
Discrete & Computational Geometry (2023) 70:1356–1377
https://doi.org/10.1007/s00454-023-00557-2

Computing Characteristic Polynomials of Hyperplane
Arrangements with Symmetries

Taylor Brysiewicz1 · Holger Eble2 · Lukas Kühne3

Received: 25 June 2021 / Revised: 23 February 2023 / Accepted: 25 March 2023 /
Published online: 7 November 2023
© The Author(s) 2023

Abstract
We introduce a new algorithm computing the characteristic polynomials of hyper-
plane arrangements which exploits their underlying symmetry groups. Our algorithm
counts the chambers of an arrangement as a byproduct of computing its characteristic
polynomial. We showcase our julia implementation, based on OSCAR, on exam-
ples coming from hyperplane arrangements with applications to physics and computer
science.

Keywords Hyperplane arrangement · Chambers · Algorithm · Symmetry ·
Resonance arrangement · Separability

Mathematics Subject Classification 52C35 · 52B15

1 Introduction

The problem of enumerating chambers of hyperplane arrangements is a challenge in
computational discrete geometry [20, 29, 34, 42]. Awell-known approach to this prob-
lem is through the computation of characteristic polynomials [1, 21, 30, 38, 43, 47].

Editor in Charge: János Pach

Taylor Brysiewicz
tbrysiew@uwo.ca

Holger Eble
eble@math.tu-berlin.de

Lukas Kühne
lkuehne@math.uni-bielefeld.de

1 Department of Mathematics, Western University, London, Canada

2 Chair of Discrete Mathematics/Geometry, Technische Universität Berlin, Berlin, Germany

3 Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-023-00557-2&domain=pdf
http://orcid.org/0000-0001-6393-5610

Discrete & Computational Geometry (2023) 70:1356–1377 1357

Table 1 Our timings on examples from Sect. 6

A |Aut(A)| d = 3 (s) 4 (s) 5 (s) 6 7 (s) 8 9

Td (d + 1)!2d 0.005 0.013 0.041 0.28 s 33.17 8.16h

Rd (d + 1)! 0.004 0.011 0.035 0.12 s 2.89 19.8min ∼ 10 day+

C2d (2d)!22d 0.015 0.039 0.085 0.183s 0.42 1.158s 4.50 s

Pd d! 0.003 0.013 6.398 ∼ 8day+

Dd (d)!2d−1 0.002 0.005 0.018 0.049s 0.54 1.9min ∼ 8day+
Disc4,n n! – 0.0003 0.0047 0.055 0.71 s 7.62 41.14 s

Computations ran on a single thread (Intel Core i7-8700) except for R9 which ran on 42 threads
(Intel Xeon E7-8867)

We develop a novel for computing characteristic polynomials which takes advantage
of the combinatorial symmetries of an arrangement. While most arrangements admit
few combinatorial symmetries [39], most arrangements of interest do [19, 40, 48].

We implemented our algorithm in julia [3] and published it as the package
CountingChambers.jl.1 Our implementation relies heavily on the cornerstones
of the new computer algebra system OSCAR [51] for group theory computations (GAP
[50]) and the ability to work over number fields (Hecke and Nemo [17]).

While other algorithms and pieces of software exist for studying hyperplane
arrangements (see, for instance, [10, 15, 29, 33, 44]), either their chamber-enumeration
computations appear as byproducts ofmore difficult calculations, the code does not use
symmetry, or it only pertains to very specific types of arrangements. For example, ref-
erence [29] computes the associated zonotope, whose vertices are in bijection with the
chambers of the arrangement, containing much more information than the character-
istic polynomial. A similar approach is suggested in [15] involving a search algorithm
relying upon linear programming. An example of an approach which computes the
number of chambers via a much more difficult computation is via the computation of
the so-called broken circuit complex of the arrangement (see [7]): a simplicial complex
which has the same number of faces as the number of chambers of the arrangement.

As demonstrated in Table 1, the fastest algorithms we know of for counting cham-
bers in hyperplane arrangements (including the one discussed in this article) also
compute the characteristic polynomial of the arrangement as a byproduct. In this
sense, we do not know of an algorithm which illustrates that counting the chambers
of an arrangement is an easier computation than computing its characteristic polyno-
mial. To the best of our knowledge, our implementation is the first publicly available
software for counting chambers which uses symmetry.

We showcase our algorithm and its implementation on a number of well-known
examples, such as the resonance and discriminantal arrangements. Additionally, we
study sequences of hyperplane arrangements which come from the problem of linearly
separating vertices of regular polytopes. In particular, we investigate one correspond-
ing to the hypercube [0, 1]d whose chambers are in bijection with linearly separable
Boolean functions.

1 Available at https://mathrepo.mis.mpg.de/CountingChambers.

123

https://mathrepo.mis.mpg.de/CountingChambers/index.html

1358 Discrete & Computational Geometry (2023) 70:1356–1377

In the presence of symmetry, our implementation outperforms the existing software
by several orders of magnitude (cf. Table 1). Moreover, its output is guaranteed to be
correct since we compute symbolically over the integers or exact number fields and
avoid overflow errors thanks to the package SaferIntegers.jl [41].

The ninth resonance arrangement (511 hyperplanes in R
9) approaches the limit

of what is possible with our implementation: the computation of its characteristic
polynomial took ten days on42processors.Our computation confirms that its chamber-
count is 1955230985997140 as independently and concurrently computed byChroman
and Singhar with different methods [10].

We first give background on hyperplane arrangements in Sect. 2. The ideas outlined
in Sect. 3, regarding deletion and restriction algorithms, form the basic structure of
our algorithm. We explain the relevant results regarding symmetries of arrangements
in Sect. 4. The algorithm and its implementation details reside in Sect. 5. In Sect. 6 we
construct and discuss examples of arrangements exhibiting large symmetry groups.
We conclude in Sect. 7 with timings and comparisons to other software.

2 Hyperplane Arrangements

We begin by discussing background on the theory of hyperplane arrangements related
to the problemof enumerating chambers: themain goal of this article and the associated
software. Our notation will mostly follow the textbook by Orlik and Terao [38].

For any field K, a hyperplane in K
d is an affine linear space of codimension one.

Throughout this article, we denote byA = {H1, . . . , Hn} a (hyperplane) arrangement
where Hi is a hyperplane in Kd .

Definition 2.1 SupposeA is an arrangement in Rd . The connected components of the
complement Rd \ ⋃

H∈A H are called chambers ofA and the set of chambers ofA is
denoted by ch(A).

Example 2.2 We use the arrangement

{{y − x = 1}
︸ ︷︷ ︸

H1

, {x = 0}
︸ ︷︷ ︸

H2

, {x + y = 1}
︸ ︷︷ ︸

H3

, {y = 0}
︸ ︷︷ ︸

H4

}

inR2 as a running example. This arrangement is depicted in Fig. 1. It has ten chambers:
two bounded and eight unbounded.

Given a subset I ⊆ [n] := {1, . . . , n}, we write the set {Hi }i∈I as HI and its
intersection as L I = ⋂

i∈I Hi . The collection of these intersections form the set
L(A) = {L I | I ⊆ [n], L I �= ∅}, a combinatorial shadow of A known as its
intersection poset. This poset is ordered by reverse inclusion and graded by the rank
function, r : L(A) → Z≥0, where r(L I) = codim(L I). As a notational convention,
we set r(I) = r(L I) for I ⊆ [n] whenever L I �= ∅.

123

Discrete & Computational Geometry (2023) 70:1356–1377 1359

H1

H2

H3

H4

Fig. 1 The arrangement introduced in Example 2.2

2.1 The Characteristic Polynomial

Our algorithm counts chambers of an arrangement by computing amore refined count,
namely the characteristic polynomial. The coefficients of this polynomial are known
as the unsigned Whitney numbers of the first kind of the intersection poset L(A),
which we simply refer to as theWhitney numbers of the arrangement.

Definition 2.3 The characteristic polynomial of an arrangement A in Kd is the poly-
nomial

χA(t) =
∑

I⊆[n]
L I �=∅

(−1)|I |td−r(I) =
d∑

i=0

(−1)i bi (A)td−i . (1)

The integers bi (A), defined via (1), are non-negative and are called theWhitney num-
bers of A. We denote the vector of Whitney numbers by b(A).

The characteristic polynomial and Whitney numbers of an arrangement A depend
only on the intersection poset L(A) and have various interpretations depending on the
field K as detailed below.

Real: For an arrangement A in Rd , Zaslavsky [47] proved that

|ch(A)| = (−1)dχA(−1) =
d∑

i=0

bi (A).

Thus, the Whitney numbers are a refined count of the chambers of A. They have
the following geometric interpretation. Given a generic flag F• : F0 ⊂ F1 ⊂
. . . ⊂ Fd = R

d of affine linear subspaces Fi [where dim(Fi) = i] the number
of chambers of A which meet Fi but do not meet Fi−1 is equal to bi (A) [45,
Proposition 2.3.2].
Complex: IfA is an arrangement in Cd where all hyperplanes contain the origin,
then bi (A) is the i th topological Betti number of the complement Cd \ ⋃

H∈A H
with rational coefficients [37]. Because of this, some papers refer to the Whitney
numbers bi (A) as the Betti numbers of the arrangement A [46].
Finite: When A is an arrangement over a finite field Fq , Crapo and Rota proved
that χA(q) = ∣

∣Fd
q \⋃

H∈A H
∣
∣ [12].Moreover, ifA is a hyperplane arrangement in

123

1360 Discrete & Computational Geometry (2023) 70:1356–1377

F0

F1

F2

Fig. 2 The intersections of a generic flag (purple) in R
2 with the chambers of A. The point F0 intersects

one chamber, F1 intersects four others, and F2 intersects the remaining five, and so b(A) = (1, 4, 5)

Q
d one may consider its reduction modulo q:A⊗Fq = {H1⊗Fq , . . . , Hn ⊗Fq}.

When q is sufficiently large, we have that L(A) = L(A⊗Fq) and thus computing
χA(t) for rational arrangements also yields the number of points in the complement
after reducing modulo large primes.

Example 2.4 Let A be the arrangement introduced in Example 2.2. Its characteristic
polynomial is χA(t) = t2 − 4t + 5. Figure 2 shows a generic flag F• intersecting this
arrangement verifying that b(A) = (1, 4, 5).

3 A Deletion–Restriction Algorithm

To compute theWhitney numbers of an arrangementA inKd , we take advantage of the
behavior of χA(t) under the operations of deletion and restriction. These operations
reduce computations aboutA to computations about two smaller arrangements. Thus
at its core, our main algorithm is a divide-and-conquer algorithm.

Given a hyperplane H ∈ A, the deletion of H inA is the arrangementA\{H}. The
restriction of H in A is the arrangement in H ∼= K

d−1 defined by AH = {K ∩ H |
K ∈ A \ {H}}. The following lemma provides the basic foundation of our algorithm.

Lemma 3.1 [38, Cor. 2.57] Given a hyperplane H ∈ A, we have that χA(t) =
χA\{H}(t)−χAH (t). In particular, b(A) = b(A \ {H})+ 0|b(AH) where 0|b means
prepending the vector b with a zero.

3.1 A Simple Deletion–Restriction Algorithm

Lemma 3.1 along with the fact that the empty arrangement in K
d has the vector of

Whitney numbers (1, 0, . . . , 0) ∈ N
d+1 suggests the following well-known recursive

algorithm for computing b(A).

123

Discrete & Computational Geometry (2023) 70:1356–1377 1361

Algorithm 1: Whitney numbers via simple deletion and restriction

Input: A hyperplane arrangementA in Kd

Output: The vector of Whitney numbers b(A)

WhitneyNumbers (A)

1 if ∅ �= A then
2 choose H ∈ A
3 return WhitneyNumbers (A \ {H}) + 0|WhitneyNumbers(AH)

4 else
5 return (1, 0, . . . , 0)

Structurally, Algorithm 1 is a depth-first binary tree algorithm on arrangements,
rooted at the initial input: one child represents a deletion and the other a restriction, as
shown in Fig. 3. The implementation of Algorithm 1 is already nontrivial as it is often
the case that some hyperplanes become the same after a restriction. Thus, its proper
implementation requires care in representing an arrangement on a computer.

3.2 Computationally Representing Deletions and Restrictions

An arrangement B coming from A via deletions and restrictions may be represented
by an encoding of the restricted hyperplanes. To be precise, the pair

(1, 4, 5)

1
2

3

4

(1, 3, 3) (1, 2)

(1, 1)(1, 2, 1) (1, 2) (1)

(1, 1, 0) (1, 1) (1, 1) (1) (1, 0) (1)

(1, 0, 0) (1, 0) (1, 0) (1) (1, 0) (1)

Fig. 3 The tree structure of Algorithm 1 on the hyperplane arrangement from Example 2.2. Hyperplanes
are chosen (line 3) according to the ordering {1, 2, 3, 4}. In each box, the ambient space of the arrangement
is shaded green. Deletions are marked with red edges (left children) and restrictions with blue edges (right
children). Each arrangement box has the Whitney numbers above its upper right corner

123

1362 Discrete & Computational Geometry (2023) 70:1356–1377

B = ({Hi1, . . . , Hik }, {Hj1 , . . . , Hj�}) =: (HI , HJ)

represents the hyperplane arrangement B in L I ∼= K
d−r(L I) given by the hyperplanes

in {Hj ∩ L I } j∈J . Note that Hj ∩ L I may be empty for some j ∈ J , in which case this
intersection does not correspond to any hyperplane. We extend notation regarding B
to its representation B (i.e., χB(t) := χB(t) and b(B) := b(B)).

If Hj1 ∩ L I is a hyperplane which occurs uniquely with respect to the tuple (Hj1 ∩
L I , . . . , Hj� ∩ L I), then BHj1∩L I and B \ {Hj1 ∩ L I } are represented by

BHj1 := ({Hi1 , . . . , Hik , Hj1}, {Hj2 , . . . , Hj�}),
B \ {Hj1} := ({Hi1 , . . . , Hik }, {Hj2 , . . . , Hj�}),

respectively. Whereas if Hj1 ∩ L I is either empty or does not occur uniquely, then
B \ {Hj1} trivially represents the same arrangement as B, namely B. The following
computational analogue of Lemma 3.1 establishes how such representations behave
under deletion and restriction.

Lemma 3.2 Let B = (HI , HJ) represent an arrangement B and fix H ∈ HJ . If
H ∩L I is a hyperplane which occurs uniquely in the tuple (Hj ∩L I) j∈J then χB(t) =
χB\{H}(t)−χBH (t) and b(B) = b(B \{H})+0|b(BH). Otherwise,we have χB(t) =
χB\{H}(t) and b(B) = b(B \ {H}).
Proof The first case follows from Lemma 3.1. In the second case, B and B \ {H}
represent the same hyperplane arrangement and the result is trivial. �

The following algorithm is equivalent to Algorithm 1.

Algorithm 2:Whitney numbers via extended deletion and restriction

Input: A representation B = (HI , HJ) of an arrangement in Kd

Output: The vector of Whitney numbers b(B)

WhitneyNumbers B = (HI , HJ)

1 if ∅ �= HJ then
2 choose H ∈ HJ
3 if H ∩ L I �= ∅ occurs uniquely in (Hj ∩ L I) j∈J then
4 return WhitneyNumbers(B \ {H}) + 0|WhitneyNumbers(BH)

5 else
6 return WhitneyNumbers(B \ {H})
7 else
8 return (1, 0, . . . , 0)

Given a hyperplane arrangementA = {H1, . . . , Hn} inKd , Algorithm 2 computes
the Whitney numbers bi (A) when given A = (∅, {H1, . . . , Hn}) as input. This algo-
rithm traverses a binary tree which is essentially the same as the one fromAlgorithm 1.
The only difference is that some edges are extendedwith nodes that have only one child
and so we say it computes the Whitney numbers via extended deletion and restriction.

123

Discrete & Computational Geometry (2023) 70:1356–1377 1363

, {1, 2, 3, 4} (1, 4, 5)

1
2

3

4

1

, {2, 3, 4} (1, 3, 3)

1

{1}, {2, 3, 4} (1, 2)

2

{1}, {3, 4} (1, 2)

2

, {3, 4} (1, 2, 1)

2

{2}, {3, 4} (1, 2)

3

, {4} (1, 1, 0)

3

{3}, {4} (1, 1)

3

{2}, {4} (1, 1)

3

{2, 3}, {4} (1)

3

{1}, {4} (1, 1)

3

{1, 3}, {4} (1)

4

, (1, 0, 0)

4

{4}, (1, 0)

4

{3}, (1, 0)

4

{3, 4}, (1)

4

{2}, (1, 0)

4

{2, 4}, (1)

4

{2, 3}, (1)

4

{1}, (1, 0)

4

{1, 4}, (1)

4

{1, 3}, (1)

Fig. 4 The tree structure of Algorithm 2 on the hyperplane arrangement from Example 2.2. Its nodes are
represented by pairs of subsets I , J ⊂ {1, 2, 3, 4} (top-left) and the Whitney numbers are given (top-right).
Grey edges indicate that the condition in line 3 has been violated

Algorithm 2 has the advantage that the representations of the original hyperplanes
in A need not be updated upon restriction, and that representations of hyperplanes
in AH need not be unique. As a consequence, structural aspects of A such as its
symmetries extend trivially to the representations of the restricted arrangements, as
we explain in Sect. 4. Figure 4 displays the tree structure underlying Algorithm 2 on
our running example. Note that J is constant amongst nodes in the same depth.

4 Automorphisms of Hyperplane Arrangements

Our main contribution is the inclusion of symmetry-reduction in the deletion-
restriction algorithm. Many other algorithms in discrete geometry have also been
adapted to take advantage of symmetry [5, 6, 25, 26]. For us, the relevant symmetries
for an arrangement are the rank-preserving permutations of its hyperplanes.

Let Sn be the permutation group on [n]. Elements of a subgroup G ≤ Sn act on
subsets of [n]. Given g ∈ G and I ⊆ [n], we fix the notation:
– gI = {g(i)}i∈I for the image of I under g,
– I G = {g ∈ G | gI = I } for the stabilizer of I in G,
– G · I = {gI | g ∈ G} for the orbit of I under G.

123

1364 Discrete & Computational Geometry (2023) 70:1356–1377

Definition 4.1 The automorphism group of A = {H1, . . . , Hn} is

Aut(A) = {g ∈ Sn | r(HI) = r(HgI) for all I ⊆ [n]}.

Given a representation B = (HI , HJ) of an arrangement coming from A, the auto-
morphism group Aut(A) acts as gB = (HgI , HgJ).

Remark 4.2 Our definition of the automorphism group of an arrangement is combi-
natorial, not geometric. This difference can be quite large. For example, a generic
hyperplane arrangement A = {H1, . . . , Hn} has no geometric symmetries but
Aut(A) = Sn .

Lemma 4.3 Let A = {H1, . . . , Hn} be an arrangement in K
d and let B1 and B2

represent arrangements coming from deletions and restrictions. If B1 and B2 are in
the same orbit under Aut(A) then b(B1) = b(B2).

Proof The conclusion of the lemma is equivalent to showing that the characteristic
polynomials of B1 and B2 are the same. This follows directly from the fact that the
characteristic polynomial depends only on the intersection poset (graded by rank) and
that B1 and B2 are in the same orbit under Aut(A) if and only if they are related by a
rank-preserving permutation. �

Our algorithm relies upon the following corollary of Lemma 4.3.

Corollary 4.4 Let B = (HI , HJ) represent a hyperplane arrangement coming from
A = {H1, . . . , Hn}. For g ∈ JAut(A) we have that gB = (HgI , HJ) and B have the
same Whitney numbers.

5 Enumeration Algorithmwith Symmetry

Our main algorithm augments Algorithm 2, making particular use of Corollary 4.4.
It is essentially a breadth-first tree algorithm except that at each level, nodes may be
identified up to symmetry and so the algorithmic structure is no longer that of a tree.
The output is the vector of Whitney numbers b(A) of an arrangement A, refining its
chamber count. We remark that despite the fact that our algorithm takes advantage
of symmetry and counts the number of chambers, it does not reveal any information
about the sizes of orbits of chambers under this symmetry group.

Given an arrangement A = {H1, . . . , Hn} in K
d , we represent the nodes of the

algorithm at depth k by a dictionary Tk . The keys of Tk are orbits Gk · I for I ⊆ [k]
where Gk is a subgroup of the stabilizer of {k + 1, . . . , n} in Aut(A). The value of
Gk · I in this dictionary is a pair (BI , ω(BI)) where BI represents the hyperplane
arrangement (HI , H{k+1,...,n}) and ω(BI) is some multiplicity, tracking how many
arrangements indexed by elements of the orbit Gk · I have appeared. We refer to Tk
as a k-th orbit-node dictionary.

Algorithm 3 presents the breadth-first structure of the algorithm.

123

Discrete & Computational Geometry (2023) 70:1356–1377 1365

Algorithm 3: Whitney numbers using symmetry

Input: A hyperplane arrangementA = {H1, . . . , Hn} in Kd

A subgroup G ≤ Aut(A)

Output: The vector of Whitney numbers b(A)

WhitneyNumbers (A)

// compute the stabilizers of G

1 compute {Gi }ni=0 where Gi = {i + 1, . . . , n}G and Gn = G
// initialize orbit-node dictionaries

2 initialize {Ti }ni=0 and set T0 = {G0 · ∅ ⇒ ((∅,A), 1)}
3 for k = 1, . . . , n do
4 set Tk = NextGeneration(A,Gk , Tk−1)

5 initialize b = (0, 0, . . . , 0)
6 for (BI , ω(BI)) ∈ Tn do
7 increment the entry b|I | by ω(BI)

8 return b

Moving from depth k − 1 to k is performed by Algorithm 4.

Algorithm 4: NextGeneration
Input: A hyperplane arrangementA = {H1, . . . , Hn} in Kd

A subgroup Gk ≤ {k + 1, . . . , n}Aut(A)

An orbit-node dictionary Tk−1
Output: An orbit-node dictionary Tk
NextGeneration (A,Gk , Tk−1)

1 set J = {k + 1, . . . , n}
2 for (BI , ω(BI)) ∈ values(Tk−1) do
3 if Hk ∩ L I is a unique hyperplane amongst (Hj ∩ L I)

n
j=k then

// produce the restriction as the right child
4 set I ′ = I ∪ {k}
5 compute the orbitO = Gk · I ′
6 if O ∈ keys(Tk) then
7 increment the multiplicity of Tk [O] by ω(BI)

8 else
9 Tk [O] = ((HI ′ , HJ), ω(BI))

// produce the deletion as the left child
10 compute the orbitO = Gk · I
11 if O ∈ keys(Tk) then
12 increment the multiplicity of Tk (O) by ω(BI)

13 else
14 Tk [O] = ((HI , HJ), ω(BI))

return Tk

Example 5.1 The structure underlying Algorithm 3 applied to the arrangement in
Example 2.2 is shown in Fig. 5. It is no longer a tree but may be obtained from
the tree in Fig. 4 by identifying nodes under the stabilizers of Aut(A). Each identifi-

123

1366 Discrete & Computational Geometry (2023) 70:1356–1377

, {1, 2, 3, 4} (1, 4, 5)

1
2

3

4

1

, {2, 3, 4} (1, 3, 3)

1

{1}, {2, 3, 4} (1, 2)

2

, {3, 4} (1, 2, 1)

2 2

{1}, {3, 4} (1, 2)

3

, {4} (1, 1, 0) {2}, {4} (1, 1)

3

{1, 3}, {4} (1)

4

, (1, 0, 0)

4

{4}, (1, 0)

4

{1, 3}, (1)

4

{2}, (1, 0)

4

{2, 4}, (1)

Fig. 5 The algorithmic structure underlying Algorithm 3. Starting at the top node, each call of Algorithm 4
produces the next depth of this graph

cation accumulates multiplicity in the node and that multiplicity is passed down to its
children.

5.1 Representing Orbits

The computations of orbits in lines 5 and 10 require elaboration; specifically in regards
to representing an orbit G · I on a computer. One option is to use a canonical element
of G · I , which can be computed using the MinimalImage or CanonicalImage
functions from GAP [23, 24]. An alternative approach is to provide any function
ϕ : 2[n] → S taking values in an arbitrary set S such that ϕ(I) = ϕ(J) only if
G · I = G · J . Equivalently, ϕ is any factor of the projection π : 2[n] → 2[n]/G as a
map of sets where 2[n]/G is the set of orbits. In this case, the value of ϕ(I) may be
used to represent the orbit G · I as a key in the orbit–node dictionaries. While this
approach may fail to identify all nodes in the same orbit, nodes in distinct orbits are
never identified and so the algorithm remains correct. The benefit is that it may be
significantly more efficient to evaluate ϕ than it is to compute minimal or canonical
images.

Our default option for identifying orbits is called pseudo_minimal_image.
Given a subset I ⊆ [n] and a collection of elements g1, . . . , gm ∈ G ≤ Sn ,
this function sequentially computes gi I and recursively calls itself on gi I whenever

123

Discrete & Computational Geometry (2023) 70:1356–1377 1367

(a)

0
0

2

4

Pseudo minimal image
Minimal image
No identifications

lo
g
(n

u
m

b
er

 o
f

n
o
d
es

) 6

20 40 60
Depth

80 100 120

Leaves at depth.

(b) Time per depth.

0

–4

–3

–2

–1

0

Pseudo minimal image
Minimal image
No identifications

lo
g
(s

ec
o
n
d
s)

1

20 40 60
Depth

80 100 120

Fig. 6 The leaves per depth and time per depth of Algorithm 3 on the arrangement R7 using pseudo_
minimal_image, MinimalImage, and no identifications

gi I < I lexicographically. If no such gi produces a smaller subset, I itself is returned.
Options are implemented for choosing m to be a proportion of |G| subject to maxi-
mum and minimum values. For our computations, we take m = n random elements
of G. Although this greedy procedure does not make all possible identifications in
the algorithm, we have found that it is quicker than MinimalImage to evaluate and
produces a comparably small algorithmic structure.

Example 5.2 We compare the effect of three choices of identifications in Algorithm 3
(either pseudo_minimal_image, the MinimalImage function in GAP, or no
identifications at all) on the resonance arrangementR7 (see Definition 6.3) consisting
of 127 hyperplanes in R7. We compare the number of leaves of the algorithm at some
depth, as well as the time per depth of the algorithm and display the results in Fig. 6.

As depicted, the cost (in number of leaves) of using pseudo_minimal_image
compared to MinimalImage is negligible, while the benefits in terms of speed
are significant. Similarly, while the timing of our algorithm with MinimalImage is
comparable to the timing without any identifications (Algorithm 2), the memory usage
is significantly reduced as conveyed by the number of leaves (a reasonable proxy for
memory usage). This difference becomes evenmore dramatic for larger arrangements.

5.2 Accumulating theWhitney Numbers and Skipping Levels

Much of the computational burden occurs in line 3 of Algorithm 4 and involves pro-
jecting the normal vectors of the hyperplanes in A along those hyperplanes which

123

1368 Discrete & Computational Geometry (2023) 70:1356–1377

have been restricted. When implementing Algorithm 4, one may choose whether to
save such computations at the cost of memory, or to perform redundant computations
throughout the algorithm.We found that, for our benchmark examples, recomputation
held the most benefit.

Nonetheless, from the linear algebra involved in the evaluation of line 3, one can
read off jmin, the smallest j ∈ J for which this uniqueness condition is true. Hence,
one may immediately place the left child of the corresponding node in level jmin rather
than k to avoid redundancy in line 3 later on. This comes at the cost of missing some
identifications between the layers k and jmin.

Another implementation choice we made was to keep a running count of the Whit-
ney numbers of the arrangement throughout the algorithm. Whenever jmin = n while
computing the children of (BI , ω(BI)), we increment b|I | by ω(BI) and delete the
node altogether since no other deletions or restrictions are possible. Similarly, if A is
a hyperplane arrangement where each hyperplane contains the origin, b|I | and b|I |+1
are incremented by ω(BI) whenever jmin = n− 1 by a similar reasoning. In this way,
we can free memory occupied by nodes throughout the algorithm.

5.3 Relation to OSCAR

The new computer algebra system OSCAR in julia combines the existing systems
GAP [50], Singular [14], Polymake [18, 27], and Antic (Hecke, Nemo) [51].
Our software is written in julia and builds heavily on these cornerstones. Specif-
ically, we use the number theory components Nemo [17] and Hecke to work with
arrangements defined over algebraic field extensions of Q. For example the separa-
bility arrangement of the vertices of the 600-cell is defined over Q(

√
5). Secondly,

we use GAP [50] for group theoretic computations in Algorithm 4. Concretely, we
compute stabilizers and minimal images using the GAP packages ferret [22] and
images [24], respectively.

5.4 Functionality of CountingChambers.jl

The julia package titled CountingChambers.jl contains our implementation
and is available at https://mathrepo.mis.mpg.de/CountingChambers. The following
code snippet shows some standard functions of our package applied to the arrangement
introduced in Example 2.2. A collection of hyperplanes defined by the equations
�i (x1, . . . , xd) = ci for 1 ≤ i ≤ n is encoded by a d × n matrix A having the
coefficients of �i as columns and a vector c.

julia> A = [-1 1 1 0; 1 0 1 1];
julia> c = [1, 0, 1, 0];
julia> whitney_numbers(A; ConstantTerms=c)
3-element Vector{Int64}:
1 4 5
julia> characteristic_polynomial(A; ConstantTerms=c)
t^2 - 4*t + 5
julia> number_of_chambers(A; ConstantTerms=c)
10

123

https://mathrepo.mis.mpg.de/CountingChambers

Discrete & Computational Geometry (2023) 70:1356–1377 1369

Note that the automorphism group of this arrangement is S3 ↪→ S4 consisting of
permutations of the first three hyperplanes. This group can be passed to our algorithm
via a list of generators in one-line notation:

julia> G = [[2,3,1,4],[2,1,3,4]];
julia> whitney_numbers(A; ConstantTerms=c, SymmetryGroup=G)
3-element Vector{Int64}:
1 4 5

As it is easy to run julia on multiple threads, we also implemented our algorithm
to take advantage of this. By starting julia via the command julia –threads
NUM_THREADS and passing the optional parameter multi_threaded=true to
our methods, the for loop in Algorithm 4 is executed in parallel. Table 2 shows how
the multithreading scales.

6 Examples and Integer Sequences

We apply our algorithm to a number of examples. Many of these arise from the
following construction of separability arrangements.

6.1 Separability Arrangements

Fix a finite set V ⊂ R
d . We associate to every v ∈ V the hyperplane Hv ⊂ (Rd+1)∗

comprisedof linear formswhichvanish on (1, v). Equivalently, Hv represents the affine
hyperplanes in Rd which contain v. We call the arrangementHV := {Hv | v ∈ V} the
separability arrangement ofV.We point out that by increasing the dimension d by one,
this construction is distinct from the one which defines real reflection arrangements
from root systems. In particular, translating V does not change the combinatorics of
HV.

A hyperplane Hv partitions the points in (Rd+1)∗ \ Hv into the sets H+
v of linear

formswhich are positive on v and H−
v which are negative on v. Consequently, all affine

hyperplanes corresponding to points in a chamber ofHV are positive on some subset
V1 ⊂ V and negative on its complement V2 = V \ V1. Such a partition V1
 V2 = V
is called linearly separable. Hence, chambers of HV are in bijection with linearly
separable partitions ofV, motivating the terminology forHV. This point of view,which
connects linear separability and hyperplane arrangements, appears in [2, Sect. 2].

One purpose for introducing separability arrangements is that it immediately pro-
vides us with a zoo of arrangements admitting considerable symmetry; for example,
those V which are the vertices of regular polytopes.

6.2 The Threshold Arrangement

The following arrangement appears in the study of neural networks [35, 36, 49] and
algebraic statistics [13].

123

1370 Discrete & Computational Geometry (2023) 70:1356–1377

Definition 6.1 The threshold arrangement2, Td is the separability arrangement asso-
ciated to the vertices of the hypercube [0, 1]d . That is,

Td := {{x0 + c1x1 + · · · + cd xd = 0} with ci ∈ {0, 1} for all ci }.

As a consequence of the definition of Td , the linear automorphisms of the hypercube
[0, 1]d , namely the hyperoctahedral group of order d!2d , is a subgroup of Aut(Td).
The true size of Aut(Td) is (d + 1)!2d .

We computed the Whitney numbers of Td for 1 ≤ d ≤ 8, and thus their number
of chambers. The results are collected in Table 3 and the timings appear in Table 1.
The values of |ch(Td)| for 1 ≤ d ≤ 9 are listed in entry https://oeis.org/A000609 of
the Online-Encyclopedia of Integer Sequences (OEIS), whereas theWhitney numbers
of Td , to the best of our knowledge, have not been published before. Zuev showed that
asymptotically |ch(Td)| ∼ 2d

2
[48].

Remark 6.2 Using similar proof techniques as in [32] one can show that the values of
bi (Td) for 1 ≤ d ≤ 2i determine a formula forbi (Td) for alld. Applying this to the case
of b2(Td) and b3(Td) and using the results in Table 3 we obtain b2(Td) = (4d −2d)/2
and b3(Td) = (4 · 8d − 3 · 6d − 6 · 4d + 5 · 2d)/24. For i ≥ 4 this technique requires
knowledge of bi (Td) for at least 1 ≤ d ≤ 16.

6.3 The Resonance Arrangement

The next arrangement we consider appears as a restriction of the threshold arrange-
ment.

Definition 6.3 The resonance arrangement is the restriction of Td to the hyperplane
H(0,...,0). Equivalently, for d ≥ 1 the resonance arrangement is

Rd := {{c1x1 + c2x2 + · · · + cd xd = 0} with ci ∈ {0, 1} and not all ci are zero}.

The chambers of the resonance arrangements are in bijection with generalized
retarded functions in quantum field theory [16]. An overview of the applications of
the resonance arrangement is given in [32, Sect. 1]. A formula for their number of
chambers remains elusive, let alone one for their Whitney numbers. Nonetheless,
partial formulas and bounds exist [4, 19, 32, 48].

The numbers of chambers of the resonance arrangements are listed in the sequence
https://oeis.org/A034997 in theOEISup tod = 9. TheWhitney numbers are published
in [28] up to d = 7. Our software was able to determine the Whitney numbers of R8
andR9 confirming the concurrent computations in [10]. The computation forR9 took
ten days, runningmultithreaded on42IntelXeonE7-8867v3CPUs.AllWhitney
numbers ofRd up to d = 9 are given in Table 4 and the timings are listed in Table 1.

2 The arrangement {xi + x j }1≤i< j≤d in Rd is also referred to as a threshold arrangement in the literature.
We discuss the arrangement Td only as in Definition 6.1.

123

https://oeis.org/A000609
https://oeis.org/A034997

Discrete & Computational Geometry (2023) 70:1356–1377 1371

6.4 Separability Arrangements of the Cross-Polytopes

The cross-polytope of dimension d is the polytope with the 2d vertices {±ei }di=1. Its
symmetry group is the hyperoctahedral group of order d!2d . We define the arrange-
ment Cd in Rd+1 to be the separability arrangement of its vertices. Our computations
show that |ch(Cd)| = 2 · 3d − 2d for d ≤ 20, suggesting that |ch(Cd)| agrees with
this sequence (https://oeis.org/A027649 in the OEIS). This can indeed be proven by
applying Athanasiadis’ finite field method [1] and seems to be a new result obtained
through experiments with our algorithm.

6.5 Separability Arrangements of Permutohedra

The permutohedron of dimension d−1 is the convex hull of the d! points σ(1, . . . , d)

for all σ ∈ Sd . The separability arrangements Pd of these points in R
d+1 consist of

d! hyperplanes. We record their Whitney numbers in Table 6 for 1 ≤ d ≤ 6.

6.6 Separability Arrangements of Demicubes

Thed-demicube is the convexhull of those vertices of the hypercube [0, 1]d whichhave
an odd number of 1’s. For instance, the 3-demicube is a regular tetrahedron.We denote
by Dd the corresponding separability arrangement consisting of 2d−1 hyperplanes
in Rd+1. Table 5 contains the Whitney numbers of Dd up to d = 9.

6.7 Separability Arrangements of Some Regular Polytopes

In Table 7, we provide the Whitney numbers for the separability arrangements corre-
sponding to the remaining two Platonic solids: the icosahedron and the dodecahedron.
This table also contains the Whitney numbers of the separability arrangements of the
vertices of the regular 24-cell, 600-cell, and 120-cell. Except for the 24-cell, each of
these computations uses irrational realizations.

6.8 Discriminantal Arrangements

Given n points inRd in general position, the discriminantal arrangement Discd,n is the
hyperplane arrangement inRd consisting of the

(n
d

)
hyperplanes spanned by d-subsets

of such points. This arrangement, originally called the “geometry of circuits” was
introduced by Crapo [11]. We verify the Whitney numbers of Disc4,n for 5 ≤ n ≤ 16
given in [31, Sect. 4.4]. From this data, we recover their formula for the characteristic
polynomial of Disc4,n for all n. A deformation of this arrangement appears in physics
[8, 9] and we were able to confirm the chamber counts given in these papers.

123

https://oeis.org/A027649

1372 Discrete & Computational Geometry (2023) 70:1356–1377

7 Timings

While other pieces of software for counting chambers of arrangements exist, they
do not take advantage of symmetry and some compute significantly more data than
our algorithm does. Consequently, our software outperforms them with respect to the
calculation of Whitney numbers as shown below.

The implementation [29] in polymake computes muchmore information than the
Whitney numbers, namely a chamber decomposition of the arrangement. The sage
implementation, on theother hand, uses basic deletion and restriction as inAlgorithm2.
Similarly, the GAP package alcove [33] computes the Tutte polynomial by simple
deletion and restriction and then specializes this to the characteristic polynomial.

To illustrate the performance of our software on the arrangements from Sect. 6,
we collect our timings in Table 1. This table also shows the growth in complexity for
computing the number of chambers of these arrangements. Based on our profiling, the
main bottleneck in our implementation is the identifications of orbits. Thus, improving
pseudo_minimal_image would be the most direct method for making our code
faster.

Acknowledgements This research was completed while the first and third author were at the Max Planck
Institute for Mathematics in the Sciences. The third author was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation)—SFB-TRR 358/1 2023—491392403. We are very grateful
to Tommy Hofmann, Christopher Jefferson, and Marek Kaluba for their support regarding the implemen-
tation, and to Michael Cuntz for initial verifications of our computations. We would also like to thank
Michael Joswig for his helpful comments throughout the project and Bernd Sturmfels for suggesting the
discriminantal arrangement. Lastly, we thank the referees for their careful reading and helpful comments.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Tables of Whitney Numbers

Table 2 Comparison of the effect of number of threads on run times (Intel Core i7-8700)

A #Threads = 1 2 4 8 12

R8 (min) 19.8 10.5 6.3 5.9 5.1

T8 (h) 8.16 3.9 2.4 1.8 1.6

123

http://creativecommons.org/licenses/by/4.0/

Discrete & Computational Geometry (2023) 70:1356–1377 1373

Table 3 The values of bi (Td) and |ch(Td)| of the threshold arrangement for 1 ≤ d ≤ 9 and 0 ≤ i ≤ d

d 1 2 3 4 5 6 7 8

b0(Td) 1 1 1 1 1 1 1 1

b1(Td) = |Td | 2 4 8 16 32 64 128 256

b2(Td) 1 6 28 120 496 2016 8128 32640

b3(Td) 3 44 460 4240 36848 310464 2569920

b4(Td) 23 820 19660 400400 7493808 133492800

b5(Td) 465 43014 2453248 112965776 4626016752

b6(Td) 27129 7111650 987779688 103818315888

b7(Td) 5023907 4075759064 1382897843304

b8(Td) 3193753807 8676817935144

b9(Td) 7393243346241

|ch(Td)| 2 14 104 1882 94572 15028134 8378070864 17561539552946

Table 4 The values of bi (Rd) and |ch(Rd)| of the resonance arrangement for 1 ≤ d ≤ 9 and 0 ≤ i ≤ d

d 1 2 3 4 5 6 7 8 9

b0(Rd) 1 1 1 1 1 1 1 1 1

b1(Rd) = |Rd | 1 3 7 15 31 63 127 255 511

b2(Rd) 2 15 80 375 1652 7035 29360 120975

b3(Rd) 9 170 2130 22435 215439 1957200 17153460

b4(Rd) 104 5270 159460 3831835 81029004 1582492380

b5(Rd) 3485 510524 37769977 2076831708 96834110730

b6(Rd) 371909 169824305 30623870732 3829831100340

b7(Rd) 135677633 207507589302 89702833260450

b8(Rd) 178881449368 973784079284874

b9(Rd) 887815808473419

|ch(Rd)| 2 6 32 370 11292 1066044 347326352 419172756930 1955230985997140

We submitted these Whitney numbers to the OEIS as the sequence https://oeis.org/A344494

123

https://oeis.org/A344494

1374 Discrete & Computational Geometry (2023) 70:1356–1377

Ta
bl
e
5

T
he

va
lu
es

of
b i

(D
d
)
an
d

|ch
(D

d
)|o

f
th
e
de
m
ic
ub

e
ar
ra
ng

em
en
tf
or

2
≤

d
≤

9
an
d
0

≤
i
≤

d
+

1

d
2

3
4

5
6

7
8

9

b 0
(D

d
)

1
1

1
1

1
1

1
1

b 1
(D

d
)
=

|D
d
|

2
4

8
16

32
64

12
8

25
6

b 2
(D

d
)

1
6

28
12

0
49

6
20

16
81

28
32

64
0

b 3
(D

d
)

0
4

50
50

0
44

80
38

30
4

31
92

00
26

22
40

0

b 4
(D

d
)

1
44

11
60

24
34

0
46

14
96

82
83

74
4

14
35

04
32

0

b 5
(D

d
)

15
13

62
76

36
4

34
86

44
8

14
35

95
81

6
54

83
53

64
64

b 6
(D

d
)

59
7

12
09

42
15

44
03

76
16

15
62

40
80

14
53

78
33

43
04

b 7
(D

d
)

64
90

3
33

80
34

16
10

87
80

83
09

6
25

74
28

99
38

40
0

b 8
(D

d
)

21
42

43
43

35
82

80
91

88
0

27
81

62
02

21
20

40

b 9
(D

d
)

26
43

00
09

59
3

14
61

01
80

17
94

36
2

b 1
0
(D

d
)

12
07

19
85

38
08

57
7

|ch
(D

d
)|

4
16

14
6

37
56

29
15

58
74

65
64

64
74

90
40

15
66

6
29

73
63

15
57

83
76

4

123

Discrete & Computational Geometry (2023) 70:1356–1377 1375

Table 6 The values of bi (Pd) and |ch(Pd)| of the permutohedron arrangement for 1 ≤ d ≤ 6 and 0 ≤ i ≤ d

d 1 2 3 4 5 6

b0(Pd) 1 1 1 1 1 1

b1(Pd) = |Pd | 1 2 6 24 120 720

b2(Pd) 1 15 276 7140 258840

b3(Pd) 10 1423 246605 59577390

b4(Pd) 1170 4290610 9271534305

b5(Pd) 4051026 834595018036

b6(Pd) 825382803000

|ch(Pd)| 2 4 32 2894 8595502 1669309192292

Table 7 The values of bi (A) and |ch(A)| of the icosahedral and dodecahedral arrangements as well as
arrangements stemming from regular 4-polytopes for 0 ≤ i ≤ 5

Polytope Icosahedron Dodecahedron 24-Cell 600-Cell 120-Cell

b0(A) 1 1 1 1 1

b1(A) = |A| 12 20 24 120 600

b2(A) 66 166 276 7140 179700

b3(A) 157 577 1630 225782 31972550

b4(A) 102 430 4308 3118740 2979870540

b5(A) – – 2931 2899979 2948077091

|ch(A)| 338 1194 9170 6251762 5960100482

References

1. Athanasiadis, Ch.A.: Characteristic polynomials of subspace arrangements and finite fields. Adv.Math.
122(2), 193–233 (1996)

2. Baldi, P.,Vershynin,R.: Polynomial threshold functions, hyperplane arrangements, and random tensors.
SIAM J. Math. Data Sci. 1(4), 699–729 (2019)

3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing.
SIAM Rev. 59(1), 65–98 (2017)

4. Billera, L.J.,Moore, J.T.,Moraites, C.D.,Wang,Y.,Williams,K.:Maximal unbalanced families (2012).
arXiv:1209.2309

5. Bremner, D., Dutour Sikirić, M., Pasechnik, D.V., Rehn, Th., Schürmann, A.: Computing symmetry
groups of polyhedra. LMS J. Comput. Math. 17(1), 565–581 (2014)

6. Bremner, D., Dutour Sikirić, M., Schürmann, A.: Polyhedral representation conversion up to symme-
tries. In: Polyhedral Computation (Montréal 2006). CRM Proc. Lecture Notes, vol. 48, pp. 45–71.
American Mathematical Society, Providence (2009)

7. Brylawski, T.: The broken-circuit complex. Trans. Am. Math. Soc. 234(2), 417–433 (1977)
8. Cachazo, F., Early, N., Guevara, A., Mizera, S.: Scattering equations: from projective spaces to tropical

Grassmannians. J. High Energy Phys. 2019(6), # 39 (2019)
9. Cachazo, F., Umbert, B., Zhang, Y.: Singular solutions in soft limits. J. High Energy Phys. 2020(5),

148 (2020)
10. Chroman, Z., Singhal, M.: Computations associated with the resonance arrangement (2021).

arXiv:2106.09940

123

http://arxiv.org/abs/1209.2309
http://arxiv.org/abs/2106.09940

1376 Discrete & Computational Geometry (2023) 70:1356–1377

11. Crapo, H.: The combinatorial theory of structures. In: Matroid Theory (Szeged 1982). Colloquia
Mathematica Societatis János Bolyai, vol. 40, pp. 107–213. North-Holland, Amsterdam (1985)

12. Crapo, H.H., Rota, G.-C.: On the Foundations of Combinatorial Theory: Combinatorial Geometries.
MIT Press, Cambridge (1970)

13. Cueto, M.A., Morton, J., Sturmfels, B.: Geometry of the restricted Boltzmann machine. In: Algebraic
Methods in Statistics and Probability II (Urbana-Champaign 2009). Contemporary Mathematics, vol.
516, pp. 135–153. American Mathematical Society, Providence (2010)

14. Decker,W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-2-0—Acomputer algebra system
for polynomial computations (2020). http://www.singular.uni-kl.de

15. Deza, A., Pournin, L.: A linear optimization oracle for zonotope computation. Comput. Geom. 100,
101809 (2022)

16. Evans, T.: What is being calculated with thermal field theory? In: Particle Physics and Cosmology
(Lake Louise 1994), pp. 343–352. World Scientific, Singapore (1995)

17. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/Hecke: computer algebra and number theory
packages for the Julia programming language. In: 42nd International Symposium on Symbolic and
Algebraic Computation (Kaiserslautern 2017), pp. 157–164. ACM, New York (2017)

18. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In: Polytopes—
Combinatorics and Computation (Oberwolfach 1997). DMV Seminar, vol. 29, pp. 43–73. Birkhäuser,
Basel (2000)

19. Gutekunst, S.C., Mészáros, K., Petersen, T.K.: Root cones and the resonance arrangement. Electron.
J. Comb. 28(1), # P1.12 (2021)

20. Halperin, D., Sharir, M.: Arrangements. In: Handbook of Discrete and Computational Geometry, 3rd
edn, pp. 723–762 (chapter 28). Chapman & Hall/CRC, Boca Raton (2018)

21. Huh, J., Katz, E.: Log-concavity of characteristic polynomials and the Bergman fan of matroids. Math.
Ann. 354(3), 1103–1116 (2012)

22. Jefferson, Ch.: ferret—GAP package, v. 1.0.2 (2019). https://gap-packages.github.io/ferret/
23. Jefferson, Ch., Jonauskyte, E., Pfeiffer, M., Waldecker, R.: Minimal and canonical images. J. Algebra

521, 481–506 (2019)
24. Jefferson, Ch., Pfeiffer, M., Waldecker, R., Jonauskyte, E.: images—GAP package, v. 1.3.0 (2019).

https://gap-packages.github.io/images/
25. Jensen, A.N.: Traversing symmetric polyhedral fans. In: 3rd International Congress on Mathematical

Software (Kobe 2010). Lecture Notes in Computer Science, vol. 6327, pp. 282–294. Springer, Berlin
(2010)

26. Jordan, Ch., Joswig, M., Kastner, L.: Parallel enumeration of triangulations. Electron. J. Comb. 25(3),
P3.6 (2018)

27. Kaluba, M., Lorenz, B., Timme, S.: Polymake.jl: a new interface to polymake. In: 7th International
Conference onMathematical Software (Braunschweig 2020). Lecture Notes in Computer Science, vol.
12097, pp. 377–385. Springer, Cham (2020)

28. Kamiya, H., Takemura, A., Terao, H.: Ranking patterns of unfolding models of codimension one. Adv.
Appl. Math. 47(2), 379–400 (2011)

29. Kastner, L., Panizzut, M.: Hyperplane arrangements in polymake. In: 7th International Conference
on Mathematical Software (Braunschweig 2020). Lecture Notes in Computer Science, vol. 12097, pp.
232–240. Springer, Cham (2020)

30. Klivans, C.J., Swartz, E.: Projection volumes of hyperplane arrangements. Discrete Comput. Geom.
46(3), 417–426 (2011)

31. Koizumi, H., Numata, Y., Takemura, A.: On intersection lattices of hyperplane arrangements generated
by generic points. Ann. Comb. 16(4), 789–813 (2012)

32. Kühne, L.: The universality of the resonance arrangement and its Betti numbers. Sém. Lothar. Comb.
85B, # 75 (2021)

33. Leuner, M.: alcove—GAP package (2019). https://github.com/martin-leuner/alcove
34. Möller, T., Röhrle, G.: Counting chambers in restricted Coxeter arrangements. Arch. Math. (Basel)

112(4), 347–359 (2019)
35. Montúfar, G., Ay, N., Ghazi-Zahedi, K.: Geometry and expressive power of conditional restricted

Boltzmann machines. J. Mach. Learn. Res. 16, 2405–2436 (2015)
36. Montúfar, G.F., Morton, J.: When does a mixture of products contain a product of mixtures? SIAM J.

Discrete Math. 29(1), 321–347 (2015)

123

http://www.singular.uni-kl.de
https://gap-packages.github.io/ferret/
https://gap-packages.github.io/images/
https://github.com/martin-leuner/alcove

Discrete & Computational Geometry (2023) 70:1356–1377 1377

37. Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math.
56(2), 167–189 (1980)

38. Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der MathematischenWissenschaften,
vol. 300. Springer, Berlin (1992)

39. Pendavingh, R., van der Pol, J.: Asymptotics of symmetry inmatroids. J. Comb. TheoryB 135, 349–365
(2019)

40. Postnikov, A., Stanley, R.P.: Deformations of Coxeter hyperplane arrangements. J. Comb. Theory A
91(1–2), 544–597 (2000)

41. Sarnoff, J.: SaferIntegers—julia package, v. 2.5.3 (2021). https://github.com/JeffreySarnoff/Safer
Integers.jl

42. Sleumer, N.H.: Output-sensitive cell enumeration in hyperplane arrangements. Nord. J. Comput. 6(2),
137–147 (1999)

43. Solomon, L., Terao, H.: A formula for the characteristic polynomial of an arrangement. Adv. Math.
64(3), 305–325 (1987)

44. Stein, W.A.: Sage Mathematics Software, version x.y.z. The Sage Development Team (2021). http://
www.sagemath.org

45. Yoshinaga, M.: Hyperplane arrangements and Lefschetz’s hyperplane section theorem. Kodai
Math. J. 30(2), 157–194 (2007)

46. Yoshinaga, M.: Freeness of hyperplane arrangements and related topics. Ann. Fac. Sci. ToulouseMath.
23(2), 483–512 (2014)

47. Zaslavsky, Th.: Facing up to Arrangements: Face-Count Formulas for Partitions of Space by Hyper-
planes. Memoirs of the American Mathematical Society, vol. 154. American Mathematical Society,
Providence (1975)

48. Zuev, Yu.A.: Methods of geometry and probabilistic combinatorics in threshold logic. Discrete Math.
Appl. 2(4), 427–438 (1992)

49. Zunic, J.: On encoding and enumerating threshold functions. IEEETrans. Neural Netw. 15(2), 261–267
(2004)

50. GAP—Groups, Algorithms, and Programming, v. 4.10.2 (2019). http://www.gap-system.org
51. OSCAR—Computer Algebra System, v. 0.5.2 (2021). https://oscar.computeralgebra.de

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://github.com/JeffreySarnoff/SaferIntegers.jl
https://github.com/JeffreySarnoff/SaferIntegers.jl
http://www.sagemath.org
http://www.sagemath.org
http://www.gap-system.org
https://oscar.computeralgebra.de

	Computing Characteristic Polynomials of Hyperplane Arrangements with Symmetries
	Abstract
	1 Introduction
	2 Hyperplane Arrangements
	2.1 The Characteristic Polynomial

	3 A Deletion–Restriction Algorithm
	3.1 A Simple Deletion–Restriction Algorithm
	3.2 Computationally Representing Deletions and Restrictions

	4 Automorphisms of Hyperplane Arrangements
	5 Enumeration Algorithm with Symmetry
	5.1 Representing Orbits
	5.2 Accumulating the Whitney Numbers and Skipping Levels
	5.3 Relation to OSCAR
	5.4 Functionality of CountingChambers.jl

	6 Examples and Integer Sequences
	6.1 Separability Arrangements
	6.2 The Threshold Arrangement
	6.3 The Resonance Arrangement
	6.4 Separability Arrangements of the Cross-Polytopes
	6.5 Separability Arrangements of Permutohedra
	6.6 Separability Arrangements of Demicubes
	6.7 Separability Arrangements of Some Regular Polytopes
	6.8 Discriminantal Arrangements

	7 Timings
	Acknowledgements
	Appendix: Tables of Whitney Numbers
	References

