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1 Introduction

Multi-commodity flows, or multiflows for short, are well-studied objects in combi-
natorial optimization; see, e.g., [38, Part VII]. A multiflow of maximum total value
can be found in polynomial time by linear programming. In many applications (see,
e.g., [28]), a multiflow must be integral, and then the problem is much harder; the
well-known edge-disjoint paths problem is a special case. There is a huge number
of works addressing the question when the edge-disjoint paths problem or the max-
imum integral multiflow problem is solvable in polynomial time or at least admits a
constant-factor approximation algorithm; surveys can be found in [11, 28, 33, 38].

Recently, constant-factor approximation algorithms have been found for maximum
edge-disjoint paths and integral multiflows in fully planar instances, i.e., whenG+H ,
the supply graph together with the demand edges, can be embedded in the plane
[17, 22] (this setting was first studied by [40]). We generalize these results to surfaces
of bounded genus and devise the first constant-factor approximation algorithm for that
case. Another motivation of our work is to provide a novel application of recent works
in geometric topology.

Beyond using some ideas of [17, 22], we need several new ingredients. Like [17],
we start by computing an optimal (fractional) multiflow and “uncross” the cycles in
its support as much as possible, but uncrossing is significantly more complicated on
general surfaces than in the plane. Next, we need to deal with two cases separately:
depending on whether most of the fractional multiflow is on separating cycles (that
case is similar to the planar case) or on non-separating cycles. In the latter case we
partition the cycles into free homotopy classes and define a cyclic order in each free
homotopy class, which is possible due to the uncrossing and allows for a simple greedy
algorithm.

1.1 Our Results

The (fractional)maximummultiflow problem can be described as follows. An instance
consists of two undirected graphs G = (V , E) (the supply graph) and H = (V , D)

(the demand graph) on the same vertex set, as well as a function u : D ∪̇ E → Z>0. A
demand edge d ∈ D with endpoints s and t specifies the demand of a flow from s to t ,
ideally of value u(d). The demand edges are sometimes referred to as commodities.
All the flowmust be routed in the supply graph. Each supply edge e ∈ E has a capacity
u(e), and the total amount of flow routed along e (summed up over all commodities)
must not exceed u(e). The goal is to satisfy as much of the demand as possible. More
precisely, we ask for an s-t-flow f d of value at most u(d) for every demand edge
d = {t, s} such that the total flow on each supply edge is at most its capacity, i.e.,∑

d∈D f d(e) � u(e) for all e ∈ E , and the total value of all those flows is maximum.
The special case where there is only one demand edge is the classical maximum flow
problem [16].

An elegant equivalent description works with the graph G+H := (V , D ∪̇ E) that
contains both the supply and the demand edges. It is well known that every s-t-flow
can be decomposed into flows on s-t-paths and on cycles, and for integral flows there
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is an integral decomposition. The cycles in such a decomposition do not contribute to
the value of the s-t-flow and can be ignored. An s-t-path in (V , E) together with the
demand edge d = {t, s} forms a D-cycle: a cycle in G + H that contains exactly one
demand edge. If we let C denote the set of all D-cycles in G + H , we can write the
maximum multiflow problem equivalently as

max
∑

C∈C
fC such that

⎧
⎨

⎩

∑

C∈C:C�e
fC � u(e) for all e ∈ D ∪̇ E,

fC � 0 for all C ∈ C.

(1)

In some previous works, the problem has been defined with u(d) = ∞ for d ∈ D, and
this variant is easily seen to be equivalent. We call the linear program (1) themaximum
multiflow LP. The maximum integral multiflow problem is identical, except that the
flow must be integral:

max
∑

C∈C
fC such that

⎧
⎨

⎩

∑

C∈C:C�e
fC � u(e) for all e ∈ D ∪̇ E,

fC ∈ Z�0 for all C ∈ C.

(2)

The special case where u(e) = 1 for every edge e ∈ D ∪̇ E is known as the maximum
edge-disjoint paths problem. Even that special case is unlikely to have a constant-
factor approximation algorithm for general instances (see Sect. 1.2). Our main result
is a constant-factor approximation algorithm in the case whenG+H can be embedded
on an orientable surface of bounded genus.

Theorem 1.1 There is a polynomial-time algorithm that takes as input an instance
(G, H , u) of the maximum integral multiflow problem such that G + H is embedded
on an orientable surface of genus g, and which outputs an integral multiflow whose
value is at most a factor O(g2 log g) smaller than the value of any fractional multiflow.

See Sect. 3 for an outline of the algorithm and the proof. It is worth pointing out that
almost all known hardness results for the maximum edge-disjoint paths problem hold
even when G is planar (see Sect. 1.2). Theorem 1.1, along with the two recent papers
[17, 22], highlight that for tractability one needs more than the planarity of G alone.
The topology of G + H together plays an important role.

The dual LP of (1) is:

min
∑

e∈D∪̇E

u(e)ye such that

⎧
⎨

⎩

∑

e∈C
ye � 1 for all C ∈ C,

ye � 0 for all e ∈ D ∪̇ E,

(3)

and this may be called the minimum fractional multicut problem. The minimum mul-
ticut problem results from replacing the inequality ye � 0 in (3) by ye ∈ {0, 1} for
all edges e ∈ D ∪̇ E . So a multicut is a set of X of edges in G + H such that every
D-cycle contains at least one edge of X . The capacity of a multicut X is

∑
e∈X u(e).

Again, many previous works considered the equivalent special case where u(d) = ∞
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for d ∈ D, in which case no dual variables for demand edges are needed and X must
consist of supply edges only. By weak duality, the value of any multiflow is at most the
capacity of any multicut. Using Theorem 1.1 and a previous result of [41], we obtain
(in Sect. 9):

Corollary 1.2 For any instance (G, H , u) of the maximum integral multiflow problem
such that G + H is embedded on an orientable surface of genus g, the minimum
capacity of a multicut is at most O(g3.5 log g) times the maximum value of an integral
multiflow.

In general the integral multiflow-multicut gap, i.e., the ratio of the minimum capacity
of amulticut and themaximum value of an integral multiflow,1 and even the integrality
gap of (1), i.e., the ratio of (1) and (2), can be as large as �(|D|). This is true even
when G is planar and G + H is embedded in the projective plane [19]; see Sect. 8.
In this paper we consider orientable surfaces only. Corollary 1.2 states that the gap
becomes constant when G + H has bounded genus. So far very few such constant
integral multiflow-multicut gaps are known, for example when G is a tree [19], or
when G + H is planar, as recently shown in [17, 22].

Finally, in Sect. 10, we obtain an improved approximation ratio (but not with respect
to the LP value):

Theorem 1.3 There is a polynomial-time algorithm that takes as input an instance
(G, H , u) of the maximum integral multiflow problem such that G + H is embedded
on an orientable surface of genus g, and which outputs an integral multiflow whose
value is at most a factor O(g2) smaller than the optimum.

Whether a quadratic dependence on g is necessary remains open. However, we note
in Sect. 8 that the integrality gap of the maximum multiflow LP can depend at least
linearly on g.

1.2 RelatedWork

Approximation Algorithms and Hardness for Integral Multiflows Most of the
hardness results for the maximum integral multiflow problem follow from the special
case of the maximum edge-disjoint paths problem (EDP). The decision version of
EDP is one of Karp’s original NP-complete problems [23], and remains NP-complete
even in many special cases [33], including the case of interest in this paper, namely
even when G + H is planar [31]. In terms of approximation, EDP is APX-hard [2].
Assuming that NP � DetTIME(nO(log n)), where n = |V |, there is no no(1/

√
log n)

approximation for EDP, even when G is planar and sub-cubic [8]. Assuming that for
some positive δ, NP � RandTIME(2n

δ
), there is no nO(1/(log log n)2) approximation

for EDP, even when G is planar and sub-cubic [7]. As far as we know, no stronger
hardness result is known for integral mutliflows.

1 There is a closely related, but different, notion of integral flow-cut gap introduced in [6]: they study the
smallest constant c such that whenever u(C ∩ E) � u(C ∩ D) for every cut C (the cut condition), there is
an integral multiflow satisfying all demands and violating capacities by at most a factor c.
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On the positive side, EDP can be solved in polynomial time when the number of
demand edges is bounded by a constant [36]. The same holds for integral multiflows
when G + H is planar [39]. For exact algorithms in various special cases, see the sur-
vey [33]. In general, the best known approximation guarantee for EDP and maximum
integral multiflows is O(

√
n) [5]. Approximation algorithms with better approxima-

tion ratios for various special cases have been designed. We refer the readers to the
survey [11] and to [19, 24, 33] and the references therein.

RecentWork on the Planar CaseRecently, [17, 22] gave constant-factor approxima-
tion algorithms for maximum integer multiflows when G + H is planar. Both papers
proceed by first obtaining a half-integral multiflow and then using the four color theo-
rem to round it to an integral solution (similar to Sect. 6). The main difference between
the two works is the way such half-integral multiflows are obtained. In [17], it is con-
structed by uncrossing a fractional multiflow (see Sect. 5 for a definition) to construct
a certain network matrix, which is known to be totally unimodular; in [22], such a
half-integral multiflow is obtained by rounding a feasible solution of a related problem
in the planar dual graph of G + H . Neither approach extends to higher genus graphs
in a straightforward way, because the dual of a cycle is no longer a cut in general and
cycles cannot always be uncrossed.

Minimum Multicut Problem The minimum multicut problem is NP-hard even
when there are only three demand edges [12]. In general, assuming that the Unique
Games conjecture holds, there is no O(1)-approximation [4], but an O(log |D|)-
approximation algorithm [18]. Better approximations also have been shown for special
cases; see [19, 41] and the references therein. In particular, when G + H is planar,
[26] gave an approximation scheme. When G has genus g, an FPT-approximation
scheme with parameters of g and |D| has been proposed [9].

Tools from Topology The design of multiflows on surfaces is closely related to the
properties of sets of curves on a surface. In a recent breakthrough, Przytycki [34]
proved that the maximum number of essential curves on a closed surface of genus g
such that no two of them are freely homotopic or intersect more than once is O(g3),
improving on the previous exponential upper bound by [30]. Very recently, this number
was shown to be O(g2 log g) by [20], which almost matches the lower bound �(g2)
on the size of such sets [30]. We will use this result in Sect. 7.

2 Preliminaries

Consider an instance (G, H , u) of the maximum integral multiflow problem, and let
G + H = (V , E ∪̇ D) be the graph whose edge set is the disjoint union of the edge
sets of the supply graph G = (V , E) and the demand graph H = (V , D). Throughout
the paper, we assume that the graph G + H is connected, otherwise, we can run the
algorithm on each of its connected components.

Graphs on Surfaces Surfaces are either orientable or non-orientable; in this paper we
only consider closed orientable surfaces. A closed orientable surface of genus g can
be seen as a connected sum of g tori, or equivalently a sphere with g handles attached

123



Discrete & Computational Geometry (2023) 70:1266–1291 1271

on it, where g is called the genus of the surface. Given an integer g � 0, all closed
surfaces with genus g are mutually homeomorphic, and we refer to any one of them
as Sg . For instance, S0 is the sphere and S1 is the torus.

A (multi)graph has genus g or is a genus-g graph, if it can be drawn on Sg without
edge crossings, but not on Sg−1. A genus-g graph may have several non-equivalent
embeddings on Sg , but all of them satisfy the same invariant, called the Euler char-
acteristic: # Faces− # Edges+ # Vertices = 2 − 2 g. A simple application of Euler’s
formula gives the following upper bound on the coloring number of genus-g graphs,
when g � 1.

Theorem 2.1 (map color theorem) A genus-g graph can be colored in polynomial
time with at most

χg �
⌊
7 + √

1 + 48g

2

⌋

colors.

For g = 0, this is an algorithmic version of the 4-color theorem [35]. For g � 1, the
coloring is obtained in polynomial time by a simple recursive algorithm that removes a
vertex of minimum degree and colors the remaining graph [21]. For additional details
and results about graphs on surfaces see e.g. [10, 32].

Combinatorial Embeddings Given a graph, let δ(v) denote the set of edges incident
to a vertex v, and δ(U ) the set of edgeswith exactly one endpoint in vertex setU . Given
an embedding of a graph on an orientable surface, and an arbitrary orientation of this
surface, for each vertex v, a clockwise cyclic order can be defined on the edges of δ(v).
Note that contracting an edge e = {u, v} results in removing e from δ(u) and from δ(v)

and concatenating the orders to obtain the clockwise cyclic order of the edges around
the vertex created by the contraction. Using these orders together with the incidence
relation between edges and faces, embeddings become purely combinatorial objects.
For additional details see, e.g., [32, Chap. 4].

Graph Duality Given an embedding of a genus-g graph G on Sg , there exists a
uniquely defined dual graph, denoted as G∗. This graph can be embedded on the same
surface as G. There exists a bijection between the faces of G and the vertices of G∗,
a bijection between the vertices of G and the faces of G∗, and a bijection between
the edge sets of G and of G∗. Moreover, the embeddings of G and G∗ are consistent:
with this bijection, every edge only crosses its dual edge, and every face only contains
its corresponding dual vertex and reciprocally. For notational simplicity, the latter
bijection is implicit.

Cycles and Cuts A path in a graph G is a sequence (v0, e1, v1, . . . , ek, vk) for some
k � 0, where v0, . . . , vk are distinct vertices and ei = {vi−1, vi } is an edge for all
i = 1, . . . , k. A cycle in a graph G is a sequence (v0, e1, v1, . . . , ek, vk) such that
v1, . . . , vk are distinct vertices, {vi−1, vi } is an edge for all i = 1, . . . , k, and v0 = vk .
Sometimeswe view cycles as edge sets or as graphs. A cut is an edge set δ(U ) for some
proper subset ∅ �= U ⊂ V . A cut δ(U ) is simple if both U and V \U are connected.
We say that an edge set F in a graph is a (simple) dual cut if the corresponding set of
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C

C ′

Fig. 1 Some cycles on an orientable surface of genus 2. On the left, two separating cycles. On the right,
three non-separating cycles. C and C ′ are freely homotopic and their union disconnects the surface

edges F∗ in the dual is a (simple) cut. A cycle C in G is called separating if it is a
dual cut, and non-separating otherwise. Note that every separating cycle is a simple
dual cut.

Homotopy Given a surface S, a (simple) topological cycle is a continuous injective
map γ from the unit cycle S1 := {z ∈ C : ‖z‖ = 1} to S. Two topological cycles γ1
and γ2 are freely homotopic if there exists a continuous function ϕ : [0, 1]× S1 → S

such that ϕ(0, ·) = γ1 and ϕ(1, ·) = γ2. Intuitively, cycle γ1 is transformed into cycle
γ2 by continuously moving it on the surface. Free homotopy is an equivalence relation.
Given an embedding of the graph G + H on S, we say that a cycle C in G + H is
represented2by a topological cycle γ of S if the image of γ is the embedding of C
on S. Two cycles in G+ H are freely homotopic if and only if they can be represented
by two freely homotopic topological cycles.

In the sequel, we use the following well-known fact.

Fact 1 If two cycles C and C ′ are freely homotopic, then their symmetric difference is
a dual cut. If C and C ′ are additionally disjoint and non-separating, then their union
is a simple dual cut.

Intuitively, the image of the continuous homotopy function fromC toC ′ on the surface
forms an annulus [13]. See Fig. 1 for an illustration.

3 Overview

In this section, we give an overview of our constant-factor approximation algorithm for
the maximum integral multiflow problem when G + H is embedded on an orientable
surface Sg of genus g, where g is bounded by a constant (Theorem 1.1). Again, without
loss of generality, we assume that G + H is connected. Here is the main algorithm.
Steps 1, 2, 3, 4 will be described in detail in Sects. 4, 5, 6, 7, respectively.

1. Solve the linear program (1) to obtain a (fractional) multiflow f ∗.
2. Construct another multiflow f such that any two cycles in the support of f cross

at most once (Lemma 5.3). See Definition 5.1 for the definition of “crossing.”
3. If at least half of the total value of f is contributed by separating cycles, these cycles

now form a laminar family. Construct a half-integral multiflow f half (Theorem 6.2),
and from there, using the map color theorem (Theorem 2.1), compute an integral
multiflow f ′ (Theorem 6.3), which is the output.

2 Topological cycles are considered up to orientation-preserving reparameterization. Therefore, a cycle in
G + H may be represented by a topological cycle from two classes, one for each orientation: the class of
γ and the class of γ ′ where γ ′(eiθ ) = γ (e−iθ ).
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4. Otherwise, partition the non-separating cycles in the support of f into free homo-
topy classes. Pick the class H with the largest total flow value. Remove the flow
on all other cycles and greedily construct an integral multiflow (Lemmas 7.7 and
7.4), which is the output.

It can be proved that we only lose a constant factor at every step of the algorithm: see
Sect. 8 for the analysis of the above algorithm, proving Theorem 1.1.

4 Finding a Fractional Multiflow (Step 1)

A feasible solution f to the maximum multiflow LP (1) will be simply called a mul-
tiflow. Recall that C denotes the set of all D-cycles, i.e., all cycles in G + H that
contain precisely one demand edge. We denote by | f | = ∑

C∈C fC the value of f ,
and by C( f ) := {C ∈ C : fC > 0} the support of f . Although formulation (1) has
an exponential number of variables, it is well known that it can be reformulated by
polynomially many flow variables and constraints (see, e.g., [16, Chap. 1.2] or [1,
Chap. 3.5]) and thereby solved in polynomial time:

Proposition 4.1 There is an algorithm that finds an optimal solution f ∗ to the maxi-
mum multiflow LP (1) such that |C( f ∗)| � |D| · |E |. Its running time is polynomial
in the size of the input graph.

Proof We reformulate the linear program as follows. Let D→ contain an arbitrary
orientation of each demand edge, and let E↔ contain both orientations of each supply
edge. Introduce nonnegative flow variables xde for all d ∈ D and e ∈ {d→} ∪̇ E↔,
where d→ denotes the chosen orientation of D. We maximize

∑
d∈D xdd→ subject to

the constraints that xd is a nonnegative circulation (i.e., obeying the flow conservation
constraint at every vertex) for each d ∈ D, obeying the capacity constraints xdd→ �
u(d) for all d ∈ D, and

∑
d∈D(xde← + xde→) � u(e) for all e ∈ E , where e← and e→

denote the two orientations of e. This is a linear program of polynomial size.
For a D-cycleC ∈ C, letC→ denote the orientation ofC as a directed cycle such that

d→ ∈ C→. For every solution f to (1), xde := ∑
C∈C:d→,e∈C→ fC defines a feasible

solution of the new LP with the same objective function value. Conversely, given an
optimum solution x to the new LP, each circulation xd can be decomposed into flows
on at most |E | cycles, resulting in a solution f to (1) with xde = ∑

C∈C:d→,e∈C→ fC
for all d and e. Hence this f is an optimum solution, and it has support at most
|D| · |E |. ��

Later we will restrict a multiflow to subsets of D-cycles. For C′ ⊆ C we define
a multiflow f ′ by f ′

C := fC for C ∈ C′ and f ′
C := 0 for C ∈ C \C′, and write

f (C′) := f ′.

5 Making a Fractional FlowMinimally Crossing (Step 2)

In this section we show that for a given embedding, we can “uncross” a multiflow in
such a way that any two D-cycles in the support cross at most once. While doing this
we will loose only an arbitrarily small fraction of the multiflow value.
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d1=d2

d1
d2

d1

d2

Fig. 2 Each of the two figures on the left show two D-cycles, C1 (red, dotted) and C2 (blue, solid). The
edges belonging to D are marked as d1 and d2. Edges are arranged at every vertex in the order of their
embedding. Crossings are marked by yellow shade. The two D-cycles on the left cross three times. The
two D-cycles in the middle cross four times. The figure on the right shows two D-cycles C1 and C2 that
cross twice, and a third D-cycle C3 (green, dashed) that crosses neither C1 nor C2. Uncrossing C1 and C2
here generates a crossing of C3 with a new D-cycle (namely with the triangle containing d2)

Uncrossing is a well-known technique in combinatorial optimization, but in most
cases it is applied to families of subsets of a ground set U . Such a family is said to
be cross-free if, for any two of its sets, A and B, at least one of the four sets A \ B,
B \ A, A ∩ B, and U \ (A ∪ B) is empty. Here we want to uncross D-cycles in the
topological sense, and this can be reduced to the above (with some extra care) only
if all these cycles are separating (which, for example, is always the case if G + H is
planar; cf. [17]).

Definition 5.1 We say that two D-cycles C1 and C2 cross if there exists a path P
(possibly a single vertex), which is a subpath of both C1 and C2, and such that in the
embedding, after contracting the edges of P , the vertex v thus obtained is incident
to two edges of C1 and to two edges of C2, all distinct, and in the embedding the
restriction of the cyclic order of δ(v) to those four edges alternates between an edge
of C1 and an edge of C2.

Remark 5.2 A set of pairwise non-crossing D-cycles can be equivalently characterized
in a topological manner as follows. Cycles C1, . . . ,Cr are pairwise non-crossing if
and only if for all N1, . . . , Nr such that Ni is a neighbourhood of the embedding of
Ci on S, i = 1, . . . , r , there are topological cycles C ′

i in Ni , freely homotopic to Ci ,
for i = 1, . . . , r , that are pairwise disjoint. We use this equivalence in Sects. 6 and 7.

Two cycles may cross multiple times. We denote by cr(C,C ′) the number of times
that C and C ′ cross. See Fig. 2 for three examples. In contrast to the planar case,
it is possible that two cycles cross exactly once and cannot be uncrossed. The third
example in Fig. 2 shows another difficulty: when uncrossing two D-cycles it might be
necessary to generate new crossings with other cycles.

Lemma 5.3 Let ε > 0 be fixed. Given a multiflow f whose support has size at most
|E | · |D|, there is a polynomial-time algorithm to construct another multiflow f , of
value at least | f | � (1− ε)| f |, and such that any two cycles in the support of f cross
at most once.

Proof First we discretize themultiflow, losing an ε fraction in value; thenwe iteratively
modify it, without changing its value, to reduce the number of crossings or the total
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amount of flow on all edges; finally, we analyze the process and argue that the number
of iterations is polynomially bounded.

Discretization The statement is trivial if | f | = 0. Otherwise, before uncrossing, we
round down the flow on every D-cycle to integer multiples of ε | f |/(|E | · |D|). That
is, we define

f ′
C := ε | f |

|E | · |D|
⌊ |E | · |D| fC

ε | f |
⌋

for all C ∈ C. Note that f ′ is a multiflow. We claim that | f ′| � (1 − ε)| f |. Indeed,

| f ′| =
∑

C∈C
f ′
C �

∑

C∈C( f )

(

fC − ε | f |
|E | · |D|

)

= | f | − |C( f )| ε | f |
|E | · |D| � | f | − ε | f |.

The discretized multiflow f ′ can be represented by a multi-set S of unweighted D-
cycles: if f ′

C = kε | f |/(|E | · |D|), then k identical copies of cycle C are added to S.
The number of cycles in S (counting multiplicities) is at most |E | · |D|/ε because

|S| =
∑

C∈C
f ′
C

|E | · |D|
ε | f | �

∑

C∈C
fC

|E | · |D|
ε | f | = |E | · |D|

ε
.

UncrossingToconstruct f ,weperforma sequence of transformations of themultiflow.
We will modify S while maintaining the following invariants:

(a) The number of elements of S (counting multiplicities) remains constant.
(b) For every e ∈ D ∪̇ E , the number of elements of S (counting multiplicities) that

contain e never increases.

Thanks to (b), at any stage, f is a multiflow, where f is defined by fC =
kε | f |/(|E | · |D|) for C ∈ C, where k is the multiplicity of C in S. Initially f = f ′.
Thanks to (a), the value of the multiflow is preserved. In the following we work only
with S.

While there exist two cyclesC1 andC2 inS that cross at least twice, do the following
uncrossing operation (on one copy of C1 and one copy of C2). Let d1 be the edge in
C1 ∩ D, and let d2 be the edge in C2 ∩ D. Let P and Q be two of the paths where
C1 and C2 cross (cf. Definition 5.1), such that Q contains only edges of E . Fix an
orientation of C1 as follows. If P contains d1, then orient C1 arbitrarily. Otherwise,
orient C1 so that in that orientation, d1 is located between P and Q. Let C1 denote
the resulting directed cycle. Let a be the first vertex on P in the orientation of C1, and
let b be an arbitrary vertex on Q. Vertices a and b partition C1 into a path C

+
1 from a

to b that contains d1 and a path C−
1 from b to a that does not contain d1.

Case 1 P contains an edge of D. Then this edge is d1 = d2. We orient C2 so that the
orientation on P agrees with the orientation of C1 on P . Let C2 denote the resulting
directed cycle. Then the vertices a and b also partition C2 into a path C

+
2 from a to b

that contains d2 and a path C−
2 from b to a that does not contain d2.
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(a)

P

Q

a

b

d1=d2

(b) d1=d2

(c)

Q

P

bad1

d2

(d)

d1

d2

Fig. 3 Uncrossing the pairs of D-cycles from Fig. 2. (a) and (b) show an example for Case 1, (c) and (d)
an example for Case 2. The initial situation (C1 red, dotted, and C2 blue, solid) and a possible choice of
P, Q, a, b and the resulting orientation is shown in (a) and (c). As the result of the uncrossing operation,
shown in (b) and (d), we have the new D-cycles C ′

1 (red, dotted) and C
′
2 (blue, solid) with fewer crossings

among each other

Case 2 P contains edges of E only. Then we orient C2 so that in that orientation, d2
is located between P and Q. Let C2 denote the directed cycle. With that orientation,
vertices a and b also partition C2 into a path C+

2 from a to b that contains d2 and a
path C−

2 from b to a that does not contain d2.

To obtain C ′
1, we concatenate C+

1 and C−
2 , remove any closed walk (allowing

repeated vertices) that does not contain d1, and remove the orientation. To obtain C ′
2,

we concatenate C+
2 and C−

1 , remove any closed walk that does not contain d2, and
remove the orientation. Note thatC ′

1 andC
′
2 are D-cycles because each ofC+

1 andC+
2

contains exactly one demand edge, and C−
1 and C−

2 contain no demand edge. See
Fig. 3 for two examples, one for each case.

Analysis From the construction it follows that C ′
1 and C ′

2 are D-cycles and no edge
is contained more often in C ′

1 and C ′
2 than in C1 and C2. Hence removing one copy

of C1 and C2 from S and adding one copy of C ′
1 and C

′
2 to S maintains the invariants

(a) and (b).
To show that after a polynomial number of uncrossing operations any pair of cycles

in S crosses at most once, we consider the total number of edges 
1 = ∑
C∈S |C |

(counting multiplicities) and the total number of crossings 
2 = ∑
C,C ′∈S cr(C,C ′)

(where we again count multiplicities). Note that |S| remains constant by invariant (a),
and 
1 never increases by invariant (b). Moreover, 0 � 
1 � |V | · |S| and 0 �
|
2| � |V | · |S|2.

Claim 5.4 Each uncrossing operation either decreases 
1 or leaves 
1 unchanged
and decreases 
2.
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(a)

0 1 2 3 4

e′
0 C ′ e′

1 e′
2 e′

3 e′
4

e′
k +1e0

ek +1C
(b)

C1

C2

C

(c)
C1 C2 C

(d)
C1 C2 C

Fig. 4 For each crossing of C with a new cycle C ′ ∈ {C ′
1,C

′
2} at a path R there is a crossing of C with

one of the old cycles C1 and C2 at a subpath of R. This crossing is marked with yellow shade in the three
examples

To prove Claim 5.4, consider an uncrossing operation that replaces C1 and C2 by C ′
1

and C ′
2, and suppose that 
1 remains the same, so C ′

1 consists of C
+
1 plus C−

2 , and C
′
2

consists of C+
2 plus C−

1 . We first observe that cr(C ′
1,C

′
2) < cr(C1,C2). Indeed, the

crossings at P and at Q go away, and no new crossing arises.

Finally we need to show that for any cycle C ∈ C,

cr(C,C ′
1) + cr(C,C ′

2) � cr(C,C1) + cr(C,C2). (4)

To show (4), consider a crossing of C and C ′ ∈ {C ′
1,C

′
2} at a path R. Let e′

1 =
{v0, v1}, . . . , e′

k = {vk−1, vk} be the edges of R (k � 0), and let e0, ek+1, e′
0, e

′
k+1

be edges such that e0, e′
1, . . . , e

′
k, ek+1 are subsequent on C and e′

0, e
′
1, . . . , e

′
k, e

′
k+1

are subsequent on C ′. After contracting R, the incident edges e0, e′
0, ek+1, e′

k+1 are
embedded in this cyclic order. (Note that e0 = ek+1 or e′

0 = e′
k+1 is possible if k � 1,

then contracting R yields a loop.) See Fig. 4 (a).
Now e′

0 belongs toC1 orC2, sayC1. If R contains neither a nor b, then e′
0, . . . , e

′
k+1

all belong to C1, and C1 crosses C at R. If R contains either a or b, say at vi , then
e′
0, . . . , e

′
i belong to C1 and e′

i+1, . . . , e
′
k+1 belong to C2. Moreover, C1 and C2 cross

at a path containing vi , so either C1 crosses C at a subpath of R (Fig. 4 (b)) or C2
crosses C at a subpath of R (Fig. 4 (c)). Finally, if R contains a and b, say at vi and v j

for 0 � i < j � k, then e′
0, . . . , e

′
i and e

′
j+1, . . . , e

′
k+1 belong to C1 and e′

i+1, . . . , e
′
j

belong to C2 (Fig. 4 (d)). Again, C1 or C2 crosses C at a subpath of R. This concludes
the proof of Claim 5.4.

We can now conclude the proof of Lemma 5.3 because
1 decreases atmost |V |·|S|
times, and while 
1 is constant, 
2 decreases at most |V | · |S|2 times, so the total
number of uncrossing operations is at most |V |2|S|3 � |V |2|E |3|D|3/ε3. ��

6 Separating Cycles: Routing an Integral Flow (Step 3)

Let f be the flow resulted from Proposition 4.1 and Lemma 5.3, and let Csep denote
the set of separating cycles in the support of f . We now consider the case when the
separating cycles contribute at least half to the total flow value, i.e., | f (Csep)| � | f |/2.
Note that |Csep| � |D| · |E |. This branch of our algorithm consists of two steps:

1. given f (Csep), construct a half-integralmultiflow f half of value at least | f (Csep)|/2;
2. given f half, construct an integral multiflow of value at least | f half|/�(

√
g).
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6.1 Obtaining a Half-Integral Multiflow

To obtain a half-integral multiflow, we follow the technique used by [17] for the case
where G + H is planar. By the Jordan curve theorem, any cycle in a planar graph is
separating. As for the plane, the following property is easy to check for higher genus
surfaces.

Proposition 6.1 If C and C ′ are two cycles embedded on a surface, and C ′ is a sepa-
rating cycle, then C and C ′ must cross an even number of times.

Proof C ′ is separating the surface into two sides.While walking alongC from a vertex
v, we go from one side to the other each time we cross C ′. When we return at v, we
are on the same side where we started, so the number of crossing is even. ��
Since any pair of cycles in the support of f crosses at most once, Csep must be a
non-crossing family by Proposition 6.1. In particular, we can show that Csep have a
laminar structure.

We say that a family of subsets of the dual vertex set V ∗ is laminar if any two
members either are disjoint or one contains the other. Let us take any face ofG+H that
we call∞. For any cycleC ∈ Csep we define in(C) and out(C) to be the two connected
components of (G+H)∗\C∗, such that∞ ∈ out(C), whereC∗ denotes the set of dual
edges corresponding to edges in C . We claim that the family L := {in(C) : C ∈ Csep}
is laminar.

Indeed, take any two cycles C and C ′ in Csep. Since they do not cross, either
(i) (C ′ \C)∗ ⊆ in(C) or, (ii) (C ′ \C)∗ ⊆ out(C). In case (i) we must have in(C ′) ⊆
in(C). In case (ii), we have either (ii.a) in(C) ⊆ in(C ′) or (ii.b) in(C) ∩ in(C ′) = ∅,
hence laminarity.

Using the terminology in [17], we say a multiflow f is laminar if {C∗ : C ∈ C,

fC > 0} = {δ(U ) : U ∈ L} where L is a laminar family (of subsets of V ∗). Thus,
f (Csep) is laminar and we can apply the following result to get f half.

Theorem 6.2 [17] If f is a laminar multiflow, then there exists a laminar half-integral
multiflow f ′ of value | f ′| � | f |/2 such that C( f ′) ⊆ C( f ). Such a multiflow can be
computed in polynomial time.

6.2 Obtaining an Integral Multiflow

In this section we show the following result, which is an extension of a result from
[17, 22], who proved it for planar graphs.

Theorem 6.3 Let (G, H , u) be an instance of the maximum multiflow problem such
that G + H has genus g, and let f half be a laminar half-integral multiflow whose
support C( f half) contains only separating cycles, and |C( f half)| � |D| · |E |. Then
there exists an integral multiflow f ′ of value | f ′| � 2| f half|/χg (such that C( f ′) ⊆
C( f half)). Such a multiflow can be found in polynomial time.

In the rest of this section, we prove this theorem. We will first reduce to the case
where all cycles in C( f half) have flow value 1/2 and every edge has capacity 1. It turns
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out that constructing a large integral multiflow for this new instance is equivalent to
finding a large independent set in the intersection graph of cycles in Chalf. The rest of
our proof follows the same outline as the proof of Theorem 1 of Fiorini et al. [15]:
with Lemmas 6.5 and 6.6, we show that this intersection graph has genus at most g,
and can therefore be colored using χg colors. Finally, the integral multiflow output
corresponds to the largest color class.

Proposition 6.4 If Theorem 6.3 holds for the special case when u(e) = 1 for all
e ∈ D ∪̇ E and f halfC ∈ {0, 1/2} for all C ∈ C, then it holds in general.

Proof Let (G, H , u) be a general instance of the maximum multiflow problem such
that G + H has genus g, and let f half be a laminar half-integral multiflow whose
support Chalf := C( f half) contains only separating cycles, and with |Chalf| � |D| · |E |.
Define the multiflows f int and f̂ such that for each C ∈ Chalf we have f intC = � f halfC �
and f̂C = f halfC − f intC ∈ {0, 1/2}. The multiflow f int is integral, and we have f half =
f int + f̂ .
Define a new instance Ĝ + Ĥ obtained from G + H by replacing each edge e ∈

D ∪̇ E by min
{|Chalf|, u(e) − ∑

C∈C:e∈C f int(C)
}
parallel edges in Ĝ + Ĥ , each of

unit capacity, embedded in a sufficiently small neighbourhood of the embedding of e.
The graph Ĝ+ Ĥ has the same genus asG+H , and its size is polynomial in the size of
G + H because |Chalf| � |D| · |E |. We can now associate to f̂ a feasible half-integral
multiflow in Ĝ + Ĥ (that we call also f̂ ) of the same value, by replacing each edge of
each cycle C ∈ C( f̂ ) by one of its parallel edges. To see that this can be done while
ensuring that the resulting multiflow is still feasible and laminar, recall Remark 5.2:
we can associate to each cycle C ∈ C( f̂ ) a topological cycle C ′ in an arbitrarily small
neighbourhood such that these cycles C ′ for C ∈ C( f̂ ) are pairwise disjoint. Now, for
any edge e ∈ D ∪̇ E , let e1, . . . , er denote the corresponding parallel edges, ordered
according to their embedding in the surface; and letC1, . . . ,Ct denote the set of cycles
in C( f̂ ) that contain e, ordered according to the embedding of the associated pairwise
disjoint cycles C ′

1, . . . ,C
′
t . Then, for each i ∈ {1, . . . , t} we replace the edge e in Ci

by its parallel edge e�i/2�. Since f̂ (C) = 1/2 for all C ∈ C( f̂ ), we have t � 2r ,
and every edge in Ĝ + Ĥ is used at most twice, which guarantees feasibility. Finally,
laminarity follows from the fact that the cycles C ′ for C ∈ C( f̂ ) are pairwise disjoint.

Now we are in the special case: suppose that there exists a polynomial-time algo-
rithm that computes an integral multiflow f̂ ′ in Ĝ + Ĥ of value | f̂ ′| � 2| f̂ |/χg , and
such that C( f̂ ′) ⊆ C( f̂ ). Then, f̂ ′ induces the integral multiflow f ′ := f int + f̂ ′ in
G + H , which satisfies the conditions of Theorem 6.3. Indeed, f ′ := f int + f̂ ′ is
integral and feasible (for the initial capacities u), its support is contained in Chalf, and
its value is

| f ′| = | f int| + | f̂ ′| � | f int| + 2| f̂ |
χg

� 2(| f int| + | f̂ |)
χg

= 2| f half|
χg

,

as required. ��
Therefore, to prove Theorem 6.3 it is enough to consider the special case of unit
capacities and f halfC ∈ {0, 1/2} for all C ∈ C.
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C1 C1

C ′

C2

C ′ C2

u∗
in u∗

in u∗
outu∗

out

case 1: C1 ≺ C ′ ≺ C2 case 2: C1 ≺ C ′ and in( C ′)∩ in(C2) = ∅

e e

Fig. 5 Proof of Lemma 6.5

Recall that cycles in Chalf ⊆ Csep are separating and do not cross each other, so
the family {in(C) : C ∈ Chalf} is laminar. We partially order Chalf with the following
relation: C ≺ C ′ if in(C) ⊂ in(C ′). We have the following simple property:

Lemma 6.5 Let Chalf be a set of separating cycles such that {in(C) : C ∈ Chalf} is
laminar and no edge is contained in more than three of these cycles. If C1,C2,C ′ ∈
Chalf are such that C1 ≺ C ′ and C2 ⊀ C ′, then C1 and C2 are edge-disjoint.

Proof Assume, for a contradiction, thatC1 andC2 share an edge e. Let e∗ = {u∗
in, u

∗
out}

denote its dual edge, such that u∗
in ∈ in(C1) and u∗

out ∈ out(C1). Since C2 ⊀ C ′,
by laminarity either C ′ ≺ C2 or in(C ′) ∩ in(C2) = ∅. In the first case we have
C1 ≺ C ′ ≺ C2 and then

u∗
in ∈ in(C1) ⊆ in(C ′) ⊆ in(C2) and u∗

out ∈ out(C2) ⊆ out(C ′),

so e ∈ C ′. In the second case we have C1 ≺ C ′ and in(C ′) ∩ in(C2) = ∅ and then

u∗
in ∈ in(C1) ⊆ in(C ′) ⊆ out(C2) and u∗

out ∈ in(C2) ⊆ out(C ′),

so e ∈ C ′. See Fig. 5. Thus in both cases e belongs to C ′ as well as to C1 and C2.
Since these three D-cycles are in the support of a half-integral multiflow, this implies
that the flow along this edge is at least 3/2, contradicting feasibility. ��

Our goal is to get a large subset C′ ⊆ Chalf such that any two cycles in C′ are edge-
disjoint. This is equivalent to finding a large independent set in a properly defined
graph Int(Chalf)with vertex set Chalf and such that two cycles are adjacent if they share
at least one edge. Using Lemma 6.5 we can show:

Lemma 6.6 Let G be a graph embedded in Sg, and let Chalf be a set of separating
cycles in G such that {in(C) : C ∈ Chalf} is laminar and no edge is contained in more
than three of these cycles. Let Int(Chalf) be the graph with vertex set Chalf and such that
two cycles are adjacent if they share at least one edge. Then Int(Chalf) is a genus-g
graph.
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Proof We prove the statement by induction on g + |Chalf|. When g + |Chalf| � 2, it is
trivial. Otherwise let G be a connected genus-g graph, embedded on Sg , and Chalf a
family as described above.

Suppose first that {in(C) : C ∈ Chalf} are pairwise disjoint. Then, contract in G∗
each set in(C) into a single node. Two cycles C and C ′ share an edge if and only if
in this contracted graph, the nodes corresponding to in(C) and in(C ′) are adjacent.
This means that Int(Chalf) is a minor of G∗, and in particular has genus less than or
equal to the genus of G∗. The case where there is one cycle C such that C ≺ C for all
C ∈ Chalf\C and {in(C) : C ∈ Chalf\C} are pairwise disjoint works similarly; here
we contract out(C).

Otherwise there exists a triple C1,C2,C ∈ Chalf such that C1 ≺ C and C2 ⊀ C .
The separating cycle C divides Sg into two sides. Each side can be closed—by iden-
tifying the boundary of a disk with the boundary formed by C—so that they are
homeomorphic to Sgin and Sgout , respectively. The connected sum of these two sur-
faces is homeomorphic to Sg , and in particular we have gin + gout = g. This equality
can easily be checked with Euler’s formula.

Let G in (resp. Gout) be the subgraph of G induced by the vertices embedded on the
side corresponding to Sgin (resp. Sgout ), such that both contain C . The embedding of
G in Sg induces an embedding of G in in Sgin and an embedding of Gout in Sgout . Thus,
genus(G in) + genus(Gout) � g.

Now we define Chalf�C := {C ′ ∈ Chalf : C ′ ≺ C} ∪ {C} and Chalf
⊀C := {C ′ ∈ Chalf :

C ′
⊀ C} ∪ {C}. The choice of C implies that these two families are proper subsets of

Chalf. Since the cycles in Chalf do not cross, we have {C ∈ Chalf : C ⊆ G in} = Chalf�C

and {C ∈ Chalf : C ⊆ Gout} = Chalf
⊀C .

By the induction hypothesis, Int(Chalf�C ) and Int(Chalf
⊀C ) can be embedded on Sgin

and Sgout , respectively. By Lemma 6.5, the graph Int(Chalf) arises from Int(Chalf�C ) and

Int(Chalf
⊀C ) by identifying the two vertices that correspond to C .

Finally we prove that Int(Chalf) can be embedded on a surface genus gin+gout � g.
To see that, remove small disks Din and Dout in Sgin and Sgout , respectively, around the
point that corresponds to vertex C and that intersects only edges incident to C , and
glue them together by identifying boundaries of Din and Dout. The surface obtained
is homeomorphic to Sgin+gout It is easy to see that C , and the edges incident to C , can
be re-embedded in this surface without intersecting any other edges. This terminates
the proof of Lemma 6.6. ��
Now the proof of Theorem 6.3 (in the special case that is sufficient by Proposition 6.4)
is easy. We apply Lemma 6.6 to G + H and the support Chalf of a laminar half-
integral multiflow. Using Theorem 2.1, one can compute in polynomial time a subset
C′ ⊆ Chalf of at least |Chalf|/χg pairwise edge-disjoint D-cycles. From this set, we
define an integral multiflow by setting f ′

C = 1 for C ∈ C′ and f ′
C = 0 for C ∈ C \ C′.

It is easy to check that f ′ is a multiflow that satisfies the properties of Theorem 6.3.
This concludes the proof of Theorem 6.3.
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7 Non-Separating Cycles: Routing an Integral Multiflow (Step 4)

If the separating cycles contribute less than half to the total value of the multiflow f
obtained by Lemma 5.3, we consider the non-separating cycles in the support of f .
We first partition them into free homotopy classes. The following theorem by Greene
[20] gives an upper bound on the number of such classes.

Theorem 7.1 [20] Let Sg be an orientable surface of genus g. Then there are at most
O(g2 log g) topological cycles such that any two of them are in different free homotopy
classes and cross each other at most once.

Corollary 7.2 The D-cycles in the support of f can be partitioned into
O(g2 log g) free homotopy classes in polynomial time.

Proof Take pairs of cycles in the support of f and check whether they are freely
homotopic, for example as in [14, 29]. ��

7.1 Greedy Algorithm

LetH be a free homotopy class of non-separating cycles whose total flow value | f (H)|
is largest. We will run the following simple greedy algorithm (Algorithm 1) on H to
get an integral multiflow.

Algorithm 1: Greedy algorithm for integral multiflows

Input: a sequence C1, . . . ,Ck of D-cycles of C( f ).
Output: an integral multiflow f .
f ← the all-zero multiflow;
for i = 1 to k do

Set fCi to be the greatest integer such that f remains feasible.

The value of the integral multiflow returned by this algorithm depends on the order
of the D-cycles in the input. If they are ordered according to the following definition,
then we show that we lose only a constant fraction of the flow value.

Definition 7.3 A family of cycles {C1,C2, . . . ,Ck} is cyclically ordered, or has a
cyclic order if, whenever two cycles Ca and Cb share an edge, where a < b, then this
edge is:

– shared by all cycles Ca,Ca+1, . . . ,Cb−1,Cb, or
– shared by all cycles Cb,Cb+1, . . . ,Ck,C1, . . . ,Ca−1,Ca .

The following lemma establishes the approximation ratio of Algorithm 1 on cyclically
ordered input.

Lemma 7.4 Let f be a multiflow and H = {C1,C2, . . . ,Ck} a cyclically ordered
family of C( f ). Then Algorithm 1 returns in polynomial time an integral multiflow of
value at least | f ({C1, . . . ,Ck})|/2.
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Proof Let f be a multiflow and H = {C1,C2, . . . ,Ck} a cyclically ordered family
of C( f ). It is clear that Algorithm 1 runs in O(k|E |) time and returns an integral
multiflow. Let f be this flow. We show that its value is at least | f (H)|/2.

Let us define Ha,b = {Ca,Ca+1, . . . ,Cb−1} and Hb,a = {Cb,Cb+1, . . . ,Ck,

C1, . . . ,Ca−1} for all 1 � a � b � k. Additionally, for all edges e ∈ ⋃
C∈H C ,

we define He := {C ∈ H : e ∈ C}. Since we assumed that H is cyclically ordered,
we know that for each e ∈ ⋃

C∈H C , there are indexes 1 � a, b � k, such that
He = Ha,b. We call i0 the smallest index 1 � i � k such that there exists an edge
e ∈ Ci such that f (H1,i+1)(e) = u(e) and Hi,1 ⊆ He, where f (H1,i+1)(e) denotes
the total amount of flow that f (H1,i+1) ships along edge e. Remark that in particular,
for all i > i0, we must have fCi = 0, and thus | f | = | f (H1,i0+1)|.

We first show by induction that for all 1 � i < i0 we have | f (H1,i+1)| �
| f (H1,i+1)|. For i = 1, we have | f (H1,i+1)| = | f (H1,2)|= fC1=min {u(e) : e∈C1}
� f C1

= | f (H1,2)|.
Assume now that at some iteration 1 < i < i0 of the algorithm we set fCi = x . By

the choice of x , we know that there is an edge e ∈ Ci such that u(e) = f (H1,i+1)(e).
In particular, notice that | f (He)| = | f (He ∩H1,i+1)| = u(e). By feasibility of f , we
have

| f (He ∩ H1,i+1)| = u(e) � | f (He)|. (5)

Now, let a, b be the two indices such that Ha,b = He. Since we assumed that i < i0,
wemust have i < b � k. There are two cases: either 1 � a � i < b or 1 < i < b < a.
If 1 � a � i < b, then (5) becomes | f (Ha,i+1)| � | f (He)| � | f (Ha,i+1)|. Together
with the induction hypothesis we obtain

| f (H1,i+1)| = | f (H1,a)| + | f (Ha,i+1)| � | f (H1,a)| + | f (Ha,i+1)| = | f (H1,i+1)|.

Otherwise if 1 < i < b < a, then H1,i+1 ⊆ He, and thus the inequality claimed
follows directly from (5). We have established the induction. In particular, we have
proved that | f | = | f (H1,i0+1)| � | f (H1,i0)| � | f (H1,i0)|. To conclude the proof of
Lemma 7.4, it remains to show that | f | � | f (Hi0,1)|.

By definition of i0, we know that there exists an edge e ∈ Ci0 such that f (e) = u(e)
and such that Hi0,1 ⊆ He. By feasibility of f , we deduce that | f (Hi0,1)| � u(e) =
f (e) � | f |. This concludes the proof. ��
Remark 7.5 The analysis of Algorithm 1 for cyclically ordered inputs is tight. To see
this, imagine that H = {C1, . . . ,C2k−1}, and there are two edges e1, e2, both of
capacity k, such that {C ∈ H : e1 ∈ C} = {C1, . . . ,Ck} and {C ∈ H : e2 ∈ C} =
{Ck+1, . . . ,C2k−1,C1}. Then Algorithm 1 may only set fC1 = k while f could be
such that f C = 1 for all C ∈ H, for a total value 2k − 1.

7.2 Computing a Cyclic Order

Lemma 7.7, the second main result of the section, states that a family H of pairwise
freely homotopic cycles crossing at most once can be cyclically ordered in polynomial
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time. One ingredient in the proof is that cycles in H are pairwise non-crossing. This
fact uses the assumption that the surface is orientable. In a non-orientable surface,
two freely homotopic cycles may cross exactly once. One may easily prove that freely
homotopic cycles cross an even number of times using classic tools from algebraic
topology. Here we give an elementary and self-contained proof. Recall that f denotes
the minimally-crossing multiflow obtained by Lemma 5.3.

Lemma 7.6 Two freely homotopic cycles in C( f ) do not cross.

Proof By construction of f , if two cycles C and C ′ in C( f ) cross, then they cross at
exactly one path P . To simplify, let us take two topological cycles γ and γ ′, freely
homotopic toC andC ′, that are in a small neighborhood aroundC andC ′, respectively,
and such that γ and γ ′ only cross at a single point v of the surface.We show that γ ∪γ ′
do not disconnect the orientable surface. By Fact 1 this implies that C and C ′ are not
freely homotopic.

To see that γ ∪γ ′ do not disconnect the surface, pick four points w1, w2, w3, w4 in
a small neighborhood of v, each one of them being on a different of the four sections
of this neighborhood delimited by γ ∪ γ ′. If (wi )1�i�4 are in clockwise order around
v, then wi and wi+1 are still connected for i = 1, . . . , 4 (where w5 := w1), because
we can walk all along γ (or γ ′). Notice that here we use the property that the surface is
orientable (otherwise,wi might be connected towi+2 instead ofwi+1). By transitivity,
we conclude that γ ∪ γ ′ do not disconnect the surface.

vw1

w2

w3

w4

γ

γ ′

Now we can show3 (see Fig. 6 for an illustration):

Lemma 7.7 A family of non-separating, pairwise non-crossing and freely homotopic
cycles of a graph embedded in an orientable surface can be cyclically ordered. Such
a cyclic order can be found in polynomial time.

Proof Let H be a set of non-separating, pairwise freely homotopic and non-crossing
cycles. We first order the cycles in H and then prove that this is a cyclic order. We
assume that |H| � 3, otherwise any order on H is a cyclic order. By Remark 5.2,
we can associate to each cycle C ∈ H a freely homotopic topological cycle C ′ in
an arbitrarily small neighbourhood of C , such that the setH′ of resulting topological

3 This result holds more generally for a family of non-contractible (cycles that are not freely homotopic to
a point on the surface), pairwise non-crossing and freely homotopic cycles. For simplicity, we only consider
the special case of non-separating cycles, which is sufficient for our main result.
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C ′
1

C ′
2

C ′
3

C ′
4

C ′
5

C ′
6

C ′
7

C ′
8

Fig. 6 A family of non-separating, pairwise non-crossing and freely homotopic cycles can be cyclically
ordered. If some cycles share common edges or common vertices (green regions), we can slightly move
these cycles along the surface in order to obtain a family of pairwise disjoint cycles. Then, each of the
connected components obtained after cutting the surface along these new cycles are bordered by exactly
two cycles (Claim 7.8). These connected components naturally induce a cyclic ordering of the original
cycles

cycles are pairwise disjoint. By transitivity, the cycles in H′ are also pairwise freely
homotopic. To order the cycles in H′ (and thus also those in H), we consider the
connected components obtained after cutting the surface along cycles inH′.

Claim 7.8 The set Sg \ ⋃
C ′∈H′ C ′ has exactly |H′| connected components, and each

of these connected components is bordered by exactly two cycles in H′.

We prove this claim by induction on the size of H′. The base case |H′| = 2 follows
directly from Fact 1. Now consider a setH′ of pairwise disjoint and freely homotopic
non-separating cycles onSg , and letC ′

0 be any cycle inH′. By induction hypothesis, we
assume that the set Sg \⋃

C ′∈H′,C ′ �=C ′
0
C has exactly |H′| − 1 connected components,

and each of these connected components is bordered by exactly two cycles inH′ \{C ′
0}.

Since cycles inH′ are pairwise disjoint,C ′
0 is strictly contained in one of the connected

components of Sg\ ⋃
C ′∈H′,C ′ �=C ′

0
C . Let K be this component and C ′

1 and C ′
2 the

cycles inH′\{C ′
0} that are bordering K .We claim that K \C ′

0 has exactly two connected
components, the first one bordered by C ′

0 and C
′
1 and the second one bordered by C ′

0
and C ′

2. Indeed, assume for a contradiction that K \ C ′
0 is connected. Let K ′ be the

other connected component of Sg \ (C ′
1∪C ′

2). Then K ′ is also bordered byC ′
1 andC

′
2.

We have Sg\(C ′
0 ∪ C ′

1) = Sg\(C ′
0 ∪ C ′

1 ∪ C ′
2) ∪ C ′

2 = (K \C ′
0) ∪ K ′ ∪ C ′

2, and
thus Sg\(C ′

0 ∪ C ′
1) is connected, which contradicts Fact 1. Therefore, C ′

0 separates
K in two connected components. None of them is bordered only by C ′

0 because C ′
0

is non-separating. Thus, one of these two connected components is bordered by C ′
0

and C ′
1, and the other by C ′

0 and C
′
2. We have proved the claim.

We now define a (cyclic) order H = {C1, . . . ,Ck} as follows: Ci and C j are
consecutive in this order, i.e., j = i + 1 (mod k) or j = i − 1 (mod k) whenever their
corresponding cycles C ′

i and C ′
j in H′ are bordering the same connected component

of Sg\⋃
C ′∈H′ C ′. To prove that this order satisfies the property of Definition 7.3,

consider any edge e in G + H . Consider the set of cycles in H that contain e, and
let H′(e) ⊆ H′ denote the corresponding set of pairwise disjoint topological cycles.
Then there exists a neighborhood N ⊂ Sg around e that intersects amongH′ only the
cycles H′(e), so these are indeed consecutive in the cyclic order.
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To compute this cyclic order in time polynomial in the size of G + H , one can
use the dual (G + H)∗ of G + H . Given any family H of cycles in G + H , the
connected components of Sg \ ⋃

C∈H C correspond to the connected components of
(G+ H)∗\⋃

C∈H C∗, where C∗ denotes the dual edges of edges in C . The connected
components of a graph can be computed in polynomial time. This concludes the proof
of Lemma 7.7. ��

8 Proof of Theorem 1.1

The algorithm works as described in Sect. 3. By construction, the output of the
algorithm is a feasible solution. We now analyze the value of the output. Since
(1) is a relaxation of the maximum integral multiflow problem, | f ∗| � OPT. By
Lemma 5.3, | f | � (1 − ε)| f ∗|. For ε = 1/2 we have | f | � | f ∗|/2. Moreover,
|C( f )| � |C( f ∗)| � |D| · |E | by Proposition 4.1.

Consider the multiflow restricted to separating cycles, f sep. If | f sep| � | f |/2, then
by Theorems 6.2 and 6.3 we obtain an integral flow of value at least | f sep|/�(

√
g) =

| f ∗|/�(
√
g). Otherwise, by Theorem 7.1 there exists a free homotopy class H of

non-separating cycles such that | f (H)| � | f |/�(g2 log g). Construct a cyclic order
(Lemma 7.7) and apply Algorithm 1. By Lemma 7.4 the output has value at least
| f ∗|/�(g2 log g).

Finally, we analyze the running time. As observed in Sect. 4, an optimum fractional
multiflow f ∗ can be found in polynomial time (Proposition 4.1). (Discretizing and)
uncrossing is done in time polynomial in |E | · |D| time by Lemma 5.3. Partitioning
into free homotopy classes is done by Corollary 7.2. Finally, the operations of Theo-
rems 6.2, 2.1, and 6.3, and Lemmas 7.4 and 7.7 can all be done in polynomial time,
hence polynomial running time overall. This concludes the proof of Theorem 1.1.

Lower Bound on the Integrality GapWe claim that the gap between an integral and
a fractional multiflow can depend at least linearly on g. For any n � 1, we define a
graph Gn as in [3]. This graph consists of n concentric cycles (rings) and 4n radial
line segments that intersect each cycle, and each has endpoint si or ti on the outer face,
for 1 � i � 2n. This circular ordering of these endpoints is s1, . . . , s2n, t1, . . . , t2n .
See Fig. 7. We now define the set of demand edges Hn = {{si , ti } : 1 � i � 2n}. The
graph Gn + Hn can be embedded in the projective plane but cannot be embedded in
an orientable surface of genus smaller than n; see [3] for a proof.

Now, to obtain a large integrality gap, we define a new graph G ′
n by splitting each

degree-4 vertex of Gn into two vertices, joined by a new edge, such that two of the
four incident edges are incident to each of the two new vertices (similarly as in an
example of [19]). All edges have unit capacity. We have the following properties:

(i) G ′
n + Hn has orientable genus at least n. This holds since Gn + Hn is a minor

of G ′
n + Hn .

(ii) In an integral solution we can satisfy only one demand. Indeed, any si -ti -path
must share a vertex with any s j -t j -path, for j �= i . This holds more generally
for any planar graph: if four vertices s, s′, t, t ′ are on the outer face in this order,
then any path from s to t disconnects s′ from t ′. Moreover, since all vertices of
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t2n−1

t2n

s1

s2

s3

s4

t4

t3

t2

t1

s2n

s2n−1

1/2
1/4

1/4
1/2

Fig. 7 The graph Gn . To obtain the graph G′
n , we split each degree-4 vertex of Gn into two vertices, joined

by a new edge, such that two of the four incident edges are incident to each of the two new vertices. To
illustrate the fractional multiflow described in (iii) (at the end of Sect. 8), we show the portion serving the
commodity {s3, t3} in red

G ′
n have degree at most three, any two paths that share a vertex must also share

an edge.
(iii) A (fractional) multiflow f of value n exists. For each i ∈ {1, . . . , 2n}, there

is a flow of value 1/2 from si to ti . The flow follows the radial line segment
corresponding to si , until it meets the �i/2�-th ring, where it is divided in two
parts, each with value 1/4 following a different direction of the ring. Then, the
flow merges again when it meets the radial line segment corresponding to ti , and
follows this radial line until ti . See Fig. 7. Each ring is used by two source-sink
pairs, and thus the total multiflow is feasible.

9 Proof of Corollary 1.2

In this section, we observe how Corollary 1.2 follows from Theorem 1.1 and the
following result by Tardos and Vazirani [41] (based on work by Klein et al. [27]).

Theorem 9.1 [41] Let (G, H , u) be a multiflow instance and γ > 1 such that the
supply graph G does not have a Kγ,γ minor. Then the minimum capacity of a multicut
is O(γ 3) times the maximum value of a (fractional) multiflow.

The following is well known.

Claim 9.2 If a graph G has genus at most g, where g � 1, then it has no Kγ,γ minor
for any γ > 2(

√
g + 1).

Proof Suppose that such aminor Kγ,γ exists inG. As the three operations for obtaining
a minor (deleting edges/vertices and contracting edges) do not increase the genus,
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Kγ,γ has genus at most g. Furthermore, Kγ,γ has 2γ vertices, γ 2 edges, and at most
γ 2/2 faces (since there is no odd cycle in a bipartite graph). By Euler’s formula,
2 − 2g � 2γ − γ 2 + γ 2/2, which implies γ � 2(

√
g + 1). ��

By Claim 9.2 and Theorem 9.1, the ratio between the minimum capacity of a multicut
and the maximum value of a (fractional) multiflow is O(g1.5). This, combined with
Theorem 1.1, proves Corollary 1.2.

10 An Improved Approximation Ratio (Proof of Theorem 1.3)

Theorem 1.1 yields an approximation ratio of O(g2 log g) for the maximum integer
multiflow problem for instances where G + H is embedded on an orientable surface
of genus g. Here we show how to improve this ratio to O(g2), proving Theorem 1.3.

Namely, after applying Corollary 7.2, consider the O(g2 log g) free homotopy
classes of the non-separating cycles in the support of our uncrossed multiflow, and
take a representative cycle in each class. Let I be the graphwhose vertices are these free
homotopy classes andwhose edges correspond to pairs of classes whose representative
cycles cross. This definition does not depend on the choice of the representative cycles.
Now a theorem of Przytycki [34] says that this graph has maximum degree O(g2).

Theorem 10.1 [34] There is a universal constant β > 0 such that the following is
true. Let g � 1 and let � be a family of simple curves on Sg such that any two of them
are not freely homotopic and cross at most once. Then, the maximum degree of the
intersection graph of � is at most βg2.

Hence we can color the vertices of this graph I greedily with O(g2) colors so that the
color classes are stable sets, i.e., sets of cycles that do not cross. Hence there is a color
class K whose cycles support an �(1/g2) fraction of the total flow value. Next, we
throw away all cycles outside K and apply the greedy algorithm of Sect. 7.1 to each
free homotopy class of this color classK separately, but before, in each free homotopy
class of K, we reduce the capacity of every edge in the two extreme cycles to its total
flow value in this class, rounded down.

Lemma 10.2 Each free homotopy class Hi in K has two extreme cycles C+
i and C−

i
such that any cycle C of another homotopy class inK that shares an edge with a cycle
inHi also shares an edge with C

+
i or C−

i . The set of extreme cycles can be computed
in polynomial time.

Intuitively, for each class, the extreme cycles correspond to the pair of cycles that
delimits the maximal annulus among all pairs in this class. Notice that when a class
consists of a single cycle C , we have C+

i = C−
i = C .

Proof We can assume that g � 2, otherwise K has at most one free homotopy class
and the statement is trivially true. Additionally, if Hi contains exactly one cycle, the
statement is also trivially true. Then, letH be a free homotopy class of size at least two.
Cutting along cycles inHi might separate the surface into several components that are
all homeomorphic to annuli or disks except one component K that has genus at least
one. Its boundary is contained in the union of two cycles, which we call C+

i and C−
i .
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All other cycles in
⋃K \ Hi are contained in K . Thus, if a cycle in

⋃K \ Hi shares
an edge e with a cycle in Hi , this edge must be on K ’s boundary, and in particular
e ∈ C+

i ∪ C−
i . ��

Thus, for each homotopy class Hi in K and each edge e that is contained in an
extreme cycle ofHi , we reduce its capacity to � f (Hi )(e)�. This is sufficient to make
themultiflowproblems of the free homotopy classes independent of each other because
any edge that lies on two cycles from two distinct classes must also lie on one of the
extreme cycles of the corresponding classes. The rounding down loses an additive
constant of at most 2|K| (at most two per free homotopy class); by Corollary 7.2, this
is O(g2 log g). Losing this additive constant can be afforded since this loses only a
constant factor unless the optimum value is OPT = O(g2 log g).

To cover this case, we can guess the value of an optimum integral flow f OPT(d)

through each demand edge d ∈ D. For each guess, we create an instance of the edge-
disjoint paths problem by replacing each demand edge d ∈ D by f OPT(d) parallel
demand edges (of unit capacity), and each supply edge e ∈ E by min {u(e),OPT}
parallel supply edges (of unit capacity). Since OPT = O(g2 log g), this new graph
has polynomial size. Since the number of demand edges in the edge-disjoint paths
instance is bounded by a constant, we can apply the polynomial-time algorithm by
Robertson and Seymour [36] (whose running time O(n3)was later improved to O(n2)
in [25], with n referring to the number of vertices in the graph) to decide whether this
instance is feasible or not. Since we need to enumerate only |D|O(g2 log g) guesses, we
can compute an optimal solution f OPT to the original maximum integral multiflow
instance in polynomial time, assuming that OPT = O(g2 log g). This concludes the
proof of Theorem 1.3.

However, due to the last step of this algorithm, this does not imply a stronger bound
on the integrality gap shown in Theorem 1.1 or the integral multiflow-multicut gap
shown in Corollary 1.2.

Note Added in Proof

Our techniques have recently been used to solve more general cycle packing problems
in bounded-genus graphs [37].
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