessary to color
both vertices and edges (cf. Fig. 2). But it is unclear whether this is still necessary in
higher dimensions.

Question 6.3 Is it sufficient to color only the edges if d ≥ 3? That is, is there an
edge-only coloring c : E → C that captures (for example) linear symmetries?

Morozov [11] showed that the answer is affirmative in the special case of 3-dimen-
sional polytopes with inscribed 2-faces.

A vertex-only coloring is not always sufficient. For example, in even dimensions
exist vertex-transitive neighborly polytopes other than the simplex: e.g. for n ≥ 6 we
have the following cyclic 4-polytope with n vertices that is not a simplex:

P := conv

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

cos(2π i/n)

sin(2π i/n)

cos(4π i/n)

sin(4π i/n)

⎞

⎟⎟
⎠ ∈ R

4
∣∣∣∣ i ∈ {1, . . . , n}

⎫
⎪⎪⎬

⎪⎪⎭
.

The edge-graph of P is the complete graph Kn , and P has a single orbit of vertices.
Thus, if c : V → C is a vertex-only coloring that captures the symmetries of P , then
all vertices of Kn must receive the same color. But if the edges receive no color, then
Aut(K c

n ) = Sym(V ). However, it is known that the linear symmetry group of the
cyclic polytope P other than a simplex is strictly smaller than Sym(V ) [9].

6.3 Non-Convex Polytopes and General Graph Embeddings

Our approach suggests no immediate generalization to non-convex polytopes or vari-
ous forms of polytopal complexes.

Question 6.4 What is the most general geometric setting in which the symmetries
can be “captured” by coloring the edge-graph? Does it work for non-convex and/or
self-intersecting polytopes? What about more general polytopal complexes?

A vaster generalization are graph embeddings, that is, maps v : V (G) → R
d . We

already mentioned in Example 2.6 that the orbit coloring does not generally capture
the linear symmetries in this setting (and then no coloring can).

One setting inwhich capturing symmetries of such embeddings is possible is already
suggested by Theorem 3.1, whose proof nowhere uses the concept of convexity or
polytopes.

Remark 6.5 (spectral graph embeddings) Given some graph G = (V , E), let M ∈
R
n×n be a weighted adjacency matrix of G (that is, M is symmetric and i j /∈ E imply

Mi j = 0), θ an eigenvalue of M and u1, . . . , ud ∈ R
n a basis of the θ -eigenspace.

Then the rows of the matrix (u1, . . . , ud) ∈ R
n×d provide d-dimensional coordinates,

one per vertex of G. This is called a spectral graph embedding. The proof of Theorem
3.1 goes through unchanged to show that the symmetries of such embeddings can
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Fig. 5 Anon-convex shape and twodrawings of its edge-graphwithmetric coloring. The colored edge-graph
has more symmetries than the polygon

Fig. 6 A convex polygon P with 0 /∈ int(P) (the gray dot indicates the origin) and two drawings of its
edge-graph with metric coloring. The colored edge-graph has more symmetries than the polygon

be captured by coloring the edges and vertices using the entries of M . Examples of
such embeddings are ubiquitous, including Colin de Verdière embeddings [6], spectral
graph drawings [10], and, according to Izmestiev’s Theorem, polytope skeleta.

It would be interesting to determine other tangible geometric criteria under which
“capturing symmetries” of graph embeddings is possible.

6.4 TheMetric Coloring

It is yet unknownwhether themetric coloring alone can capture orthogonal symmetries
(cf. Sects. 2.1 and 5).

Question 6.6 Can the metric coloring m capture orthogonal symmetries?

Again, [11] provides an affirmative answer for the special case of 3-polytopes with
inscribed 2-faces. Any potential affirmative answer to Question 6.6 will need to make
use of similar assumptions as the construction of the Izmestiev coloring, namely,
convexity and 0 ∈ int(P), as there are known counterexamples for the other cases
(see Figs. 5 and 6). An interesting special case is the following:

Question 6.7 If P is inscribed (i.e., it has all its vertices on a common sphere around
the origin) and has all edges of the same length, then is it true that P is as symmetric
as its edge-graph, that is, AutO(P) ∼= Aut(GP )?
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