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Abstract
A self-affine tile is a compact set G ⊂ R

d that admits a partition (tiling) by parallel
shifts of the set M−1G, where M is an expanding matrix. We find all self-affine tiles
which are polyhedral sets, i.e., unions of finitely many convex polyhedra. It is shown
that there exists an infinite family of such polyhedral sets, not affinely equivalent to
each other. A special attention is paid to integral self-affine tiles with standard digit
sets, when the matrix M and the translation vectors are integer. Applications to the
approximation theory and to the functional analysis are discussed.
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1 Introduction

A tiling of a compact set G ⊂ R
d is its partition to finely many sets that are disjoint

(up to measure zero) and are translations of one compact set T of positive Lebesgue
measure. If T is similar to G by means of some affine operator with the expanding
linear part M , then the tiling is self-affine and the set G is referred to as a self-affine
tile.
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Self-affine tiles have been studied in an extensive literature. Most of known tiles,
apart from parallelepipeds, have fractal-like properties, which is natural due to their
self-similarity. An important problem is to find possibly simple sets that admit self-
affine tilings. For example, disc-like sets [2], polyhedral sets [7, 12, 14, 17, 21, 22],
etc. Besides the geometric interest, this question has obvious applications in the space
tiling, the crystallography, the theory of functional equations, approximation theory,
in constructing of orthonormal functional systems, in particular, Haar systems and
wavelets, etc. For example, ifG possesses a piecewise-smooth boundary, then its char-
acteristic function χG has themaximal possible (among piecewise-constant functions)
regularity in L2(R

d): its Hölder exponent is 1/2. Hence, the Haar system generated
by χG has the best approximation properties, the corresponding subdivision scheme
and the cascade algorithm have the fastest rate of convergence, etc., see [8, 20]. This
holds, in particular, for polyhedral tiles. Not to mention, of course, that polyhedral
sets are convenient in practical applications.

In this paper we classify all polyhedral self-affine tiles. The first results in this direc-
tion originated with Gröchenig andMadych [7], who studied self-affine tiles which are
parallelepipeds and related Haar bases in L2(R

d). A complete classification of linear
operators and parallel translations generating self-affine tileswhich are parallelepipeds
was done in [12, Chapter 5] and in [22, Theorems 1 and 2]. Other polyhedral tilings
were addressed in [14, 21, 22].

This is relatively simple to show that among convex polyhedra, only parallelepiped
admits a self-affine tiling. For non-convex polyhedra, the problem is more compli-
cated. The two-dimensional case was done in [22, Thm. 3] and the conclusion is the
same: there are no self-affine polygonal tiles different from parallelograms. For higher
dimensions, the corresponding conjecture was left open [22, Conjecture 1]. A big step
towards the solution of this problem was done in the recent paper [21]. To formulate
it, we need to recall one definition. Let a subset G ⊂ R

d be given; a point v ∈ G
is said to be a vertex of convex polyhedral corner if the intersection of G with some
neighbourhood of v is congruent to a neighbourhood of an apex of a convex polyhedral
cone. As usual, a convex polyhedral cone is the set of solutions of a system of homo-
geneous linear inequalities which is pointed (does not contain straight bi-infinite lines)
and possesses a nonempty interior. The main result of [21] asserts that if a self-affine
tile has at least one convex polyhedral corner, then this tile is equivalent to a union of
integer shifts of a unit cube. This strong result, however, does not solve the problem
of characterising polyhedral self-affine tiles. Already in R

2 there are polyhedral sets
without convex corners (for example, the polyhedral set consisting of four triangles
on Fig. 1). Moreover, inR3 there are (non-convex) polyhedra without convex corners.
For example, at each vertex of a regular tetrahedron we cut off a small tetrahedron
and replace it by a dimple of the same form (Fig. 2). We obtain a polyhedron with 16
vertices none of which has a convex corner.

On the other hand, there is a variety of disconnected polyhedral sets (unions of
several convex polyhedra) that do admit self-affine tilings [22, Sect. 10]. However,
their complete classification has been obtained only for one-dimensional case, see
[11] which is based on [4] and [22, Thm. 8].

In this paper we classify all polyhedral self-affine tiles in R
d , i.e., polyhedral sets

that admit self-affine tilings (Theorem 2.1). Moreover, we also classify the integer
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Fig. 1 2D polyhedral set without convex corners

- extreme vertices

v

Fig. 2 3D polyhedron without convex corners

polyhedral self-affine tiles with standard digit sets (Theorem 2.2). This, in particular,
gives a complete characterization of Haar bases with polyhedral structure in L2(R

d). It
is worth mentioning that the self-affine partitions of polyhedra have also been studied
under less restrictive conditions, when not only parallel translations but also rotations
are allowed [1, 3, 18, 19].

2 Main Results

Let G be a closed subset of Rd of positive Lebesgue measure, M be an expanding
matrix, i.e., all its eigenvalues are larger than one in absolute value.

Definition 1 A tiling of the setG is its partition to a union of compact setsG = ⋃
i Ti ,

such that all Ti are parallel shifts of each other and their pairwise intersections are of
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Lebesgue measure zero. A tiling is self-affine if the sets Ti are congruent to M−1G.
In this case, G is called a self-affine tile.

We consider only the finite tilings, in which case G is compact. For example, all self-
affine tilings are finite. A tiling will be denoted as T = {Ti }Ni=1; all the sets Ti are
called elements of the partition. We denote T = T (T , D), where Ti = M−1(G+di ),
D = {di }. Thus, the self-affine tile G satisfies the equation

G =
⋃

di∈D
M−1(G + di ). (1)

Definition 2 A convex polyhedron is a compact subset ofRd with a nonempty interior
defined by several linear inequalities. A polyhedral set is a union of finitely many
convex polyhedra called composing polyhedra.

In the one-dimensional case all polyhedral sets are unions of several segments. All
such self-affine tiles were characterised in [22], it is also reduced to a result from [11].
To formulate this result we introduce some further notation. For natural numbers a, n,
we denote S(a, n) = {ka | k = 0, . . . , n − 1}. This is an arithmetic progression of
length n with the difference a starting at zero. For a natural r and positive vectors
a, n ∈ Z

r , let S(a, n) = S(a1, n1) + · · · + S(ar , nr ) be the Minkowski sum of the
progressions S(ai , ni ). A pair of vectors a, n ∈ Z

r is called admissible if a1 = n1 = 1
and for each i ≥ 2, we have ai ≥ 2, ni ≥ 2, and ai is divisible by ai−1ni−1. Now we
formulate the characterization of univariate polyhedral tilings [22, Thm. 8]:

A union of finitely many segments in R denoted by G possesses a self-affine tiling
if and only if there are r ∈ N and an admissible pair of vectors a, n ∈ Z

r such that G
is equivalent (up to normalisation) to the set

{[k, k + 1] | k ∈ S(a, n)}. (2)

Thus, a polyhedral subset ofR that admits a self-affine tiling is equivalent to a disjoint
union of integer shifts of the unit segment. The number of segments is n1 . . . nr . The
case of one segment corresponds to r = 1.

Our first result classifies all polyhedral sets in R
d that possess self-affine tilings.

Theorem 2.1 A set G ⊂ R
d is a polyhedral self-affine tile if and only if it is affinely

equivalent to a disjoint union of integer translates of the unit cube which is a direct
product of d one-dimensional sets of the form (2). Each of those d sets corresponds
to its own triple (r , a, n), where a, n is an admissible pair from Z

r .

An example of a polyhedral self-affine tile in R
2 is given on Fig. 3 . The first triple

(axis x) is (3; (1, 2, 8); (1, 2, 3)), the second one (axis y) is (3; (1, 2, 12); (1, 3, 2)).
The second result characterises integral self-affine polyhedral tiles with standard

digit sets.

Definition 3 An integral self-affine tile with standard digit set is a self-affine tile G
whose expanding matrix M has integer entries G = ⋃m

i=1 M
−1(G + si ), where

m = |det M| and D = {s1, . . . , sm} is the “digit set” which is a complete set of coset
representatives in Zd/MZ

d .
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Fig. 3 Two-dimensional self-affine polyhedral tile

Thus, in the integer tiling the matrix M is integer and the shift vectors compose a
complete set of digits with respect to M . This means that si − s j /∈ MZ

d for all i �= j
and for every s ∈ Z

d there exists j such that s − s j ∈ MZ
d . Integral self-affine tiles

are applied in the combinatorics and number theory as well as in the construction of
orthonormal Haar bases in L2(R

d). By Theorem 2.1, a polyhedral integral self-affine
tile with standard digit set must be equivalent to a union of integer shifts of the unit
cube. However, among all the sets described in Theorem 2.1 only one case corresponds
to an this integer tiling. The following theorem gives a complete classification.

Theorem 2.2 If a polyhedral set is an integral self-affine tile with standard digit set,
then it is a parallelepiped.

Note that one integral self-affine tile can be generated by different dilation matrices
and by sets of digits.

Remark 1 Note that in some cases there are no self-similar integer tiles (even not nec-
essarily polyhedral) other than parallelepipeds. This situation emerges, for example,
for tiles with an isotropic dilation matrix and with two digits [23]. This case is applied
in construction of the Haar bases in L2(R

d).

3 The Roadmap of the Proofs

The proof of Theorem 2.1 consists of several steps. We shall briefly describe them
below and then in Sect. 5 give a detailed proof. The proof of Theorem 2.2 is much
shorter (of course, after referring to Theorem 2.1); its idea is described in the end of
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this section. A complete proof of Theorem 2.2 is given in Sects. 5 and 6. We use the
standard notation co(X) for the convex hull of the set X .

The Steps of the Proof of Theorem 2.1

Let us have a polyhedral set G ⊂ R
d with a self-affine tiling T .

Step 1. The convex hull of the set G is a convex polyhedron. Vertices of this
polyhedron are referred to as extreme vertices of G. For an arbitrary extreme vertex v,
we consider the corresponding corner K of G, which is the intersection of G with a
small ball centered at v. This is a conewith an apex v, maybe non-convex. In the partial
order defined by the cone co(K ) (we keep the same notation for a corner and for the
corresponding cone) the vertex v is a uniqueminimal element of the polyhedron co(G).
This fact implies that there exists a unique element of partition T ∈ T that contains v
(see Proposition 3). Moreover, a sufficiently small corner of G at the extreme vertex v
is also a corner of T , and v is an extreme vertex for T as well (Proposition 4).

Step 2. Thus, for every extreme vertex v ofG, there exists a unique element fromT
containing v, for which v is also an extreme vertex with the same corner. This defines
a map from the set of extreme vertices of G to extreme vertices of T . Since the tiling
is self-affine, T is affinely similar to G and hence this map defines a map of the set of
extreme vertices of G to itself. The graph corresponding to this map has one outgoing
edge from each vertex and hence has a cycle of some length n. Consider the nth
iteration T n of the tiling T (T , D), which is T n = T (Tn, Dn), where Tn = M−nG,
Dn = {∑n−1

k=0,sk∈D Mksk
} = D + MD + · · · + Mn−1D. Thus,

G =
∑

s∈Dn

M−n(G + s).

Since a graph has a cycle of length n, it follows that for the tiling T (Tn, Dn), there
exists a stationary vertex v corresponding to itself. To simplify the notation, we use
the same symbol T for all iterations. Hence, the vertex v corresponds to the same
vertex of T . Moreover, after extra iterations of the tiling, it may be assumed that the
convex corner co(K ) has the same corresponding faces in G as in T . This is proved
in Proposition 5.

Step 3. Thus,G has at least one stationary vertex v, which corresponds to the same
extreme vertex ofG and of the element of partition T . If K is the corner at the vertex v,
then the set co(K ) is a corner of co(G); it is convex and has an apex at the vertex v. Our
goal is to prove that actually the corner K is convex and simple (has exactly d edges).
To this end, we first show that if K contains a face of the convex corner co(K ), then the
intersection of all elements with that face define a self-affine tiling on it (Lemma 1).
This will allow us to apply induction arguments in the dimension of the faces.

Step 4. If the corner K at a stationary vertex v contains a j-dimensional face L of
co(K ), then it contains a parallelepiped in L with the same corner at v (Lemma 2).
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Fig. 4 The “lily”: the parallelepipeds on facets spanned by vectors along the edges

Step 5. This is a keystone of the proof. We establish the following auxiliary geo-
metrical fact, which is, probably, of some independent interest. Let us have a convex
polyhedral cone C ⊂ R

d . Assume all its facets (faces of co-dimension one) are sim-
ple, i.e., affinely similar to R

d−1+ (see Sect. 4.1 for detailed definitions). For arbitrary
vectors going from the apex along the edges (one vector on each edge), the following
holds: either C is simple, or there exist two facets A, B of C and two vectors a, b
from our family on different edges such that the shifted parallelepipeds a+ P(A) and
b + P(B) have a common interior point, where P(X) is the parallelepiped spanned
by the vectors on a facet X (see Fig. 4). In the former case (C is simple) those par-
allelepipeds form a boundary of a full-dimensional parallelepiped with the corner C .
This is Lemma 3, which can be called “the lily lemma” since the parallelepipeds form
“lily petals”.

Step 6. Applying the result of the previous step we prove by induction in j the
following statement: if a vertex v is stationary, then for each j = 1, . . . , d, the corner K
contains all faces of dimension j of the convex corner co(K ) and all those faces are
simple (Proposition 6). Taking j = d we immediately obtain that the corner K is
convex and simple.

Step 7. Thus, the corner of G at every stationary vertex is convex and simple.
Hence, by [21, Theorem 1.9], the set G is equivalent to a union of several integer
shifts of the unit cube. Then we establish Lemma 4 according to which there exists a
subset of the tiling T that forms a tiling of a rectangular parallelepiped. Then we apply
the main result of the paper [13] on discrete tiling of a cube and conclude that T is a
direct product of d one-dimensional tiles (note that in case of infinite discrete tilings
of the set N×N this does not hold, see [15]). Hence so is G. It remains to invoke the
classification of one-dimensional tilings from [22, Thm. 8] formulated in Sect. 2.
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3.1 The Idea of the Proof of Theorem 2.2

Applying Theorem 2.1we obtain thatG is affinely similar to a direct product of special
sets of the form (2). In particular, this yields that G is equivalent to a union of disjoint
integer shifts of the unit cube. If the tiling T is integer, then all its iterations are also
integer. Taking a sufficiently big iteration we can assume that all elements of partition
have diameter less than one. Hence, each element of partition is contained in a unique
cube. This implies that the shifts cannot be from different quotient classes, provided
G contains at least two cubes. The proof is in Sect. 7.

4 Notation and Preliminary Facts

We use convex separation theorems. Let X and Y be subsets of Rd . The set X is
separated from Y by a nonzero element c ∈ R

d if (c, x) ≤ (c, y) for all x ∈ X ,
y ∈ Y . This separation is strong if the set Y\X is nonempty and (c, x) < (c, y) for
all x ∈ X , y ∈ Y\X . Let us remark that this separation is not symmetric in X ,Y . By
the convex separation theorem, if X ,Y are both convex, the interior of Y is non-empty
and does not intersect X , then X can be separated from Y . Every face of a convex
polyhedron G is strongly separated from it. A point on the surface of G is strongly
separated from it precisely when it is extreme.

4.1 Cones

A cone K with the apex at the origin is a closed subset of Rd such that if x ∈ K then
for each λ ≥ 0, we have λx ∈ K . A cone is nondegenerate if it possesses a nonempty
interior. A cone is pointed if it does not contain a straight line. A cone is convex if
for every x, y ∈ K , we have x + y ∈ K . Any ray that belongs to the boundary of a
cone is called its generatrix. If a generatrix does not belong to a convex hull of other
generatrices, it is called an extreme edge. In particular, a generatrix of a convex cone
is an extreme edge if it does not belong to a linear span of two other generatrices. In
this case we drop the word “extreme” and call it edge.

In what followswe always assume that a convex cone is nondegenerate and pointed.
In this case it can be strongly separated from its apex. A convex cone K ⊂ R

d is
called polyhedral if it is defined by a system of linear inequalities. It has faces of all
dimensions from zero (the apex) to d (the whole cone). A facet is a face of dimension
d − 1; an edge is a face of dimension one. A cone is simple if is affinely equivalent
to the positive orthant Rd+. So, a simple cone has exactly d facets and d edges. A
cone possesses simple facets if all their facets are simple (d − 1)-dimensional cones.
Clearly, in this case its faces of all dimensions ≤ d − 1 are simple.

A corner is an intersection of a cone with a ball centered at the apex. The cone is
an extension of every its corner. We often identify a corner and its extension and use
the same notation for them.

Every convex cone defines a partial order in R
d as follows: x ≥ y if x − y ∈ K .

In particular, x ≥ 0 if x ∈ K . Since K is pointed, it follows that if x ≥ y, then y ≥ x
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is impossible, unless x = y. A point x is called minimal for a set � ∈ R
d if x ≤ y

for all y ∈ �. Not every set possesses a minimal element, but if it exists, it is unique.
Indeed, if there are two minimal elements x and y, then x ≤ y and y ≤ x, hence
x = y.

Let B be a subset of a hyperplane L with a nonempty (in L) interior and v /∈ L be a
point. Then all segments connecting v with points from B form a bounded cone with
the apex v and a base B.

4.2 Polyhedral Sets

A corner of a polyhedral set is its intersection with a small ball centered at a vertex v
of some composing polyhedron. We always assume that the ball is small enough and
intersects only those faces of the composing polyhedra adjacent to v. Clearly, the
extension of a corner is nondegenerate, but possibly non-convex and not pointed.

A point of a polyhedral set G is said to be an extreme vertex if it is a vertex of
co(G). For example, the plane polyhedral set on Fig. 1 has three extreme vertices (the
vertices of the big triangle), the set on Fig. 2 has 12 extreme vertices painted red. A
point v ∈ G is an extreme vertex if and only if it can be strongly separated from G.
That vertex is called convex if it is a vertex of a convex corner of G (as usual, a convex
corner is assumed to be non-degenerate and pointed).

Similarly we define a composite extreme face L of a polyhedral set G ⊂ R
d . This

is the intersection of G with a separating hyperplane of L . For the sake of simplicity
we usually call L extreme face. It is a union of several convex sets that are faces of
polyhedra that form G. The maximal dimension of those sets is the dimension of the
extreme face. An extreme face of dimension d − 1 is an extreme facet. Let G ′ ⊂ G be
an extreme facet and S be a convex subset of G ′; then a layer of S is a bounded cone
with the base S that is contained in G. Not every convex subset of a facet has a layer.
For example, if ABC is a triangle and A′, B ′,C ′ are the midpoints of its sides, then
the union of the triangles AB ′C ′ and BC ′A′ is a polyhedral set with the facet AB.
This facet, however, does not have a layer.

As we have already mentioned, there are polyhedra without convex vertices.
However, extreme vertices always exist.

Proposition 1 If K is a corner of a polyhedral set at its extreme vertex, then co(K ) is
a nondegenerate convex pointed cone.

Proof The convexity and nondegeneracy are obvious. The pointedness of co(K )

follows from the pointedness of the corner of co(G), which contains co(K ). �	

Proposition 2 Every polyhedral set is contained in the convex hull of its extreme
vertices.

Proof Extremevertices of a polyhedral setG are vertices of the convexpolytope co(G).
By the Minkowski theorem, a convex polyhedron is a convex hull of its vertices. �	

Corollary 1 Every polyhedral set in R
d possesses at least d + 1 extreme vertices.
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5 Proof of Theorem 2.1. Part 1: Auxiliary Results

We begin with several basic facts, which hold for all tilings, not necessarily self-affine.

Proposition 3 Suppose T is a tiling of a polyhedral set G; then every extreme vertex
of G is contained in a unique element of T .

Proof Let an element T ∈ T contain an extreme vertex v of G. Denote by K̃ the
extension of the corner of co(G) at the vertex v. Since co(G) ⊂ K̃ and T ⊂ G, it
follows that T ⊂ K̃ . Hence, v is the minimal element of T in the order defined by
the cone K̃ . If another element T ′ ∈ T also contains v, then v is the minimal element
of T ′. From the uniqueness of the minimal element and from the fact that T ′ is a
parallel shift of T by some nonzero vector a, we see that v + a = v; therefore, a = 0
and T ′ = T . �	
Proposition 4 If an element T ∈ T contains an extreme vertex v of G, then it contains
a sufficiently small corner at v. In particular, if the tiling is polyhedral, then T and G
have the same corner at v and this vertex is extreme for T .

Proof By Proposition 3, T is a unique element of partition containing v, hence all
other elements of T are located on positive distances from v. Choosing the radius of
the ball smaller than all those distances, we obtain a corner that does not intersect
other elements of T . On the other hand, the tiling covers the whole set G, therefore
the intersection of the small ball with G coincides with its intersection with T . Thus,
T and G have the same corner at v. Furthermore, since v can be strongly separated
from G by a hyperplane, the same hyperplane separates v from T , because T ⊂ G.
Consequently, v is an extreme vertex of T . �	
Thus, every extreme vertex of G is associated to an extreme vertex of T , which is the
minimal element of T in the order defined by the corner of co(G) at that vertex. The
inverse correspondence may not be well-defined: an extreme vertex of T can have no
corresponding vertices from G or can have several ones.

Nowwe turn to self-affine tilings. Each element T is similar toG bymeans of some
affine transform A : T → G. It maps each extreme vertex of T to a corresponding
vertex of G. For all elements, those transforms have the same linear part defined by
the dilation matrix M .

Definition 4 Let a polyhedral set G possess a self-affine tiling T . Then its extreme
vertex v is called stationary if a unique element T ∈ T containing v possesses the
following properties:

• v is a fixed point of the affine transform A : T → G;
• the transform A respects the corner K of G at the vertex v and respects all faces
of the cone co(K );

• the extension of K contains G.

Extreme vertices depend only on the polyhedral set G, while the stationary vertices
depend also on its self-affine tiling. As we know, G has at least d + 1 extreme ver-
tices. However, for some tilings, none of those vertices are stationary. Nevertheless,
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at least one of them does become stationary after certain iteration of the tiling. This is
guaranteed by the following

Proposition 5 For every self-affine tiling T of a polyhedral set G, there is n ∈ N such
that G with the tiling T n possesses at least one stationary vertex.

Proof Proposition 4 implies that every extreme vertex u of G corresponds to a unique
extreme vertex u′ of T . The latter, in turn, corresponds to a unique extreme vertex Au′
of G. Thus, we have a map u �→ Au′ defined on the set of extreme vertices of G.
Denote this map by ϕ. In general, ϕ may not be injective. Iterating ϕ, we obtain an
extreme vertex v of G and a number k such that ϕk(v) = v. This means that, for the
tiling T k , the vertex v is covered by the corresponding (in the sense of similarity)
vertex of the element of the tiling. Thus, after taking some power of the tiling we
assume (keeping the previous notation for the new tiling) that G and T have the same
corresponding vertex v, i.e., Av = v. By Proposition 4, the corners of G and of T
at v coincide. Hence, the transform A preserves this corner K and therefore, defines
a permutation of its extreme edges. Some power of this permutation is identical. This
means that passing again to a power of the tiling we may assume that A maps each
extreme edge of the cone K to itself. Hence, it respects all faces of co(K ) and so, v is
a stationary vertex.

With possible further iteration of the tiling it may be assumed that the element T
is small enough and is contained in a small ball defining the corner K . Hence, T is
contained in the extension of K . Since A maps T to G and respects K it follows that
G is also contained in the extension of K . �	
In what follows we simplify the notation and assume that we are already given the nth
power of the tiling. Thus, for a tiling T of the set G, there exists a stationary vertex v.

Until nowwe dealt with elements covering the extreme vertices. Nowwe go further
and look at extreme faces. Let us stress that we consider faces of convex cones only.
Let K be a corner at the stationary vertex v of a polyhedral set G and L be a j-
dimensional face of the convex cone co(K ), j ≥ 1. We denote GL = G ∩ L . If G
admits a self-affine tiling, thenG lies in the extension of K . Hence, in this case co(GL)

is a j-dimensional face of co(G). The following lemma reduces the dimension in the
proof of Theorem 2.1.

Lemma 1 Let T be a self-affine tiling of G, v ∈ G be its stationary vertex, and T ∈ T
be the element containing v. Suppose the corner K at v contains a face L of co(K );
then all elements of T intersecting GL are translations of T by vectors parallel to L.
The sets of intersection form a self-affine tiling of GL. If T ∩ L is a composite facet
of T , then every convex subset of it has a layer in T .

Proof Let z be an arbitrary point of GL and an element T ′ = T + a contain this
point. Let a hyperplane {x | (c, x) = 0} strongly separate L from K . Then it strongly
separates GL from K . This means that (c, z) = (c, v) = 0, while (c, x) < 0 for
all points x ∈ G \ GL . We have z − a ∈ T , hence (c, z) − (c, a) ≤ 0. Thus,
(c, a) ≥ (c, z) = 0, which implies (c, v + a) = (c, a) ≥ 0. However, v + a ∈ T ′ and
therefore, v + a ∈ G. This yields (c, v + a) ≤ 0 and consequently, (c, v + a) = 0.
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Thus, v + a ∈ GL and hence, the translation vector a is parallel to L . This is true for
all elements of the partition intersecting GL .

Thus, the sets T ′ ∩ L , where T ′ is a translation of T parallel to L , are translations
of T ∩ L . Clearly, they cover GL . Since the affine similarity transform A respects L
it follows that all the sets Ti ∩ GL which are nonempty, are similar to GL by the
transform A. To prove that they form a self-affine tiling of GL it remains to show
that the interiors (in L) of those sets are disjoint. This will be done by induction in
j = dim L in the inverse order, i.e., starting with j = d .
Suppose j ≤ d − 1 and assume that the statement is true for every ( j + 1)-

dimensional face L ′: the sets Ti ∩ GL ′ do not have common interior points in L ′.
Take an arbitrary j-dimensional face L and choose a ( j + 1)-dimensional face L ′
containing L . By the inductive assumption, the intersections of Ti with L ′ (denote
them by T ′

i ) form a tiling of GL ′ . If we show that the intersections of T ′
i with L

have disjoint interiors (in L), then they form a self-affine tiling of GL , and the proof
will be completed. Indeed, for all possible ( j + 1)-dimensional faces containing L ,
this tiling of GL will be the same. To see this we note that this tiling is uniquely
defined by the affine similarity transform of L and by the system of translations of L .
Neither the similarity transformnor the systemof translations depend of L ′. Indeed, the
translations of L are those translations of T parallel to L and the similarity transform
is the restriction A|L of the similarity operator A to its invariant subspace L . Thus, we
need to show that the intersections of T ′

i with L have disjoint interiors in L . For the
sake of simplicity we realize the proof for j = d − 1, the proof for other j is literally
the same. Thus, L ′ = co(K ) and L is a hyperface (facet) of L ′. Denote T̃ = T ∩ L
and assume the contrary: there are elements T̃ + a and T̃ + b that share a common
interior point x ∈ L . This point belongs to the set P + a, where P is one of the convex
polyhedra that form the polyhedral set G. Then P̃ + a, which is the intersection of
P + a with L , is a facet of the convex polyhedron P + a. If x is an interior point
of this facet, then some its neighbourhood U (x) lies in P + a (more precisely, the
“half” of this neighbourhood, which is the intersection of U (x) with the half-space
containing G). Therefore, U (x) lies in T + a. However, in this case the set T + b
cannot intersect U (x), otherwise it will have common interior points with T + a. If,
on the other hand, x belongs to the boundary of P̃ + a, then we use our assumption
that x is a common interior point of T̃ + a and T̃ + b. Each sufficiently small shift
of x along L is also an interior point of both T̃ + a and T̃ + b. However, there is
a small shift which sends x to some point x̃ in the interior of P̃ + a. Indeed, every
boundary point of a convex polyhedron can be shifted to its interior. Now we just
repeat the proof above for the point x̃, which belongs to the interior of P̃ + a. This
completes the proof for the self-affine tiling of GL .

Finally, for every T ′ ∈ T , T ′ �= T , there is a bounded cone in G with the base
T ∩ L that does not intersect T ′. Since the set T is finite, the intersection of those
cones contains a bounded cone with the base T ∩ L . This cone does not intersect other
elements from T , hence, it lies in T . Therefore, this is a layer of the facet T ∩ L in T .

�	
Lemma 1 applied to a one-dimensional face (an edge) of co(K ), implies the following
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Fig. 5 Illustration to the proof of Lemma 2

Corollary 2 Let � be an extreme edge of G going from a stationary vertex v ∈ G. Let
T be a self-affine tiling of G and T be its element containing v. Then all elements of
T intersecting � are translations of T by vectors parallel to �. The sets of intersection
form a tiling of �.

Proof As we know, all edges of co(K ) (faces of dimension one) are extreme edges
of K and they lie in K . Hence, the assumptions of Lemma 1 for � are fulfilled. Now
applying Lemma 1 in the case j = 1 we conclude the proof. �	
Now we show that if a corner of K of a stationary vertex contains a face of the corner
co(K ), then the set T ∩ L contains a special parallelepiped.

Lemma 2 Under the assumptions of Lemma 1, suppose that L is a simple j-
dimensional cone with edges �s , s = 1, . . . , j . Let bs be the most distant point from v

of the edge �s for which the segment [v, bs] is contained in T . Then T contains the
j-dimensional parallelepiped spanned by the segments [v, bs], s = 1, . . . , j .

Proof The proof is by the induction in the dimension j . For j = 1, the statement is
obvious. Assume it holds for some dimension n < j . Consider the face Ln+1 spanned
by the edges �1, . . . , �n+1 and its face Ln spanned by the first n edges. Since Ln+1 is
a simple cone, we can identify it with R

n+1+ and assume that all the segments [v, bs]
are of length one. Denote bs − v = es . We use the same notation for the elements
from T and for their intersections with the face Ln+1. We need to show that the unit
cube Pn+1 = {x ∈ R

n+1+ | xi ≤ 1, i = 1, . . . , n + 1} is contained in T . By the
inductive assumption, T contains its face Pn = {x ∈ Pn+1 | xn+1 = 0}. Since by
Corollary 2, the shifts of the set T ∩ �n+1 form a tiling of �n+1 it follows that the set
T ′ = T + en+1 is also an element of T .

If Pn+1 does not lie in T , then there is a point x ∈ int Pn+1 which is not in T (see
Fig. 5). On the other hand, it must belong to some element T ′′ = T + a, a ∈ int Pn+1.
For every y ∈ T ′, we have yn+1 ≥ 1, hence none of the points x, v + a belongs
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v

a b
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Fig. 6 Parallelepipeds on facets of the lily spanned by the vectors on the edges

to T ′, and so T ′ �= T ′′. On the other hand, T ′′ must contain the parallel shift of the
segment [v, bn+1] by the vector a. This segment [v + a, bn+1 + a] is of length one
and it intersects the face Pn + en+1 of Pn+1. However, this face lies in T ′ with some
layer (Lemma 1). Hence, T and T ′ have a common interior point. The contradiction
proves that Pn+1 is in T , which completes the inductive step. �	

6 Proof of Theorem 2.1. Part 2: Conclusion

Now we are going to prove the following main proposition, from which Theorem 2.1
simply follows:

Proposition 6 If a polyhedral set admits a self-affine tiling, then its corners at all
stationary vertices are convex and simple.

We need the following geometrical lemma, which is, probably, of some independent
interest. LetC be a convex polyhedral cone with simple facets and with the apex at the
origin O . On every edge of C one chooses an arbitrary point c �= 0, which is referred
to as a directing point and the segment [O, c] is a directing segment of that edge.
For a given facet H of C , we denote by P(H) its directing parallelepiped, which is
spanned by the directing segments of that facet. Thus, P(H) is a (d − 1)-dimensional
parallelepiped contained in H . The family of all such parallelepipeds form a ”lily”
based on the cone C .

Lemma 3 (lily lemma) For a convex polyhedral cone C with simple facets and for
arbitrary directing points on its edges, the following holds: either C is simple, or there
exist two facets A, B and two directing points a, b on different edges of C such that
the shifted parallelepipeds a + P(A) and b + P(B) have a common interior point
(see Figs. 6 and 7).
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Fig. 7 Intersection of shifted parallelepipeds

Proof If C is not simple, then there are two of its facets A, B without a common
(d − 2)-dimensional face. Then there are two edges of the cone C : a ⊂ A and b ⊂ B
such that the (d − 1)-dimensional cones Ca = co {a, B} and Cb = co {b, A} have a
common interior point. Clearly, a is not in B, otherwise Ca = B and it cannot have
common interior points withCb since A and B have no common facets. Similarly, b is
not in A. Since a and b are both in Ca ∩Cb it follows that the set Ca ∩Cb has interior
points arbitrary close to co {a, b}. Now denote by ai , i = 1, . . . , d − 1, the directing
points on the edges of the face A, a1 ∈ a. Analogously, bi , i = 1, . . . , d − 1, are the
directing points on the edges of B, b1 ∈ b. A common interior point x of Ca and Cb

is expressed as follows:

x = αa1 +
d−1∑

i=1

ti bi = βb1 +
d−1∑

i=1

si ai , (3)

where all the coefficients α, β, ti , si are strictly positive. After multiplication of this
equality by a positive constant it can be assumed that α < 1 and β < 1. Moreover,
choosing x sufficiently close to co {a, b} we may assume that all ti and si are small,
in particular, all of them are less than 1 and t1 < β, s1 < α. Rewriting (3) we obtain

−(β − t1)b1 +
d−1∑

i=2

ti bi = −(α − s1)a1 +
d−1∑

i=2

si ai .

Now we add a1 + b1 to both sides of this equality and get

a1 + (1 − (β − t1))b1 +
d−1∑

i=2

ti bi = b1 + (1 − (α − s1))a1 +
d−1∑

i=2

si ai . (4)
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Note that the point (1 − (β − t1))b1 + ∑d−1
i=2 ti bi belongs to the interior of the paral-

lelepiped P(B). Indeed, this is a linear combination of the vectors b1, . . . , bd−1 and all
coefficients of this combination are from the interval (0, 1). Hence, the left-hand side
of equality (4) is an interior point of the parallelepiped a1 + P(B). Analogously, the
left-hand side is an interior point of b1 + P(A). Thus, the parallelepipeds a1 + P(B)

and b1 + P(A) possess a common interior point. It remains to denote a = a1, b = b1,
which completes the proof. �	
Proof of Proposition 6 As usual, G denotes a polyhedral set, T is a self-affine tiling
of G, K is a corner of G at a stationary vertex v, and T ∈ T is the element covering v.
After possible iteration of the tiling it can be assumed that the size of T is as small as
needed. We prove the following statement which immediately implies Proposition 6:

Claim 1 For each j = 1, . . . , d, the corner K contains all faces of dimension j of the
convex corner co(K ) and all those faces are simple.

Applying this statement for j = d we obtain that K contains the whole convex cone
co(K ), which is, moreover, simple. So K = co(K ), and hence K is convex and simple.
The proof of this statement is by induction in the dimension j .

j=1. In this case the faces are the extreme edges of co(K ), which, aswe know, coincide
with the extreme edges of K . So, in this case the statement is true.

j → j + 1. Assume the statement holds for some j ≤ d − 1. Suppose the converse:
the corner co(K ) possesses a face L of dimension j + 1 that does not lie in K . Then
the set S = L \ K is nonempty. Since co(K ) is small enough, it follows that S is a
corner with apex v.

Let H be an arbitrary j-dimensional face of L . It is also a face of co(G) and by the
inductive assumption, H is simple and is contained in K . For an arbitrary edge of L ,
we take its directing point a, for which the segment [v, a] (the directing segment) is
the biggest by inclusion segment of that edge contained in T . Invoking now Lemma 2
we conclude that the j-dimensional parallelepiped P(H) generated by j directing
segments of the face H is contained in T . By Corollary 2, for every directing segment
[v, a] of L , the set T + (a − v) is an element of T and hence, this set lies in K .
Therefore, P(H)+ (a−v) ⊂ K . Thus, for every facet H of L and for every directing
point a of L , the shifted parallelepiped P(H) + (a − v) lies in K . Now we consider
two cases.

1) L is a simple cone. Then the j + 1 shifted parallelepipeds P(H) + (a − v), where
H is a facet of L and a /∈ H is a directing point, form the boundary of the ( j + 1)-
dimensional parallelepiped spanned by the directing segments of L . This boundary
lies in K and must intersect the open cone S. Hence K ∩ S �= ∅, which contradicts
the definition of S. Thus, S = ∅ and so L ⊂ K .

2) L is not simple, i.e., it has at least j + 2 edges. Let us show that this case is
impossible. Applying Lemma 3 to the cone L , we find two of its j-dimensional faces
A, B and two of its different edges a, b with the directing points a ∈ a, b ∈ b such
that the parallelepipeds P(A) + (a − v) and P(B) + (b− v) have a common interior
point. The first one is contained in the element T + (a − v), the second one is in the
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element T + (b − v). Moreover, since P(A) has a layer in T (Lemma 1), it follows
that those two elements have a common interior point. Hence, they coincide, which is
impossible, because a − v �= b − v, since those vectors are in different edges of L .

This completes the proof of the inductive step, which proves the proposition. �	
Thus,we have proved that for every stationary vertex ofG, the corresponding corner

of G is convex and simple. Since G has at least one convex corner, it follows that it
possesses a simple convex corner. Now we can apply the main result of [21, Theorem
1.9]: if a set admits a self-affine tiling and has at least one convex polyhedral corner,
then it is affinely similar to a union of integer shifts of the unit cube. The next step is
to show that a self-affine tiling of this set contains a tiling of a parallelepiped.

Lemma 4 Let a set G be a union of integer shifts of a unit cube. Suppose G has a
convex simple corner K at its extreme vertex and has a self-affine tiling T ; then there
is an iteration of the tiling T whose subset forms a tiling of some parallelepiped with
the same corner K .

Proof By iterating the tiling, we may assume that M is a diagonal matrix and the
diameter of T is less than one. Let P0 be the parallelepiped spanned by the edges
[v, bs], s = 1, . . . , d, from Lemma 2. Let us show that the parallelepiped P = MP0
is one we are looking for. Since K is simple, we identify it with Rd+. The image of an
integer shift of the unit cube under the action of M−1 will be called brick. Since G
consists of shifts of the unit cube, it follows that T consists of bricks.

We have T + bi ∈ T , therefore, the interior of the parallelepiped P0 + bi , being
a part of the element T + bi , does not intersect T . Denote by {e j }dj=1 the canonical

basis of Rd and by h j the lengths of the edges of P . Applying the similarity of G and
T we conclude that the interior of the parallelepiped P + h1ei does not intersect G.
Among all unit cubes forming G we choose the “highest” ones with respect to the i th
coordinate (whose center has the largest i th coordinate among all cubes). There are
two possible cases.

Suppose none of the highest cubes intersect the axis Oxi ; then the element T ′ ∈ T
containing the vertex hi ei of P possesses a brick higher than that vertex, i.e., the i th
coordinate of the center of that brick exceeds hi . Since the diameter of T ′ is smaller than
one, that brick is contained in P + hi ei , which is impossible. Therefore, for every i ,
there exists the highest with respect to the i th coordinate cube in G intersecting the
axis Oxi . Hence, T also has the highest brick (denote it by Bi ) which intersects the
axis Oxi .

If some element T + a ∈ T intersecting the interior of P has a point whose i th
coordinate exceeds hi , then the brick Bi + a is above the level xi = hi . On the other
hand, all other coordinates of that brick are on the segments [0, hk], k �= i . Hence,
Bi +a ⊂ P+hi ei . Therefore, the brick Bi + a is out ofG, which is impossible, since
this is a part of the element T + a. Thus, all points of each element intersecting P
have the i th coordinate at most hi . Applying this argument for all i , we see that every
element intersecting P lies in P . Hence, those elements form a tiling of P . �	
Remark 2 If among the unit cubes composing the set G there is at least one separated
from others, then Lemma 4 is obvious. Indeed, if all elements of some iteration of T
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are of diameter smaller than one, then all the elements intersecting the separated cube
do not intersect the others. Hence, they form a tiling of that cube. However, if there
are no separated cubes in G, then Lemma 4 is less obvious.

Proof of Theorem 2.1 Let G be a polyhedral set and T be its self-affine tiling. By
Proposition 5, there is some power of this tiling for which G has a stationary vertex v.
Proposition 6 asserts that the corner K at v is convex and simple. Hence, by [21,
Thm. 1.9], the set G is equivalent to a union of several integer shifts of the unit
cube. All corners of this set are rectangular, i.e., equal to the coneRd+. Now we invoke
Lemma 4 and conclude that there is a power of the tiling T whose subset forms a tiling
of a parallelepiped P with the corner K . Hence, P is a rectangular parallelepiped. Since
the element T covering the vertex v is affinely similar toG and has the same corner K ,
it follows that after an affine transform with a diagonal matrix, T becomes a union
of integer shifts of a unit cube, and several integer shifts of T cover a parallelepiped.
Replacing each unit cube by its center we obtain a discrete tiling of a parallelepiped
in Zd . According to the main result of [13], every discrete tiling is a direct product of
univariate discrete tilings of a segment of integer numbers. Therefore, T is a direct
product of d tilings of a segment. Applying the classification of univariate tilings of a
segment [22, Thm. 8] completes the proof. �	

7 Proof of Theorem 2.2

Let a polyhedral set G admit a self-affine tiling T . If G is an integral self-affine tile
with standard digit set, then T = {M−1(G + s) | s ∈ D}, M is an integer expanding
matrix, D is a set of digits, i.e., complete set of coset representatives Zd/MZ

d .

Proof of Theorem 2.2 Applying Theorem 2.1 we obtain that G is a direct product of d
sets of the form (2). Hence, G is equivalent to a union of disjoint integer shifts of the
unit cube. For every n ≥ 2, recall that the nth iteration T n of the tiling T is defined
by the matrix Mn and by the set of digits Dn = D + MD + · · · + Mn−1D. Clearly,
all the elements of Dn are from different quotient classes of Zd/Mn

Z
d . If n is large

enough, then the diameter of the set M−nG is smaller than one. Hence, each element
is contained in one of the unit cubes composing G.

If G contains more than one unit cube, then we take two of them C and C ′. We
have C ′ = C + a, where a ∈ Z

d . Let u be an arbitrary vertex of C and T ∈ T n

be an element of partition containing u. In the partial order defined by the corner of
the cube C at u the point u is the minimal point of C . Since T ⊂ C it follows that
u is the minimal point of T . The vertex u + a of the cube C ′ is covered by another
element T ′ ∈ T n . Let T ′ = T + b, b ∈ Z

d . By the same argument we show that
u + a is the minimal point of T ′ with respect to the same order. Since the parallel
translation respects minimal points, we have u + a = u + b and so a = b. Thus,
T ′ = T + a. Since T n = {M−n(G + s) | s ∈ Dn}, we have T = M−n(G + s1),
T ′ = M−n(G + s2), where s1, s2 ∈ Dn . Thus, T ′ = T + a = T + M−n(s2 − s1).
This means that a = M−n(s2 − s1) and so s2 − s1 = Mna, which is impossible since
s1 and s2 are from different quotient classes of Zd/Mn

Z
d . �	
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