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Abstract
We study whether a given graph can be realized as an adjacency graph of the polyg-
onal cells of a polyhedral surface in R

3. We show that every graph is realizable as
a polyhedral surface with arbitrary polygonal cells, and that this is not true if we
require the cells to be convex. In particular, if the given graph contains K5, K5,81,
or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand,
all planar graphs, K4,4, and K3,5 can be realized with convex cells. The same holds
for any subdivision of any graph where each edge is subdivided at least once, and,
by a result from McMullen et al. (Isr. J. Math. 46(1–2), 127–144 (1983)), for any
hypercube. Our results have implications on the maximum density of graphs describ-
ing polyhedral surfaces with convex cells: The realizability of hypercubes shows that
the maximum number of edges over all realizable n-vertex graphs is in �(n log n).
From the non-realizability of K5,81, we obtain that any realizable n-vertex graph has
O(n9/5) edges. As such, these graphs can be considerably denser than planar graphs,
but not arbitrarily dense.

Keywords Polyhedral complexes · Realizability · Contact representation
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1 Introduction

A polyhedral surface consists of a set of interior-disjoint polygons embedded in R
3,

where each edge may be shared by at most two polygons. Polyhedral surfaces have
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(a) a surface (b) the graph ( )

Fig. 1 A convex-polyhedral surface S and its nonplanar 3-degenerate adjacency graph G(S)

been long studied in computational geometry, and have well-established applications
in for instance computer graphics [16] and geographical information science [13].

Inspired by those applications, classic work in this area often focuses on restricted
cases, such as surfaces of (genus 0) polyhedra [4, 30], or x, y-monotone surfaces
known as polyhedral terrains [12]. Such surfaces are, in a sense, 2-dimensional. One
elegant way to capture this “essentially 2-dimensional behaviour” is to look at the
adjacency graph (see below for a precise definition) of the surface: in both cases
described above, this graph is planar. In fact, by Steinitz’s Theorem the adjacency
graphs of surfaces of convex polyhedra are exactly the 3-connected planar graphs
[47]. If we allow the surface of a polyhedron to have a boundary, then every planar
graph has a representation as such a polyhedral surface [17].

Recently, applications in computational topology have intensified the study of poly-
hedral surfaces of non-trivial topology. In sharp contrast to the simpler case above,
where the classification is completely understood, little is known about the class of
adjacency graphs that describe general polyhedral surfaces. In this paperwe investigate
this graph class.

Our model A polyhedral surface S = {S1, . . . , Sn} is a set of n closed polygons
embedded in R3 such that, for all pairwise distinct indices i, j, k ∈ {1, 2, . . . , n}:
• Si and S j are interior-disjoint (with respect to the 2D relative interior of the objects);
• if Si ∩ S j �= ∅, then Si ∩ S j is either a single corner or a complete side of both Si

and S j ;
• if Si ∩ S j ∩ Sk �= ∅ then it is a single corner (i.e., a side is shared by at most two
polygons).

To avoid confusion with the corresponding graph elements, we consistently refer to
polygon vertices as corners and to polygon edges as sides.

The adjacency graph of a polyhedral surfaceS, denoted asG(S), is the graphwhose
vertices correspond to the polygons of S and which has an edge between two vertices
if and only if the corresponding polygons of S share a side. Note that a corner–corner
contact is allowed in our model but does not induce an edge in the adjacency graph.
Further observe that the adjacency graph does not uniquely determine the topology
of the surface. Figure 1 shows an example of a polyhedral surface and its adjacency
graph. We say that a polyhedral surface S realizes a graph G if G(S) is isomorphic
to G. In this case, we write G(S) � G.

123



Discrete & Computational Geometry (2024) 71:1429–1455 1431

If every polygon of a polyhedral surface S is strictly convex, we call S a convex-
polyhedral surface. Our paper focuses on convex-polyhedral surfaces; refer to Fig. 2
for an example of a general (nonconvex) polyhedral surface. We emphasize that we
do not require that every polygon side has to be shared with another polygon.

Our work relates to two lines of research: Steinitz-type problems and contact rep-
resentations.

Steinitz-type problems Steinitz’s Theorem gives a positive answer to the realizability
problem for convex polyhedra. This result is typically stated in terms of the realizability
of a graph as the 1-skeleton of a convex polyhedron. Our perspective comes from the
dual point of view, describing the adjacencies of the faces instead of the adjacencies
of the vertices.

Steinitz’s Theorem settles the problem raised in this paper for surfaces that are
homeomorphic to a sphere. A slightly stronger version of Steinitz’s Theorem by Grün-
baum and Barnette [8] states that every planar 3-connected graph can be realized as
the 1-skeleton of a convex polyhedron with the prescribed shape of one face. Conse-
quently, also in our model we can prescribe the shape of one polygon if the adjacency
graph of the surface is planar. For other classes of polyhedra only very few partial
results for their graph-theoretic characterizations are known [18, 29]. No generaliza-
tion for Steinitz’s Theorem for surfaces of higher genus is known, and therefore there
are also no results for the dual perspective. In higher dimensions, Richter-Gebert’s
Universality Theorem implies that the realizability problem for abstract 4-polytopes
is ∃R-complete [42].

McMullen et al. [38] constructed a closed polyhedral surface of genus 4097—with
only 4096 polygons. For the first few steps of their inductive construction; see Fig. 13.
Their construction answered a question that Barnette posed in 1980; he asked whether
there are polyhedra in R

3 whose polygonal faces all have arbitrarily many sides.
Later, Ziegler [52] gave a different construction of the family of surfaces presented by
McMullen et al.

Simplicial complexes The algorithmic problem of determining whether a given k-
dimensional (abstract) simplicial complex embeds in Rd is an active field of research
[11, 22, 37, 39, 45, 46]. There exist at least three interesting notions of embeddability:
linear, piecewise linear, and topological embeddability, which usually are not the same
[37]. The case (k, d) = (1, 2), however, corresponds to testing graph planarity, and
thus, all three notions coincide, and the problem lies in P.

While some necessary conditions for the geometric realizability of simplicial com-
plexes are known [40, 50], the problem of recognizing the linear embeddability of
k-dimensional complexes into R

d is conjectured to be NP-hard for every fixed pair
(k, d) with 3 ≤ d ≤ 3k + 1 [45, Conjecture 3.2.2]. Recently, Abrahamsen et al.
[1] showed that deciding whether a 2-simplex (e.g., a set of triangles with prescribed
edge contacts), linearly embeds in R

3 is ∃R-complete; this remains true even if a
piecewise linear embedding is given. More generally, they showed ∃R-completeness
for the decision problem of linearly embedding a k-simplex in R

d for all d ≥ 3 and
k ∈ {d, d − 1}.
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Concerning piecewise-linear embeddability, determining whether a given k-
complex embeds piecewise-linearly in R

d for the cases d = 3 and k ∈ {2, 3} is
known to be NP-hard [39] and decidable [36]. In higher dimensions, the problem is
polynomial time solvable for d ≥ 4 and k < 2/3 · (d − 1) [11], NP-hard for d ≥ 4,
k ≥ 2/3 · (d − 1) and even undecidable for d ≥ 5 and k ∈ {d, d − 1} [22, 46].
Contact representations A realization of a graph as a polyhedral surface can be
viewed as a contact representation of this graph with polygons in R3, where a contact
between two polygons is realized by sharing an entire polygon side, and each side
is shared by at most two polygons. In a general contact representation of a graph,
the vertices are represented by interior-disjoint geometric objects, where two objects
touch if and only if the corresponding vertices are adjacent. In concrete settings, the
object type (disks, lines, polygons, etc.), the type of contact, and the embedding space
is specified. Numerous results concerning which graphs admit a contact representation
of some type are known; we review some of them.

The well-known Andreev–Koebe–Thurston circle packing theorem [3, 35] states
that every planar graph admits a contact representation by touching disks in R

2. A
less known but impactful generalization by Schramm [44, Theorem 8.3] guarantees
that every triangulation (i.e., maximal planar graph) has a contact representation in
R
2 where every inner vertex corresponds to a homothetic copy of a prescribed smooth

convex set; the three outer vertices correspond to prescribed smooth arcs whose union
is a simple closed curve. If the prototypes and the curve are polygonal, i.e., are not
smooth, then there still exists a contact representation, however, with the following
shortcomings: The sets representing inner vertices may degenerate to points, which
may lead to extra contacts. As observed by Gonçalves et al. [24], Schramm’s result
implies that every subgraph of a 4-connected triangulation has a contact representation
with aligned equilateral triangles and similarly, every inner triangulation of a 4-gon
without separating 3- and 4-cycles has a hole-free contact representation with squares
[20, 43].

While for the afore-mentioned existence results there are only iterative procedures
that compute a series of representations converging to the desired one, there also exist a
variety of shapes forwhich contact representations can be computed efficiently. Allow-
ing for sides of one polygon to be contained in the side of adjacent polygons, Duncan
et al. [17] showed that, in this model, every planar graph can be realized by hexagons in
the plane and that hexagons are sometimes necessary. Assuming side–corner contacts,
de Fraysseix et al. [15] showed that every plane graph has a triangle contact represen-
tation and how to compute one. Gansner et al. [23] presented linear-time algorithms
for triangle side-contact representations for outerplanar graphs, square grid graphs,
and hexagonal grid graphs. Kobourov et al. [34] showed that every 3-connected cubic
planar graph admits a triangle side-contact representationwhose triangles form a tiling
of a triangle. For a survey of planar graphs that can be represented by dissections of
a rectangle into rectangles, we refer to Felsner [20]. Moreover, there exist linear-time
algorithms to compute hole-free contact representations of triangulations where each
vertex is represented by an 8-sided rectilinear polygon [25, 51]. In fact, Alam et al.
[2] showed that there exist contact representations where the area of the polygons
can even be prescribed (however, no polynomial-time algorithm is known to compute
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such representations). On the negative side, Breu and Kirkpatrick [10] showed that
recognizing whether a given graph admits a contact representation with unit disks is
NP-hard. Later, Klemz et al. [33] showed that this statement remains true even when
restricted to outerplanar graphs. Moreover, Bowen et al. [9] showed that if the unit
disk contact representation is additionally required to respect a given rotation system,
the recognition problem is NP-hard even when restricted to trees.

Representations with one-dimensional objects in R2 have also been studied. While
every plane bipartite graph has a contact representation with horizontal and vertical
segments [14], Hliněný [27] showed that recognizing segment contact graphs is an
NP-complete problem evenwhen restricted to planar graphs. Hliněný [26] also showed
that recognizing curve contact graphs where no four curves meet in one point is NP-
complete for planar graphs whereas the same question can be solved in polynomial
time for planar triangulations.

Less is known about contact representations in higher dimensions. Every graph is
the contact graph of interior-disjoint convex polytopes inR3 where contacts are shared
2-dimensional facets [49]. Hliněný and Kratochvíl [28] proved that the recognition of
unit-ball contact graphs inRd is NP-hard for d = 3, 4, and 8. Felsner and Francis [21]
showed that every planar graph has a contact representation with axis-parallel cubes
in R

3. For proper side contacts, Kleist and Rahman [32] proved that every subgraph
of an Archimedean grid can be represented with unit cubes, and every subgraph of
a d-dimensional grid can be represented with d-cubes. Evans et al. [19] showed that
every graph has a contact representation where vertices are represented by convex
polygons inR3 and edges by shared corners of polygons, and gave polynomial-volume
representations for bipartite, 1-planar, and cubic graphs.

Contribution and organization We show that for every graph G there exists a
polyhedral surface S such that G is the adjacency graph of S; see Sect. 2. For
convex-polyhedral surfaces, the situation is more intricate; see Sect. 3. Every pla-
nar graph can be realized by a flat convex-polyhedral surface (Proposition 3.2), i.e.,
a convex-polyhedral surface in R

2. Some nonplanar graphs cannot be realized by
convex-polyhedral surfaces in R

3; in particular this holds for all supergraphs of K5
(Proposition 3.4), of K5,81 (Theorem3.8), and of all nonplanar 3-trees (Theorem3.13).
Nevertheless, many nonplanar graphs, including K4,4 and K3,5, have such a realization
(Propositions 3.6 and 3.7). We remark that all our positive results hold for subgraphs
and subdivisions as well (Proposition 3.1). Similarly, our negative results carry over
to supergraphs.

Our results have implications on the maximum density of adjacency graphs of
convex-polyhedral surfaces; see Sect. 4. On the one hand, the non-realizability of K5,81
implies that the number of edges of any realizable n-vertex graph is upperbounded by
O(n9/5) edges. On the other hand, the realizability of hypercubes (which we derive
from the above-mentioned result of McMullen et al. [38]; see Sect. 3.4) implies that
there are realizable graphs with n vertices and �(n log n) edges. Hence these graphs
can be considerably denser than planar graphs, but not arbitrarily dense.
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Fig. 2 A realization of K5 by arbitrary polygons with side contacts in R
3

2 General Polyhedral Surfaces

We start with a simple positive result.

Proposition 2.1 For every graph G, there exists a polyhedral surface S such that
G(S) � G.

Proof We start our construction with n = |V (G)| interior-disjoint rectangles such that
there is a line segment s that acts as a common side of all these rectangles. We then
cut away parts of each rectangle thereby turning it into a comb-shaped polygon as
illustrated in Fig. 2. These polygons represent the vertices of G. For each pair (P, P ′)
of polygons that are adjacent in G, there is a subsegment sP P ′ of s such that sP P ′ is a
side of both P and P ′ that is disjoint from the remaining polygons. In particular, every
polygon side is adjacent to at most two polygons. The result is a polyhedral surface
whose adjacency graph is G. ��

In our construction, the complexity of each polygon depends on the degree of the
vertex it represents. If we insist on strictly convex polygons and full side contacts, this
is clearly also necessary. One interesting question is how tight this dependence is.

To make this question precise, for a polyhedral surface S, let ζ(S) be the total
complexity of S; that is, the sum of the number of vertices (or edges, which is the
same) of all the polygons in S. Then, for a graph G, define

ζ(G) = min
S:G(S)�G

ζ(S)

to be the complexity of the best possible representation of G. Proposition 2.1 implies
an upper bound on ζ(G).

Corollary 2.2 Let G be a graph with m = |E(G)| edges. Then ζ(G) ≤ 6m.

Proof Our construction for Proposition 2.1 represents a vertex of degree d by a polygon
with at most 4d + 2 sides. It is not hard to improve this to exactly 3d: instead of a
rectangular comb,we can use a triangular one, with triangular gaps between successive
teeth. The corollary now follows from the fact that the sum of degrees is twice the
number of edges in G. ��
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For some graphs, this bound is tight; for example, the graph which consists of a
single edge. However, some graphs admit much better embeddings. The lower bound
on the number of sides for a vertex of degree d is exactly d. There are graphs that
realize this lower bound: they are exactly the adjacency graphs of closed polyhedral
surfaces. In this model, K7 can be realized as the so-called Szilassi polyhedron; for
an illustration, see [53]. The tetrahedron and the Szilassi polyhedron are the only two
known polyhedra in which each face shares a side with every other face [53]. Which
other (complete) graphs can be realized in this way remains an open problem.

3 Convex-Polyhedral Surfaces

In this section we investigate which graphs can be realized by convex-polyhedral
surfaces. First of all, it is always possible to represent a subgraph or a subdivision of
an adjacency graph with slight modifications of the corresponding surface: trimming
the polygons allows us to represent subgraphs, while trimming and inserting chains
of polygons allows subdivisions. Consequently, we obtain the following result.

Proposition 3.1 The set of adjacency graphs of convex-polyhedral surfaces in R
3 is

closed under taking subgraphs and subdivisions.

Proof Obviously the set of adjacency graphs of convex-polyhedral surfaces is closed
under vertex deletions. It remains to show that it is also closed under edge deletions
and edge subdivisions. Consider a surface S and its adjacency graph G. We define
three operations that locally change S and describe their effect on G.

A corner trim takes any corner v of S (which may belong to multiple polygons
of S) and replaces it by a set of new corners, one on each incident side, all at distance ε

from v for some sufficiently small ε; see Fig. 3, (a) and (b). Each polygon in S incident
to v now uses two new copies of v instead of v; observe that the new polygons are
still strictly convex. The adjacency graph of S does not change under a corner trim
operation.

A side trim takes any side s of S and first performs a corner trim on both incident
corners. This creates two new corners on s; we delete these two new corners from the
(at most two) polygons incident to s; see Fig. 3, (a) and (c). Note that this operation
still preserves strict convexity of any polygons incident to s, and that if there were
two polygons that shared s, they now no longer share a side. Thus, the edge of G
corresponding to s is removed.

Finally, a subdivide operation takes any side s of S that is incident to two polygons
P and Q, and first performs a side trim on s. Next, we create a new polygon R as
follows; for an illustration see Fig. 3, (a) and (d). Let m be the midpoint of s. We first
add m to the trimmed versions of both P and Q. Now, we create two lines �P and �Q

parallel to s that lie on the supporting planes of P and Q on the side of s that contains
P or Q, respectively. The distance δ of these lines to s is chosen sufficiently small; in
particular, we must take δ < ε.

We place two new corners on the intersection of �P with the boundary of P and
two new corners on the intersection of �Q with the boundary of Q. Note that the
resulting points are coplanar and in convex position; our new polygon R is the convex
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Fig. 3 The three operations used in the proof of Proposition 3.1

hull of these points. If δ is chosen sufficiently small, the polygon R has a nonempty
intersection with P and Q, but no other polygon of S. Hence, the subdivide operation
creates a new vertex in G that is adjacent to the two original endpoints of the edge that
corresponds to s, and no other vertices of G. ��

The existence of a flat surface with the correct adjacencies follows from the
Andreev–Koebe–Thurston circle packing theorem; we include a direct proof.

Proposition 3.2 For every planar graph G, there exists a flat convex-polyhedral sur-
face S such that G(S) � G. Moreover, such a surface can be computed in linear
time.

Proof Let G be a planar embedded graph with at least three vertices (for at most two
vertices the statement is trivially true). We use a linear time algorithm by Read [41]
to find a biconnected augmentation of G on the same vertex set. For each face of the
resulting graph, we now add a new vertex and connect it to all vertices of the face by
adding further edges. This can be accomplished in linear time. The resulting graph G ′
is a triangulation. Let r be one of the vertices of G ′ \ G.

The dualG� ofG ′ is a cubic 3-connected planar graph.Using a linear-time algorithm
by Bárány and Rote [7], we compute a planar drawing of G� in which the boundary
of each face is described by a strictly convex polygon and where the outer face is
the face dual to r . Hence, the drawing is a flat convex-polyhedral surface S with
G(S) � G ′ − r . By Proposition 3.1, there is also a representation of G. To compute it
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efficiently, observe that due to the 3-regularity of G∗, the side trim operation defined
in the proof of Proposition 3.1 can be carried out in constant time. Moreover, the
corresponding graph operation preserves the 3-regularity. Hence, it is easy to remove
all unwanted adjancencies in linear time. To obtain the desired representation of G, it
remains to remove the polygons corresponding to the vertices of G ′ \ G, which can
also be done in linear time. ��

So for planar graphs, corner and side contacts behave similarly. For nonplanar
graphs (for which the third dimension is essential), the situation is different. Here,
side contacts are more restrictive.

3.1 Complete Graphs

We introduce the following notation. In a polyhedral surfaceS with adjacency graphG,
we denote by Pv the polygon in S that represents vertex v of G.

Lemma 3.3 Let S be a convex-polyhedral surface in R
3 with adjacency graph G. If

G contains a triangle uvw, polygons Pv and Pw lie in the same closed halfspace with
respect to Pu.

Proof Due to their convexity, each of Pv and Pw lie entirely in one of the closed
halfspaces with respect to the supporting plane of Pu . Moreover, one of the halfspaces
contains both Pv and Pw; otherwise they cannot share a side and the edge vw would
not be represented. (Recall that each side can be shared by at most two polygons. Thus,
the side corresponding to the edge uv cannot simultaneously represent an adjacency
with w.) ��

Agraph H is subisomorphic to a graph G ifG contains a subgraph G ′ with H � G ′.
Thomassen [48, p. 98] has observed the following.

Proposition 3.4 There exists no convex-polyhedral surface S in R
3 such that K5 is

subisomorphic to G(S).

For completeness, we now prove Thomassen’s observation.

Proof Suppose that there is a convex-polyhedral surface S with G(S) � K5. By
Lemma 3.3 and the fact that all vertex triples form a triangle, the surface S lies in one
closed halfspace of the supporting plane of every polygon P ofS. In other words,S is a
subcomplex of a (weakly) convex polyhedron, whose adjacency graph must be planar.
This yields a contradiction to the nonplanarity of K5. Together with Proposition 3.1
this implies the claim. ��

Evans et al. [19] showed that every bipartite graph has a contact representation
by touching polygons on a polynomial-size integer grid in R

3 for the case of corner
contacts. As we have seen before, side contacts are less flexible. In particular, in
Theorem 3.8 we show that K5,81 cannot be represented. On the positive side, we show
in the following that every (bipartite) graph that comes from subdividing each edge
of an arbitrary graph (at least) once can be realized. In our construction, we place the
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Fig. 4 Illustration for the proof of Theorem 3.5

polygons in a cylindrical fashion, which is reminiscent of the realizations created by
Evans et al. However, due to the more restrictive nature of side contacts, the details of
the two approaches are necessarily quite different.

Theorem 3.5 Let G be any graph, and let G ′ be the subdivision of G in which every
edge is subdivided with at least one vertex. Then there exists a convex-polyhedral
surface S in R

3 such that G(S) � G ′.

Proof Let V (G) = {v1, . . . , vn}, let E(G) = {e1, . . . , em}, and let P be a strictly
convex polygon with corners p1, . . . , p2m in the plane. We assume that m ≥ 2, that
p1 and p2m lie on the x-axis, and that the rest of the polygon is a convex chain that
projects vertically onto the line segment p1 p2m , which we call the long side of P . We
call the other sides short sides. We choose P such that no short side is parallel to the
long side.

Let Z be a (say, unit-radius) cylinder centered at the z-axis. For each vertex vi of G,
we take a copy Pi of P and place it vertically in R3 such that its long side lies on the
boundary of Z ; see Fig. 4(a). Each polygon Pi lies inside Z on a distinct halfplane
that is bounded by the z-axis. Finally, all polygons are positioned at the same height,
implying that for any j ∈ {1, . . . , 2m}, all copies of p j lie on the same horizontal
plane h j and have the same distance to the z-axis.

Let i ∈ {1, . . . , m}. Then the side s = p2i−1 p2i is a short side of P . For k =
1, 2, . . . , n, we denote by sk and pk

i the copies of s and pi in Pk , respectively. We
claim that, for 1 ≤ k < � ≤ n, the sides sk and s� span a convex quadrilateral that
does not intersect any P j with j /∈ {k, �}. To prove the claim, we argue as follows;
see Fig. 4(b).

By the placement of Pk and P� inside Z , the supporting lines of sk and s� intersect
at a point z on the z-axis, implying that sk and s� are coplanar. Moreover, pk

2i−1 and
p�
2i−1 are at the same distance from z, and the same holds for pk

2i and p�
2i . Hence the

triangle spanned by z, pk
2i−1, and p�

2i−1 is similar to the triangle spanned by z, pk
2i ,

and p�
2i , implying that pk

2i−1 p�
2i−1 and pk

2i p�
2i are parallel and hence span a convex

quadrilateral Q (actually a trapezoid). Finally, no polygon P j with j /∈ {k, �} can
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Pbot

Pvert1

Pvert2

Pvert3

Pvert4

Pdiag1

Pdiag2

x

y
z

(a) (b)

Fig. 5 Construction of a convex-polyhedral surface S with G(S) � K4,4. Subfigure (a) depicts the rectan-
gular box and the two slanted rectangles that form the basis of the construction. The figure illustrates the
situation before the intersection of the two slanted rectangles is removed by shifting a corner. Subfigure (b)
illustrates the final realization. The 2-coloring of the polygons reflects the bipartition of K4,4. Note that in
the depicted projection the polygons Pvert2 and Pvert4 are shown as line-segments / very thin polygons; for
a better view of these polygons, refer to Fig. 6. The orientation of the coordinate system is indicated in the
bottom-left of the figure

intersect Q as any point in the interior of Q lies closer to the z-axis than any point of
P j at the same z-coordinate, which proves the claim.

Weuse Q as the polygon for the subdivision vertex of the edge ei ofG (in case ei was
subdivided multiple times, we dissect Q accordingly). Let va and vb be the endpoints
of ei . By our claim, Q does not intersect any P j with j /∈ {a, b}. The quadrilateral Q
lies in the region of Z that is bounded by the horizontal planes h2i−1 and h2i . Since
any two such regions are vertically separated and hence disjoint, the m quadrilaterals
together with the n copies of P constitute a valid representation of G ′. ��

The combination of Proposition 3.4 and Theorem 3.5 rules out anyKuratowski-type
characterization for adjacency graphs of convex-polyhedral surfaces. This graph class
contains a subdivision of K5, but it does not contain K5; hence it is not minor-closed.
We remark that the subdivided Kn has

(n
2

) + n vertices and crossing number �(n4),
so it is an adjacency graph of a convex-polyhedral surface whose crossing number is
quadratic in its number of vertices (and edges).

3.2 Complete Bipartite Graphs

Proposition 3.6 There exists a convex-polyhedral surface S such that G(S) � K4,4.

Proof We describe how to obtain such a surface S. We start with a rectangular box in
R
3 and stab it with two rectangles that intersect each other in the center of the box as

indicated in Fig. 5(a).
We can now draw polygons on these eight rectangles such that each of the four

vertical rectangles (representing the four vertices of one class of the bipartition of K4,4)
contains a polygon that has a side contact with a polygon on each of the four horizontal
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Pbot

Pvert1Pvert2

Pvert3

Pvert4

Pdiag1 Pdiag2

Ptop

x

y

view from above; the polygon Ptop

is transparent and dashed
close-up after clipping; the separation

between Ptop and Pdiag1 is exaggerated
(a) (b)

Pvert1

Pvert2

Pdiag1

Ptop

Fig. 6 Additional views of the realization of K4,4

or slanted rectangles (representing the other class of the bipartition of K4,4). To remove
the intersection of the (polygons drawn on the) two slanted rectangles, we shift one
corner of the original box; see Figs. 5(b) and 6. We refer to the two horizontal, the
four vertical, and the two slanted polygons as Ptop, Pbot, Pvert1, Pvert2, Pvert3, Pvert4,
Pdiag1, and Pdiag2, respectively, and list the coordinates of their corners in Table 1.

With the specified coordinates, Pdiag1 and Pdiag2 each have a side that lies in the
interior of Ptop and a side that lies in the interior of Pbot. To fix this, one needs to clip
the two polygons such that they lie in the interior of the original cuboid. This can be
done by intersecting them with the slab −9.9 ≤ z ≤ 9.9. Moreover, the two polygons
Pvert1 and Pvert2 (as well as Pvert3 and Pvert4) have a common side, even though they
correspond to vertices in the same class of the bipartition of K4,4. These unwanted
contacts can also be removed by slightly clipping the polygons, cf. Proposition 3.1. ��

Proposition 3.7 There exists a convex-polyhedral surface S such that G(S) � K3,5.

Proof We call the vertices of the smaller bipartition class the gray vertices, and their
polygons gray polygons. For the other classwe pick a distinct color for every vertex and
use the same naming-by-color convention. We start our construction with a triangular
prism in which the quadrilateral faces q1, q2, q3 are rectangles of the same size. Each
of the faces qi will contain one gray polygon. All colorful polygons lie inside the
prism. We call the lines resulting from the intersection of the supporting planes with
the prism the colorful supporting lines. Unfolding the faces q1, q2, and q3 into the plane
yields Fig. 7, which shows the gray polygons and the colorful supporting lines. Note
that the vertices of the gray polygons in the figure are actually very small edges that
have the slope of the colorful supporting line on which they are placed. The colorful
polygons are now already determined.

It remains to check that the colorful polygons are disjoint. Figure 8 shows the prism
in a view from the side where we dashed all objects on the hidden prism face. The
cyan polygon P0 and the blue polygon P4 avoid all other colorful polygons in this
projection and thus they avoid all other polygons in R

3, too.
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Q1 Q2Q3

Fig. 7 Constructing a convex-polyhedral surface whose adjacency graph is isomorphic to K3,5. The prism
is unfolded into the plane. All polygon vertices are contained in the vertical grid lines

For the red polygon P1, the orange polygon P2 and the green polygon P3, we
proceed as follows to prove disjointness. Pick two of the polygons and name them Pi

and Pj . The line �i j of intersection of the supporting planes of Pi and Pj is determined
by the two intersections of the corresponding colorful supporting lines. If the polygons
intersect, they have to intersect on this line. Polygon Pi intersects �i j in a segment si j ;
polygon Pj intersects �i j in s ji . Figure 8 shows, however, that si j and s ji do not
overlap in any of the three cases. (Note that P2 does not intersect �12 and hence P2
does not intersect P1 either.) We remark that our construction can be verified easily
since it is grid-based in the following sense. First, note that each intersection point of
the supporting plane of a colorful polygon and one of the three vertical edges of the
prism has integral height in {0, . . . , 20}; see the tics in Fig. 7. Second, on each of the
three vertical faces of the prism, we define a set of equally-spaced vertical lines (10
on the two front faces, 20 on the back face) such that each polygon vertex lies on the
intersection of one of these lines and its supporting plane. ��

In contrast to Propositions 3.6 and 3.7,we can show that not every complete bipartite
graph can be realized as a convex-polyhedral surface in R3.

Theorem 3.8 There exists no convex-polyhedral surface S in R
3 such that K5,81 is

subisomorphic to G(S).

To prove the theorem we start with some observations about realizing complete
bipartite graphs.Wewill consider a set R of red polygons, and a set B of blue polygons,
so that each red–blue pair must have a side contact. For each p ∈ R ∪ B, we denote by
p= the supporting plane of p, by p− the closed half-space left of p=, and by p+ the
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1
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2

13

12

23

13

31

0

4

32

23

Fig. 8 Front view of the prism containing a realization of K3,5. Lines on the back face are dashed. The
thin black lines are the lines of intersection among the supporting planes of the red, yellow, and green
polygons. The thick black line segments indicate which parts of the intersection lines are contained in a
colorful polygon. Since the segments are disjoint, the colorful polygons are disjoint, too

closed half-space right of p= (orientations can be chosen arbitrarily). We start with
a simpler setting where we have an additional constraint. We call B one-sided with
respect to R if, for each blue polygon b, all red polygons lie in the same half-space
with respect to b, i.e., ∀ b ∈ B : ((∀ r ∈ R : r ⊆ b−) ∨ (∀ r ∈ R : r ⊆ b+)).

Lemma 3.9 Let R and B be two sets of convex polygons in R
3 realizing K|R|,|B|. If

|R| = 3 and B is one-sided with respect to R, then |B| ≤ 8.

Proof Let R = {r1, r2, r3} and let A be the arrangement of the supporting planes
of R. Assume that B is one-sided with respect to R and consider a polygon b ∈ B.
For every polygon ri ∈ R, since b is convex and shares a side with ri , b is contained
in r−

i or r+
i . Thus, b is contained in a (closed) cell C ofA. Let r∗ = r=

1 ∩ r=
2 ∩ r=

3 be
the intersection of the supporting planes of R.
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(a) r∗ is a line

r∗

(b) no red polygon contains r∗
(Case 1)

r∗

(c) a red polygon contains r∗
(Case 2)

Fig. 9 The three red polygons and the intersection r∗ of their supporting planes

We will first argue about the case where r∗ is not a point. We may assume that no
two supporting planes of R coincide; otherwise, by strict convexity, two coplanar red
polygons imply that all blue polygons lie in the same plane. Moreover, if |B| ≥ 2, it
follows symmetrically that all red polygons are coplanar. Hence, all polygons must
lie in the same plane and the non-planarity of K3,3 implies that |B| ≤ 2. It follows
that r∗ is not a plane. Further, if r∗ is a line, then C has only two bounding planes and
therefore one of the red polygons is only present as a subset of r∗; see Fig. 9(a). This
implies that b has a side on r∗ and on each of the open half-planes bounding C , which
is impossible. Finally, if r∗ = ∅, we can apply a projective transformation such that
the bounding planes of the three red polygons intersect. Therefore, we can assume
that r∗ �= ∅.

It remains to consider the case where r∗ is a point, in which case the arrangementA
defines eight (closed) cells, called octants, of the form Qα0β0γ0 = rα0

1 ∩ rβ0
2 ∩ rγ0

3 ,
where α0, β0, γ0 ∈ {+,−}. We distinguish two subcases: either (1) no polygon in R
contains the point r∗ (see Fig. 9(b)) or there is a red polygon whose supporting plane
contains a blue polygon, or (2) r∗ is contained in a (single) polygon in R (see Fig. 9(c))
and there is no red polygon whose supporting plane contains a blue polygon.

Case 1: No polygon in R contains the point r∗ or there is a red polygon whose
supporting plane contains a blue polygon.Our plan is to show that there are four octants
whose union contains all blue polygons and that each of these four octants contains
at most two blue polygons, which implies that the total number of blue polygons is
bounded by 4 · 2 = 8, as claimed. We start to show that there are four octants whose
union contains all blue polygons. To this end, we distinguish two subcases.

Case 1.1: No polygon in R contains the point r∗. Since the point r∗ is disjoint from
all red polygons, each red polygon lies on the boundary of at most six octants. More
precisely, there are signs α2, α3, β1, β3, γ1, γ2 ∈ {+,−} such that r1 cannot intersect
the two octants Q±β1γ1 , r2 cannot intersect the two octants Qα2±γ2 , and r3 cannot
intersect the two octants Qα3β3±. It is now easy to verify that there are at most four
octants that intersect all three red polygons. For example, if α2 = α3 = β1 = β3 =
γ1 = γ2 = +, then only the octants Q+−−, Q−+−, Q−−+, and Q−−− can intersect
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all three red polygons. Since every blue polygon has to be contained in one of these
four octants, the claim follows.

Case 1.2: There is a red polygon, say r1, whose supporting plane r=
1 contains a

blue polygon, say b1. Recall that we assume that no two supporting planes of red
polygons coincide. Symmetrically, we may assume that no two supporting planes
of blue polygons coincide. Hence, without loss of generality, we may assume that r2
and r3 intersect the interior of b+

1 , which, without loss of generality, coincides with r+
1 .

Consequently, all blue polygons are contained in r+
1 and, thus, they are contained in

the union of the four corresponding octants.
So far, we have shown that there are four octants whose union contains all blue

polygons. Now consider one octantC that contains a blue polygon (and is thus incident
to all ri ). For the argument within this cell, we can truncate all ri to C . We claim that
there can be at most two blue polygons in C . Assume towards a contradiction that
we have three such polygons b1, b2, and b3. For each i ∈ {1, 2, 3}, the polygon bi

has three sides in common with r1, r2, r3. Let b′
i be the convex hull of these three

sides. Consider now the set P = {r1, r2, r3, b′
1, b′

2, b′
3}. Let b′

i and b′
j be two different

(partial) blue polygons. Since b=
i has all (sides of) red polygons on one side, it has

also the three sides defining b′
j on one side. Hence, b′

j is on one side of the supporting
plane of b′

i , and this side is the same for all polygons in P \ {b′
i }. On the other hand, by

the definition of C , every r=
i has all polygons in P \ {ri } on one common side. Thus,

the polygons in P are in convex position. Consider now the convex hull H of P . We
get thatH is a convex polyhedron with the polygons of P embedded on its surface.We
can draw the contact graph of P on that surface without crossings. Since the surface is
homeomorphic to a sphere, we obtain a contradiction since the contact graph is a K3,3
and therefore nonplanar. Thus, any octant can contain at most two blue polygons, as
claimed.

Altogether, we have shown that there are four octants whose union contains all blue
polygons and that each of these four octants contains at most two blue polygons, which
implies that the total number of blue polygons is bounded by 4 · 2 = 8 in Case 1.

Case 2: A red polygon contains r∗ and there is no red polygon whose supporting plane
contains a blue polygon. Without loss of generality, r∗ ∈ r1. Similarly to Case 1.1,
the polygons r2 and r3 both lie on the boundary of at most six octants, which implies
that there are at most five octants that intersect every polygon in R. We claim that
at most one polygon of B can intersect any given octant. Consider an octant Q and
assume that it is intersected by two one-sided blue polygons b1 and b2. Note that Q
is bounded by three (unbounded) faces f1, f2, and f3 such that, for j ∈ {1, 2, 3}, the
red polygon r j (truncated to Q) lies in f j .

Let �i, j denote the intersection of the plane b=
i and the face f j . Because there is

no red polygon whose supporting plane contains a blue polygon, �i, j is not the entire
face f j but a segment or a ray. Let ti be the trace formed by �i,1, �i,2, �i,3. Then ti is
either a triangle or the concatenation of two rays and a segment; see Fig. 10, (b) and
(c). Note that the traces t1 and t2 intersect in at most two points.

Given two different faces fi and f j of Q, we call their intersection fi ∩ f j an axis
of Q. Note that each trace intersects at least two of the three axes of Q. Hence, there
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r∗r∗

(a)

r

ti

(b)

r∗

ti

(c)

r∗
�2,j

�1,j

t1

t2

f j

rj

(d)

∗

Fig. 10 Illustration of Case 2 for the proof of Lemma 3.9. (a) A single octant (towards the viewer) with
three truncated red polygons and a possible blue polygon within the octant that has a side contact with all
three red polygons, (b) the trace of a possible blue polygon forming a triangle, (c) the trace of a possible
blue polygon consisting of two rays and a segment, and (d) two traces yield at least one blue polygon that
is not one-sided

is a face f j such that �1, j and �2, j have endpoints on the same axis contained in f j .
We complete the proof by distinguishing two subcases, depending on the intersection
of �1, j and �2, j .

Case 2.1: �1, j and �2, j do not intersect in the relative interior of f j . See Fig. 10(d).
Then one of them (say �1, j ) separates the other (say �2, j ) from r∗ on f j . Because r j

lies between �1, j and �2, j , we get that �1, j separates r∗ from r j . This is a contradiction
to the fact that b1 is one-sided. Thus, there are at most 1 · 5 = 5 polygons in B in
Case 2.1.

Case 2.2: �1, j and �2, j intersect in the relative interior of f j . Then there is a j ′ ∈
{1, 2, 3} \ { j} such that �1, j ′ and �2, j ′ have endpoints on the same axis and do not
intersect; otherwise the traces intersect three times. Hence, if we replace j by j ′, we
are in Case 2.1. ��

With the help of Lemma 3.9 we can now prove Theorem 3.8.

Proof of Theorem 3.8 Assume that K5,81 can be realized, and let R be a set of five red
polygons. Since every b ∈ B is adjacent to all polygons in R, b partitions R into two
sets: those in b− and those in b+. At least one of these subsets must have at least three
elements. Arbitrarily charge b to such a set of three polygons. By Lemma 3.9, each
set of three red polygons can be charged at most eight times. There are

(5
3

) = 10 sets
of three red polygons. Therefore, there can be at most 8 · 10 = 80 blue polygons; a
contradiction. Together with Proposition 3.1, this implies the claim. ��

3.3 3-Trees

The graph class of 3-trees is recursively defined as follows: K4 is a 3-tree. A graph
obtained from a 3-tree G by adding a new vertex x with exactly three neighbors u, v, w

that form a triangle in G is a 3-tree. We say x is stacked on the triangle uvw. It follows
that for each 3-tree there exists a (not necessarily unique) construction sequence of 3-
trees G4, G5, . . . , Gn such that G4 � K4, Gn = G, and where for i = 4, 5, . . . , n −1
the graph Gi+1 is obtained from Gi by stacking a vertex vi+1 on some triangle of Gi .
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Fig. 11 The unique minimal nonplanar 3-tree, which we call triple-stacked triangle

By Proposition 3.2, for every planar 3-tree G there is a polyhedral surface S (even
in R

2) with G(S) � G. On the other hand, we can show that no nonplanar 3-tree has
such a realization in R3. To this end, we observe that a 3-tree is nonplanar if and only
if it contains the triple-stacked triangle as a subgraph. The triple-stacked triangle is
the graph that consists of K3,3 plus a cycle that connects the vertices of one part of
the bipartition; see Fig. 11. We show that the triple-stacked triangle is not realizable.

Lemma 3.10 Let uvw be a separating triangle in a plane 3-tree G = (V , E). Then
there exist vertices a, b ∈ V that belong to distinct sides of uvw in G such that both
{a, u, v, w} and {b, u, v, w} induce a K4 in G.

Proof Let G4, G5, . . . , Gn denote a construction sequence of G = Gn , and let k be
the largest index in {4, 5, . . . , n} such that uvw is nonseparating in Gk . Since uvw is
separating in Gk+1, it follows that the vertex vk+1 = a is stacked on uvw (say, inside
uvw) to obtain Gk+1 and, hence, {a, u, v, w} induce a K4 in Gk+1 and G.

It remains to argue about the existence of the vertex b in the exterior of uvw. If uvw

is one of the triangles of the original G4 � K4, there is nothing to show, so assume
otherwise. Let j be the smallest index in {5, 6, . . . , n} such that uvw is contained
in G j . It follows that one of u, v, w, say u, is the vertex v j that was stacked on
some triangle xyz of G j−1 to obtain G j . Without loss of generality, we may assume
that {v,w} = {y, z}. It follows that x = b forms a K4 with u, v, w in G j and G. ��
Lemma 3.11 A 3-tree is nonplanar if and only if it contains the triple-stacked triangle
as a subgraph.

Proof The triple-stacked triangle is nonplanar because it contains a K3,3 (one part of
the bipartition is formed by the gray vertices and the other by the colored vertices).

For the other direction, let G be a nonplanar 3-tree. Let G4, G5, . . . , Gn be a con-
struction sequence of G. Let k be the smallest index in {4, 5, . . . , n} such that Gk is
nonplanar. By 3-connectivity, the graph Gk−1, which is planar, has a unique combi-
natorial embedding. Therefore, we may consider Gk−1 to be a plane graph. Let uvw

be the triangle that the vertex vk was stacked on to obtain Gk from Gk−1. Since Gk is
nonplanar, the triangle uvw is a separating triangle of Gk−1. It follows by Lemma 3.10
that Gk (and, hence, G) contains the triple-stacked triangle. ��
Lemma 3.12 There exists no convex-polyhedral surface S in R

3 such that the triple-
stacked triangle is subisomorphic to G(S).

123



1448 Discrete & Computational Geometry (2024) 71:1429–1455

Proof We refer to the vertices of the triple-stacked triangle as the three gray vertices
and the three colored (red, green, and blue) vertices; see also Fig. 11. Given the
correspondence between vertices and polygons (and their supporting planes), we also
refer to the polygons (and the supporting planes) as gray and colored.

Assume that the triple-stacked triangle can be realized. Consider the arrangement
of the gray supporting planes. By strict convexity, it follows that if a pair of gray
polygons has the same supporting plane, then all their common neighbors lie in the
same plane. This implies that all supporting planes coincide—a contradiction to the
non-planarity of the triple-stacked triangle. Consequently, the gray supporting planes
are pairwise distinct. (Likewise, it holds that no colored and gray supporting plane
coincide.)

We now argue that all colored polygons are contained in the same closed cell of the
gray arrangement. To see this, fix one gray polygon and observe, by Lemma 3.3, that
all polygons are contained in the same closed half space with respect to its supporting
plane.

Note that the gray plane arrangement has one of the following two combinatorics:
either the three planes have a common point of intersection (cone case) or not (prism
case). In the first case, the planes partition the space into eight cones, one of which
contains all polygons; in the second case, the (unbounded) cell containing all polygons
forms a (unbounded) prism. For a unified presentation, we transform any occurrence
of the first case into the second case. To do so, wemove the apex of the cone containing
all polygons to the plane at infinity by a projective transformation. This turns each
face of the cone into a strip that is bounded by two of the extremal rays of the cone,
which we now have deformed into a prism.

Consider one of the strips, which we call S. The strip S has to contain one of the
gray polygons, which we call PS . We know that PS has at least five sides, one for each
neighbor. Each of the two bounding lines contains a side to realize the adjacency to
the other two gray polygons. We call the sides of PS that realize the adjacencies to the
remaining polygons red, green, and blue, in correspondence to the vertex colors. The
supporting line of the red side intersects each bounding line of S. We add a red point
at each of the intersections. For the blue and green sides we proceed analogously. By
convexity of PS , these points are distinct. This yields a permutation of red, green, blue
(see Fig. 12) on each bounding line. The permutations on the boundary of two adjacent
strips coincide because the supporting lines are clearly contained in the supporting
planes.

Consider the line arrangement inside S given by the supporting lines of the red,
green, and blue sides. Up to symmetry, Fig. 12 illustrates the different intersection
patterns. To realize all contacts, the polygon PS has to lie inside a cell incident to all
five lines, namely the two bounding lines and the three supporting lines. It is easy
to observe that such a cell exists only if the permutation has exactly one or three
inversions; see Fig. 12, (b) and (d). In particular, the number of inversions is odd.

Following the cyclic order of the bounding lines around the prism, we record three
odd numbers of inversions in the permutations before coming back to the start. Since
an odd number of inversions does not yield the identity, we obtain the desired contra-
diction. ��
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(a) no inversion (b) one inversion (c) two inversions (d) three inversions

Fig. 12 The permutations of the intersections with the supporting lines of the red, green, and blue edges
as in the proof of Lemma 3.12. Figures (a) and (c) illustrate possible scenarios. Figures (b) and (d) show
impossible scenarios because they do not contain cells of complexity 5

Together, Lemmas 3.11 and 3.12 yield the following theorem.

Theorem 3.13 Let G be a 3-tree. There exists a convex-polyhedral surface S in R
3

with G(S) � G if and only if G is planar.

In contrast to Theorem 3.13, there are nonplanar 3-degenerate graphs that can be
realized; see the example in Fig. 1.

3.4 Hypercubes

In a paper from 1983, McMullen et al. construct a polyhedron for every integer p ≥ 4
such that all faces are convex p-gons [38, Sect. 4]. In the following, we show and
illustrate how their result proves the realizability of any hypercube.

Proposition 3.14 [38] For every d-hypercube Qd, d ≥ 0, there exists a convex-
polyhedral surface S in R

3 with G(S) � Qd and every polygon of S is a (d + 4)-gon.

The main building block in their construction is a polyhedral surface whose adja-
cency graph is a (p − 4)-hypercube. In fact, we observed that the adjacency graph
of the polyhedron they finally construct is the Cartesian product of Q p−4 and a cycle
graph Cn , n ≥ 3. For the first few steps of their inductive construction; see Fig. 13.

Recall that the d-hypercube has 2d vertices. The base case for d = 0 is given by a
single 4-gon, namely by the unit square. What follows is a series of inductive steps.
In every step, the value of d increases by one and the number of polygons doubles.
Before explaining the step, we state the invariants of the construction. We label the
corners of a polygon with p1, . . . , pk . After every step, the orthogonal projection into
the xy-plane looks like the unit square in which we have replaced the upper right
corner with a convex chain as shown in Fig. 14(a). In particular p1 is mapped to (0, 0),
p2 is mapped to (0, 1), and pk is mapped to (1, 0). For every polygon the sides pi pi+1
for i ≤ 3 ≤ k − 2 (non-vertical, non-horizontal in the projection) will already have
two incident polygons, the four other sides p1 p2, p2 p3, pk−1 pk, pk p1 are currently
incident to only one polygon.

We explain next how to execute the inductive step. Suppose that we have a polyhe-
dral surface where every polygon is a (d + 4)-gon fulfilling our invariant. We apply a
shear along the z-axis to assure that for every polygon the corners pk−1 and pk have
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(a) realization of Q1 (orange),
xy -plane (purple)

(b) inductive step,
cutting plane blue

(c) realization of Q2

Fig. 13 The inductive construction of McMullen et al. [38]

(a)

p1

p2 p3

pk − 1

pk

e

(b)

p′
k − 1

p′
k

(c)

p′′
k +1

p′′
k

Fig. 14 Projection of a polygon into the xy-plane in the construction of McMullen et al. The gray rectangle
depicts the unit square. Edges incident to only one polygon are drawn in blue. (a) The start configuration for
d +4 = 7. (b) Cutting with the xy-plane after the shear that puts only e below the xy-plane (before glueing
the reflected copy). (c) Slicing off a corner to get the initial situation for d + 4 = 8 modulo a projective
transformation

smaller z-coordinates than every corner of a polygon that is not pk−1 or pk . We then
shift the whole surface such that exactly the sides pk−1 pk lie completely below the
xy-plane; see also Fig. 13(a). These transformations do not change the projections of
the polygons into the xy-plane. We then cut the surface with the xy-plane and only
keep the upper part. By this we slice away one of the sides in all polygons but also add
a side that lies in the xy-plane; see Fig. 14(b). Each polygon now has a side p′

k−1 p′
k

that lies in the xy-plane and is disjoint from all other polygons. We now take a copy
of the surface at hand and reflect it across the xy-plane. Every polygon of the original
(unreflected) surfaces is now glued to its reflected copy via the common side in the
xy-plane. With this step, we already have transformed the adjacency graph from a
d-hypercube to a (d + 1)-hypercube. We only need to bring the surface back into the
shape required by the invariant. To do so, we cut off a corner in every polygon (see
Fig. 14(c)) by slicing the whole construction with an appropriate plane orthogonal
to the xy-plane; see also Fig. 13(b). This turns all (d + 4)-gons into (d + 5)-gons.
In particular, in every polygon we cut off p′

k and add two corners p′′
k and p′′

k+1 as
shown in Fig. 14(c). Finally, we apply a projective transformation to assure that the
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invariant holds in the end of the induction step. Such a transformation can be obtained
as follows. Assume that the line connecting p′′

k and p′′
k+1 in the xy-plane, has the form

x = ay + b, for some parameter a and b. Then the transformation is given by

(x, y, z) �→ 1

ay + b
(x, y(a + b), z).

It can be observed that this mapping leaves the projection of the points p1, p2 into the
xy-plane for every polygon stationary.Moreover, for every polygon, the line containing
p′′

k and p′′
k+1 will be mapped to the line x = 1 and the line containing of p2 and p3

will be mapped to the line y = 1 when projected into the xy-plane. Figure 13(a)–(c)
shows spatial images of this construction.

Connection to a problem of coloring adjacency graphs Thomassen [48, p. 98, Prob-
lem 2] asked whether the adjacency graph of a polyhedral surface in R

3 which is
homeomorphic to Sg (an orientable surface of genus g) has chromatic number bounded
by some absolute constant. A typical approach for proving this is to show that the graph
has bounded average degree. However, Proposition 3.14 shows that the average degree
is unbounded, so another approach is needed.

4 Bounds on the Density

It is an intriguing question how dense adjacency graphs of convex-polyhedral surfaces
can be. In this section, we use realizability and non-realizability results from the
previous sections to derive asymptotic bounds on themaximumdensity of such graphs,
which we phrase in terms of the relation between their number of vertices and edges.

Let Gn be the class of graphs on n vertices with a realization as a convex-polyhedral
surface in R

3. Further, let emax(n) = maxG∈Gn |E(G)| be the maximum number of
edges that a graph in Gn can have.

Corollary 4.1 For any positive integer n, one has emax(n) ∈ �(n log n) and emax(n) ∈
O(n9/5).

Proof For the lower bound, note that by Proposition 3.14, every hypercube is the
adjacency graph of a convex-polyhedral surface. As the d-dimensional hypercube has
2d vertices and 2d · d/2 edges, the bound follows.

For the upper bound, we use that, by Theorem 3.8, the adjacency graph of a convex-
polyhedral surface cannot contain K5,81 as a subgraph. It remains to apply the Kővari–
Sós–Turán Theorem [31], which states that an n-vertex graph that has no Ks,t as a
subgraph can have at most O(n2−1/s) edges. ��

Before being aware of the result of McMullen et al. [38], we constructed a family
of surfaces with (large, but) constant average degree. Our construction is not recursive
and therefore easier to understand and visualize; for a sketch see Fig. 15, a detailed
description can be found in a preprint version of this article [6, Appendix C]. Note
that some polygons in our construction have polynomial degree.

Proposition 4.2 There is an unbounded family of convex-polyhedral surfaces in R
3

whose adjacency graphs have average vertex degree 12 − o(1).
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(a) placement of octagon grids (b) a vertical polygon (c) a horizontal polygon from above

Fig. 15 A family of convex-polyhedral surfaces whose adjacency graphs have average vertex degree 12 −
o(1). The main building block of our construction consists of m regular octagons arranged in a truncated
square tiling, which is lifted to the paraboloid; see (b). We place m copies of this gadget in a cyclic fashion;
see (a). To increase the average degree, we create O(m

√
m) vertical and O(m) horizontal polygons. The

vertical polygons are attached to the “outside” of the bent octagon grids (see (b)); the horizontal polygons
are place in the center of our construction such that each of them touches each grid along a single polygon
side (see (c)). The resulting construction contains some unwanted overlaps and intersections, which can be
removed by modifying the initial grid structure slightly

5 Conclusion and Open Problems

In this paper, we have studied the class of graphs that can be realized as adjacency
graphs of (convex-)polyhedral surfaces. Corollary 4.1 bounds the maximum number
emax(n) of edges in realizable graphs with n vertices by �(n log n) and O(n9/5). It
would be interesting to improve upon these bounds.

Question 5.1 What is the maximum number emax(n) of adjacencies that a convex-
polyhedral surface with n polygons can have?

We conjecture that realizability is NP-hard to decide.

Question 5.2 What is the computational complexity to decide for a given graph G
whether there exists a convex-polyhedral surface S such that G(S) � G?

The following question is related to the previous question regarding recognition.

Question 5.3 Which structural properties are necessary or sufficient for admitting
side-contact representations with convex polygons in R

3?
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