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Abstract
This paper studies the discrete differential geometry of the checkerboard pattern
inscribed in a quadrilateral net by connecting edge midpoints. It turns out to be a
versatile tool which allows us to consistently define principal nets, Koenigs nets and
eventually isothermic nets as a combination of both. Principal nets are based on the
notions of orthogonality and conjugacy and can be identified with sphere congru-
ences that are entities of Möbius geometry. Discrete Koenigs nets are defined via the
existence of the so-called conic of Koenigs. We find several interesting properties of
Koenigs nets, including their being dualizable and having equal Laplace invariants.
Isothermic nets can be defined as Koenigs nets that are also principal nets. We prove
that the class of isothermic nets is invariant under both dualization and Möbius trans-
formations. Among other things, this allows a natural construction of discrete minimal
surfaces and their Goursat transformations.

Keywords Differential geometry · Isothermic surfaces · Discrete differential
geometry · Koenigs nets

Mathematics Subject Classification 51B10 · 53A99

1 Introduction

Discretizing principal curvature nets is of great interest not only from a differential
geometric point of view, but also in geometry processing, computer graphics and even
freeform architecture [14, 18]. The most prominent versions of discrete principal nets
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are circular nets and conical nets [4, 14]. A newdiscretizationwas introduced in [2] and
later in [17], independently. In [2] principal nets are defined as a pair of planar quadri-
lateral nets with orthogonal corresponding edges. This approach can be extended to
n-dimensional space and was driven by the discrete Euler–Poisson–Darboux equa-
tion. The authors could show that their discrete confocal coordinates are the separable
orthogonal solutions of the discrete Euler–Poisson–Darboux equation in analogy to
the smooth theory. Coming from a completely different angle, the discretization of
principal curvature nets in [17] is based on the checkerboard pattern inscribed in a
quadrilateral net constructed by connecting edgemidpoints. This approach has already
proven to be useful in various applications [10, 11, 16]. Its effectiveness suggests that
there is more to the concept than just the good numerical approximation qualities
already hinted at in [17]. Indeed, checkerboard patterns are equivalent to pairs of
classical nets and as such have been used in [2, 3], providing equivalent definitions
of principal nets. This paper contributes further to the discrete theory introduced in
[2, 3] while adopting the point of view of [17].

A checkerboard pattern is a quadrilateral net where every second face is a paral-
lelogram. The edges of these parallelograms can be seen as discrete derivatives. If
all faces in between the parallelograms are planar we speak of a conjugate checker-
board pattern. If additionally all parallelograms are rectangles we speak of a principal
checkerboard pattern. As the concept of checkerboard patterns is Euclidean in nature,
it is surprising that principal nets are Möbius invariant if they are seen as sphere con-
gruences [19]. Lifting these sphere congruences to the projective model of Möbius
geometry preserves principality and offers the appropriate environment to efficiently
study these geometric objects.

For a netwith planar faces the supporting lines of neighboring edges intersect. Every
face can be associated with six such intersection points. In [7] discrete Koenigs nets
have been characterized by the property that these six points lie on a common conic
section, the so-called conic of Koenigs [12].We apply this definition to a checkerboard
pattern. The resulting discrete Koenigs nets enjoy several interesting properties such
as projective invariance and the existence of dual nets similar to the approach in [5].
Usually, Koenigs nets have been known as nets with equal Laplace invariants. While
this property has been lost with previous discretizations of Koenigs nets, we manage
to retain it in a natural way.

We define discrete isothermic nets as discrete Koenigs nets that are also principal.
Analogous to the classical smooth theory, the class of discrete isothermic nets is invari-
ant under both dualization and Möbius transformations. This is not only interesting
from a theoretical point of view, but also offers a practical way to define and construct
discrete minimal surfaces as surfaces that are dual to their own Gauß image. Conse-
quently, the dual of any isothermic net on the unit sphere can be seen as a minimal
surface. All of these steps can now be easily discretized with our approach.
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Fig. 1 Notation for vertices and faces

Fig. 2 An inscribed first order face, which is always a parallelogram

2 Checkerboard Patterns

2.1 Preliminaries

In this paper we study two-dimensional nets f : D → R
3. All our constructions are

local which is why we can always assume D = Z
2. To denote the one-ring or two-ring

neighborhood of a vertex f (k, l) we use the shift notation as can be seen in Fig. 1.
The index i resp. ī indicates that the i-th coordinate is increased resp. decreased by
one with i ∈ {1, 2}. For instance,

f1(k, l) = f (k + 1, l), f2̄(k, l) = f (k, l − 1),

f2̄2̄(k, l) = f (k, l − 2), f12(k, l) = f (k + 1, l + 1).

We call the images of f the vertices and the pairs ( f , f1) or ( f , f2) the edges of the
net. Further we denote by Q f the face ( f , f1, f12, f2). If no confusion can arise, we
drop the index and just write Q.

Definition 2.1 A checkerboard pattern is a regular quad net where every second face
is a parallelogram: Q f (k, l) is a parallelogram if k + l ≡ 0 (mod 2).

Even if at first glance the definition of checkerboard patterns seems quite restrictive,
they are actually very natural objects. From any given net f we can easily construct
a checkerboard pattern c f by midpoint subdivision as described in [17]: The vertices
of c f are the edge midpoints of f . There are then two kinds of faces in c f . The first
type of face is formed by the midpoints of edges of each faceQ of f (compare Fig. 2).
It is elementary that these faces are parallelograms whose edges are parallel to the
two diagonals of Q. We will refer to them as first order faces, as their edges can be
interpreted as discrete first order derivatives. We denote the first order face associated
to the quadrilateral Q f (k, l) by B f (k, l).
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Fig. 3 The first order faces of the checkerboard pattern are the blue parallelograms B f inscribed in the
faces of the control net f . The white quadrilaterals W f in between are the second order faces

The second type of face is formed by the midpoints of edges emanating from a
common vertex of f . Those faces are, in general, non-planar quadrilaterals. We will
refer to them as second order faces, because we associate properties related to second
order derivatives with them. The second order face associated to the vertex f (k, l)
will be denoted by W f (k, l), compare Fig. 3.

If no confusion can arise we will drop the index f in all quantities. Following [17],
we call c f the checkerboard pattern of f and f the control net of c f , see Fig. 4.

Remark 2.2 For a given checkerboard pattern there is a three-parameter family of
control nets. A control net is uniquely determined after the choice of an initial vertex
as all other vertices can be obtained through iterated reflection at the vertices of the
checkerboard pattern. However, the two nets defined via the diagonals of the control
net are always defined uniquely by the checkerboard pattern up to translation, compare
Fig. 5, right. Consequently any property of the checkerboard pattern can be traced back
to the diagonal nets and vice versa. Building the theory from the point of view of the
diagonal nets is the approach chosen in [2, 3]. This seems more suitable for higher
dimensional nets but as the focus of this paper is on nets in three-dimensional space
the author sticks to checkerboard patterns due to their intuitive visualization.

Remark 2.3 The checkerboard pattern approach can be extended to nets with combina-
torial singularities. For each n-gon, midpoint subdivision creates an inscribed n-gon,
see e.g. an inscribed triangle in Fig. 4.

For ε > 0, let the net f : Z2 → R
3 sample a smooth surface parametrization

φ : R2 → R
3, i.e., f (k, l) = φ(εk, εl). We define the directions

u = 1√
2

(1, 1)T and v = 1√
2

(−1, 1)T .

Intuitively speaking, the parameter lines of f and c f enclose an angle of 45 degrees.
So, we can think of c f as being parameterized along the directions u and v in the
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Fig. 4 Control net and associated checkerboard pattern with a combinatorial singularity

coordinate plane. The edge vectors

δu f := 1√
2

( f12 − f ) and δv f := 1√
2

( f2 − f1)

of B f (k, l) approximate the directional derivatives ∂uφ and ∂vφ at (ε(k + 1/2),
ε(l + 1/2)) up to second order. Indeed,

1

ε
δu f (k, l) = ∂uφ

(
ε

(
k + 1

2

)
, ε

(
l + 1

2

))
+ O(ε2),

1

ε
δv f (k, l) = ∂vφ

(
ε

(
k + 1

2

)
, ε

(
l + 1

2

))
+ O(ε2),

as a simple Taylor expansion shows. Moreover, it can be shown by Taylor expansion
that the difference of opposite edge vectors in a second order face W f (k, l) approxi-
mates ∂uvφ(εk, εl) by first order. This motivates the notation of δu f and δv f for the
edge vectors of B f and gives rise to the following definition.

Definition 2.4 We call a checkerboard pattern orthogonal if its first order faces are
rectangles. We call it conjugate if its second order faces are planar. A checkerboard
pattern is principal if it is both conjugate and orthogonal, compare Fig. 5, left.

Remark 2.5 Conjugacy of a checkerboard pattern c f is already determined by its con-
trol net f and so are orthogonality and principality. Indeed, second order faces of c f

are planar if and only if the two nets defined by the diagonals of f have planar faces,
compare Fig. 5, right. Thus the class of conjugate checkerboard patterns is invariant
under projective transformations applied to the vertices of the control net.
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Fig. 5 Left: A principal checkerboard pattern. All the white faces are planar and all blue faces are rectan-
gles. Right: The two nets defined by the diagonals of the control net have planar faces if and only if the
checkerboard pattern is conjugate

3 Curvature Theory

In this section, we define a discrete version of the shape operator connecting nets to
their Gauß images. We find that the properties of the shape operator for conjugate or
principal nets are consistent with the smooth theory, see Fig. 6. Moreover, the discrete
shape operator provides a way to numerically approximate smooth principal curvature
directions, compare Fig. 7. We start by defining the Gauß image of a net.

Definition 3.1 Let f be a net. Then

n = ( f1 − f1̄) × ( f2 − f2̄)

‖( f1 − f1̄) × ( f2 − f2̄)‖

is a net with vertices on the unit sphere S2.We call n theGauß image or vertex normals
of f . Additionally, for the face Q f = ( f , f1, f12, f2) we define the face normal N
by

N = ( f12 − f ) × ( f2 − f1)

‖( f12 − f ) × ( f2 − f1)‖ . (1)

The generalized surface area of Q f is the surface area of the orthogonal projection
of Q f in direction of N ,

area(Q) = det (δu f , δv f , N ). (2)

Remark 3.2 For planar quadrilateralswithout self-intersections the generalized surface
area is the same as the surface area. The face normal N is a normal vector to B f and
for a planar face Q it coincides with a normal vector to Q. The vertex normal n at
f is also the face normal of the corresponding second order face W f in the sense of
formula (1).

Having defined a Gauß image n for a net f , we can relate the discrete deriva-
tives (δu f , δv f ) and (δun, δvn) with the help of the corresponding checkerboard
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Fig. 6 Left: A control net of a principal checkerboard pattern and the eigenvectors of the shape operator.
Right: The checkerboard pattern of the same net. We see that the first order faces are aligned with the
eigenvectors of the shape operator as stated by Corollary 3.5

Fig. 7 If the net f samples a smooth parametric surface φ, the underlying checkerboard pattern can be used
to compute the discrete principal curvature directions (left) which are visually not distinguishable from the
analytically computed directions (right)

patterns c f and cn . The idea is to define the shape operator as the linear map-
ping (δu f , δv f ) �→ (δun, δvn). However, we face the problem that (δu f , δv f ) and
(δun, δvn) not necessarily span the same two-dimensional subspace. This is overcome
by projecting in the direction of N , leading to the following definition:

Definition 3.3 Let f be a net, let n f be its Gauß image and let PN be the orthogonal
projection along the corresponding face normal N . We define S as the function on Z2

that maps (k, l) to a linear operator in the space spanned by (δu f , δv f ) such that

S(δu f , δv f ) = PN (δun, δvn),

where all entities are evaluated at a point (k, l) ∈ Z
2. We call S(k, l) the shape

operator of the face Q f (k, l). If no confusion can arise we drop the argument (k, l).
The eigenvalues of S(k, l) are denoted by the symbols κ1 and κ2 and are called the
principal curvatures. The eigenvectors of S(k, l) are theprincipal curvature directions.
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Fig. 8 Left: A face Q f of f and the corresponding Gauß image Qn . The shape operator maps the first
order face B f to the first order face Bn projected into the plane of B f . Right: The faceQ and its offsetQt

For each face Q we can define an offset face Qt by intersecting the plane parallel
to B f at distance t with the lines spanned by the vertices ofQ and their corresponding
vertex normals n, compare Fig. 8, left. Similarly to [9, 15, 18], the area of Qt can be
expressed by the Steiner formula

area(Qt ) = (1 + t trace(S) + t2 det(S)) area(Q), (3)

which can be shown by short algebraic manipulations.

Lemma 3.4 For a conjugate checkerboard pattern the identities 〈Sδu f , δv f 〉 =
〈δu f , Sδv f 〉 = 0 hold. Thus the shape operator is symmetric.

Proof For a conjugate checkerboard pattern c f the Gauß image n is the normal vector
of the corresponding second order faceW f . Thus, it is orthogonal to all the edges that
W f shares with neighboring first order faces. As B f is a parallelogram, both n f and
(n f )12 are orthogonal to the edge δv f . We find that

0 = 〈n − n12, δv f 〉 = 2〈δun, δv f 〉 = 2〈PN δun, δv f 〉 = 2〈Sδu f , δv f 〉.

The same argument applies to 〈Sδv f , δu f 〉. As δu f , δv f constitute a basis of the
domain of the shape operator, the shape operator is symmetric. 
�
Corollary 3.5 For a principal checkerboard pattern the edge vectors (δu f , δv f ) of B f

are eigenvectors of the shape operator.

Proof This follows immediately from 〈Sδu f , δv f 〉 = 0 = 〈δu f , δv f 〉. 
�
As the partial derivatives can be observed in first order faces, so can the first funda-

mental form I. By using the first order faceBn of theGauß image and the corresponding
derivatives δun and δvn we can analogously define a second fundamental form.
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Definition 3.6 Consider a net f and its Gauß image n. We define the first and second
fundamental forms by letting

I :=
(〈δu f , δu f 〉 〈δu f , δv f 〉

〈δv f , δu f 〉 〈δv f , δv f 〉
)

, II :=
(〈δu f , δun〉 〈δu f , δvn〉

〈δv f , δun〉 〈δv f , δvn〉
)

.

Lemma 3.7 A matrix representation � of the shape operator with respect to the basis
(δu f , δv f ) is given by � = I−1 II.

Proof When using coordinates with respect to (δu f , δv f ) the inner product 〈 · , · 〉
is represented by the coordinate matrix I. For any vector v ∈ span (δu f , δv f ) we
have 〈v, δun〉 = 〈v, PN δun〉 and likewise for δvn. Thus the bilinear form 〈 · , S · 〉 is
represented by the coordinate matrix II. For two vectors w1 and w2 with coordinates
w1 and w2 we find that

wT
1 IIw2 = 〈w1, Sw2〉 = wT

1 I�w2.

It follows that II = I�. 
�
Remark 3.8 Due to Lemma 3.4, in a conjugate checkerboard pattern the second fun-
damental form is a diagonal matrix.

In analogy to [15] and [9] the area defined in Definition 3.1 can be computed by a
mixed area form. This motivates the following definition.

Lemma and Definition 3.9 Let A( ·, · ) be the mixed area form defined by

A(Q f ,Qg) = det (δu f , δvg, N f ) + det (δu g, δv f , N f )

2
(4)

for two quadrilaterals with the same normal N f = Ng . Then area(Q f ) = A(Q f ,Q f )

holds.

The mixed area form is closely related to the mean and Gaußian curvatures.

Lemma 3.10 For a net f and its Gauß image n we define Q̃n as the orthogonal
projection of Qn onto the supporting plane of B f . The following identities hold:

det(I) = A(Q f ,Q f )
2, κ1κ2 = det(�) = A(Q̃n, Q̃n)

A(Q f ,Q f )
,

κ1 + κ2

2
= trace(�)

2
= A(Q f , Q̃n)

A(Q f ,Q f )
.

Proof These identities can be shown by algebraic manipulations, in particular making
use of the Lagrange identity

〈a ×b, c×d〉 = det

(〈a, c〉 〈b, c〉
〈a, d〉 〈b, d〉

)
.


�
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Remark 3.11 Definition 3.1 requires that every normal vector lies exactly on the unit
sphere. For principal nets one can relax this requirement and instead adapt the lengths
of normal vectors, such that the first order face Bn of n is parallel to the first order face
B f of f , as we will see in Sect. 4.3. This does not change principal directions and the
Steiner formula (3) still holds.

4 Möbius Transformations of Checkerboard Patterns

This section discusses a way to apply Möbius transformations to orthogonal nets.
This was originally introduced by [19], who showed that the orthogonality of a net
is equivalent to the existence of a sphere congruence of orthogonally intersecting
spheres. A Möbius transformation can then be applied to these spheres, and from the
transformed congruence we can obtain the transformed orthogonal net. We show that
the class of principal nets is invariant under such Möbius transformations. A fact that
is also evident form the higher dimensional point of view developed in [19], but we
present a proof adjusted to our setting. Moreover, the orthogonal sphere congruence
allows us to embed principal nets in the projective model of Möbius geometry PR4,1.
This turns out to be a powerful tool for studying principal nets and gives rise to a
non-Euclidean generalization of discrete principal nets.

We write s = (c, r2) for a sphere s with center c ∈ R
3 and squared radius r2 ∈ R.

Two spheres s1 = (c1, r21 ) and s2 = (c2, r22 ) intersect orthogonally, if and only if

〈c1 − c2, c1 − c2〉 = r21 + r22 . (5)

Note that by definition this extends to spheres of negative squared radii. We can
interpret this in the projective model of Möbius geometry by including the points
inside the light cone as will be explained in more detail later in this section. A sphere
s1 = (c1, r21 ) with r21 ≥ 0 intersects a sphere s2 = (c2, r22 ) with r22 < 0 orthogonally
if and only if s1 intersects the sphere (c2,−r22 ) in antipodal points. This allows a
geometric interpretation of the spheres with negative squared radius. See Fig. 9 for a
two-dimensional example. This setup allows for the following lemma and definition.

Lemma and Definition 4.1 Let f be a net and r2 : Z2 → R. We call the function
s = ( f , r2) a sphere congruence and interpret it as a family of spheres with centers in
f and possibly imaginary radius r . The checkerboard pattern of c f is orthogonal if and
only if there exists a one-parameter family of sphere congruences s = ( f , r2) such
that neighboring spheres intersect orthogonally. We call such a sphere congruence the
Möbius representation s f of f and c f . If the checkerboard pattern associated to a
sphere congruence s is principal, we call s a principal sphere congruence.

Proof Consider a quadrilateral Q = ( f , f1, f12, f2). We fix the squared radius r2 of
s = ( f , r2) at an initial point (k, l) ∈ Z

2. This uniquely determines the radii r1 and
r2 since r2i = 〈 f − fi , f − fi 〉 − r2 for i ∈ {1, 2}. Now, an easy computation shows
that
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c2 c1

r1r2

s2

s1

Fig. 9 Left: The Möbius representation of a two-dimensional orthogonal net. Every red circle intersects
every neighboring blue circle orthogonally and vice versa. The green dashed circle represents a circle
with negative squared radius. Right: The real valued circle s1 = (c1, r21 ) intersects the imaginary circle

s2 = (c2, r22 ) with r22 < 0 orthogonally if and only if it intersects the real valued circle s̃2 = (c2, −r22 ) in
antipodal points

〈 f12 − f1, f12 − f1〉 − r21 = 〈 f12 − f2, f12 − f2〉 − r22
⇐⇒ 〈 f − f12, f1 − f2〉 = 0.

Hence, the radius r12 iswell defined if and only if the checkerboard pattern c f is orthog-
onal. This process can be continued unambiguously, so every radius only depends on
the choice of the initial radius. 
�

Remark 4.2 If the domain of the net f is not simply connected, the orthogonal sphere
congruences s f do not exist in general. It is an interesting question for further research
which properties might guarantee the existence of a Möbius representation for more
complex topology or for combinatorial singularities.

Lemma and Definition 4.3 Let f be the control net of an orthogonal checkerboard
pattern c f and let s f be its Möbius representation. The image of s f under a Möbius
transformation is again an orthogonal sphere congruence with a corresponding net
f ′ and checkerboard pattern c f ′ . We call f ′ resp. c f ′ a Möbius transformation of f
resp. c f .

Theorem 4.4 Principal checkerboard patterns are mapped to principal checkerboard
patterns under Möbius transformations.

Proof This follows directly from Theorem 4.7 as will be explained later on in this
section. 
�
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4.1 Projective Model of Möbius Geometry

To prove Theorem 4.4 we embed the Möbius representation s f of a principal checker-
board pattern c f into the projectivemodel ofMöbius geometry. A concise introduction
to Möbius geometry can be found in [4]. For an extensive presentation of the theory
the reader is referred to [8]. We briefly state the key points for this paper.

Let e1, . . . , e5 be the canonical basis vectors of the five-dimensional Minkowski
space R4,1. It is equipped with the inner product

〈〈ei , e j 〉〉 =

⎧⎪⎨
⎪⎩
1 i = j ≤ 4,

0 i �= j,

−1 i = j = 5.

For x ∈ R
4,1 \ {0} we write [x] for the one-dimensional subspace spanned by x , i.e.,

[x] = {y ∈ R
4,1 : y = λx, λ ∈ R}.

We write PR
4,1 for the space of these one-dimensional subspaces. Any sphere s =

(c, r2) can be identified with a point of PR4,1 by the mapping

ι(s) =
[(

c,
|c|2 − r2 − 1

2
,
|c|2 − r2 + 1

2

)]
∈ PR

4,1.

We can view c as a vector in R4,1 where the fourth and fifth components are zero. By
defining the vectors e0 := (e5 − e4)/2 and e∞ := (e4 + e5)/2, we can write

ι(s) = [
c + e0 + (|c|2 − r2)e∞

]
.

Points can be seen as spheres with radius zero, so ι extends to points in R
3. Observe

that 〈〈ι(s), ι(s)〉〉 = r2. Thus the set of spheres with radius zero is identified with the
light cone L := {x ∈ PR

4,1 : 〈〈x, x〉〉 = 0}. The points inside the light cone are those
with 〈〈x, x〉〉 < 0 and correspond to spheres with negative squared radii.

From a Möbius geometric point of view, planes in R
3 are spheres with infinite

radius and center at infinity. We write ε = (n, d) for the plane defined by the equation
〈n, x〉 = d. The mapping ι can now be extended to spheres with infinite radius (i.e.,
planes) by

ι(ε) = [n + 0 · e0 + 2de∞].

The advantage of the projective model of Möbius geometry lies in the well-known
linearization of orthogonal intersection and Möbius transformations [4].

Theorem 4.5 Two spheres s1 and s2 in R
3 with squared radii in R ∪ {∞} intersect

orthogonally if and only if 〈〈ι(s1), ι(s2)〉〉 = 0. If one sphere has radius 0, orthogonal
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intersection is equivalent to just intersection. Möbius transformations in R
3 canon-

ically extended to spheres and planes are exactly the orthogonal transformations
in PR

4,1.

Definition 4.6 Let g be a net Z2 → PR
4,1. If adjacent vertices are orthogonal, i.e.,

〈〈g, g1〉〉 = 〈〈g, g2〉〉 = 0, and the corresponding checkerboard pattern cg is conjugate,
we call g a pseudo-principal net in PR

4,1. In order to avoid confusion we will denote
nets in PR4,1 by g, while we use f for nets in R3.

Let f be the control net of an orthogonal checkerboard pattern and let s f be a
corresponding sphere congruence. Then ι◦s f is a netZ2 → PR

4,1, where the vertices
are the images of s f under ι.

Theorem 4.7 If s f is a principal sphere congruence in R
3, then ι(s f ) is a pseudo-

principal net inPR4,1. If g is a pseudo-principal net inPR4,1, then ι−1(g) is a principal
sphere congruence in R

3.

Proof Orthogonality of adjacent vertices of a net in PR4,1 is equivalent to the orthog-
onal intersection of adjacent spheres in R

3.
Let s f be a principal sphere congruence in R

3. The four spheres s1̄, s2̄, s1, and s2
all intersect both s and the plane ε spanned by the centers f1̄, f2̄, f1 orthogonally,
compare Fig. 10, left. Consequently, the four points ι(s1), ι(s1̄), ι(s2), and ι(s2̄) all lie
in the subspace ι(s)⊥ ∩ ι(ε)⊥. Its dimension is two, since ι(ε) and ι(s) are linearly
independent. Hence, ι(s) is a pseudo-principal checkerboard pattern in PR4,1.

Now let g be a pseudo-principal net in PR
4,1 and let U be the two-dimensional

projective subspace that contains the four vertices g1, g1̄, g2, and g2̄. We denote byU⊥
its orthogonal complement with respect to the Minkowski inner product 〈〈 ·, · 〉〉. The
space of all points in PR4,1 that represent a plane in R3 is given by {e∞}⊥. Referring
to the projective space PR4,1 we have dimU⊥ = 1 and dim {e∞}⊥ = 3. It follows
that dim (U⊥∩ {e∞}⊥) ≥ 0 and thus contains at least one point ε. Since ε is a plane
that intersects all points in U orthogonally, we conclude that all centers of g1, g1̄, g2,
and g2̄ lie in ε and thus ι−1(g) is a principal sphere congruence. 
�
Now Theorem 4.4 easily follows from Theorem 4.7.

Proof of Theorem 4.4 As Möbius transformations in PR
4,1 are given by orthogonal

transformations of R4,1, they preserve both orthogonality and k-dimensional sub-
spaces. Thus pseudo-principal nets are mapped to pseudo-principal nets in PR4,1 and
by Theorem 4.7 this translates to principal nets in R

3 as well. The application of
Theorem 4.4 is demonstrated in Fig. 11. 
�
Remark 4.8 In [19] an n-dimensional generalization of orthogonal checkerboard pat-
terns is discussed. The three-dimensional case would be a pair of nets D1, D2 : Z3 →
R

n , where an edge of D1 is orthogonal to all edges of the corresponding face of D2 and
vice versa. Consequently, every face is planar which makes every two-dimensional
cut of the pair D1, D2 a pair of diagonal nets of a principal checkerboard pattern
in our sense. Thus, the preservation of planarity is an obvious consequence of the
preservation of orthogonality from a higher-dimensional point of view.
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Fig. 10 This figure illustrates why conjugacy of a checkerboard pattern is preserved under Möbius trans-
formations. The four gray spheres are intersected orthogonally by the pencil spanned by the orange sphere
and the orange plane. After applying a Möbius transformation the four gray spheres still intersect a pencil
orthogonally which contains a plane. Hence the centers of the transformed spheres are still coplanar

Fig. 11 In the first row we see, from left to right, the control net, the checkerboard pattern and a Möbius
representation of a principal net on the torus. The second row shows the image of the first row after aMöbius
transformation is applied to the Möbius representation

Remark 4.9 In classical differential geometry, a principal net f can be characterized
by the fact that its lift to the light cone f̂ = f + e0 + | f |2e∞ is a conjugate net. The
mapping ι( · ) is a natural discretization of f �→ f̂ as ι(s) converges to f̂ if the radius
of the sphere s with center f converges to zero. Like in the classical theory ι(s) is a
conjugate net. However, ι(s) reveals even more structure, namely the orthogonality of
spheres, that cannot be observed in the limit anymore.

4.2 A Projective Point of View

It is enlightening to also study the embedding of the sphere congruence to PR4,1 from
a more geometric perspective.

The mapping ι can be seen as stereographically projecting a sphere s to the unit
sphere S

3 and further mapping the image s′ ⊆ S
3 to its polar point p = ι(s) with

respect to S
3, compare Fig. 12. The polar point p is the apex point of the cone that

touches S3 along s′. The polar point of any sphere s′
1 ⊆ S

3 that intersects s′ orthogo-
nally lies in the polar hyperplane of p and is thus conjugate to p. Hence, the diagonals
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Fig. 12 The geometric description of the mapping ι in R
2. A planar orthogonal circle pattern is stereo-

graphically projected onto the unit sphere. A new orthogonal net in space is obtained by the polar points of
the circles on the sphere

of the quadrilateral (ι(s), ι(s1), ι(s12), ι(s2)) are not only orthogonal but conjugate
with respect to S

3. The projective approach also gives meaning to the vertices of
f in the projective model. They are the images of ι(s) under the central projection
R
4 → R

3 through the north pole of S3.

Remark 4.10 The unique sphere with center ι(s) that intersects S3 orthogonally, inter-
sects S3 along s′. Hence, the vertices ι(s f ) define a unique sphere congruence S of
three-dimensional spheres, where every sphere intersects its neighbors and also S

3

orthogonally. The stereographic projection S
3 → R

3 can be extended to a Möbius
transformation ζ : PR4,1 → PR

4,1. The spheres of s f can be directly obtained from
the spheres of S by applying ζ and then intersecting the image with R3.

Remark 4.11 This geometric approach further allows us to generalize orthogonal
sphere congruences to non-Euclidean geometry by replacing the stereographic projec-
tion from S

3 to R
3 by a central projection ψ : S3 → R

3. A sphere congruence on S
3

conjugate with respect to S
3 gets mapped to a congruence of non-Euclidean spheres.

These non-Euclidean spheres intersect in directions conjugate with respect to ψ(S3)∗
the contour quadric of ψ(S3), compare Fig. 13 and Lemma B.1 in Appendix B.

4.3 A Gauß Image for Principal Nets

As mentioned in Remark 3.11, we can find an alternative definition of a Gauß image
making use of the polarity properties of principal nets. This alternative is particularly
interesting in connection with the minimal surfaces described in Sect. 6.1.

Definition 4.12 If f is the control net of a principal checkerboard pattern c f , then n
is a principal Gauß image of f and c f , if the edges of c f are parallel to the edges of
cn and every sphere of sn intersects the unit sphere orthogonally.
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2 2

Fig. 13 Both images show an orthogonal net of circles on S2 which by a central projection is mapped to a
net of conics. The net of conics is an h-orthogonal net of h-circles in the Cayley–Klein model of hyperbolic
geometry

The principal Gauß image n of f from Definition 4.12 can be seen as a parallel net
of f on the unit sphere. The parallelism can be observed in the corresponding checker-
board patterns c f and cn , while the connection to the unit sphere can be observed in
the Möbius representation sn . Instead of requiring vertices to lie exactly on the unit
sphere, we require their corresponding spheres to intersect the unit sphere orthogo-
nally. In the limit of spheres with radius zero the vertices lie exactly on the unit sphere.
The principal Gauß image of a principal net f is determined up to the choice of one
initial vertex along a prescribed line.

Lemma 4.13 Let f be a net with principal checkerboard pattern. Then there exists a
one parameter family of principal Gauß images n of f in the sense of Definition 4.12.
Diagonals of faces of n are polar to one another with respect to the unit sphere.

Proof To show the polarity of diagonals we consider a quadrilateral of four spheres
(s, s1, s12, s2)with centers (n, n1, n12, n2) that intersect S2 orthogonally. Additionally
every sphere intersects its neighbors orthogonally. The centers of all spheres that
intersect both S2 and s orthogonally lie on a plane that contains the circle S2 ∩ s. This
plane is exactly the polar plane of n. The same argument goes for n12 and thus the
diagonals (n1, n2) and (n, n12) lie on conjugate lines.

The uniqueness follows immediately from the polarity. Let us fix one vertex n(k, l)
of n. Due to the parallelism of checkerboard patterns, we know the directions of
diagonals emanating from n(k, l). The four corresponding polar lines all lie in the
polar plane of n(k, l) and their intersection points determine the neighbors of n(k, l).
Thus, the initial vertex n(k, l) corresponding to f (k, l) needs to be chosen on a line
orthogonal to W f (k, l). Note that polar lines are orthogonal and thus the parallelism
is preserved. As polarity is a symmetric relation this process can be extended over the
entire net.

Now we can choose the initial radius of the sphere s(k, l) at vertex n(k, l) such that
it intersects S2 orthogonally. The neighboring spheres of s(k, l) have their centers in
the plane of all centers of spheres that intersect s(k, l) and S2 orthogonally. Hence, all
radii can be chosen such that the orthogonal intersection with both, all neighbors and
the unit sphere is met. Hence the so constructed net n is indeed the principal Gauß
image of f . 
�
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Remark 4.14 Wecould also use the principal Gauß image inDefinition 3.3 of the shape
operator. This only works for principal nets but it allows us to drop the orthogonal
projection PN . Moreover, this approach fits the theory of minimal surfaces very well,
as we will discuss in Sect. 6.1.

5 Koenigs Nets

In [7] Adam Doliwa defined discrete Koenigs nets as those conjugate nets where
for every quadrilateral the six focal points lie on a common conic section, the so
called conic of Koenigs. We apply the same definition to the checkerboard pattern
c f instead of the control net f obtaining thus a subclass of the nets defined in [7].
This adaptation proves to be very useful as we can naturally dualize checkerboard
patterns. Analogous to the smooth theory such a dual checkerboard pattern exists if
and only if c f is a Koenigs net. Even though the definition of Koenigs nets is based
on checkerboard patterns we find that the class of Koenigs nets is invariant under
projective transformations applied to the vertices of the corresponding control nets.
Again in [7], Doliwa defined discrete analogs of the so called Laplace invariants of
a conjugate net. These projective invariants appear, in a slightly adapted way, in the
checkerboard approach as well. However, it is only in this setting that Koenigs nets can
be characterized as exactly those nets that have equal Laplace invariants analogously
to the smooth theory.

5.1 Characterization of Koenigs Nets

The discretization in both this paper and in [7] is based on the smooth characterization
of Koenigs nets that can be found in [13].

Definition 5.1 Let c be a conjugate checkerboard pattern. For the edge (c, ci ) we
denote the supporting line by �(c, ci ). We call the checkerboard pattern c a Koenigs
checkerboard pattern if for every first order face (c, c1, c12, c2) the six points

p1 = �(c, c1) ∩ �(c2, c12), p2 = �(c, c2) ∩ �(c1, c12),

p3 = �(c, c1) ∩ �(c−2, c1−2), p4 = �(c2, c12) ∩ �(c22, c122),

p5 = �(c, c2) ∩ �(c1̄, c1̄2), p6 = �(c1, c12) ∩ �(c11, c112),

are all different and lie on a common conic section, see Fig. 14.

Remark 5.2 Since in Definition 5.1 the points p1 and p2 are always at infinity, we
know that the conic of Koenigs is always a hyperbola. Around every second order face
the existence of a conic is always met, as the four points p3, . . . , p6 lie on the line at
infinity. Thus every Koenigs checkerboard pattern is also a Koenigs net in the sense
of [7].

Analogously to [5], the Koenigs property is equivalent to the closeness of a multi-
plicative one-form defined on the edges of the checkerboard pattern.
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c c1

c12c2
c11

c112

c1̄

c1̄2

c22
c122

c2̄

c12̄

p1

p2

p3p4

p5

p6

Fig. 14 Definition of a Koenigs net. The supporting lines of neighboring edges in the checkerboard pattern
intersect in the six points p1, . . . , p6. If all of them lie on a common conic section the checkerboard pattern
is Koenigs. The points p1 and p2 are always at infinity, here indicated by the dotted line, so the conic section
is a hyperbola

Definition 5.3 (multiplicative one-form) Let g be a net with planar quadrilaterals. Let
further p = �(g, g1) ∩ �(g2, g12) and p′ = �(g, g1) ∩ �(g2̄, g12̄), see Fig. 15. We
define a multiplicative one-form q along the edge (g, g1) as the cross-ratio of the four
points g, g1, p, and p′,

q(g, g1) := (g − p)

(g1 − p)
· (g1 − p′)

(g − p′)
=: cr (g, g1, p, p′).

and along the edge (g1, g) as

q(g1, g) := cr (g1, g, p, p′) = 1

q(g, g1)
.

Analogously we define q(g, g2) and q(g2, g) as

q(g, g2) := cr (g, g2, r , r ′) and q(g2, g) := cr (g2, g, r , r ′),

where r = �(g, g2) ∩ �(g1̄, g1̄2) and r ′ = �(g, g2) ∩ �(g1, g2).

Remark 5.4 The multiplicative one-form fromDefinition 5.3 is known in the literature
by the name Laplace-Invariant, see for example [4, p. 77, Exer. 2.15]. However, in this
paper the name Laplace invariant is reserved for Definition 5.7, where we basically
apply the same definition to the edges of the control net.

The next theorem is contained in [4] as Exercise 2.23. It could also be formulated
for general quadrilateral nets with planar faces.
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g g1 pp

g12
g2

g2̄
g12̄

Fig. 15 The multiplicative one-form q is defined on the edge (g, g1) as q(g, g1) = cr (g, g1, p, p′)

f

f 2̄

f 1f 2

f 1̄

c
c1

c12c2
p

P

q(c2 , c12 ) =
f 1 − P

f 2 − P

Fig. 16 The one-form q defined on the edges of the checkerboard pattern can be expressed by the vertices
of the control net

Theorem 5.5 Let c be a conjugate checkerboard pattern of disc-topology such that
around every first order face the six points p1, . . . , p6 from Definition 5.1 are all
distinct. Let further q be the multiplicative one-form from Definition 5.3 defined on
the edges of c. Then q is closed if and only if c is Koenigs.

Proof This theorem can be proven by introducing a projective coordinate system fol-
lowed by lengthy computations that can be found in detail in the appendix or in [4, p.
374]. 
�

The multiplicative one-form can also be formulated via the vertices of the control
net as the following lemma shows.

Lemma 5.6 Let W f = (c, c1, c12, c2) be a second order face of a conjugate checker-
board pattern c with control net f . We choose the notation such that c = ( f1̄ + f )/2,
c1 = ( f + f2̄)/2, c12 = ( f + f1)/2 and, c2 = ( f + f2)/2, see Fig. 16. Let further
p = �(c2, c12) ∩ �(c, c1) and P = �( f1̄, f2̄) ∩ �( f1, f2). Then the multiplicative
one-form q is computed on the edge (c2, c12) as

q(c2, c12) = c12 − p

c2 − p
= f1 − P

f2 − P
.

Proof First note that the point p′ = �(c2, c12) ∩ �(c22, c122) lies at infinity. Thus
the fraction (c2 − p′)/(c12 − p′) in the definition of q(c2, c12) equals 1. Since the
quadrilateral ( f1̄, f2̄, f1, f2) is the image of the quadrilateral (c, c1, c12, c2) under the
affine mapping α(x) = 2x − f the second equality holds. 
�

This gives rise to the following lemma and definition.

123



Discrete & Computational Geometry

P Q

f122

f12

c122

c12

f –1

f –2

c1

c22

c

c f
2

f112

f1f2

Fig. 17 The product q(c2, c12)q(c122, c22) equals the cross-ratio cr ( f1, f2, P, Q) and is thus invariant
under projective transformations applied to the control net

Lemma and Definition 5.7 Consider the setting of Fig. 17 with the first order face
(c2, c12, c122, c22). The product q(c2, c12)q(c122, c22) is a projective invariant of the
control net. It is called Laplace invariant and can be expressed via the control net by

q(c2, c12)q(c122, c22) = f1 − P

f2 − P
· f2 − Q

f1 − Q
= cr ( f1, f2, P, Q). (6)

For every face of the control net we have two Laplace invariants associated with the
corresponding diagonals.

Theorem 5.8 Let c f be a conjugate checkerboard pattern with control net f such that
for every face the six points p1, . . . , p6 from Definition 5.1 are all distinct. Then c f is
Koenigs if and only if for every face of f the two Laplace invariants associated to its
diagonals are equal.

Proof The two Laplace invariants of a face of the control net are equal if and only if
the multiplicative one-form defined on the edges of the inscribed first order face is
closed. Hence the statement follows from Theorem 5.5. 
�
Remark 5.9 There are special cases where not all points p1, . . . , p6 are distinct, but
the Laplace invariants are still equal. Those cases will turn out to be dualizable as well,
so it makes sense to consider these nets to be Koenigs nets as well.

Remark 5.10 It is worth noticing that Theorem 5.8 is independent of the choice of the
control net. So if a checkerboard pattern is Koenigs every associated control net has
equal Laplace invariants.

Corollary 5.11 Koenigs checkerboard patterns are mapped to Koenigs checkerboard
patterns under projective transformations applied to the vertices of the control nets.

Proof The Laplace invariants are defined as cross-ratios of vertices and intersection
points of lines of the control net. Hence it is invariant under projective transformations
and so the property of equal invariants is preserved as well. 
�
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Remark 5.12 Discrete Laplace invariants are defined for Koenigs nets in [7, p. 5] in
a similar fashion. The benefit of the checkerboard pattern approach is that now the
Koenigs nets can be characterized as “nets with equal invariants”, compare Theo-
rem 5.8, like one would expect coming from the smooth theory.

5.2 Dualization

Definition 5.13 Let c be a checkerboard pattern.We call c′ a dual checkerboard pattern
of c, if it is edgewise parallel and corresponding first order faces are similar but have
reversed orientation. If such a dual checkerboard pattern c′ exists, we call c dualizable.

In analogy to the smooth case we find that the dualizable checkerboard patterns are
precisely the Koenigs checkerboard patterns. The following theorem holds.

Theorem 5.14 Let c be a conjugate checkerboard pattern. We introduce the following
local notation in the face patch of a given first order face, see Fig. 18:

• Let a = ‖δv f ‖ and b = ‖δu f ‖ be the edge lengths of the central first order face.
• We enumerate the surrounding first order faces counterclockwise and denote their

edge lengths with ai and bi accordingly.
• For every second order face in the patch we denote its interior angles by αi , βi ,

γi , and δi in counterclockwise order.

Let ri = ai/bi be the ratio of edge lengths for each first order face. If no two of
the six points p1, . . . , p6 from Definition 5.1 are equal, the following conditions are
equivalent:

(i)
4∏

i=1

sin γi

sin βi
r (−1)i

i = 1.

(ii) There exists a non-trivial conformal Combescure transformation of c.This means
that a checkerboard pattern with parallel edges exists where corresponding first
order faces differ only by a similarity transformation. If there is one such transfor-
mation, then there exists an entire two-parameter family of such transformations.

(iii) c is dualizable.
(iv) c is a Koenigs checkerboard pattern.

Proof First we show (i)⇔ (ii). If j is even, the edge lengths a j−1 and a j are related
by the formula

a j−1 = k j a j + c j b,

where

k j := sin γ j

sin β j
and c j := sin (γ j + δ j )

sin β j
.
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α
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β
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Fig. 18 The configuration of Theorem 5.14

Analogously we find b2 = k3b3 + c3a and b4 = k1b1 + c1a. Using ai = biri we find
the closing condition

a1 = k1k2k3k4
r2r4
r1r3

a1 + a

(
k2r2

(
k3

(
k4r4
r3

c1 + c4r

)
+ c3

)
+ c2r

)
.

Hence we can compute a1 only from the given angles and ratios if and only if

4∏
i=1

kir
(−1)i

i �= 1. (7)

Consequently a non-trivial parallel net with the same ratios r and ri exists if and only
if (i) holds.

Next we show that (i)⇔ (iii) holds. When we dualize the net f all angles are
replaced by their respective complementary angles, i.e., α∗

i = π − αi , β∗
i = π − βi ,

γ ∗
i = π −γi , and δ∗

i = π −δi . Hence the coefficients ki are invariant under dualization
while the coefficients ci change sign. If we denote the transformed edge lengths by
a∗

i , a∗ and b∗
i , b∗ respectively, then the transformed relations read

a∗
j−1 = k j a

∗
j − c j b

∗ and b∗
j−1 = k j b

∗
j − c j a

∗.
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So the closing condition becomes

a∗
1 = k1k2k3k4

r2r4
r1r3

a∗
1 − a∗

(
k2r2

(
k3

(
k4r4
r3

c1 + c4r

)
+ c3

)
+ c2r

)
.

Again we find that a∗
1 can be determined from this equation if (7) holds. However,

comparing the potential formulas for a1 and a∗
1 we find that a∗

1 = −a1. As no negative
edge lengths can exist we conclude that a∗

1 exists only if (i) holds. On the other hand
if (i) holds, we can construct a dual net for any value a∗

1 implying (iii).

Next we show (i)⇔ (iv). To do sowe use the inscribed angle theorem for hyperbolas
(see Theorem B.2 in the appendix). Let k(�(pi , p j )) denote the slope of the line
�(pi , p j ) with respect to a coordinate system aligned with the asymptotes of the
hyperbola, compare Theorem B.2. We find

k(�(p4, p5)) = ± sin β1 sin (β4 + α4)

r4 sin γ4 sin (γ1 + δ1)
, k(�(p4, p6)) = ∓ sin γ3 sin (α4 + β4)

r3 sin β4 sin (δ3 + γ3)
,

k(�(p5, p3)) = ∓ sin γ1 sin (α2 + β2)

r1 sin (γ1 + δ1) sin β2
, k(�(p6, p3)) = ± sin β3 sin (α2 + β2)

r2 sin γ2 sin (δ3 + γ3)
.

Note that sin (γ1 + δ1) = 0 is equivalent to �(c1̄, c1̄2) ‖ �(c, c2) which is further
equivalent to p5 = p2. So if the points p1, . . . , p6 are all distinct, the denominators
in the above equations are all nonzero. Computing the quotients yields

k(�(p1, p6))

k(�(p1, p4))
= − r3

r4
· sin β1 sin β4 sin (δ3 + γ3)

sin γ3 sin γ4 sin (γ1 + δ1)
,

k(�(p3, p6))

k(�(p3, p4))
= − r2

r1
· sin γ1 sin γ2 sin (δ3 + γ3)

sin β2 sin β3 sin (γ1 + δ1)
.

By Theorem B.2 the points p1, . . . , p6 lie on a common hyperbola if and only if

r2
r1

· sin γ1 sin γ2

sin β2 sin β3
= r3

r4
· sin β1 sin β4

sin γ3 sin γ4

which is equivalent to (i). This concludes the proof. 
�
Remark 5.15 If we find pi = p j for some i �= j everything in the proof of Theo-
rem 5.14 still holds except for the application of Theorem B.2. So in such a case we
still find that (i)⇔ (ii)⇔ (iii).

Corollary 5.16 Let c f be a conjugate checkerboard pattern with control net f . Then
c f is dualizable if and only if each two Laplace invariants defined in the faces of f
are equal.

Proof If the six points p1, . . . , p6 from Definition 5.1 are distinct, the statement fol-
lows from Theorem 5.14. Hence condition (i) in Theorem 5.14 is equivalent to the
multiplicative one-form q being closed if p1, . . . , p6 are all distinct. However these
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terms depend continuously on the vertices of the checkerboard pattern. Hence, any
face patch, on which q is closed, can be approximated with a sequence of dualizable
face patches where p1, . . . , p6 are distinct. Since condition (i) is preserved in the limit,
so is the existence of a dual. 
�
Remark 5.17 For a given Koenigs checkerboard pattern, there is a two-parameter fam-
ily of dual checkerboard patterns that differ in the scaling of corresponding first order
faces. By choosing the initial scaling factors of two adjacent first order faces α1 and α2,
all other scaling factors can be computed recursively by the formulas

α2 = ‖(α1a1 − α0a0)×a3‖
‖a2×a3‖ and α3 = ‖(α1a1 − α0a0)×a2‖

‖a2×a3‖ ,

where ai are the oriented edges of the corresponding first order faces, see Fig. 19, left.
This permits a stable dualization algorithm.

The following lemma provides an easy way to generate a specific family of Koenigs
nets in PR2.

Lemma 5.18 Let M and N be two commuting projective transformationsPR2 → PR
2

and let P ∈ PR
2. Then the net f defined by f (k, l) = Mk Nl P is the control net of a

Koenigs checkerboard pattern in PR
2.

Proof We show that the condition of Theorem 5.8 is met in the quadrilateral
( f , f1, f12, f2), compare Fig. 19, right. Let

p = �( f1, f2) ∩ �( f1̄, f2̄), q = �( f1, f2) ∩ �( f112, f112),

p′ = �( f , f12) ∩ �( f12̄, f11), q ′ = �( f , f12) ∩ �( f22, f1̄2).

Let F : Z2 → R
3 be the net of homogeneous coordinates of the vertices of f . We find

P = (F1̄× F2̄) × (F1× F2) = 〈F1̄× F2̄, F2〉 · F1 − 〈F1̄× F2̄, F1〉 · F2

= det (F1̄, F2̄, F2) · F1 − det (F1̄, F2̄, F1) · F2

Q = (F112× F122) × (F1× F2) = 〈F112× F122, F2〉 · F1 − 〈F112× F122, F1〉 · F2

= det (F112, F122, F2) · F1 − det (F112, F122, F1) · F2

P ′ = (F11× F12̄) × (F × F12) = 〈F11× F12̄, F12〉 · F − 〈F11× F12̄, F〉 · F12

= det (F11, F12̄, F12) · F − det (F11, F12̄, F) · F12

Q′ = (F1̄2× F22) × (F × F12) = 〈F1̄2× F22, F12〉 · F − 〈F1̄2× F22, F〉 · F12

= det (F1̄2, F22, F12) · F − det (F1̄2, F22, F) · F12.

From this we can formulate the cross-ratios as

cr ( f1, f2, p, q) = cr (F1, F2, P, Q) = det (F1̄, F2̄, F1) · det (F112, F122, F2)

det (F1̄, F2̄, F2) · det (F112, F122, F1)
,

cr ( f , f12, p′, q ′) = cr (F, F12, P ′, Q′) = det (F11, F12̄, F) · det (F1̄2, F22, F12)

det (F11, F12̄, F12) · det (F1̄2, F22, F)
.
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f 1̄
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f 112
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q
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q
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(a) (b)

α

α

α
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Fig. 19 Left: The idea behind an efficient implementation of a dualization algorithm. The edges ai have to
close in the initial net as well as in the dualized net. From this condition the scaling factors that guide the
dualization can be computed. Right: The setting of Lemma 5.18

Now letM and N be the matrix representations of M and N in homogeneous coordi-
nates. Then we can express the cross-ratios as

cr ( f1, f2, p, q) = det (M−1F,N−1F,MF) · det (MMNF,MNNF,NF)

det (M−1F,N−1F,NF) · det (MMNF,MNNF,MF)

= det (F,MN−1F,MMF) · det (MNF,NNF,M−1NF)

det (NM−1F, F,NNF) · det (MMF,MNF,N−1MF)

and

cr ( f , f12, p′, q ′) = det (MMF,MN−1F, F) · det (M−1NF,NNF,MNF)

det (MMF,MN−1F,MNF) · det (M−1NF,NNF, F)
.

So we see that the two Laplace invariants cr ( f1, f2, p, q) and cr ( f , f12, p′, q ′) are
equal. 
�

5.3 Connection to the Existing Theory

Besides the definition of Koenig nets given in [7] an elegant and popular discretization
of Koenigs nets can be found in [5]. There Koenigs nets are defined as nets with planar
quadrilaterals that admit a dual net. Two quadrilaterals are considered dual if they
have parallel edges and non-corresponding diagonals are parallel. Consequently two
quadrilateral nets are dual if all corresponding quadrilaterals are dual. These Koenigs
nets have several interesting properties summarized in [4, Chapter 2.3] and like in this
paper they can be used to characterize discrete isothermic nets which results in the
class of isothermic nets defined in [1].

The author is grateful to Jan Techter for the following observation. The Koenigs
nets defined in this paper are in some sense a generalization of theKoenigs nets defined
in [5]. As a Remark in [5, p. 15] says, the intersection points M of diagonals of the
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f

f 1

f 12

f 2

M

M 1

M 2

M 12

Fig. 20 The intersection points of diagonals of a Koenigs net in the sense of [5] (blue) form a Koenigs net
in the sense of [7] (red). The Laplace invariant of the edge ( f , f1) equals the Laplace invariant of the edge
(M2̄, M). Consequently the control net with the faces ( f , M2̄, f1, M) and ( f1, M1, f12, M) is the control
net of a Koenigs checkerboard pattern in the sense of Definition 5.1

faces of a [5]-Koenigs net form a Koenigs net in the sense of [7], compare Fig. 20. A
proof for this remark can be found in [4, pp. 373–374]. Moreover this proof reveals
that the Laplace invariant of the edge ( f , f1) is equal to the Laplace invariant of the
edge (M−2, M). Hence the two Koenigs nets together form a control net of a Koenigs
checkerboard net,where the faces are given by ( f , M−2, f1, M) and ( f1, M1, f12, M).
This means that every Koenigs net in the sense of [5] can be extended to a Koenigs
checkerboard net according to Definition 5.1. The converse is not true as a numerical
analysis of the Koenigs checkerboard pattern in Fig. 21 shows.

Remark 5.19 The connection to Koenigs nets in the sense of [5] offers a way to con-
struct non-planar Koenigs nets. Another way to generate examples of such Koenigs
nets will be presented in the next section through Theorem 6.3 and Corollary 6.2.

6 Isothermic Nets

Discrete isothermic nets can now be defined as principal nets that are also Koenigs
nets, similarly to [2, 3, 5]. Analogous to the smooth case or to other discrete approaches
[5] we find that the class of discrete isothermic nets is invariant under dualizations and
Möbius transformations. This permits a construction of discrete minimal surfaces and
their Goursat transformations as will be described later on.
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Fig. 21 A Koenigs checkerboard pattern and the corresponding diagonal nets. It is constructed by applying
a Möbius transformation to an isothermic net in the plane followed by dualization, compare Sect. 6.1.
Neither of the diagonal nets is Koenigs in the sense of [5] or [7]

Definition 6.1 We call a checkerboard pattern c isothermic, if it is both principal and
Koenigs.

As orthogonal first order faces aremapped to orthogonal faces under dualization, the
next corollary follows immediately from Theorem 5.14. See Fig. 22 for an illustration.

Corollary 6.2 Isothermic checkerboard patterns are dualizable. Their dual is again an
isothermic checkerboard pattern.

Theorem 6.3 (Möbius invariance) Isothermic checkerboard patterns are mapped to
isothermic checkerboard patterns under a discrete Möbius transformation, see Fig. 23.

The proof is a direct consequence of Lemma 6.5 and is thus postponed for now. In
order to prove Theorem 6.3, we study isothermic nets again in the space PR4,1 under
the embedding ι. We have already defined pseudo-principal nets in PR4,1 and can now
extend them to pseudo-isothermic nets.

Definition 6.4 We call a net g in PR4,1 pseudo-isothermic if it is pseudo-principal and
the two Laplace invariants for each face are equal.
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Fig. 22 An isothermic checkerboard pattern and its dual with the corresponding conics of Koenigs. The
points on the hyperbolas are the points of intersecting supporting lines of neighboring edges

Fig. 23 An isothermic checkerboard pattern and its Möbius transform together with the corresponding
conics of Koenigs. The figure features non-convex quads as the examples were constructed in such a way
that the points of intersecting lines are all close to the checkerboard pattern

It turns out that the lift ι( f ) of an isothermic net f in R
3 is a pseudo-isothermic

net in PR4,1 as the following lemma shows.

Lemma 6.5 Let f be the control net of an isothermic checkerboard pattern and let
ι( f ) be its lift to PR

4,1. The Laplace invariants of corresponding faces of f and ι( f )

are equal.

Proof First note that ι( f ) has a conjugate checkerboard pattern and thus the Laplace
invariants are well defined. Hence not only the supporting lines �( f1̄, f2̄) and �( f1, f2)
intersect, but also the corresponding pencils of spheres, compare Fig. 24. However,
we know that the first three components under the lift ι are the same as the original
centers of spheres and when we compute the cross-ratio of points lying on a line it is
sufficient to use just one coordinate. So it follows that the Laplace invariants remain
unchanged under ι. 
�

From Lemma 6.5 the proof of Theorem 6.3 follows immediately.

Proof of Theorem 6.3 Every Möbius transformation can be seen as a projective trans-
formation in PR4,1 that preserves the inner product. Obviously these transformations
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f 1f 2 P Q

f 112

f 122

f 2̄

f 1̄

f

f 12

Fig. 24 The idea behind the proof of Lemma 6.5: Not only do the lines �( f1, f2) and �( f1̄, f2̄) intersect
in P , but also the corresponding pencils of spheres intersect in a sphere with center at P . This means that
there is a sphere with center at P that intersects both the sphere with center at f and the sphere with center
at f12 orthogonally

preserve the cross-ratio and since ι also preserves the Laplace invariants we can con-
clude that not only conjugacy and orthogonality, but also the Koenigs property is
preserved under Möbius transformations. 
�

6.1 Minimal Surfaces

Minimal surfaces can be constructed by dualizing an isothermic net on the unit sphere,
since the theory of minimal surfaces tells us that for any minimal surface its dual and
its Gauß image are equal. With the Möbius transformation and dualization at hand we
can reproduce this construction in the discrete setting.

Definition 6.6 Let f be the control net of an isothermic checkerboard pattern c f . We
call c f minimal if it has a dual checkerboard pattern c′ that is also the checkerboard
pattern of a principal Gauß image of f in the sense of Definition 4.12.

Definition 6.7 Let f and f̃ be control nets of minimal checkerboard patterns. They
are related by a Goursat transformation if their principal Gauß images are related by
a Möbius transformation.

Definition 6.8 We say that a checkerboard pattern c f is on the unit sphere, if there is a
Möbius representation s f where every sphere intersects the unit sphere orthogonally.

Corollary 6.9 Let cn be an isothermic checkerboard pattern on the unit sphere. The
dual checkerboard pattern c′

n is a minimal checkerboard pattern and n is its principal
Gauß image. If n is used to compute the discrete shape operator of c′

n, the mean
curvature of c′

n is zero.

Proof The first statement follows directly from the definition ofminimal checkerboard
patterns. The principal curvature κ1 and κ2 are just the oriented scaling factors between
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edges of cn and c′
n . If the Gauß image is the dual net at the same time the relation

κ1 = −κ2 holds. 
�

7 Conclusion

In this paper we presented a novel discretization approach based on the checkerboard
pattern inscribed to a quadrilateral net. On the one hand this allows a discrete curvature
theory (Definition 3.3) that is compatible with discrete offsets (formula (3)) similar to
[9, 15]. On the other hand this approach allows a new discretization of conjugate nets,
orthogonal nets and principal nets (Definition 2.4). We showed several properties of
these nets, most noticeably that principal nets are consistent with the curvature theory
(Corollary 3.5) and are invariant underMöbius transformations (Theorem 4.4) applied
to the corresponding sphere congruence introduced in [19].

Further the checkerboard pattern could be used to define discreteKoenigs nets using
the conic of Koenigs (Definition 5.1) analogous to [7]. We find that discrete Koenigs
nets are exactly those nets that are dualizable (Theorem 5.14) which links the approach
taken in [7] to the approach of [5]. Other characterizations of discrete Koenigs nets
that have been found in this paper are the existence of a closed multiplicative one-
form defined on the edges of a checkerboard pattern (Theorem 5.5) similar to [5]. The
characterization of Koenigs nets via the equality of Laplace invariants (Theorem 5.8)
fits the original definition of these nets in the classical differential geometry. From the
characterization via equal Laplace invariants we could deduce that the class of discrete
Koenigs nets is invariant under projective transformations (Corollary 5.11).

Fig. 25 Enneper surface: In the top row we see from left to right the Weierstrass data of the Enneper
surface, the Gauß image of the Ennepper surface and the Enneper surface itself. In the second row we see
the checkerboard patterns of the corresponding nets
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Fig. 26 Catenoid: In the top row we see from left to right the Weierstrass data of the Catenoid, the Gauß
image of the Catenoid and the Catenoid itself. In the second row we see the checkerboard patterns of the
corresponding nets

Fig. 27 A Goursat transform of a periodically extended Catenoid

Despite the discretization idea of Koenigs nets and principal nets being quite differ-
ent they work well together for isothermic nets which are defined as principal Koenigs
nets. This means that the Koenigs property is preserved upon Möbius transformations
(Theorem 6.3) and the principality is preserved upon dualization (Corollary 6.2). Con-
sequentlywe can applyMöbius transformations and dualizations to discrete isothermic
nets. This allows a construction of discrete minimal surfaces from an isothermic net
in the plane. First we map it to the unit sphere with a Möbius transformation, where
it can be interpreted as the Gauß image of a minimal surface. Then it is dualized to
gain the corresponding minimal surface from its Gauß image, compare both Figs. 25
and 26. If a Möbius transformation is applied to the Gauß image before it is dualized,
we obtain a Goursat transform of the initial minimal surface, compare Fig. 27.
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Appendix A: Proof of Theorem 5.5

Proof First we show that q is closed around every second order face, i.e., multiplying
the contribution of every edge of a second order face in counter-clockwise order yields
one. Let c, c1, c12, and c2 be the vertices of a second order face, p = �(c, c1)∩�(c2, c12)
and q = �(c, c2) ∩ �(c1, c12), see Fig. 28. Using Menelaus’ Theorem B.3 for the
triangle (c, c1, q) and the triangle (c2, c12, q) we find that

q(c, c1)q(c1, c12)q(c12, c2)q(c2, c)

= c − p

c1 − p
· c1 − q

c12 − q
· c12 − p

c2 − p
· c2 − q

c − q

= c − p

p − c1
· c12 − c1

q − c12
· c2 − q

c − c2︸ ︷︷ ︸
=−1

c − c2
q − c

· c1 − q

c12 − c1
· p − c12

c2 − p︸ ︷︷ ︸
=−1

= 1.

c c1

c12

c2

p

q

Fig. 28 Themultiplicative one form is automatically closed around every second order face as a consequence
of Menelaus’ Theorem
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Next we show that q is closed on the edges of every first order faceB = (c, c1, c12, c2)
if and only if the checkerboard pattern is a Koenigs net. As the multiplicative one-
form q is projectively invariant, we choose a projective coordinate system such that
c = (0, 0, 1), c1 = (1, 0, 1), c2 = (0, 1, 1), and c12 = (1, 1, 1). The intersection
points then have the following coordinates:

p1 = �(c, c1) ∩ �(c2, c12) = (1, 0, 0), p2 = �(c, c2) ∩ �(c1, c12) = (0, 1, 0),

p3 = �(c, c1) ∩ �(c−2, c1−2) = (1, 0, t), p4 = �(c2, c12) ∩ �(c22, c122) = (s, 1, 1),

p5 = �(c, c2) ∩ �(c−1, c−12) = (0, 1, u), p6 = �(c1, c12) ∩ �(c11, c112) = (1, v, 1),

for suitable s, t, v, u ∈ R. Those six points lie on a common conic section if the
system of equations Ax2i + Bxi yi +Cy2i + Dxi zi + Eyi zi + Fz2i = 0 has a non-trivial
solution. Here xi , yi , and zi stand for the three homogeneous coordinates of pi . We
compute the determinant of the matrix of this system of equations:

det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
1 0 0 t 0 t2

s2 s 1 s 1 1
0 0 1 0 u u2

1 v v2 1 v 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= t (s(u(1 − t) − u2v) + v(u2 − u(1 − st))).

A non-trivial solution exists if and only if the determinant is zero. We can exclude the
cases t = 0 and u = 0 since no pi are the same. We find that the determinant is zero
if and only if

s − st + vst = v − vu + vus.

Nowwe compute the multiplicative one-form along the edges of the quadrilateral. We
find p3 = c1 + (t − 1)c and p1 = c1 − c. So if we use c and c1 as the bases for the
line �(c, c1), we obtain

cr (c, c1, p1, p3) = det (c, p1)

det (c1, p1)
· det (c1, p3)

det (c, p3)

=
det

(
1 −1
0 1

)
det

(
0 t − 1
1 1

)

det

(
0 −1
1 1

)
det

(
1 t − 1
0 1

) = 1 − t .
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For the next cross-ratio we express the points p2 and p6 via c1 and c12, obtaining
p2 = −c1 + c12 and p6 = (1 − v)c1 + vc12. So the cross-ratio is

cr (c1, c12, p2, p6) = det (c1, p2)

det (c12, p2)
· det (c12, p6)

det (c1, p6)

=
det

(
1 −1
0 1

)
det

(
0 1 − v

1 v

)

det

(
0 −1
1 1

)
det

(
1 1 − v

0 v

) = v − 1

v
.

Next, equations p1 = c12 − c2 and p4 = sc12 + (1 − s)c2 yield

cr (c12, c2, p1, p4) = det (c12, p1)

det (c2, p1)
· det (c2, p4)

det (c12, p4)

=
det

(
1 1
0 −1

)
det

(
0 s
1 1 − s

)

det

(
0 1
1 −1

)
det

(
1 s
0 1 − s

) = s

s − 1
,

and p2 = c2 − c and p5 = c2 + (u − 1)c yield

cr (c2, c, p2, p5) = det (c2, p2)

det (c, p2)
· det (c, p5)

det (c2, p5)

=
det

(
1 1
0 −1

)
det

(
0 1
1 u − 1

)

det

(
0 1
1 −1

)
det

(
1 1
0 u − 1

) = 1

1 − u
.

Now q is closed if and only if

1 = (1 − t) · v − 1

v
· s

s − 1
· 1

1 − u
⇐⇒ s − st + stv = v − uv + vsu.

Thus the existence of the conic of Koenigs is equivalent to q being closed. 
�

Appendix B: Some Theorems

The following lemma is known as trace polarity of a quadric. For a detailed description
of trace polarity in German language see [6]. However, since a proof in English of the
following lemma is hard to find, we give a proof in our setting (Figs. 29, 30).

Lemma B.1 Let s1 and s2 be two orthogonally intersecting spheres on S
3, i.e., inter-

sections of S3 with conjugate hyperplanes h1 and h2. If ψ is the central projection
from point Z ∈ PR

4 onto a hyperplane ζ ∼= PR
3, then in this hyperplane ψ(s1)
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Fig. 29 The two-dimensional case of Lemma B.1. The circles s1 and s2 on the unit sphere intersect orthog-
onally. The ellipses are their projections through the point Z . The gray ellipse ψ(S2)∗ is the contour of the
unit sphere under the same projection. We see that the ellipses ψ(s1) and ψ(s2) intersect in conjugate lines
with respect to ψ(S2)∗ as the polar point ψ(G2) of the tangent ψ(τ2) is contained in ψ(τ2). The preimage
of this polar point drawn in beige is the intersection of the corresponding tangent line to the unit sphere
with the polar plane of the center of projection. The gray circle on the unit sphere is the preimage of the
contour quadric, i.e., the intersection of the unit sphere with the polar plane of Z

p1
p2

p3

p4

Fig. 30 Inscribed angle theorem for hyperbolas. The four points p1, p2, p3, and p4 lie on a rectangular
hyperbola if and only if the quotient of slopes of p4 p2 and p4, p1 equals the one of p3 p2 and p3 p1

and ψ(s2) intersect in conjugate tangent planes with respect to the contour quadric
ψ(S3)∗ of ψ(S3). This means the corresponding tangent planes at the intersection
points of ψ(s1) and ψ(s2) are orthogonal with respect to the inner product induced
by ψ(S3)∗.

Proof For the proof we use homogeneous coordinates of PR4. We choose a basis
(b0, . . . , b4) such that the center of projection Z = b0. Let Q be thematrix such that the
homogeneous coordinates of all points in S3 are given by {x ∈ R

5\{0} : xT Qx = 0}.
We can assumewithout loss of generality that Q is a diagonalmatrix. Since projections

123



Discrete & Computational Geometry

onto different planes are projectively equivalent, we can further assume that ζ is the
polar hyperplane of Z . Thus ζ is given by the equation x0 = 0.We introduce the block
notation Q = diag(q0, Q).

Since ζ is the polar hyperplaneof Z , the contour quadricψ(S3)∗ is the intersectionof
S
3 with ζ . In homogeneous coordinates it is given by {(0, x̄) ∈ R

5\{0} : x̄ T Qx̄ = 0}.
Let P ∈ s1 ∩ s2 be a point in the intersection of s1 and s2 and let τ be the tangent

hyperplane to S3 in P . Then the tangent planes to s1 and s2 are given by τ1 = h1 ∩ τ

and τ2 = h2 ∩ τ . Note that two hyperplanes are conjugate with respect to a quadric,
if and only if each contains the polar point of the other. Let H1 ∈ h2 ∩ τ be the polar
point of h1 and let H2 ∈ h1 ∩ τ be the polar point of h2. The line g1 := �(P, H2) lies
in τ1 and intersects ζ . We denote the intersection point by G1 := g1 ∩ ζ . Analogously
we define G2 := �(P, H1) ∩ ζ . The line g := τ1 ∩ τ2 also intersects ζ and we denote
the intersection point by T . Writing A ∨ B ∨ C for the plane spanned by A, B, C , we
have τ1 = P ∨ T ∨ G1 and τ2 = P ∨ T ∨ G2. Since T , G1, G2 ∈ ζ , we find that
ψ(τ1) = ψ(P) ∨ T ∨ G1 and ψ(τ2) = ψ(P) ∨ T ∨ G2.

We now show the orthogonality of ψ(τ1) and ψ(τ2) with respect to Q. In order
to facilitate the notation we identify points with their projective coordinates. As the
projection ψ just sets the first coordinate of P to zero and due to the form of Q, we
find that

GT
1 Qψ(P) = GT

1 Q P = (λ1H2 + μ1P)T Q P = 0,

GT
2 Qψ(P) = GT

2 Q P = (λ2H1 + μ2P)T Q P = 0,

GT
1 QT = GT

1 QT = (λ1H2 + μ1P)T QT = 0,

GT
2 QT = GT

2 QT = (λ2H1 + μ2P)T QT = 0,

GT
1 QG2 = G1QG2 = 0.

Hence, the point G1 is the polar point of ψ(τ2) with respect to ψ(S3)∗ in ζ and vice
versa. This shows the conjugacy of the tangent planesψ(τ1) andψ(τ2) of the projected
spheres s1 and s2. 
�

Theorem B.2 (inscribed angle theorem for hyperbolas) Consider R2 and coordinates
(x, y) with respect to a basis. The slope of a vector (a, b) is defined as b/a for a �= 0.
Four points pi = (xi , yi ) ∈ R

2 with x j �= xk and y j �= yk lie on a hyperbola with
equation y = c/x if and only if the quotient of slopes of �(p4, p2) and �(p4, p1)
equals the quotient of slopes of �(p3, p2) and �(p3, p1), compare Fig. 30. Computing
this condition yields

(y4 − y1)(x4 − x2)

(x4 − x1)(y4 − y2)
= (y3 − y1)(x3 − x2)

(x3 − x1)(y3 − y2)
. (B1)

Theorem B.3 (Menelaus’ Theorem) Let A, B, and C be the vertices of a triangle and
let g be a straight line. For the three vertices D = �(A, B) ∩ g, E = �(B, C) ∩ g,
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and F = �(C, A) ∩ g the equation

(D − A)

(B − D)
· (E − B)

(C − E)
· (F − C)

A − F
= −1

holds.
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