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Abstract
This paper tackles the problemof coefficient field choice in persistent homology.When
we compute a persistence diagram, we need to select a coefficient field before com-
putation. We should understand the dependence of the diagram on the coefficient field
to facilitate computation and interpretation of the diagram. We clarify that the depen-
dence is strongly related to the torsion part of Z relative homology in the filtration.
We show the sufficient and necessary conditions of the independence of coefficient
field choice. An efficient algorithm is proposed to verify the independence. A slight
modification of the standard persistence algorithm gives the verification algorithm.
In a numerical experiment with the algorithm, a persistence diagram rarely changes
even when the coefficient field changes if we consider a filtration in R

3. The experi-
ment suggests that, in practical terms, changes in the field coefficient will not change
persistence diagrams when the data are in R3.
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1 Introduction

Topological data analysis (TDA) [4, 13] is, as the name suggests, the application of
topology to data analysis. Persistent homology [14, 33] is one of the most important
tools for TDA. In persistent homology, by encoding information on length scales in
filtrations,we can capture characteristic geometric featureswithmultiple length scales.
By using filtrations, persistent homology is also robust to noise [7, 9]. Homology itself
is translation and rotation invariant, and so persistent homology is similarly invariant.
These properties are suitable for the analysis of shapes of data, and persistent homology
is applied in various practical data analysis contexts in domains such as biology [6],
image processing [20], and materials science [18, 21, 23, 30].

To describe our problem, we first define persistent homology. Persistent homology
is defined on a filtration, an increasing sequence of topological spaces. We consider
the following filtration:

X : ∅ = X0 ⊂ X1 ⊂ . . . ⊂ XN .

The qth persistent homology Hq(X;k) with a coefficient ring k is defined as follows:

Hq(X;k) : Hq(X0;k) → Hq(X1;k) → . . . → Hq(XN ;k),

where Hq(Xi ;k) → Hq(Xi+1;k) is the homology map induced by the inclusion

map Xi ↪→ Xi+1. For any i < j , φ j
i denotes the map from Hq(Xi ;k) to Hq(X j ;k)

induced by the inclusion map Xi ↪→ X j . By definition, the map φ
j
i coincides with

the composite φ
j
j−1 ◦ · · · ◦ φi+1

i of the consecutive maps φ
j
j−1, . . . , φ

i+1
i .

Whenk is a field, Hq(X;k) is known to have a good structure called interval decom-
position. To explain the interval decomposition, we define interval indecomposables.

Definition 1.1 For b ∈ {1, . . . , N } and d ∈ {1, . . . , N ,∞} satisfying b < d, an
interval indecomposable I (b, d) is the following N + 1 vector spaces connected by
N linear maps:

I (b, d) = 0 → . . . → 0 →
bth

︷︸︸︷

k → . . . →
(d−1)th
︷︸︸︷

k →
dth

︷︸︸︷

0 → . . . → 0, if d �= ∞,

I (b, d) = 0 → . . . → 0 → k
︸︷︷︸

bth

→ . . . → k, if d = ∞,

where k → k is an identity map and 0 → k, k → 0, 0 → 0 are zero maps.

Using interval indecomposables, we describe the following structure theorem of per-
sistent homology.
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Theorem 1.2 For a filtrationX, the qth persistent homology Hq(X;k) has the follow-
ing unique decomposition if k is a field and dim Hq(Xi ;k) < +∞ for all i :

Hq(X;k) 	
L

⊕

m=1

I (bm, dm),

where bm ∈ {1, . . . , N }, dm ∈ {1, . . . , N ,∞}, and bm < dm.

This theorem depends on the fact that the polynomial ring k[z] with a field k is a
PID [33], and so this theorem does not hold for k = Z. Therefore, we use a field as
a homology coefficient field even though standard homology theory often uses Z as a
coefficient ring.

When this interval decomposition is given, we define the qth persistence diagram
(PD) Dq(X;k) as the multiset of pairs of endpoints of the interval indecomposables.
That is, Dq(X;k) = {(bm, dm)}Li=1. Each pair is called a birth-death pair. bm and dm
are called birth time and death time of the birth-death pair (bm, dm), and dm − bm is
called a lifetime of the pair. Since a birth-death pair with a long lifetime corresponds
to a “stable” homological structure in the filtration, we can use lifetimes to compare
the significance of birth-death pairs.

Normally, we choose k as one of R, Q, and Zp = Z/pZ for a prime p. Z2 is most
often used since it is amenable to a fast algorithm and an intuitive interpretation. Even
if any k gives the same PD, we may not know a priori that this is the case, and there
is still an algorithmic problem (whose solution is a main contribution of the paper).
However, this is not practical because the dimensions of homology vector spaces for
the same topological space are different when the Z-homology group of the space
has a non-zero torsion subgroup. For example, if a Klein bottle appears in a filtration,
the PDs for k = Z2 and k = R are different since the 1st homology group of a
Klein bottle is isomorphic to Z⊕Z2 and therefore dim H1((Klein bottle);R) = 1 and
dim H1((Klein bottle);Z2) = 2.

Throughout this paper, we often refer to a non-trivial torsion subgroup of relative
homology groups Hq(Xi , X j ;Z) in a filtration X as torsion in the filtration.

In a previous study, a non-zero torsion subgroup has been a practical problem.
Carlsson et al. [5] analyzed the space of small (3× 3) image patches collected from
natural images. In that study, a Klein bottle, a topological structure with a non-trivial
torsion subgroup in its homology subgroup, played an important role. Those authors
used persistent homologywithZ2 coefficient field to analyze the data so it was difficult
to directly find evidence of the Klein bottle. Therefore, they verify the Klein bottle
by using Z2-persistent homology and Z3-persistent homology. Kahle et al. [22] also
investigated a torsion subgroup in numerical experiments. They showed that a ran-
domly generated simplicial d-subcomplex in (n − 1)-simplex often has a non-trivial
torsion subgroup for relatively large n (for example, n = 75). Therefore, the following
questions naturally arise.

– What condition ensures the independence of the choice of the field k?
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– If there is such a condition, is there an efficient algorithm to check it?
– If the algorithm shows the dependence of the choice of the field k, how can we
compute persistence diagrams for multiple coefficient fields?

– How often does Dq(X;k) change as the field k changes?
– When Dq(X;k) changes depending on the choice of k, how does Dq(X;k)

change?

In this paper, we offer complete answers for the first and second questions and partial
answers for the fourth and fifth questions. For the third question, some previous results
are available to answer.

We remark that R-parametrized filtration is also used for persistent homology.
{Xt }t∈R isR-parametrized filtration if Xt is a topological space for each t and Xt ⊂ Xs

if t < s. Under a certain finiteness condition,R-parametrized filtration can be regarded
as an N-parametrized filtration X0 ⊂ . . . ⊂ XN . Therefore N-parametrized filtrations
are used except for Theorem 1.17.

1.1 Known Algorithmic Approaches

Two algorithmic approaches to our problem are already known. One is the modular
reconstruction algorithm and the other is the omni-field persistence algorithm. Both
algorithms compute persistence diagrams for multiple coefficient fields simultane-
ously. These algorithms are based on the standard PH algorithm [14, 27, 33] shown
in Algorithm 2.1.

An algorithm proposed byMaria andBoissonnat [2], called themodular reconstruc-
tion algorithm, is available to compute persistence diagrams for multiple coefficient
fields efficiently. The algorithm computes diagrams for multiple fields Zq1 , . . . ,Zqr
simultaneously using the isomorphism Zq1×· · ·×Zqr 	 Z/(q1 · · · qr )Z, which is the
well-known Chinese reminder theorem. The information of all diagrams is recorded in
a single [Z/(q1 · · · qr )Z]-matrix and left-to-right reductions are applied to the matrix.
We can extract the diagrams Dq(X;Zq1), . . . , Dq(X;Zqr ) from the matrix. The time
complexity of the modular reconstruction algorithm in the worst case is the same as
the persistent homology algorithm in big O notation. Still, the constant factor in the
time complexity of the modular reconstruction algorithm is larger since the algorithm
records more information and needs the operations taking modulo more.

Omni-field persistence1 inDionysus22 byMorozov is another option for computing
persistence diagrams for multiple coefficient fields. Omni-field persistence basically
uses a matrix with coefficients in Q to record the information of diagrams. Each time
the algorithm encounters a division by a prime number p, a separate Zp-matrix is
prepared to keep the information about the Zp persistent homology, and the informa-
tion of all the rest primes is kept in the Q-matrix. Left-to-right reductions are applied
to all matrices separately. Any paper about omni-field persistence is not published
yet, but the algorithm probably works as intended. Omni-field persistence is slower

1 https://mrzv.org/software/dionysus2/tutorial/omni-field.html.
2 https://mrzv.org/software/dionysus2/index.html.
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than the modular reconstruction algorithm since omni-field persistence keeps separate
matrices. However, on the other hand, omni-field persistence computesZp-persistence
diagrams for all prime numbers p. The information is richer than the modular recon-
struction algorithm.

1.2 Results

To describe the results of the paper, we give some assumptions. We always assume the
finiteness of the filtration. A filtration is finite if XN is a finite simplicial/cell/cubical
complex. This condition ensures the existence and uniqueness of the interval decom-
position.

Question 1.3 When is Dq(X; k) independent of the choice of the field k?

To consider Question 1.3, it is desirable for the following conjecture to hold since
Hq(Xn;Z) is often free for every n in practical cases.

Conjecture 1.4 (incorrect!) If Hq(Xn;Z) is free for every n, then the persistent homol-
ogy Hq(X;k) has the same decomposition for any field k.

However, we have a counterexample of this proposition (Fig. 1), which has been
considered in the topological time series analysis literature [28, Sect. 3]. The authors of
the paper constructed an example of the persistence diagram defined by aMöbius band
and they verified that the persistence diagram is dependent on the field of coefficients.

Example 1.5 Let M be a Möbius strip and ∂M be its boundary. Both H1(∂M;Z) and
H1(M;Z) are isomorphic to Z, and the homomorphism

H1(∂M;Z) → H1(M;Z)

is isomorphic to

n ∈ Z �→ 2n ∈ Z

and the interval decomposition on R and Z2 gives the different decomposition as
follows:

X : X0 = ∅ ⊂ X1 = ∂M ⊂ X2 = M,

H1(X;Z2) = I (1, 2) ⊕ I (2,∞), H1(X;R) = I (1,∞).

Fig. 1 Möbius strip and its boundary
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In this example, both H1(∂M;Z) and H1(M;Z) are free, but H1(M, ∂M;Z) 	 Z2
and this is not free. This fact is key to the different diagrams. Section 3 shows some
other examples.

We present the following theorem.

Theorem 1.6 Dq(X;k) is independent of the choice of k if Hq(Xn, Xm;Z) is free for
any 0 ≤ m < n ≤ N and Hq−1(Xn;Z) is free for any 0 ≤ n ≤ N.

We remark that the first assumption of this theorem includes the freeness of
Hq(Xn;Z) = Hq(Xn, X0;Z) since X0 = ∅.

This theorem yields the following corollaries.

Corollary 1.7 D0(X;k) is always independent of the choice of k.

Corollary 1.8 WhenX is a filtration of finite cell/simplicial/cubical complexes embed-
ded inRM, the (M −1)th persistent homology gives the same PD among any fields k.

Corollary 1.7 derives from the fact that H−1( · ) = 0 and H0(Xn, Xm;Z) is free for
any n > m. Corollary 1.8 is proved in Sect. 4.1. The above two corollaries ensure that
if a filtration is embedded in R

2, all non-trivial persistence diagrams D0 and D1 do
not depend on the choice of the coefficient field.

We also have the following theorem which provides a sufficient condition for the
freeness of Hq(Xn, Xm;Z).

Theorem 1.9 For a given q, Hq(Xn, Xm;Z) are free for any 0 ≤ m < n ≤ N if
Dq(X;k) is independent of the choice of k and Hq−1(Xn;Z) is free for any 0 ≤ n
≤ N.

From the above two theorems, we have the following corollary.

Corollary 1.10 Let M be a non-negative integer. Dq(X;k) is independent of the choice
of k for all q = 0, . . . , M if and only if Hq(Xn, Xm;Z) are free for any 0 ≤ m <

n ≤ N and q = 0, . . . , M.

Asmentioned at Theorem1.6, the latter condition of this corollary includes the freeness
of all absolute homology groups.

The above theorems and corollaries show the deep relationship between Ques-
tion 1.3 and non-trivial torsion subgroups of relative homology groups. Dey et al.
[11] proved the relationship between the existence of a non-trivial torsion subgroup
and the computational complexity of a kind of optimization problem on homology
algebra. The result showed that the problem essentially becomes harder if some rela-
tive homology groups have non-trivial torsion subgroups for the given complex. The
relation between their study and our results is discussed in our conclusion section. For
the proof of the above theorems and corollaries, the universal coefficient theorem for
ordinary homology plays an important role. We note that the universal coefficient the-
orem for persistence modules has already been developed by Bubenik and Milićević
[3]. Moreover, the Künneth theorem for persistence modules has been developed in
the literature [3, 16, 29].

From the above discussion, the following question arises.
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Question 1.11 Is there an efficient algorithm for checking the condition of Corol-
lary 1.10?

Such an algorithm would be useful to provide information as to whether we should
be concerned about field choice. To describe the algorithm, we assume the following
condition.

Condition 1.12 X = {σ1, σ2, . . . , σN } is a finite simplicial, cubical, or cell complex
and the subset Xk = {σ1, . . . , σk} is a sub-complex of X .

With this setting, we consider the filtration of complexes X : ∅ = X0 ⊂ X1 ⊂ . . . ⊂
XN . For a general finite filtration, we can construct a filtration satisfying Condition
1.12 by ordering all simplices properly.

We can compute relative homology groups for all m < n on a computer, but that
would be cumbersome and inefficient because the number of possible pairs (m, n)

is (N + 1)N/2. More precisely, since the computation cost (time complexity) of
determining the torsion part of Hq(Xn, Xm;Z) is in worst case O(nθ ), θ ≈ 2.376,3

the total cost in the worst case under Condition 1.12 is

∑

1≤m<n≤N

O(nθ ) = O(N θ+2).

The following theorem is proved in Sect. 6.

Theorem 1.13 There is an algorithm for judging the condition inCorollary 1.10whose
time complexity is the same as the algorithm for computing a PD.

The algorithm is shown inAlgorithm6.1 inSect. 6. Indeed,we can realize the algorithm
simply by changing the coefficient field to Z in the standard persistence algorithm. In
Sect. 7, we apply the algorithm to some examples shown in Sect. 3 and demonstrate
that it performs as expected. A performance benchmark is also covered in that section.

Question 1.14 If Algorithm 6.1 shows the dependence of the choice of the fieldk, how
can we compute persistence diagrams for multiple coefficient fields?

To answer this question, we can use the algorithms introduced in Sect. 1.1. We can
also combine our new algorithm with the algorithms for multiple coefficient fields.
The way to combine is explained in Sect. 6.1.

We now pose the following additional question.

Question 1.15 How often do we face filtrations with non-trivial torsion subgroups?

We can construct such an example by a Möbius strip as shown in Example 1.5, but
would we often face such a filtration? To demonstrate the probability of torsions in

3 To compute the torsion subgroup of a homology group, we need to compute the Smith normal form of the
boundary matrix, and the computational cost of the Smith normal form is O(T θ ) in the worst case where
T is the number of simplices and θ ≈ 2.376 is a constant. The constant θ derives from the time complexity
of the multiplication of two T × T matrices. The time complexity of persistent homology is also O(T θ ) in
the worst case. See [26, 32] for further details.
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filtrations, we conduct a numerical experiment for random data inR3. From this exper-
iment, we show that filtrations with non-trivial torsion subgroups are very rare. This
suggests that, in practical terms, if the data are inR3, we do not need to be particularly
concerned about the torsion problem. We also conduct another numerical experiment
for random filtrations in a high-dimensional space. This second experiment shows that
the filtrations with non-trivial torsion subgroups are to be expected when the space is
high dimensional. The relationship between the probability of non-trivial torsion and
the dimension of the space is further investigated using Vietoris–Rips filtrations. The
third experiment suggests that the larger dimension is, the larger probability is.

For Question 1.15, we remark the result by Kahle et al. [22]. The authors estimated
the minimum number of vertices of a simplicial complex whose homology group has
the desired torsion part. The result did not say anything about the frequency of the
appearance of a non-trivial torsion subgroup, but it enables us to estimate which type
of torsion subgroup is easy to realize. The following question is also important.

Question 1.16 When Dq(X;k) changes depending of the choice of k, how does
Dq(X;k) change?

In the above example about a Möbius strip, a long interval I (1,∞) is split into two
shorter intervals, I (1, 2) and I (2,∞), when k changes fromR to Z2. From the exam-
ple,we expect that a long interval indecomposable tends to be split into shorter intervals
when k changes from R to Zp. The following theorem proved in Sect. 9 partially
answers the question. We remark that only this theorem considers a R-parameterized
filtration instead of an N-parameterized filtration.

Theorem 1.17 Let q be a positive integer and we consider an R-parameterized filtra-
tion X = {Xt }t∈R. Assume that Xt is finite, that is, Xt for sufficiently large t is a finite
simplicial complex. We also assume that Xt = ∅ for sufficiently small t and Hq(Xt )

= 0 for sufficiently large t. Let f be a C2 convex function on [0,∞) with f (0) = 0.
Then the following inequality holds if Hq(Xt ;Z) and Hq−1(Xt ;Z) are free for all t:

∑

(b,d)∈Dq (X;R)

f (d − b) ≥
∑

(b,d)∈Dq (X;Zp)

f (d − b).

When f is strictly convex, the equality holds if and only if Dq(X;R) = Dq(X;Zp).

If X is embedded in R
3, the theorem holds for q = 1. Unfortunately, the freeness

condition in Theorem 1.17 does not hold for higher dimensional filtrations in general.
For f (x) = xr with r > 1, the inequality means

Wr (Dq(X;R),∅) ≥ Wr (Dq(X;Zp),∅),

where Wr is the r -Wasserstein distance. In some sense, the r -Wasserstein distance
from the empty diagram indicates the information richness of the diagram. Therefore,
Dq(X;R) contains richer information than Dq(X;Zp) under the condition of the
theorem.
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1.3 Organization of the Paper

The remainder of the paper is organized as follows. Section2 reviews the basic concepts
of persistent homology. Section 3 shows some examples which exhibit the dependence
of PDs to their coefficient fields. Sections 4 and5proveTheorems1.6 and1.9. Section 6
presents an efficient algorithm which permits judgment and the proof which testifies
to the correctness of the algorithm. Section 7 introduces an implementation of the
algorithm in our data analysis software based on persistent homology, HomCloud.4

This section also shows the performance benchmark. Section 8 presents numerical
experiments to measure the probability of the appearance of non-trivial torsions in
random filtrations. Section 9 is the proof of Theorem 1.17 and, finally, conclusions
are offered in Sect. 10.

2 Persistent Homology

In this section, we present some fundamental concepts for persistent homology.

2.1 Filtrations

A filtration is an increasing sequence of topological spaces. One typical filtration is
the union of r -balls constructed from a pointcloud in R

M . For a pointcloud, a set of
finite points {xi }, Xr is defined as

Xr =
⋃

i

Bxi (r),

where Bx (r) is the closed ball whose center is x and radius is r .5 The sequence of
Xr parameterized by r , {Xr }r≥0, is obviously a filtration. This filtration is used to
investigate the shape formed by the pointcloud.

For a practical application of persistent homology, we usually use finite simplicial
or cubical filtrations since such filtrations are practical to consider on a computer.
One well-known filtration is the Čech filtration. The Čech complex Čech(P, r) of a
pointcloud P = {xi } with radius parameter r ≥ 0 is defined as follows:

Čech(P, r) =
{

{xi1 , . . . , xik } ⊂ P
∣

∣

∣

k
⋂

n=1

Bxin (r) �= ∅
}

.

The filtration {Čech(P, r)}r≥0 is called a Čech filtration. From the nerve theorem,
Čech(P, r) is homotopy equivalent to

⋃

i Bxi (r) and we can use the Čech filtration
to investigate the union of r -balls. There are many simplices in a Čech complex

4 https://homcloud.dev.
5 Open balls are usually used to define Čech filtrations. The nerve theorem holds for both open and closed
balls.
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for a large pointcloud and we usually use an alpha complex [12, 15] instead, since
the alpha complex is homotopy equivalent to the Čech complex and the number of
simplices of the alpha complex is much smaller than the Čech complex. The alpha
complex has another advantage in that it can be embedded inRM but such embedding
is usually impossible for the Čech complex. Since the number of points is finite,
the Čech filtration and alpha filtration is bounded. Therefore we can regard these
R-parameterized filtrations as N-parameterized filtrations.

2.2 Computation of a Persistence Diagram

Under Condition 1.12, Algorithm 2.1 computes the PD of the filtration [14, 27, 33].
To simplify the algorithm, all simplices of all dimensions are mixed, and in the output,
all birth-death pairs of all degrees are also mixed. In this algorithm, LB( j) means

LB( j) =
{

max {i | Bi j �= 0} if column j of B is nonzero,

−∞ if column j of B is zero,
(1)

where B is a matrix and j is an integer. Furthermore, in this algorithm, matrix B is
reduced from left column to right column. After terminating the algorithm, the PD is
computed as follows:

D(X) = {(L B̂( j), j) | L B̂( j) �= −∞}
∪ {( j,∞) | L B̂( j) = −∞ and ∀i, L B̂(i) �= j},

where B̂ is the matrix returned by the algorithm. The qth PD is given from D(X) as
follows:

Dq(X) = {(i, j) ∈ D(X) | dim σi = q}.

Algorithm 2.1 Algorithm to compute persistence diagrams
B ← the boundary matrix with respect to the basis {σ1, . . . , σN }
for j = 1, . . . , N do

while there exists i < j with LB (i) = LB ( j) �= −∞ do
let s = BLB ( j), j /BLB (i),i
add (−s) × (column i) to column j of B � left-to-right reduction

return B

Indeed, Theorem 1.13 shows that the algorithm for judging the condition of Corol-
lary 1.10 is given by restricting Algorithm 2.1 to integer coefficients. Therefore, the
time complexity of the Theorem 1.13 algorithm is as per Algorithm 2.1.
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2.3 Persistent Betti Number

From the definition of a PD, we have the following relationship between the map
Hq(Xm;k) → Hq(Xn;k) and a PD:

βn
m(k) := rank (Hq(Xm;k) → Hq(Xn;k))

= # {(b, d) ∈ Dq(X;k) | b ≤ m ≤ n < d}.

Thisβn
m(k) is called a persistent Betti number or a rank invariant. Hence, the following

identity holds:

(multiplicity of Dq(X;k) at (b, d)) = βd−1
b (k) − βd−1

b−1 (k) − βd
b (k) + βd

b−1(k).

When d = ∞, the following equation holds instead:

(multiplicity of Dq(X;k) at (b,∞)) = βN
b (k) − βN

b−1(k).

The next lemma follows directly from the foregoing.

Lemma 2.2 Dq(X;k) = Dq(X;k′) if and only if βn
m(k) = βn

m(k′) for all 0 ≤ m ≤
n ≤ N.

2.4 Universal Coefficient Theorem

The universal coefficient theorem is fundamental for homology theory and plays an
important role in this paper. We review the theorem here to prepare for what follows.

Theorem 2.3 (universal coefficient theorem [17]) Let X be a topological space, k a
ring, and q ≥ 0. The following sequence is a natural short exact sequence:

0 → Hq(X;Z) ⊗ k → Hq(X;k) → Tor (Hq−1(X;Z),k) → 0.

Furthermore, this sequence splits, though not naturally.

We use the above theorem in the following form.

Theorem 2.4 Let X and Y be topological spaces, f : X → Y a continuous map, k a
ring, and q ≥ 0. If Hq−1(X;Z) and Hq−1(Y ;Z) are free, the following commutative
diagram holds:

Hq(X;Z) ⊗ k
	

f∗⊗idk

Hq(X;k)

f∗

Hq(Y ;Z) ⊗ k
	

Hq(Y ;k).

�
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Fig. 2 Visualization of X

This theorem states that the induced map f∗ : Hq(X;k) → Hq(Y ;k) is completely
describedby f∗⊗idk : Hq(X;Z)⊗k → Hq(Y ;Z)⊗k if Hq−1(X;Z) and Hq−1(Y ;Z)

are free. We use the theorem for an inclusion map between simplicial/cell/cubical
complexes.

3 Examples of Diagrammatic Changes Induced by Coefficient Field
Changes

In this section, we give some examples of persistent homology, whose interval decom-
position depends on the choice of coefficient field.

Example 3.1 Let S1 be a circle and S1 ∨ S1 a bouquet of 2-circles. We consider a

filtration X : ∅ → S1
f−→ S1 ∨ S1

g−→ Y as in Fig. 2, where Y is a space homotopy
equivalent to S1,

H1( f ) =
(

1
1

)

, H1(g) = (

1 1
)

.

By taking the 1st homology of this filtration, we obtain the 1st persistent homology

H1(X;Z) = 0 Z

(

1
1

)

Z
2

(

1 1
)

Z,

with a coefficient ring Z. Then H1(X;Z2) = H1(X;Z)⊗ZZ2 has the interval decom-
position I (1, 2) ⊕ I (2, 3). On the other hand, H1(X;R) = H1(X;Z) ⊗Z R has the
interval decomposition I (1, 3) ⊕ I (2, 2). Thus, the interval decomposition of the 1st
persistent homology of X depends on the choice of coefficient field.

Note that if we consider a bouquet of p-circles for a prime p, then we obtain the 1st
persistent homology, which has different decompositions over Zp and R.

By using Example 3.1, we can consider the 1st persistent homology, whose interval
decomposition depends on the choice of characteristic p > 0.

Example 3.2 We can construct a more complicated example in a similar way. Let

M = 0 Z

(

1
1

)

Z
2

(

1 1
)

Z

⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

Z
3

(

1 1 1
)

Z
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Fig. 3 Visualization of X with M = H1(X)

be the 1st Z-persistent homology coming from the filtration of Fig. 3. Then M has the
following interval decomposition:

M ∼=
{

I (1, 2) ⊕ I (2, 5) ⊕ I (4, 4)2 if p = 2,

I (1, 4) ⊕ I (2, 2) ⊕ I (4, 4) ⊕ I (4, 5) if p = 3.

Example 3.3 Other examples are double and triple loop pointclouds. Figure 4(a) shows
the double loop pointcloud. The pointcloud is located on the boundary of a Möbius
strip.We compute the 1st PDs of the double loop pointcloudwith fieldsZ2,Z3, andZ5.
The alpha filtration of the pointcloud is used for the computation. The diagrams are
shown in Fig. 4, (b)–(d). Note that (c) and (d) are the same diagram. The difference
between (b) and (c) is only two birth-death pairs. Figure 4(e) shows the triple loop
pointcloud and (f)–(h) show the 1st PDs of the triple loop pointcloud with fields Z2,
Z3, and Z5. To be expected, (f) and (h) are the same diagram and (g) is different from
(f) and (h).

4 Proof of Theorem 1.6

The following lemma is required to prove the theorem.

Lemma 4.1 If Hq(Xn, Xm;Z) is free, coker (φn
m : Hq(Xm;Z) → Hq(Xn;Z)) is also

free.

Proof We have the following long exact sequence [17, Theorem 2.16, p. 117] for the
pair (Xn, Xm):

. . . → Hq(Xm;Z)
φn
m−→ Hq(Xn;Z)

ψn
m−→ Hq(Xn, Xm;Z) → . . . ,
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Fig. 4 1st PDs with various fields for double and triple loop pointclouds. (a) A double loop point cloud. (b)
The PD of the double loop with Z2. (c) The PD of the double loop with Z3. (d) The PD of the double loop
with Z5. (e) A triple loop point cloud. (f) The PD of the triple loop with Z2. (g) The PD of the triple loop
with Z3. (h) The PD of the triple loop with Z5

where ψn
m is induced by canonical projection. Therefore, we have the following rela-

tionship between coker φn
m and Hq(Xn, Xm;Z):

coker φn
m = Hq(Xn;Z)/im φn

m = Hq(Xn;Z)/kerψn
m 	 imψn

m ⊂ Hq(Xn, Xm;Z).

To complete the proof, we need to show that imψn
m is free, and this derives from the

following well-known theorem.

Theorem 4.2 Any sub-module of a free Z-module is also free.

By assumption, Hq(Xn, Xm;Z) is free, and then coker φn
m 	 imψn

m is free by Theo-
rem 4.2. ��

We also need a discussion on Smith normal form for the proof of the theorem.
When Hq(Xm;Z) and Hq(Xn;Z) are free, φn

m is a homomorphism between two
finitely generated free Z-modules and the map has a Smith normal form (SNF). That
is, by taking an appropriate basis, φn

m can be represented by the following Z matrix:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1 0 0 · · · 0
0 α2 0 · · · 0

0 0
. . . O

...
...

. . .

0 0 αK

O O

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2)

where 0 < αk ∈ Z and αk | αk+1 for any k. We will show the following two lemmas
about SNF.

123



Discrete & Computational Geometry (2023) 70:645–670 659

Lemma 4.3 Assume that Hq(Xn;Z), Hq(Xm;Z), Hq−1(Xn;Z), and Hq−1(Xm;Z)

are free. Thenβn
m(k) is independent of the choice ofk if and only ifα1 = . . . = αK = 1

in (2).

Proof From Theorem 2.4, the following relationship holds:

βn
m(k) = rank (φn

m : Hq(Xm;k) → Hq(Xn;k))

= rank (φn
m ⊗ idk : Hq(Xm;Z) ⊗ k → Hq(Xn;Z) ⊗ k).

From the above equation and (2), we know that βn
m(k) is independent of the choice of

k if and only if α1 = . . . = αK = 1. ��
Lemma 4.4 Assume that Hq(Xn;Z) and Hq(Xm;Z) are free. Then coker φn

m is free if
and only if α1 = . . . = αK = 1 in (2).

Proof From SNF, we also have the following:

coker φn
m 	

K
⊕

k=k0

(Z/αkZ) ⊕ Z
L−K ,

where k0 = 1 + max {i | αi = 1} and L = rank Hq(Xn;Z). We immediately lead to
the conclusion of Lemma 4.4. ��

Using Lemmas 2.2, 4.1, 4.3, and 4.4, we can immediately show the independence
of Dq(X;k) from the choice of k under the following assumptions:

– Hq(Xn, Xm;Z) is free for any 0 ≤ m < n ≤ N . This condition includes that
Hq(Xn;Z) is free for any n.

– Hq−1(Xn;Z) is free for any 0 ≤ n ≤ N .

4.1 Proof of Corollary 1.8

Using Theorem 1.6, we prove the independence of DM−1(X;k) from the choice of k
when the filtration X is embedded in RM .

Proof of Corollary 1.8 First, from standard homology theory [17, Corollary 3.46,
p. 256], HM−1(Xn;Z) and HM−2(Xn;Z) are free since Xn ⊂ R

M . Second, the
Alexander duality for relative homology [31, Theorem 6.2.15] gives the following
isomorphism:

HM−1(Xn, Xm;Z) 	 H1(X̄m, X̄n;Z),

where X̄m = R
M \ Xm and X̄n = R

M\Xn . In addition, from universal coefficient
theorem for relative cohomology [17, Theorem 3.2] gives the following isomorphism:

H1(X̄m, X̄n;Z) 	 Ext(H0(X̄m, X̄n;Z),Z) ⊕ HomZ(H1(X̄m, X̄m;Z),Z). (3)
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Since H0(X̄m, X̄n;Z) is free, Ext(H0(X̄m, X̄n;Z),Z) = 0. In addition,

HomZ(H1(X̄m, X̄m;Z),Z)

is isomorphic to the free part of H1(X̄m, X̄m;Z). Therefore, HM−1(Xn, Xm;Z) 	
H1(X̄m, X̄n;Z) is free by the isomorphism (3). Thus, the assumption of Theorem 1.6
is satisfied, and hence DM−1(X;k) is independent of the choice of k. ��

5 Proof of Theorem 1.9 and Corollary 1.10

The proof is similar to that of Theorem 1.6, but slightly more complex. We need the
following proposition.

Proposition 5.1 Hq(Xn, Xm;Z) is free if coker (φn
m : Hq(Xm;Z) → Hq(Xn;Z)) and

Hq−1(Xm;Z) are free.

Proof From the long exact sequence for the pair (Xn, Xm),

. . . → Hq(Xm;Z)
φn
m−→ Hq(Xn;Z)

ψn
m−→ Hq(Xn, Xm;Z)

∂−→ Hq−1(Xm;Z) → . . . ,

we have the following facts:

coker φn
m 	 imψn

m ⊂ Hq(Xn, Xm;Z),

im ∂ 	 Hq(Xn, Xm;Z)/imψn
m .

im ∂ is free since Hq−1(Xm) is free. We complete the proof by the following theorem
from standard algebra.

Theorem 5.2 Let M be a module over Z and N be a sub-module of M. M is finitely
generated and free if N and M/N are finitely generated and free.

Proof We have an exact sequence

0 → N → M → M/N → 0.

Since M/N is free (in particular, it is projective), the exact sequence is split. That is,
M ∼= N ⊕ M/N , and hence M is finitely generated and free. ��
Proposition 5.1 has been proved. ��
Proof of Theorem 1.9 We assume that Dq(X;k) is independent of the choice of k
and Hq−1(Xn;Z) is free for any 0 ≤ n ≤ N . Then from Lemma 2.2, βn

m(k) is
independent ofk for anym and n. Especially for any n and q, βn

n (k) = dim Hq(Xn;k)

is independent of k and therefore Hq(Xn;Z) is free due to the universal coefficient
theorem since Hq−1(Xn;Z) is free. Then coker φn

m is free because of Lemma 4.4.
From the above fact and Proposition 5.1, we conclude that Hq(Xn, Xm;Z) is free. ��
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Proof of Corollary 1.10 Here, wewill show that the following two conditions are equiv-
alent.

(a) Dq(X;k) is independent of the choice of k for all q = 0, . . . , M .
(b) Hq(Xn, Xm;Z) are free for any 0 ≤ m < n ≤ N , and q = 0, . . . , M .

From Theorem 1.6, it is straightforward to show that (b) implies (a). We can show the
converse by induction on q. For q = 0, it is trivial that H0(Xn, Xm;Z) is free and the
induction process proceeds by using Theorem 1.9. ��

6 Algorithm to Determine the Dependence ofDq(X;k) on k

In this section, we explore an algorithm to judge the dependence of Dq(X;k) on k.
The exact description of Theorem 1.13 is as follows.

– If Algorithm 6.1 returns “independent”, Dq(X;k) is independent of the choice
of k.

– If Algorithm 6.1 returns “dependent”, Dq(X;k) depends on the choice of k.

Algorithm 6.1 Algorithm to determine the dependence of Dq(X;k) on k

let B be the matrix representation of the boundary operator
for j = 1, . . . , N do � (OUTERLOOP)

while there exists i < j with LB (i) = LB ( j) �= −∞ do � (INNERLOOP)
let s = −BLB ( j), j /BLB (i),i � (A)
add s × (column i) to column j of B � left-to-right reduction

if L( j) �= −∞ and BLB ( j), j /∈ {±1} then � (B)
print |BLB ( j), j |
return “dependent”

return “independent”

InAlgorithm 6.1, LB means (1).We remark that BLB (i),i in this algorithm is always±1
at (A), so the division at (A) always applies. This is because the condition is checked
at (B).

We use the following notation.

Notation 6.2 – R is Z or a field.
– C(Xk; R) := ⊕dimX

q=0 Cq(Xk; R).

– ∂k : C(Xk; R) → C(Xk; R) = ⊕dimX

q=0 (∂
(q)
k : Cq(Xk; R) → Cq−1(Xk; R)).

– DR is the boundary matrix of ∂N with respect to the basis {σ1, . . . , σN }.

123



662 Discrete & Computational Geometry (2023) 70:645–670

– For i < j and s ∈ R,Ui j (s) is the left-to-right reduction matrix. That is,Ui j (s) is
the matrix

Ui j (s) =

j
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1
. . .

1 s i
. . .

1
. . .

1

.

Proof of Theorem 1.13 First, we consider the following fact.

Fact 6.3 Algorithm 6.1 always terminates in finitely many steps.

Fact 6.3 can be easily shown since, in the while loop (INNERLOOP), LB( j) is strictly
monotonically decreasing and finally LB( j) becomes −∞ or distinct from {LB(i) |
i < j}.

For a positive integer n, we call a matrix B n-reduced if LB(1), . . . , LB(n) are
distinct except −∞. Define r(i, j; B) for an N × N matrix B as follows:

r(i, j; B) = rank B j
i − rank B j

i+1 + rank B j−1
i+1 − rank B j−1

i ,

where B j
i is the lower left submatrix obtained by deleting the first i − 1 rows and the

last N − j columns. To show the theorem, we use the pairing lemma [10, 13] in the
following form.6

Lemma 6.4 (pairing lemma)

(a) For any left-to-right reduction k-matrices U1, . . . ,Ur ,

r(i, j; Dk) = r(i, j; DkU1 · · ·Ur ).

(b) r(i, j; Dk) is 0 or 1.
(c) For any n-reduced k-matrix B and any i < j ≤ n, LB( j) = i if and only if

r(i, j; B) = 1.
(d) r(i, j; Dk) = 1 if and only if (i, j) ∈ D(X;k).

We define the homeomorphism Fk : Z → k as Fk(n) = n · 1k, where 1k is the unit
of a field k. We also consider the map from an m × n Z-matrix to an m × n k-matrix
by the element-wise application of Fk. We use the same symbol Fk for this map. The
following facts are easy to show.

6 In the original version, (d) is separately described and not included in the pairing lemma.

123



Discrete & Computational Geometry (2023) 70:645–670 663

– Fk(AB) = Fk(A)Fk(B) for any Z-matrices A, B.
– Fk(DZ) = Dk.
– Fk(Ui j (s)) = Ui j (Fk(s)). That is, Fk maps a left-to-right reduction Z-matrix to
a left-to-right reduction k-matrix.

– If B is an n-reduced Z-matrix and BLB (i),i ∈ {±1} for all i with LB(i) �= −∞,
Fk(B) is an n-reduced k-matrix.

First, we prove that Dk(X;k) is independent of the choice of k when the algo-
rithm returns “independent”. Let B̂ be matrix B in Algorithm 6.1 when the program
terminates. Since the left-to-right reduction in Algorithm 6.1 is equivalent to the mul-
tiplication of Ui j (s) from right, B̂ can be written as

B̂ = DZU1 · · ·Ur , (4)

where U1, . . . ,Ur is left-to-right reduction Z-matrices. Therefore we have

Fk(B̂) = DkFk(U1) · · · Fk(Ur ). (5)

From the terminating condition of the while loop (INNERLOOP) in Algorithm 6.1, B̂
is N -reduced. Moreover, since Algorithm 6.1 checks condition (B), B̂L B̂ ( j), j ∈ {±1}
for any j with L B̂( j) �= −∞ and Fk(B̂) is N -reduced. Therefore, from pairing
lemma, we conclude that the persistence diagram does not depend on the choice of k.

Next we prove Dk(X;k) depends on the choice of k if the algorithm returns
“dependent”. In that case, condition (B) in the algorithm is true for one j , so let n be
that j and B̂ be B at that time. For the same reason as the independent case, B̂ can be
written as (4) and therefore (5) holds also in this case. At the same time,

LFR(B̂)
(n) = L B̂(n) > LFZp (B̂)

(n),

where p is a prime divisor of |B̂L B̂ (n),n| since FZp (B̂L B̂ (n),n) = 0 but FR(B̂L B̂ (n),n)

�= 0. Therefore r (m, n; FR(B̂)) = 1 but r (m, n; FZp (B̂)) = 0 where m = L B̂(n),

since FR(B̂) is n-reduced, FZp (B̂) is (n − 1)-reduced, m > LFZp (B̂)
(n), and

LFZp (B̂)
( j) �= m for any j < n. From the pairing lemma, we conclude that

D(k;Zp) �= D(k;R). ��

6.1 Combining Algorithm 6.1 with theModular Reconstruction Algorithm or
Omni-Field Persistence

We can combine our algorithm and the modular reconstruction algorithm in the fol-
lowing way. Before stopping Algorithm 6.1, the two algorithms do the same matrix
reductions operations, and the following equality always holds until stopping:

B6.1 mod (q1 · · · qr ) = Bmra,
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Table 1 Performance benchmark results

5000 points 50,000 points

Phat 0.0282 s 0.446 s

HomCloud 0.0323 s 0.550 s

where B6.1 is the matrix in Algorithm 6.1 and Bmra is the matrix in modular recon-
struction algorithm. Therefore Algorithm 6.1 can enter the modular reconstruction
algorithmbyapplyingmod (q1 · · · qr ) to theZ-matrix just after stoppingAlgorithm6.1.
The idea enables us to share the result of the computation with themodular reconstruc-
tion algorithm to reduce the required computational resources. We can also combine
our algorithm and omni-field persistence algorithm in a similar way to the modular
reconstruction algorithm using embedding homeomorphism Z → Q.

7 Algorithm Implementation

The judgment algorithm is implemented in our software HomCloud. The twist algo-
rithm introduced by Chen and Kerber [8] is used for faster computations. Since most
elements of each column are usually zero, only non-zero values and corresponding
indices are stored in two arrays. The indices are stored in ascending order and reduce
the columns like merge process in merge sort [24]. The program correctly judges the
existence of the torsion in the filtration given by the pointclouds shown in Fig. 4, (a)
and (e).

7.1 Performance Benchmark

In this section, we explore the performance of Algorithm 6.1. We compare the pro-
gram implemented in HomCloud and Phat [1].7 The Phat code is straightforward and
efficient. The input filtration for the performance comparison is an alpha filtration
constructed from random 5000 and 50, 000 points in R

3. Five trials were undertaken
and the average computation time is shown. In Phat, we use twist-algorithm with
bit_tree_pivot_column, as recommended by Bauer et al. [1]. The benchmark
is executed on a PC with a 1.5GHz Intel(R) Core(TM) i7-8500Y CPU, 16GB of
memory, and the Debian 10.0 operating system. Both programs run on a single core.
Results are shown in Table 1.

According to the benchmark, our new program is ca.×1.20 slower than Phat. Phat
uses Z2 as a coefficient field and implements fast arithmetic operations by using bit-
wise operations. The technique likely renders Phat faster and we conclude that the
performance of our program is roughly as efficient as Phat.

7 https://bitbucket.org/phat-code/phat/.
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8 Probability of Torsion Appearance in Random Filtrations

Here we measured the probability of the appearance of torsions of random filtrations
by a numerical experiment. Corollaries 1.7 and 1.8 already ensure the independence
of persistence diagrams from k for a filtration embedded in R2. Therefore, we started
from filtrations in R

3.

We generated a random filtration from a pointcloud sampled from a Poisson point
process in [0, 1]3.8 The average number of points is 1000. Thus, a random number k
is sampled from the Poisson distribution whose parameter is 1000, and k points are
uniformly randomly sampled in [0, 1]3. An alpha filtration was computed from the
generated pointcloud and the condition was judged by HomCloud. Here, 10,000 trials
were carried out. Only one filtration had non-trivial torsion; thus, 9999 filtrations had
trivial torsion.9 In sum, it can be stated that a filtration with non-trivial torsion is possi-
ble but very rare. This numerical experiment suggests that there is some mathematical
mechanism explaining why a random filtration with non-trivial torsion is quite rare.
Exploring this further here is beyond the scope of the current paper.

In contrast, Kahle et al. [22] experimentally showed that torsion subgroups often
appeared in random d-complex Y ∼ Yd(n, p), introduced by Linial and Meshulam
[25]. We apply our algorithm to a Linial–Meshulam process, a natural extension of
Linial and Meshulam’s random complex, introduced by Hiraoka and Shirai [19]. Let
Ȳ (n) be a simplex on n vertices and let Y0 be the (d − 1)-skeleton of Ȳ (n). Yk for
k = 1, . . . ,m is randomly generated by adding a d-simplex to Yk−1. The d-simplex
is uniformly randomly sampled from all d-simplices in Ȳ (n)\Yk−1. We apply the
algorithm to the filtration Y0 ⊂ Y1 ⊂ . . . ⊂ Ym . We used d = 2, n = 75, m = 5000.
The number of random flirtations was 10,000. In the experiment, we found that all
10,000 random filtrations have non-trivial torsion.

The above two experiments are contrasting. We expect that the difference emanates
from the dimension of the space. In the first experiment, a filtration is in R

3 and in
the second experiment, Ȳ (75) has a high dimensional geometric structure. The exper-
iments suggest that a high-dimensional random filtration has more non-trivial torsion
subgroups in the relative homology groups than a filtration with a low dimensional
geometric structure.

To further investigate the relationship between the dimension of the space and the
non-trivial torsion in filtrations, we numerically experimented on random Vietoris–
Rips filtrations. Vietoris–Rips filtrations were used since it is difficult to construct
an alpha filtration of a pointcloud in a high-dimensional space. In one trial of the
experiment, 1000 points are uniformly randomly sampled in R

n and we judged the
existence or non-existence of non-trivial torsion subgroup in the 1st persistent homol-
ogy of the Vietoris–Rips filtration of the pointcloud using our algorithm. To reduce

8 We also try uniform random sampling of a fixed number of points (1000 points) and the result is consistent
with this experiment.
9 Run-time errors occurred two times in these 10,000 trials. When an error occurred, we disposed of the
input data and retried random sampling. The cause of the errors is probably the violation of the general
position condition of the randomly generated pointcloud.
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Fig. 5 Scatter plot of dimension n versus frequency in 1000 trials

the cost of computation we take the threshold of maximum edge length. The threshold
is statistically determined to averagely include 166,500 edges (1/6 edges of all edges
of 999-simplex) in the filtration. We determined the threshold rule by considering the
limitation of our computer resources.We performed 1000 trials for each n and counted
frequencies for the non-trivial torsion subgroup.

Figure 5 shows the frequencies for n = 3, 4, . . . , 40. We also experimented with
larger thresholds to examine the validity of the threshold rule and the results were
consistent with the 1/6 rule experiments. The results show that the frequency appears
to monotonically increase with n and the speed of increase becomes slower as n
increases.

Overall, the experiment also suggests that we do not need to be concerned about
the coefficient field in most cases if the space is R3. Thus, if there are concerns about
the field choice problem in future research contexts, our proposed algorithm would be
helpful.

9 Proof of Theorem 1.17

In this section, we show the following inequality for a convex C2 function f with
f (0) = 0 under the assumption that Hq(Xt ;Z) and Hq−1(Xt ;Z) are free for all t and
Hq(Xt ;Z) = 0 for sufficiently large and small t :

∑

(b,d)∈Dq (X;R)

f (d − b) ≥
∑

(b,d)∈Dq (X;Zp)

f (d − b).

In addition, we assume the following condition.

Condition 9.1 There exist 0 = r0 < r1 < . . . < rN < rN+1 = ∞ such that
rk ≤ r < rk+1 implies Xr = Xrk .

123



Discrete & Computational Geometry (2023) 70:645–670 667

This means that the filtration is assumed to be right-continuous. Condition 9.1 is not
essential and we can prove the theorem if the filtration is left-continuous. We assume
right-continuous for expository purposes.

Proof of Theorem 1.17 From Condition 9.1 and Hq(Xt ) = 0 for sufficiently small and
sufficiently large t , all birth-death pairs can be written as (rk, r
) for 0 ≤ k < 
 ≤ N .
Hence, using persistent Betti numbers, we have the following equation:

∑

(b,d)∈Dq (X;R)

f (d − b)

=
∑

0≤k<
≤N

f (r
 − rk)(β
r
−1
rk (k) − β

r
−1
rk−1 (k) − βr


rk (k) + βr

rk−1

(k)) (6)

=
∑

0≤k<
≤N

βr

rk (k)( f (r
+1 − rk) − f (r
+1 − rk+1) − f (r
 − rk) + f (r
 − rk+1)).

Now we prove the following inequality:

f (r
+1 − rk) − f (r
+1 − rk+1) − f (r
 − rk) + f (r
 − rk+1) ≥ 0. (7)

In addition, if f is strictly convex, the left-hand side is strictly positive. First we prove
(7) under the condition of r
+1 − rk+1 ≥ r
 − rk . In this case,

f (r
+1 − rk) − f (r
+1 − rk+1) − f (r
 − rk) + f (r
 − rk+1)

= ( f (r
+1 − rk) − f (r
+1 − rk+1)) − ( f (r
 − rk) − f (r
 − rk+1))

= f ′(ζ1)(rk+1 − rk) − f ′(ζ2)(rk+1 − rk)

= (rk+1 − rk)( f
′(ζ1) − f ′(ζ2)),

where r
+1 − rk+1 ≤ ζ1 ≤ r
+1 − rk and r
 − rk+1 ≤ ζ2 ≤ r
 − rk . Here, from the
assumption of r
+1 − rk+1 ≥ r
 − rk and the convexity of f , we have f ′(ζ1)− f ′(ζ2)
≥ 0 and the inequality (7). The strict positivity from strict convexity is trivial. When
r
+1 − rk+1 ≤ r
 − rk , we can prove the inequality in a similar way by exchanging
the role of f (r
+1 − rk+1) and f (r
 − rk) in the foregoing.

Since Hq(Xt ;Z) is free for any t , Hq(Xrk ;Z) → Hq(Xr
;Z) has SNF for any k, 
.
In addition, since Hq−1(Xt ;Z) is also free for any t , we can apply Theorem 2.4 to
have

βr

rk (R) ≥ βr


rk (Zp) (8)

for any p. Furthermore, if Dq(X;R) �= Dq(X;Zp), there exists k < 
 such that

βr

rk (R) > βr


rk (Zp) (9)

holds. From (6), (7), (8), and (9), we complete the proof of the theorem. ��
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10 Conclusions

In this paper, we focus on mathematical phenomena concerning the change of the
coefficient field in persistent homology. We show that the torsion subgroup of relative
homology groups Hq(Xn, Xm;Z) plays an essential role in the phenomena. We also
propose an algorithm to judge the independence of the field change. The algorithm is
implemented in the software, HomCloud.

Using the algorithm, we conduct experiments which suggest that the probability
of persistence diagrams changing as a result of field changes is not zero, but very
low for random pointclouds in R3. Thus, we do not need to be particularly concerned
about the choice of the field in most practical persistent homology contexts for three-
dimensional data if we approach persistence diagrams in statistical terms. To assuage
researchers’ future concerns about this issue, the torsion condition can be checked by
the algorithm.

Of course, where torsion structures are important, such as Klein bottles or Möbius
strip, the choice of the coefficient field is important. Based on the results of the numer-
ical experiment on Ȳ (75) and Vietoris–Rips filtrations, we also suggest that the choice
of the coefficient field is important for high-dimensional data. In such contexts, further
study is required into the torsion on the filtrations.

Further, the results herein suggest that the “difficulty” of computation of Dq(X;k)

depends on the torsion in the filtrations. If the torsion subgroup is zero, Dq(X;k)

for any k is computable by computing Dq(X;k) for only one k, for example, Z2. If
not, to compute Dq(X;k) for many k is more onerous as explained in Question 1.14.
This phenomenon is not dissimilar to a theorem by Dey et al. [11]. Those authors
proved that the difficulty of computing a kind of optimization problem on homology
algebra depends on the existence of the non-zero torsion subgroup of the relative
homology group. Integer programming on homology algebra can be solved by linear
programming if the torsion-free condition holds. Integer programming requires much
more time than linear programming in the sense of computational complexity theory.
Of course, our paper and their paper concern different problems, but the results are
similar because of the shared focus on the torsions of relative homology. These results
suggest that the existence of non-trivial torsion subgroups in relative homology renders
the problems of computational homology is more difficult.

Acknowledgements This work was partially supported by JSPS (Japan Society for the Promotion of Sci-
ence) KAKENHI Grant Numbers JP 16K17638 and JP 19H00834, JST (Japan Science and Technology
Agency) CREST Grant Number JPMJCR15D3, JST PRESTO Grant Number JPMJPR1923, JST-Mirai
Program Grant Number JPMJMI18G3, and Osaka Central Advanced Mathematical Institute (MEXT Joint
Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849). The authors are
grateful to the participants at the 2nd JST math workshop on open problems for helpful discussions. The
authors also thank Dr. Morozov for the information about the omni-field persistence algorithm.

Funding Open access funding provided the Okayama University.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123



Discrete & Computational Geometry (2023) 70:645–670 669

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat – persistent homology algorithms toolbox.
J. Symbol. Comput. 78, 76–90 (2017)

2. Boissonnat, J.-D., Maria, C.: Computing persistent homology with various coefficient fields in a sin-
gle pass. In: 22nd Annual European Symposium on Algorithms (Wrocław 2014). Lecture Notes in
Computer Science, vol. 8737, pp. 185–196. Springer, Heidelberg (2014)
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