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Abstract
The visible-volume function assigns to a configuration of cameras and a flexible envi-
ronment in a convex room the volume that can be supervised by the cameras. It is of
interest to configure the cameras and the environment in such away that the visible vol-
ume ismaximized. Somemethods of global optimization can take profit fromdesirable
analytic properties of the visible-volume function. Earlier work has only considered
this function in dimensions two and three or for static environments implicitly defined
by level-set functions. In this paper it is shown, that the visible-volume function for a
flexible environment modeled explicitly by a parametrized simplicial complex is con-
tinuous, piecewise rational, locally Lipschitz, and semi-algebraic in all dimensions.

Keywords Visible volume · Discrete geometry · Semi-algebraic sets · Hyperplane
arrangements · Point configurations · Oriented matroids, triangulations · Piecewise
rational · Locally Lipschitz

Mathematics Subject Classification 52C35 · 52C40 · 68U05

1 Introduction

This paper reveals a number of analytic properties of the visible-volume function
(formally defined below). For an adjustable camera system in a room with movable
obstacles, this function assigns to each parameter combination the volume that can be
supervised by the cameras. A natural goal is to maximize the visible-volume function
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over all adjustable parameters. This paper restricts attention to the analytic properties
of the visible-volume function in an environment modeled by a simplicial complex
with an adjustable embedding in some bounded convex room. The analytic properties
are of interest, since they are important for the convergence guarantees for various
numerical global optimization approaches.

The famous art-gallery problem (AGP) is closely related to the maximization of
the visible volume. In the AGP one seeks for the minimal number of cameras with
360◦ view and their positions so that they together see the complete volume inside a
simple two-dimensional polygon with n vertices. The famous simple proof in [10] of
an earlier result in [6] shows—via a 3-coloring of a triangulation—that �n/3� cameras
suffice. However, the recent result in [1] shows that the AGP is as difficult as to decide
whether an outer-description of a semi-algebraic set contains a real point. This implies
that the analysis in this paper can probably not be simplified.

Optimizing coverage induced by camera placement has been investigated using
various modeling techniques for a very long time, see [14] for a survey and [13]
for a more recent thesis. The geometric computation of shadows on a surface (in
the sense of day-to-day language) produced in three dimensions by a light at a certain
position and some occluding 3D-objects dates back to at least 1977 [7]. That paper was
motivated by the correct graphical display of the illumination of architectural designs
and similar issues in computer graphics. I mention this since the geometric description
of a shadow of a simplex is a core component of this paper. In most applications today,
the actual function to be optimized is usually called the relevance function and need
not coincide with the visible volume. For example, points can have a weight according
to their importance or distance to the camera. Still, common to most approaches is
that the dependence of the visible volume on the camera system parameters must be
captured in one way or another. This paper focuses on the visible-volume function and
suggests a framework for its analysis in arbitrary dimensions.

In many practical instances like the one in [13], the visible-volume function must
be considered as a black-box function, i.e., a closed-form formula is not available, the
computation of a single function value is costly, and (sub)gradients—if they exist—
cannot simply be calculated from formulas. For the global optimization of black-box
functions, variousmethods have beenproposed, see [4] for amore recent one.Although
it is possible to apply such methods and hope for good results even if a convergence
proof is not available, I find it mathematically desirable to know a priori analytic
properties of the function to be optimized that guarantee convergence. The criterion
in [4] is, e.g., that the function is continuous, smooth on a dense subset of the domain,
and locally Lipschitz or semi-algebraic.

In [12], the visible-volume function is analyzed for the case of an environment
modeled by non-convex polygons in dimension two. In that paper, the independent
variable of the visible-volume function is just the position of the camera, since it is
assumed that it has a 360-degree view. The result is that the visible-volume function is
continuous as well as smooth and locally Lipschitz in the camera position on a dense
subset of the domain. Newer developments also consider environments in dimension
three containing obstacles and more camera parameters like field of view and orien-
tation of multiple cameras [13]. The visible-volume function is again continuous and
smooth almost everywhere.
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The only work I have found for general dimensions uses a different set-up based on
the level-set method [15]: Inside a compact domain there are opaque solid obstacles
implicitly givenvia aLipschitz-continuous level-set function, a function that is negative
in the interior and positive on the exterior of the obstacles [5]. A possible level-set
function is the signed-distance function that assigns to each point the shortest distance
to the boundary of some obstacle; it receives a negative sign if the point is inside the
obstacle and a positive sign if it is outside. In that paper, the independent variables
of the visible-volume function are again restricted to the positions of one or more
cameras, i.e., the cameras possess omni-directional vision. Visibility of one point from
another can be decided by checking whether the infimum of the level-set function on
the connecting straight line (the visibility function) is positive. The visible-volume
function then takes the form of an integral of the Heaviside function of the visibility
function over the domain. It is shown that, under certain additional conditions on the
visibility function (which the authors call “no fattening [of the visibility level sets]”
[5, p. 5]), that the visible-volume function inherits Lipschitz-continuity from the level-
set function. One may see a problem in the fact that the additional condition in that
paper is a condition on the visibility function, which is not part of the input data.

Why bother at all about higher dimensions or a non-static environment? First, in
dimension four the visible volume covered over time can be used to model video
surveillance with time being the fourth dimension. Concerning the non-static environ-
ment the idea is that natural, usually adjustable camera parameters like field of view
or direction can be modeled by obstacles inside the camera system (aperture blades).
However, for this paper the true motivation was clearly curiosity: Is the dimension
or a static environment relevant at all for some interesting analytic properties of the
visible-volume function to hold, or is there a general mathematical principle that guar-
antees an interesting result in all dimensions by a unified argument? What is the most
explicit representation of the visible-volume function? Does it belong to a special class
of functions?

How about generalizing the techniques from [12, 13]? In [12] so-called inflec-
tion segments are the basic building blocks of the analysis. Inflection segments are
used to partition the interior of the non-convex polygon into regions in which the
visible-volume function depends smoothly on the camera position. Generalizing their
approach to higher dimensions would require to consider inflection hypersurfaces gen-
erating possibly non-convex polytopes as regions. This has in principle been carried
out in a different language in [13, Tables 2.3–2.5] for dimension three by an extensive
classification of so-called vertex-incidence surfaces. Following those lines, the num-
ber of cases that would have to be considered in a similar table would be enormous
even in dimension four. For general dimension this seems intractable. To replicate the
full result in this paper with the level-set method in [5] one would have to construct
an explicit parametrized level-set function for movable obstacles that are described
explicitly via parametrized embeddings of simplicial complexes. At least for me it is
not obvious how to proceed along those lines. Yet, it would be interesting to see the
result of this purely analytical approach.

This paper focuses on finite, discrete, explicit descriptions of the environment. It is
shown by a unified method in a fairly general setting with obstacles, explicitly defined
as parametrized pure simplicial complexes of codimension-one, that the visible-
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Fig. 1 The “visible-subset function” is not even continuous: an arbitrarily small left-movement of p (which
is located on the line from 7 to 9) to p′ makes points visible that are “far away” from the points visible from p;
the increase of the visible-volume, however, will be arbitrarily small for a sufficiently small movement; the
continuity of the visible volume is lost as soon as there is a constant-degree diffraction at corners

volume function, depending on the positions of the cameras and the environment is
indeed continuous, smooth almost everywhere, locally Lipschitz and semi-algebraic
in all dimensions. The methodology belongs to the wide field of discrete geometry—a
combination of the basic theory of oriented matroids [3, 16], the basic theory of trian-
gulations of point configurations [9], and the basic theory of semi-algebraic sets [2].
The actual result is even more specific: The domain of the visible-volume function
can be stratified into open cubical cells so that the visible-volume function is a smooth
rational function on each cell with degree at most cubical in the dimension. All struc-
tural results follow from this explicit representation, which goes beyond the results in
[5]. Even in dimension two and three this is, to the best of my knowledge, the most
concrete description of the visible-volume function.

An important remark is in place here: the analytic properties of the visible-volume
function in the main result cannot be derived via splitting it into the composition of
the “visible-subset function” (with the Hausdorff metric on the set of subsets) and the
“volume-of-subsets function”. This is simply because the “visible-subset function”
is not even continuous. See Fig. 1 for visual evidence in dimension two. The same
figure shows that if one considers an arbitrary positive amount of diffraction, then
the visible-volume function itself becomes discontinuous: Indeed, while moving the
camera position, in the first moment one can look through the obstacles at all, a
cone will be visible with interior angle of at least the diffraction angle. Hence, in
order to prove the main result straight-line geometric optics has to be assumed and
exploited.

Moreover, this shows that the results in this paper are in sharp contrast to the
discontinuous dependence of image features on the view point, as is investigated in
Computer Vision (see, e.g., [8]). Thus, the combination of methods in this paper is
tailor-made specifically for the straight-line-optics visible-volume function.
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2 Preliminaries

This paper uses elementary notions and facts from the theories of semi-algebraic sets,
oriented matroids, and triangulations. This section gives a brief overview over these
tools in a phrasing adapted to the purposes of this paper. In order to distinguish the
known from the novel, the terms “notion” and “fact” are used instead of “definition”
and “theorem”.

Semi-algebraic sets (over the reals) arise as solution sets of polynomial equations
and inequalities and enjoy a number of convenient closure and decomposition prop-
erties.

Notion 2.1 (semi-algebraic sets and functions) A subset S ⊆ R
d is a basic semi-

algebraic set (over the reals), if there are finitely many polynomials

(pi )i∈I , (q j ) j∈J : Rd → R

with coefficients in R such that

S = {x ∈ R
d : pi (x) = 0 ∀ i ∈ I , q j (x) > 0 ∀ j ∈ J }.

A semi-algebraic set (overR) is a finite union of basic semi-algebraic sets [2, Sect. 2.3].
For semi-algebraic sets S ⊆ R

d and T ⊆ R
k a function f : S → T is a semi-algebraic

function if its graph

Graph( f ) := {(x, y) ∈ S × T : f (x) = y}

is a semi-algebraic set [2, Sect. 2.5.2]. The class of semi-algebraic functions that are
k times continuously differentiable is denoted by Sk for k = 0, 1, . . . ,∞.

Fact 2.2 (basic properties of semi-algebraic sets) Semi-algebraic sets are closed
under finite union, finite intersection, and set complement [2, Sect. 2.3]. Moreover, pro-
jections of semi-algebraic are semi-algebraic [2, Sect. 2.4] as well as the closure and
the interior [2, Proposition 3.1]. The composition of semi-algebraic functions is semi-
algebraic. Moreover, the pointwise addition and multiplication are semi-algebraic
[2, Propositions 2.102 and 2.103]. In particular, polynomials and rational functions
defined on semi-algebraic sets are semi-algebraic.

The following, specialized version of the stratification theorem for semi-algebraic sets
provides the basis for the piecewise description of the visible-volume function.

Fact 2.3 (stratification theorem for semi-algebraic sets and functions) Every semi-
algebraic set can be stratified into finitely many strata such that each stratum is
S∞-homeomorphic to an open cube, and the boundary of each stratum is a finite
union of strata of lower dimensions [2, Theorem 5.38 (rephrased)].

Oriented matroids encode the combinatorics of finite geometric structures like finite
point or vector configurations or finite arrangements of affine or linear hyperplanes.
An oriented matroid may be defined in various ways all of which can be transformed
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into one another. In this paper, only realizable oriented matroids are used so that
it is enough to define them via the geometric properties of point configurations or
arrangements of hyperplanes (see [3] for a more general treatment). In the following,
the rank is defined as r := d + 1.

Notion 2.4 (oriented matroid of a hyperplane arrangement) Let H = (Hi )i∈I be
a finite linear hyperplane arrangement in R

r with at least one basis, i.e., a r -subset
of hyperplanes with linearly independent normals labeled by a label set I (multiple
hyperplanes are allowed, i.e., distinct labels may label identical hyperplanes). The
arrangement is oriented if for each hyperplane H we have fixed the open positive
halfspace H+ and the open negative halfspace H−. We denote by the zero-set H0 the
hyperplane itself. A signature σ : I → {−, 0,+} is a function that assigns to each
label a sign from {−, 0,+}, where “+” and “−” are interpreted as “+1” and “−1”.
Each such signature induces a region Rσ of the arrangement via

Rσ :=
⋂

i∈I
Hσ(i)

i ,

which may be empty. A covector of H is a signature σ whose region Rσ is non-
empty. A covector with an inclusion maximal number of zero-components is called a
cocircuit of H .

Two hyperplane arrangements with label set I are combinatorially equivalent if
they have identical sets of covectors (or equivalently, identical sets of cocircuits). The
combinatorial equivalence class ofH is called the orientedmatroid ofH . Any choice
of ahyperplane at infinityyields anaffine orientedmatroidwhere only the covectors are
considered that are on the positive side of the hyperplane at infinity. The intersection of
all hyperplanes not at infinitywith the positive hemisphere defined by the hyperplane at
infinity followed by a stereographic projection yields an affine hyperplane arrangement
in dimension d = r − 1. For a matrix W = (a�

i |−bi )i∈I ∈ R
I×r the oriented affine

hyperplane arrangement induced by Hσ
i = {x ∈ R

d : sign (a�
i x − bi ) = σ } for all

σ ∈ {−, 0,+} and i ∈ I is denoted by H (W ). The oriented matroid of it is denoted
by MH (W ) [16, Sect. 7.1.3 (rephrased)].

Notion 2.5 (oriented matroid of a point configuration) Let A = (v j ) j∈J be a finite
point configuration inRd with at least one basis, i.e., a r -subset of points forming a d-
dimensional simplex, labeled by a label set J (multiple points are allowed, i.e., distinct
labels can label identical points). Each signature σ : J → {−, 0,+} on J defines a set
of hyperplanes Hσ consisting of all affine hyperplanes H in R

d with v j ∈ Hσ( j) for
all j ∈ J . A covector of A is a signature σ for which Hσ is non-empty. A covector
with an inclusion-maximal number of zero components is called a cocircuit of A.

Two point configurations with label set J are combinatorially equivalent if they
have identical sets of covectors (or equivalently, identical sets of cocircuits). The
combinatorial equivalence class of A is called the oriented matroid of A. For a matrix
V = (v j

1

)
j∈J

∈ R
r×J the point configuration with points (v j ) j∈J , is denoted byA(V ).

The oriented matroid of it is denoted by MA(V ) [16, Sect. 7.1.2 (rephrased)].
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Remark 2.6 In this paper, oriented matroids are identified with their realization spaces
in the space of matrices, which is no problem for realizable oriented matroids.

The following is immediate from the definition:

Fact 2.7 (finiteness property of oriented matroids) For finite label sets I and J there
exists only a finite number of distinct oriented matroids of hyperplane arrangements
and distinct oriented matroids of point configurations labeled by I and J , respectively.

In the theory of oriented matroids, it does not make a difference whether one considers
the oriented matroid of a hyperplane arrangement or the oriented matroid of a point
configuration. Moreover, in addition to covectors and cocircuits, there are other struc-
tures that specify an oriented matroid. For example, prescribing the set of covectors
of a hyperplane arrangement or a point configuration is equivalent to prescribing all
determinants of r -many rows of W or r -many columns of V (the chirotope of the
oriented matroid) [16, Sect. 7.2.3]. This imposes polynomial equations and inequal-
ities of degree r among the entries of the matrices. Therefore, each set of matrices
inducingmutually combinatorially equivalent affine hyperplane arrangements or point
configurations, respectively, is a semi-algebraic set [16, Sect. 7.3.2].

Fact 2.8 (realization spaces of oriented matroids are semi-algebraic) Each combi-
natorial equivalence class in R

I×r of all matrices W with mutually combinatorially
equivalent hyperplane arrangements H (W ) is a semi-algebraic set. Each combi-
natorial equivalence class in R

r×J of all matrices V with mutually combinatorially
equivalent point configurations A(V ) is a semi-algebraic set.

Triangulations of finite point configurations are dissections of the convex hull of the
point configuration into simplices all of whose vertices are contained in the point
configuration so that any two simplices intersect properly. More formally:

Notion 2.9 (triangulations of point configurations) LetA be a finite point configura-
tion in Rd of affine dimension d labeled by a label set J (multiple points are allowed,
i.e., distinct labels may label identical points). For an r -subset S of J the subcon-
figuration S is the subconfiguration of points in A with labels in S. If S has affine
dimension d, it is spanning. In this case, S is called an (abstract) d-simplex, and S
is called a (geometric) d-simplex. Two d-simplices (abstract or geometric) intersect
properly in A if the relative interiors of any two geometric faces have empty intersec-
tion. A triangulation of A is a family T of properly intersecting abstract d-simplices
in J so that the union of all corresponding geometric simplices equals convA [9,
Definition 2.3.1 (rephrased)].

The main connection of triangulations to oriented matroids is the following: whether
or not a family of r -subsets of J forms a triangulation of A only depends on the
oriented matroid of A, not on the exact coordinates.

Fact 2.10 (triangulations depend only on oriented matroids) Combinatorially equiv-
alent point configurations have identical sets of triangulations [9, Corollary 4.1.44
(specialized to triangulations)]. In particular, the set of all point configurations on the
same label set having identical sets of triangulations is, as the union of (realization
spaces of) oriented matroids of point configurations, a semi-algebraic set.
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Fig. 2 The room and an intersection-free embedding of an environment in the room

3 Problem Statement andMain Result

In this section, the main objects of study are introduced, the notation is fixed, and the
main problem is formalized.

Let d be the ambient dimension, and letP ⊂ R
d be a d-polytope, which is called the

room (see Fig. 2, left). Let J be a set, and letF be an abstract simplicial complex on J
of pure codimension one, the abstract environment complex. Moreover, let e : J → P
be an embedding of the vertices ofF into the room. Given such an embedding e, we
call the point configuration A(e) := e(J ) the vertices of the geometric environment
complex. For a (k−1)-simplex F = { j1, j2, . . . , jk} ∈ F in the abstract environment
complex we obtain its geometric embedding F(e) := conv {e( j1), e( j2), . . . , e( jk)}.
The geometric environment complex in the room is then F (e) := {F(e) : F ∈ F }.
Its geometric realization |F (e)| := ⋃

F∈F F(e) is the union of all geometric embed-
dings of its simplices. We call an embedding e intersection-free if any two geometric
embeddings of open simplices of any dimension have empty intersection (see Fig. 2
right for an example). In particular, for intersection-free embeddings all geometric
simplices F(e) have dimension card(F) − 1, where card(F) is the cardinality of the
abstract simplex F .

Let E ⊂ (P)J be any semi-algebraic subset of all intersection-free embeddings,
equipped with the standard subspace topology on (Rd)J .

Remark 3.1 The subset of intersection-free embeddings is a semi-algebraic set: Each
intersection point x of two open geometric simplices F(e) and F ′(e) has two repre-
sentations in terms of the strictly positive barycentric coordinates of the simplices.
More specifically, the geometric simplices F(e) = conv {e( j1), e( j2), . . . , e( jk)} and
F ′(e) = conv {e( j ′1), e( j ′2), . . . , e( j ′�)} have an interior intersection point if and only
if the following holds:

∃ λ1, λ2, . . . , λk, μ1, μ2, . . . , μ� ∈ R :
λ1, λ2, . . . , λk, μ1, μ2, . . . , μ� > 0,

λ1, λ2, . . . , λk, μ1, μ2, . . . , μ� < 1,

λ1 + λ2 + · · · + λk = 1,
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Fig. 3 A camera configuration formed by position and aperture blades in the room

μ1 + μ2 + · · · + μ� = 1,

λ1e( j1) + λ2e( j2) + · · · + λke( jk) = μ1e( j ′1) + μ2e( j ′2) + · · · + μ�e( j ′�).

The set of all e for which this condition is true for a given pair of geometric simplices
is consequently the projection of a semi-algebraic set, which is a semi-algebraic set.
Moreover, the set of all not intersection-free e is the union of the semi-algebraic sets
over all pairs of simplices, thus a semi-algebraic set. The set of all intersection-free
embeddings e is, as the complement of this semi-algebraic set, again a semi-algebraic
set. Note that all further considerations do not depend on the fact that we only consider
intersection-free embeddings.

Remark 3.2 We do not model the usual camera parameters “field of view” or “orien-
tation” separately because they can be simulated by movable “aperture blades” in the
geometric environment complex.

Definition 3.3 (feasible camera configuration) The set

D := {(p, e) ∈ R
d × (Rd)J : e ∈ E, p ∈ P \ |F (e)|}

is the set of feasible camera configurations.

Remark 3.4 By Fact 2.2, D is a semi-algebraic set.

The affine hull of a geometric simplex S is the smallest affine subspace containing S.
For a geometric facet F ∈ F (e) and a point x ∈ P\aff F(e), the polyhedron coneF (x)
is defined as the cone and pyramF (x) is defined as the pyramid over F with apex x.
For a subset X ⊂ P, the notation X is used for the topological closure and X◦ for the
topological interior.

Definition 3.5 (shadow) For (p, e) ∈ D and F ∈ F let

SF (p, e) :=
{
coneF(e)(p) \ pyramF(e)(p) if p ∈ P \ aff F(e),
∅ otherwise,
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Fig. 4 Two cut-off face shadows: one for a face of the aperture blades and one for a face of the environment;
some points in the room are in both shadows (darker)

be the shadow of F with respect to the feasible camera configuration (p, e). The total
shadowof the environmentwith respect to the feasible camera configuration (p, e) ∈ D
is defined as

S(p, e) :=
⋃

F∈F
SF (p, e).

The intersection of the face or total shadow with the room is called the cut-off (face
or total) shadow.

Figures 4 and 5 illustrate the cut-off shadows. Parts of the room may be in the
shadow of more than one face. The face shadow is a polyhedron, and its supporting
hyperplanes are spanned by the face and the facets of the face together with the camera
position. Note that if there is diffraction, then even in dimension two the invisible
points are not anymore just the union of all face-shadows: adjacent segments in the
environment would formally have a cone behind their intersection point that is not in
the union of their shadows. However, that cone is clearly invisible in reality. Thus,
even for arbitrarily small positive diffraction (for which the main theorem is false) the
construction of this paper fails at this point.

Definition 3.6 (visible volume) The visible-volume function in room P on the set of
feasible camera configurations D is defined as the function

V ( · , · ) :
{
D → R≥0,

(p, e) �→ vold(P \ S(p, e)) = vold(P) − vold(S(p, e) ∩ P).

The goal is to find analytic properties of the visible-volume function. In particular,
for randomized local-search maximization methods it is of interest whether or not the
visible-volume function is continuous and C∞ almost everywhere.

Theorem 3.7 (main theorem) The visible-volume function V ( · , · ) : D → R≥0 is
continuous. Moreover, there is a stratification of D into strata S∞-diffeomorphic to
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Fig. 5 The cut-off total shadows induced by two different camera configurations

open cubes with the following property: Restricted to the closure of each stratum the
visible-volume function V ( · , · ) is a rational function of degree at most d3.

Since the graph of V ( · , · ) : D → R≥0 is the union of the graphs of V ( · , · ) restricted
to the strata and V ( · , · ) is rational on each stratum, V ( · , · ) is semi-algebraic. Addi-
tionally, the only possibly non-smooth parts of the feasible domain are the boundaries
between different strata. Since V ( · , · ) is bounded and continuous, each rational func-
tion extends to the boundary of each stratum, where it is equal to V ( · , · ). Since
rational functions are continuously differentiable on their complete domain, the one-
sided directional derivatives of V ( · , · ) restricted to the closure of each stratum are
bounded for all directions into the stratum. Now, each stratum is in the boundary of
only finitely many strata, so that the one-sided directional derivatives are bounded
everywhere uniformly for each direction into the feasible domain. This implies that
V ( · , · ) is locally Lipschitz. Therefore, we have:

Corollary 3.8 The visible-volume function V ( · , · ) is piecewise smooth, in particular
C∞ almost everywhere. Moreover, it is semi-algebraic and locally Lipschitz.

In the next section, wewill prove this theorem in eight steps by an explicit construction
that generates a concrete formula for V ( · , · ) via a (fairly fine) triangulation of the
room. Note that the whole (convex!) room will be subdivided into convex regions and
then triangulated. Thus, it will never be necessary to triangulate non-convex objects
(which may fail starting in dimension three [9, Sect. 3.6]).

4 Proof of theMain Theorem

This section is devoted to the proof of the main theorem. Recall that r := d + 1 is the
rank of the room P. The proof idea is as follows: The set of feasible camera configura-
tions can be partitioned into finitely many equivalence classes given by combinatorial
equivalence of the induced hyperplane arrangement of all “visibility boundaries” and
their intersection points (derived from oriented-matroid theory). Inside each of these
finitely many equivalence classes the visible subset can be triangulated by the same
(combinatorial) triangulation. Thus, in such an equivalence class the visible-volume
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function varies like the sum of the positive simplex-volumes over all visible simplices
in the triangulation, which is essentially a determinant in the coordinates of the vertices
of the simplices (derived from triangulation theory). Tracing back the data of these
coordinates to the set of feasible camera configurations yields a rational function.
Each equivalence class is a semi-algebraic set (derived from oriented-matroid theory
and semi-algebraic-set theory) that can be further stratified into cubical cells (derived
from semi-algebraic-set theory). Note that the final stratification is necessary, since a
complete equivalence class can be complicated, e.g., not connected [16, Sect. 7.3.2].
The formal proof is structured into eight steps.

Step 1 The first part shows that the visible-volume function is continuous, which
follows immediately from the definition via the face shadows.

Lemma 4.1 The visible-volume function is continuous.

Recall Fig. 1 shows that the visible-subset function is not continuous, so that this result
specifically holds for the volume, not for the visible subset of the room.

Proof of Lemma 4.1 It is enough to show that the cut-off total shadow is continuous.
Each face shadow intersected with the room, the cut-off face-shadow, is a polytope
whose outer description is continuous in the camera configuration. Thus, its volume
function is bounded and continuous. By the inclusion–exclusion formula for the vol-
umemeasure, the volume of the total shadow equals the sum of all cut-off face-shadow
volumesminus the sumof all volumes of intersections of two cut-off face shadows plus
the sum of all volumes of intersections of three cut-off face shadows… plus/minus the
volume of the intersection of all cut-off face shadows. All appearing intersections are
intersections of polytopes. Thus, all volumes in the inclusion–exclusion formula are
continuous. Thus, the visible-volume function as a finite sum of continuous functions
is continuous. ��

Step 2 For any feasible camera configuration (p, e) ∈ D and a (d − 1)-face F of
the environment complexF , consider the affine hyperplane H(F(e)) spanned by the
corresponding geometric face F(e). It is called the transversal visibility plane of F
with respect to (p, e).Moreover, for any feasible camera configuration (p, e) ∈ D and a
(d−2)-face F ′ of the environment complexF with p /∈ aff F ′(e) (only these bound a
(d−1)-face producing a shadow), consider the affine hyperplaneH(F ′(e),p) spanned
by the corresponding geometric face F ′(e) and the camera position p. It is called the
longitudinal visibility plane of F ′ with respect to (p, e). Since the environment complex
has pure dimension d − 1, all (d − 2)-faces of the environment complex bound some
(d − 1)-face of the environment complex.

Now let H (p, e) be the affine hyperplane arrangement of all transversal and lon-
gitudinal visibility planes together with all facet-supporting hyperplanes of the room.
They form the “visibility boundaries” mentioned in the proof idea. We consider this
arrangement labeled by a label set I . This way, hyperplanes spanned by distinct sim-
plices are distinguished, even if they are identical as subsets of Rd . The label set is
independent of (p, e), since the environment complex F is independent of (p, e) by
assumption. See Fig. 6 for an illustration of the resulting hyperplane arrangement.

Since there are only finitelymany (d−1)-faces and (d−2)-faces inF , the arrange-
ment H (p, e) is finite. More specifically, the number of hyperplanes in H (p, e) is
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1 2

34

P

Fig. 6 The hyperplane arrangement of a camera configuration; the longitudinal visibility planes are those
that meet in the camera position

bounded by r times the number of (d − 1)-faces in F in the extreme case where
no two (d − 1)-faces of F are adjacent and where no geometric (d − 2)-face of F
contains p in its affine hull.

Thehyperplane data is a polynomial function in the data of the camera configuration.

Lemma 4.2 AhyperplaneH inH (p, e) canbe represented by equationsa�
Hx−bH = 0

where the coordinates of aH and bH are multilinear polynomial functions of degree at
most d in (p, e).

Proof of Lemma 4.2 Recall that (p, e) represents the coordinates of the camera position
and all vertices of the geometric environment complex. Let v1, v2, . . . , vd ∈ A(e)∪{p}
span a hyperplane in H (p, e). Then, a point x lies in the hyperplane if and only if it
satisfies the following equation:

det

(
v1 v2 . . . vd x
1 1 . . . 1 1

)
= 0

The coefficients of the coordinates of x as well as the absolute term are, using devel-
opment of the determinant by the last column, determinants of d × d matrices whose
entries are coordinates of points inA(e)∪{p}. Thus, they are multilinear polynomials
of degree at most d in the camera configuration. ��
For the following, fix such equations a�

i (p, e)x− bi (p, e) = 0 for all hyperplanesHi

with i ∈ I and denote the matrix with rows (a�
i (p, e)|−bi (p, e))i∈I by W (p, e).

Step 3 An open region R(p, e) of H (p, e) is a connected component of the com-
plement P \ ⋃

i∈I Hi of the arrangement in the room. The closures R(p, e) of the
open regions are intersections of closed halfspaces with the polytope P and, therefore,
convex polytopes. All open faces of these polytopes are also called regions. Denote
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1 2

34

P
1 2

34

P

Fig. 7 Each region of the hyperplane arrangement is either completely visible or completely invisible from
the camera position

byR(p, e) the set of (open) regions ofH (p, e). See Fig. 7 on the left for the regions
in the running example.

Note that, by construction, each open region of the hyperplane arrangement is
either completely contained in the total shadow (invisible from p) or completely in
the complement of the total shadow (visible from p). This is because all supporting
hyperplanes of facets of these shadows have been added toH (p, e). Thus, the visible
volume is the sum of volumes of all d-dimensional regions that are inside the room
and outside the total shadow, which is the statement of the following lemma.

Lemma 4.3 For a fixed feasible camera configuration (p, e) ∈ D, the visible volume
can be computed as follows:

V (p, e) =
∑

R(p,e)∈R(p,e):
R(p,e)⊆P\S(p,e)

vold(R(p, e)).

Figure 7 on the right shows the visible volume, subdivided into visible regions.

Step 4AssociatedwithH (p, e) is its orientedmatroid (see Notion 2.4), determined
by its finite set of signed covectors. Recall that this is a set of signatures σR(p,e) : I →
{−, 0,+}. Each signature in this set corresponds to an open region R(p, e) inR(p, e)
of H (p, e) so that

R(p, e) := {x ∈ P : sign (a�
i (p, e)x − bi (p, e)) = σR(p,e)(i), i ∈ I }.

Figure 8 illustrates the covectors of two full-dimensional regions. Each covector is
indicated as a string of signs. Each position in the string corresponds to a hyperplane.
The sign in that position is the signature value of that hyperplane.
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1 2

34

P

Fig. 8 Two regions and their covectors

We define an equivalence relation “∼H ” onDwhere (p, e) ∼H (p′, e′) if and only
if H (p, e) and H (p′, e′) are combinatorially equivalent (Notion 2.4). The equiva-
lence class of (p, e) with respect to “∼H ” is denoted by MH (p, e).

Let MH be the set (see Fact 2.7) of such equivalence classes in D. This set is
finite by Fact 2.7. Whether or not a region is totally visible or totally not visible only
depends on MH (p, e), as the following crucial lemma establishes.

Lemma 4.4 AregionR(p, e) is in the face shadowSF (p, e)of a (d−1)-simplex F ∈ F
with respect to a feasible camera configuration (p, e) if and only if the following three
conditions hold for σR(p,e):

(i) The vertices of F(e) and the camera position p are cocircuits of H (p, e).
(ii) Let i ∈ I be the label of the transversal visibility plane spanned by F. Then

σR(p,e)(i) = −σp(i).

(iii) Let i ∈ I be the label of any longitudinal visibility plane spanned by p and a
(d − 2)-face F ′ ∈ F of F and let vF\F ′ be the geometric vertex of F(p, e)
missing in F ′(p, e). Then

σR(p,e)(i) = σvF\F ′ (i).

Moreover, R(p, e) is in the total shadow S(p, e) if and only if the above conditions
are satisfied for at least one (d − 1)-face of F .

Proof of Lemma 4.4 Assume first that R(p, e) is contained in the face shadow of F .
In particular, F has a non-empty face shadow. In particular, the camera position is
affinely independent of the vertices of F(e) with which it spans a d-dimensional
simplex. The facet-supporting hyperplane of this simplex are, by construction, exactly
the transversal and the longitudinal visibility hyperplanes associated to F , which
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are members of H (p, e). This implies condition (i), and, hence, that conditions (ii)
and (iii) are well defined. In this case, since R(p, e) is contained in the face shadow
of F , it satisfies all facet defining inequalities of it. This implies conditions (ii) and (iii),
which are a reformulation of the same fact in terms of cocircuit/covector signatures.

Assume now that all three conditions are satisfied. In particular, (ii) and (iii) are
well defined. By these conditions, R(p, e) satisfies all facet defining inequalities of
the face shadow of F . Thus, it is contained in that face shadow. The assertion about
the total shadow follows from its definition as the finite union of face shadows. ��
Corollary 4.5 Whether or not a region is in the total shadow does not change inside
each MH (p, e).

Regions inside the total shadow are called invisible from p, not invisible regions are
called visible from p.

Step 5 Recall that the set MH is finite (Fact 2.7). Recall further that the set MH
is the set of all equivalence classes of elements in D, where the members of each
equivalence class induce combinatorially equivalent hyperplane arrangements. The
following lemma states that all equivalence classes are semi-algebraic sets.

Lemma 4.6 For each (p̄, ē) ∈ D, the equivalence classMH (p̄, ē) is a semi-algebraic
set. Moreover, there are only finitely many equivalence classes in D.

Proof of Lemma 4.6 The equivalence class MH (p̄, ē) of (p̄, ē) in D can be written as
follows:

MH (p̄, ē) = D ∩ proj(p,e)
{
(p, e,W , W̄ ) ∈ R

d × (Rd)J × R
I×r × R

I×r :
W = W (p, e), W̄ = W (p̄, ē), MH (W ) = MH (W̄ )

}
.

Here D is a semi-algebraic set by assumption. The projected set is semi-algebraic by
Fact 2.8 and Lemma 4.2. The projection of it to the (p, e)-coordinates is a semi-
algebraic set by Fact 2.2. The intersection with D is semi-algebraic by Fact 2.2.
Therefore, the equivalence class MH (p̄, ē) is a semi-algebraic set. Since there are
only finitely many oriented matroids on a finite set of hyperplanes (Fact 2.7), there are
only finitely many equivalence classes. ��

Step 6 The plan is now to compute the volumes of the regions not in the total
shadow more explicitly. To this end, each region is triangulated. In order to keep
control of the dependence on the camera configuration (p, e), the same combinatorial
type of triangulation should be kept for as many camera configurations as possible. A
sufficient condition for a triangulation to stay feasible for the same point configuration
with tweaked coordinates is that the oriented matroid of the point configuration does
not change.

Note that the oriented matroid of a hyperplane arrangement does not uniquely
determine the orientedmatroid of its vertices as a point configuration, not even for each
region separately. To by-pass this problem, each equivalence class of the previous step
is further subdivided.Denote byC(p, e) the set of vertices of the polyhedral complex of
regions ofH (p, e)∩P and let K (p, e) be its label set. In order to guarantee a consistent
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P

Fig. 9 The intersection points of the hyperplane arrangement are the vertices of the regions

labeling,we label eachpoint by the subset of labels of those hyperplanes it lies in,where
intersection points outside the room are ignored. Note that intersection points inside
and outside the room lie on opposite sides of at least one facet-supporting hyperplane
of the room, leading to a different oriented matroid of the hyperplane arrangement.
Thus, in each equivalence class MH (p, e) the subset of intersection points inside the
room is constant. Figure 9 shows the point configuration of all intersections points
inside the room.

We define an equivalence relation “∼C” on D where (p, e) ∼C (p′, e′) if and only
if C(p, e) and C(p′, e′) are combinatorially equivalent (Notion 2.5). The equivalence
class of (p, e) with respect to “∼C” is denoted by MC(p, e).

Lemma 4.7 The coordinates of the points inC(p, e) are rational functions of degree d
in the coordinates of the coefficient vectors and the right-hand sides of the hyperplanes
inH (p, e). Consequently, they are rational functions of degree at most d2 in (p, e).

Proof of Lemma 4.7 Each point in C(p, e) is the unique intersection of d hyperplanes
in H (p, e). Thus, each coordinate of such a point is, by Cramer’s rule, a quotient
of d × d determinants in the coefficients and right-hand sides of the hyperplanes.
This is a rational function of degree at most d in the data of H (p, e). Moreover, by
composing this function with the polynomial function from Lemma 4.2, we obtain a
rational function of degree at most d2, as claimed. ��
Define an equivalence relation on the set of all feasible camera configurations (p, e) ∈
D as follows: (p, e) and (p′, e′) ∈ D are equivalent, (p, e) ∼ (p′, e′), if and only
if (p, e) ∼H (p′, e′) and, additionally, (p, e) ∼C (p′, e′). The set of all equivalence
classes is denoted byM∼. Thus, by Fact 2.10, equivalent camera configurations induce
identical sets of (combinatorial types of) triangulations ofC(p, e) and identical sets of
(combinatorial types of) regions. This, finally, is the partitioning ofD into equivalence
classes mentioned in the proof idea.

Each equivalence class M∼(p̄, ē) ∈ M∼ of some (p̄, ē) ∈ D is the intersection of
D with MH (p̄, ē) and MC(p̄, ē). Analogously to the proof of Lemma 4.6 it can be
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V(p, e) = 34872 = 43%

1 2

34

P
V(p′ ′, e ) = 46213 = 58%

1 2

34

P

Fig. 10 The volumes of the visible regions can be computed by a triangulation of the intersection points
refining the polyhedral subdivision by regions; the camera configuration on the right is better than the one
on the left

seen that all three are semi-algebraic sets (by Fact 2.8 and Lemmas 4.2 and 4.7), and
so is their intersection (Fact 2.2). Consequently, by Fact 2.3, each such equivalence
class inD and, hence, the semi-algebraic set of feasible camera configurationsD itself
can be stratified into strata S∞-diffeomorphic to open cubes of certain dimensions so
that the boundary of each stratum is a finite union of smaller-dimensional strata and
so that inside each stratum all camera configurations are equivalent. Moreover, the
volumes of the finitely many max-dimensional strata add up to the volume of D, and
the not-max-dimensional strata form a set of measure zero.

Step 7 For each M∼(p, e) ∈ M∼ refine the polyhedral complex of regions in
R(p, e) that are inside P to a fixed triangulation of C(p, e), e.g., by some generic
regular refinement [9, Corollary 2.3.18]. Any such triangulation (seen as an abstract
simplicial complex on K (p, e), see Notion 2.9) defines via the embedding e and the
position p a valid triangulation for all feasible camera configurations equivalent to
(p, e), since the validity of a triangulation depends only on the oriented matroid of the
point configuration to be triangulated (Fact 2.10). Call this triangulationT (M∼(p, e)).
BecauseT (M∼(p, e)) refinesR(p, e) insideP, the opengeometric embeddingof each
simplex in T (M∼(p, e)) is either completely visible or completely invisible from p,
and the visibility does not change inside an equivalence class. Figure10 shows a pos-
sible triangulation for the visible region and the resulting visible volume.

Step 8 Consider some feasible camera configuration (p̄, ē) ∈ D. Then the visible
volume can be computed for all (p, e) in the equivalence class M∼(p̄, ē) as follows:
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V (p, e) =
∑

F∈T (M∼(p̄,ē)):
F◦(p,e)⊆P\S(p,e)

vold(F(p, e))

= 1

d!
∑

F={k1,...,kr }∈T (M∼(p̄,ē)):
F◦(p,e)⊆P\S(p,e)

∣∣∣∣det
(
vk1 . . . vkr
1 . . . 1

)∣∣∣∣ .
(1)

This is the sum of positive simplex volumes mentioned in the proof idea. Thus, the
visible-volume function restricted to an equivalence class is a sum of determinants
of r × r matrices with a row of ones whose columns are given by the homogeneous
coordinates of points in C(p, e), thus a multilinear polynomial function of degree
at most d in the coordinates of the points in C(p, e). By composition with earlier
results, this is a rational function of degree at most d3 in the camera configuration
data. By continuity and boundedness of the visible-volume function everywhere inD,
the visible-volume function formula (1) extends to the boundary of each stratum.
(Intuitively, some of the simplex volumes contained in the triangulation corresponding
to the interior of the stratum degenerate to zero on some boundary stratum; these
simplices are exactly those missing in the triangulation corresponding to the boundary
stratum, which leads to the same volume.) Thus, the visible-volume function is a
rational function of degree at most d3 on the closure of each stratum.

Remark 4.8 Although all illustrations are two-dimensional, all constructions are cor-
rect in arbitrary spacial dimensions d. Note, though, that in dimension two the result
can be achieved in an easier way, exploiting structures of dimension two that cannot
be generalized to higher dimensions.

The construction allows for the following generalization: If there is more than one
camera to be configured, we can construct the open regions visible and invisible from
each camera separately. Each open region in the combined hyperplane arrangement
is then a subset of a unique open region in each separate arrangement and, hence, for
each camera either completely visible or invisible. We can, therefore, decide the exact
subset of cameras from which it is visible completely. Therefore, the result extends
to the volume covered by a given collection of subsets of cameras. In particular, this
applies to the volume covered by at least/exactly/at most k cameras. Call the function
that assigns to each feasible configuration of multiple cameras the volume visible by
at least/exactly/at most k cameras the at-least/exactly/at-most-k-fold-visible-volume
function, respectively. With this definition, the following corollary holds true.

Corollary 4.9 For all k ∈ N the at-least/exactly/at-most-k-fold-visible-volume func-
tions are continuous, piecewise rational, locally Lipschitz, and semi-algebraic in all
dimensions.

Remark 4.10 A short note on complexity estimates: If K is the number of facets of the
environment complex and the room, then there are K transversal and at least K (r −1)
longitudinal visibility hyperplanes. With this, in general, one must consider roughly∑r

i=1

(K
i

)(K (r−1)
r−i

)
regions contributing to potentially different summands over all
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strata. The number of strata is even more discouraging: even if each equivalence class
constitutes a single stratum without further decomposition, then a-priori there can be
roughly as many strata as there are different oriented matroids on arrangements of
Kr hyperplanes, where K (r − 1) of them all intersect in a point. For example, in
physical space, i.e., in rank 4, there are already 10,559,305 realizable simple acyclic
oriented matroids on eight elements (= hyperplanes) [11]. Even if all but r = 4 many
longitudinal hyperplanes are ignored because of their forced common intersection,
this number of strata would be reached already by the at least K = 4 facets of the
room without any obstacles.

5 Conclusions

In this paper, the visible-volume function was shown to be continuous, piecewise
rational, locallyLipschitz, and semi-algebraic in all dimensions. The set-upwas chosen
more general than in earlier work: the visible-volume function may depend on the
positions of a set of cameras and the embedding of an environment in a convex room. It
returns the volume that the cameras can supervise given the cameras’ positions and the
embedding of the environment. The environment can be an arbitrary abstract simplicial
complex of pure codimension one. The embedding and the camera positions can be
restricted to an arbitrary semi-algebraic set. The actual result provides a piecewise
smooth formula with a rational function on each piece. Given this knowledge, we
can be sure that certain global blackbox optimization methods applied to the visible-
volume function will converge (at least if the restrictions of the embedding and the
camera positions are chosen to be tractable). Moreover, from the explicit piecewise
formula, gradient information of the visible-volume formula can easily be obtained at
each feasible camera configuration.

One contribution of this paper is to formalize the problem and construct suitable
objects of discrete geometry in such away that a novel combination of the basic theories
of oriented matroids, triangulations, and semi-algebraic sets implies the result. This
can be seen as a show-case how those theories play together, which may be interesting
in its own right.

At first glance, it seems that the exploitation of the explicit piecewise formula in this
paper for optimization is out of reach for sufficiently realistic environments. However,
it is conceivable that large-scalemethods frommixed integer linear programming, e.g.,
with dynamically generated selection variables for oriented matroids, might constitute
a viable approach to find an exact global extremum of the visible volume function.
Whether such methods can be implemented to show a satisfactory performance for
practical problems or at least for medium-sized academic benchmark examples is an
open question.
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