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Abstract
In a colouring of R

d a pair (S, s0) with S ⊆ R
d and with s0 ∈ S is almost-

monochromatic if S \ {s0} is monochromatic but S is not. We consider questions about
finding almost-monochromatic similar copies of pairs (S, s0) in colourings of Rd ,
Z
d , and of Q under some restrictions on the colouring. Among other results, we

characterise those (S, s0) with S ⊆ Z for which every finite colouring of R without
an infinite monochromatic arithmetic progression contains an almost-monochromatic
similar copy of (S, s0). We also show that if S ⊆ Z

d and s0 is outside of the convex
hull of S \ {s0}, then every finite colouring of Rd without a monochromatic similar
copy of Zd contains an almost-monochromatic similar copy of (S, s0). Further, we
propose an approach based on finding almost-monochromatic sets that might lead to
a human-verifiable proof of χ(R2) ≥ 5.
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1 Introduction

A colouring ϕ : R2 → {1, . . . , k} is a (unit-distance-avoiding) proper k-colouring of
the plane, if ‖p − q‖ = 1 implies ϕ(p) �= ϕ(q), where ‖ · ‖ denotes the Euclidean
norm. The chromatic number χ(R2) of the plane is the smallest k for which there
exists a proper k-colouring of the plane. Determining the exact value of χ(R2), also
known as the Hadwiger–Nelson problem, is a difficult problem. In 2018 Aubrey de
Grey [7] showed that χ(R2) ≥ 5, improving the long standing previous lower bound
χ(R2) ≥ 4 which was first noted by Nelson (see [14]). The best known upper bound
χ(R2) ≤ 7 was first observed by Isbell (see [14]), and it is widely conjectured that
χ(R2) = 7. For history and related results we refer the reader to Soifer’s book [14].

A graph G = (V , E) is a unit-distance graph in the plane if V ⊆ R
2 such that

if (v,w) ∈ E then ‖v − w‖ = 1. De Grey constructed a unit-distance graph G
with 1581 vertices, and checked that χ(G) ≥ 5 by a computer program. Following
his breakthrough, a polymath project, Polymath16 [8] was launched with the main
goal of finding a human-verifiable proof of χ(R2) ≥ 5. Following ideas proposed
in Polymath16 by the third author [11], we present an approach that might lead to a
human-verifiable proof of χ(R2) ≥ 5.

We call a collection of unit circles C = C1 ∪ · · · ∪ Cn having a common point O
a bouquet through O . For a given colouring of R2, the bouquet C is bold if there is a
colour, say blue, such that every circle Ci has a blue point, but O is not blue.

Conjecture 1.1 For every bouquet C, every colouring of the plane with finitely many
but at least two colours contains a bold congruent copy of C.

In Sect. 5 we show that the statement of Conjecture 1.1 would provide a human-
verifiable proof of χ(R2) ≥ 5. We prove the conjecture for a specific family of
bouquets with proper colourings of R2.

Theorem 1.2 Let C = C1 ∪· · ·∪Cn be a bouquet through O and for every i let Oi be
the centre of Ci . If O and O1, . . . , On are contained in Q

2, further O is an extreme
point of {O, O1, . . . , On}, then Conjecture 1.1 is true for C for every proper colouring
of R2.

In Sect. 5.2 we prove a more general statement which implies Theorem 1.2. We also
prove a statement similar to that of Conjecture 1.1 for concurrent lines. We call a
collection of lines L = L1 ∪ · · · ∪ Ln with a common point O a pencil through O .
The pencil L is bold if there is a colour, say blue, such that every line Li has a blue
point, but O is not blue.

Theorem 1.3 For every pencil L, every colouring of the plane with finitely many but
at least two colours contains a bold congruent copy of L.

1.1 Almost-Monochromatic Sets

Let S ⊆ R
d be a finite set with |S| ≥ 3, and let s0 ∈ S. In a colouring of Rd we call

S monochromatic, if every point of S has the same colour. A pair (S, s0) is almost-
monochromatic if S \ {s0} is monochromatic but S is not. From now on we will use
the abbreviation AM for almost-monochromatic.

123



Discrete & Computational Geometry (2023) 70:753–772 755

We call a colouring a finite colouring, if it uses finitely many colours. An infinite
arithmetic progression in R

d is a similar copy of N. From now on we will use the
abbreviationAP for infinite arithmetic progression.A colouring isAP-free if it does not
contain amonochromatic infinite arithmetic progression.Motivated by its connections
to the chromatic number of the plane,1 we propose to study the following problem.

Problem 1.4 Characterise those pairs (S, s0) with S ⊆ R
d and with s0 ∈ S for which

it is true that every AP-free finite colouring of Rd contains an AM similar copy of
(S, s0).

Note that finding an AM congruent copy of a given pair (S, s0) was studied by Erdős
et al. [2]. We solve Problem 1.4 in the case when S ⊆ Z

d . A point s0 ∈ S is called an
extreme point of S if s0 /∈ conv (S \ {s0}).
Theorem 1.5 Let S ⊆ Z

d and s0 ∈ S. Then there is an AP-free colouring of Rd

without an AM similar copy of (S, s0) if and only if |S| > 3 and s0 is not an extreme
point of S.

We prove Theorem 1.5 in full generality in Sect. 3.1. The ‘only if’ direction will
follow from a stronger statement, Theorem 3.3. In Sect. 2 we consider only d = 1,
the 1-dimensional case. We prove some statements similar to Theorem 1.5 for d = 1,
and illustrate the ideas that are later used to prove the theorem in general.

Problem 1.4 is related to and motivated by Euclidean Ramsey theory, a topic intro-
duced by Erdős et al. [1]. Its central question asks to find those finite sets S ⊆ R

d for
which the following is true. For every k if d is sufficiently large, then every colouring
of Rd using at most k colours contains a monochromatic congruent copy of S. Char-
acterising sets having the property described above is a well-studied difficult question,
and is in general wide open. For a comprehensive overview see Graham’s survey [5].

The nature of the problem significantly changes if instead of a monochromatic con-
gruent copywe ask for amonochromatic similar copy, or amonochromatic homothetic
copy. A (positive) homothetic copy (or (positive) homothet) of a set H ⊆ R

d is a set
c+ λH = {c+ λh : h ∈ H} for some c ∈ R

d and some (positive) λ ∈ R \ {0}. Gallai
proved that if S ⊆ R

d is a finite set, then every colouring of Rd using finitely many
colours contains a monochromatic positive homothetic copy of S. This statement first
appeared in the mentioned form in the book of Graham et al. [6].

A direct analogue of Gallai’s theorem for AM sets is not true: there is noAM similar
copy of any (S, s0) if the whole space is coloured with one colour only. However, there
are pairs (S, s0) for which a direct analogue of Gallai’s theorem is true for colourings
ofQwith more than one colour. In particular, we prove the following result in Sect. 4.

Theorem 1.6 Let S = {0, 1, 2} and s0 = 0. Then every finite colouring ofQwith more
than one colour contains an AM positive homothet of (S, s0).

In general, we could ask whether every non-monochromatic colouring of Rd with
finitely many colours contains an AM similar copy of every (S, s0). This, however, is
false, as shown by the following example from [2]. Let S = {1, 2, 3} and s0 = 2. If

1 The connection is described in details later; see Theorems 5.1, 5.4, and 5.5.
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R>0 is coloured red and R≤0 is coloured blue, we obtain a colouring of R without an
AM similar copy of (S, s0). Restricting the colouring to N, using the set of colours
{0, 1, 2} and colouring every n ∈ N with n modulo 3, we obtain a colouring without
an AM similar copy of (S, s0). However, notice that in both examples each colour
class contains an infinite monochromatic AP.

Therefore, our reason, apart from its connections to the Hadwiger–Nelson prob-
lem, for finding AM similar copies of (S, s0) in AP-free colourings was to impose a
meaningful condition to exclude ‘trivial’ colourings.

2 The Line

In this section we prove a statement slightly weaker than Theorem 1.5 for d = 1.
The main goal of this section to illustrate some of the ideas that we use to prove
Theorem 1.5, but in a simpler case. Note that in R the notion of similar copy and
homothetic copy is the same.

Theorem 2.1 Let S ⊆ Z and s0 ∈ S. Then there is an AP-free colouring of N and of
R without an AM positive homothetic copy of (S, s0) if and only if |S| > 3 and s0 is
not an extreme point of S.

To prove Theorem 2.1 it is sufficient to prove the ‘if’ direction only forR and the ‘only
if’ direction only for N. Thus it follows from the three lemmas below, that consider
cases of Theorem 2.1 depending on the cardinality of S and on the position of s0.

Lemma 2.2 If s0 is an extreme point of S, then every finite AP-free colouring of N
contains an AM positive homothetic copy of (S, s0).

Lemma 2.3 If |S| = 3, then everyAP-free finite colouring ofN contains anAMpositive
homothetic copy of (S, s0).

Lemma 2.4 If S ⊆ R, |S| > 3, and s0 is not an extreme point of S, then there is an
AP-free finite colouring of R without an AM positive homothetic copy of (S, s0).

Before turning to the proofs, recall van der Waerden’s theorem [15] and a corollary of
it. A colouring is a k-colouring if it uses at most k colours.

Theorem 2.5 (van der Waerden [15]) For every k, � ∈ N there is an N (k, �) ∈ N

such that every k-colouring of {1, . . . , N (k, �)} contains an �-term monochromatic
AP.

Corollary 2.6 (van der Waerden [15]) For every k, � ∈ N and for every k-colouring
of N there is a t ≤ N (k, �) such that there are infinitely many monochromatic �-term
AP of the same colour with difference t.

Proof of Lemma 2.2 Let S = {p1, . . . , pn} with 1 < p1 < . . . < pn and ϕ be an
AP-free colouring of N. If s0 is an extreme point of S, then either s0 = p1 or s0 = pn .

Case 1: s0 = pn . By Theorem 2.5, ϕ contains a monochromatic positive homothet
M + λ([1, pn) ∩ N) of [1, pn)∩N of colour, say, blue. Observe that since ϕ is AP-free
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there is a q ∈ M + λ([pn,∞) ∩ N) which is not blue. Let M + qλ be the smallest
non-blue element in M + λ([pn,∞) ∩ N). Then (M + λ(q − pn) + λS, M + λq) is
an AM homothet of (S, s0).

Case 2: s0 = p1. By Corollary 2.6 there is a λ ∈ N such that ϕ contains infinitely
many monochromatic congruent copies of λ((1, pn]∩N), say of colour blue. Without
loss of generality, we may assume that infinitely many of these monochromatic copies
are contained in λN. Since ϕ is AP-free, λN is not monochromatic, and thus there
is an i such that iλ and (i + 1)λ are of different colours. Consider a blue interval
M + λ((1, pn] ∩N) such that M + λ > iλ, and let q be the largest non-blue element
of [1, M + λ) ∩ λN. This largest element exists since λi and λ(i + 1) are of different
colour. Then (q − λp1 + λS, q) is an AM homothet of (S, s0). �

Proof of Lemma 2.3 Let S = {p1, p2, p3} with 1 < p1 < p2 < p3 and ϕ be an
AP-free colouring of N. We may assume that s0 = p2, otherwise we are done by
Lemma 2.2. There is an r ∈ Q>0 such that {q1, q2, q3} is a positive homothet of S if
and only if q2 = rq1+(1−r)q3. Fix an M ∈ N for which Mr ∈ N. We say that I is an
interval of c+λN of length � if there is an interval J ⊆ R such that I = J ∩ (c+λN)

and |I | = �.

Proposition 2.7 Let I1 and I3 be intervals of λN of length 2M and M respectively
such that max I1 < min I3. Then there is an interval I2 ⊆ λN of length M such that
max I1 < max I2 < max I3, and for every q2 ∈ I2 there are q1 ∈ I1 and q3 ∈ I3 such
that {q1, q2, q3} is a positive homothetic copy of S.

Proof Without loss of generality wemay assume that λ = 1. Let I L1 be the set of theM
smallest elements of I1. By the choice ofM for any q3 ∈ N the interval r I L1 +(1−r)q3
contains at least one natural number. Let q3 be the smallest element of I3 and q1 ∈ I L1
such that rq1 + (1− r)q3 ∈ N. Then I2 = {r (q1 + i) + (1− r)(q3 + i) : 0 ≤ i < M}
is an interval of N of length M satisfying the requirements, since q1 + i ∈ I1 and
q3 + i ∈ I3. �

We now return to the proof of Lemma 2.3. Let I be an interval of N of length 2M . By
Corollary 2.6 there is a λ ∈ N such that ϕ contains infinitely many monochromatic
copies of λI of the same colour, say of blue. Moreover, by the pigeonhole principle
there is a c ∈ N such that infinitely many of these blue copies are contained in c+λN,
and without loss of generality we may assume that c = 0.

Consider a blue interval [aλ, aλ + 2Mλ − λ] of λN of length 2M . Since ϕ is
AP-free, [aλ + 2Mλ,∞) ∩ λN is not completely blue. Let qλ be its smallest element
which is not blue and let I1 = [qλ− 2Mλ, (q − 1)λ] ∩λN. Let I3 be the blue interval
of length M in λN with the smallest possible min I3 for which max I1 < min I3.
Then Proposition 2.7 provides an AM positive homothet of (S, s0). Indeed, consider
the interval I2 given by the proposition. There exists a q2 ∈ I2 which is not blue,
otherwise every point of I2 is blue, contradicting the minimality of min I3. But then
there are q1 ∈ I1, q3 ∈ I3 such that ({q1, q2, q3}, q2) is an AM homothet copy of
(S, s0). �
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Proof of Lemma 2.4 S contains a set S′ of 4 points with s0 ∈ S′ such that s0 is not an
extreme point of S′. Thus we may assume that S = {p1, p2, p3, p4} with p1 < p2 <

p3 < p4 and that s0 = p2 or s0 = p3. We construct the colouring for these two cases
separately. First we construct a colouring ϕ1 of R>0 for the case of s0 = p3, and a
colouring ϕ2 of R≥0 for the case of s0 = p2. Then we extend the colouring in both
cases to R.

Construction of ϕ1 (s0 = p3). Fix K such that K > (p4 − p2)/(p2 − p1) + 1 and
let {0, 1, 2} be the set of colours. We define ϕ1 as follows. Colour (0, 1) with colour 2,
and for every i ∈ N ∪ {0} colour [Ki , Ki+1) with i modulo 2. The colouring ϕ1
defined this way is AP-free, since it contains arbitrarily long monochromatic intervals
of colours 1 and 2. Thus we only have to show that it does not contain an AM positive
homothet of (S, s0).

Consider a positive homothet c+λS = {r1, r2, r3, r4} of S with r1 < r2 < r3 < r4.
If {r1, r2, r3, r4} ∩ [0, 1) �= ∅, then ({r1, . . . , r4}, r3) cannot be AM. Thus we may
assume that {r1, r2, r3, r4} ∩ [0, 1) = ∅. Note that by the choice of K we have

Kr2 > r2 + p4 − p2
p2 − p1

r2 = r2 + p4 − p2
p2 − p1

(λ(p2 − p1) + r1)

≥ r2 + λ(p4 − p2) = r4.

Hence {r2, r3, r4} is contained in the union of two consecutive intervals of the form
[Ki , Ki+1). This means that ({r1, . . . , r4}, r3) cannot be AM since either {r2, r3, r4}
is monochromatic, or r2 and r4 have different colours.

Construction of ϕ2 (s0 = p2). Fix K such that K > (p4 − p2)/(p2 − p1) + 1,
let L = K · �(p3 − p1)/(p4 − p3)� and let {0, . . . , 2L} be the set of colours. We
define ϕ2 as follows. For each odd i ∈ N ∪ {0}, divide the interval [L · Ki , L · Ki+1)

into L equal half-closed intervals, and colour the j-th of them with colour j . For even
i ∈ N ∪ {0} divide the interval [L · Ki , L · Ki+1) into L equal half-closed intervals,
and colour the j-th of them with colour L + j . That is, for j = 1, . . . , L we colour
[L · Ki + ( j − 1)(Ki+1 − Ki ), L · Ki + j (Ki+1 − Ki )) with colour j if i is odd,
and with colour j + L if i is even. Finally, colour the points in [0, L) with colour 0.
ϕ2 defined this way is AP-free, since it contains arbitrarily long monochromatic inter-
vals of colours 1, . . . , 2L . Thus we only have to show it does not contain an AM
positive homothetic copy of (S, s0).

Consider a positive homothet c+λS = {r1, r2, r3, r4} of S with r1 < r2 < r3 < r4.
If {r1, r2, r3, r4} ∩ [0, L) �= ∅, then ({r1, r2, r3, r4}, r2) cannot be AM, thus we may
assume that {r1, r2, r3, r4} ∩ [0, L) = ∅. Note that by the choice of K we again have

Kr2 > r2 + p4 − p2
p2 − p1

r2 = r2 + p4 − p2
p2 − p1

(λ(p2 − p1) + r1)

≥ r2 + λ(p4 − p2) = r4.

This means that {r2, r3, r4} is contained in the union of two consecutive intervals of the
form [L · Ki , L · Ki+1), which implies that if ({r1, r2, r3, r4}, r2) is AM, then {r3, r4}
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is contained in an interval [L · Ki + ( j − 1)(Ki+1 − Ki ), L · Ki + j(Ki+1 − Ki )) for
some 1 ≤ j ≤ L . However, then by the choice of L we have that r1 is either contained
in the interval [L · Ki , L · Ki+1) or in the interval [L · Ki−1, L · Ki ). Indeed,

r3 − r1 ≤
⌈
r3 − r1
r4 − r3

⌉
(r4 − r3) ≤

⌈
r3 − r1
r4 − r3

⌉
(Ki+1 − Ki )

=
⌈
p3 − p1
p4 − p3

⌉
(Ki+1 − Ki ) = L (Ki − Ki−1).

Thus, if r1 has the same colour as r3 and r4, then r1 is also contained in the interval
[L ·Ki+( j−1)(Ki+1−Ki ), L ·Ki+ j (Ki+1−Ki )), implying that ({r1, r2, r3, r4}, r2)
is monochromatic.

We now extend the colouring to R in the case of s0 = p3. Let ϕ′
2 be a colouring

of R≤0 isometric to the reflection of ϕ2 over 0. Then ϕ′
2 contains no AM positive

homothet of (S, s0). If further we assume that ϕ1 and ϕ′
2 use disjoint sets of colours,

then the union of ϕ1 and ϕ′
2 is an AP-free colouring of R containing no AM positive

homothet of (S, s0). We can extend the colouring similarly in the case of s0 = p2. �


3 Higher Dimensions

In this section we prove Theorem 1.5.

3.1 Proof of ‘If’Direction of Theorem 1.5

Let S ⊆ R
d such that |S| > 3 and s0 is not an extreme point of S. To prove the ‘if’

direction of Theorem 1.5, we prove that there is an AP-free colouring of Rd without
an AM similar copy of (S, s0). (Note that for the proof of Theorem 1.5, it would be
sufficient to prove this for S ⊆ Z

d .)
Recall that C ⊆ R

d is a convex cone if for every x, y ∈ C and α, β ≥ 0, the vector
αx + β y is also in C . The angle of C is supx,y∈C\{o} ∠(x, y).

We partition R
d into finitely many convex cones C1 ∪ · · · ∪ Cm , each of angle at

most α = α(d, S), where α(d, S) will be set later. We colour the cones with pairwise
disjoint sets of colours as follows. First, we describe a colouringϕ of the closed circular
cone C = C(α) of angle α around the line x1 = . . . = xd . Then for each i we define
a colouring ϕi of Ci using pairwise disjoint sets of colours in a similar way. More
precisely, let fi be an isometry with fi (Ci ) ⊆ C , and define ϕi such that it is isometric
to ϕ on fi (Ci ).

It is not hard to see that it is sufficient to find an AP-free colouring ϕ of C without
an AM similar copy of (S, s0). Indeed, since the cones Ci are coloured with pairwise
disjoint sets of colours, any AP or AM similar copy of (S, s0) is contained in one
single Ci .

We now turn to describing the colouring ϕ ofC . Note that by choosingα sufficiently
small we may assume that C ⊆ R

d≥0. For x ∈ R
d let ‖x‖1 = |x1| + · · · + |xd |. Then
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for any x ∈ R
d we have

‖x‖ ≤ ‖x‖1 ≤ √
d‖x‖. (1)

Let S = {p1, . . . , pn} and fix K such that

K > 1 + 2
√
d max

pi ,p j ,pl ,p�∈S
pi �=p j

‖pk − p�‖
‖pi − p j‖ .

For a sufficiently large L , to be specified later, we define ϕ : C → {0, 1, . . . , 2L} as

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if‖x‖1 < L

j if for some even i ∈ N and j ∈ [L] we have
‖x‖1 ∈ [L · Ki + ( j − 1)(Ki+1 − Ki ), L · Ki + j (Ki+1 − Ki )),

L + j if for some odd i ∈ N and j ∈ [L] we have
‖x‖1 ∈ [L · Ki + ( j − 1)(Ki+1 − Ki ), L · Ki + j (Ki+1 − Ki )).

ϕ is AP-free since any halfline in C contains arbitrarily long monochromatic sections
of colours 1, . . . , 2L . Thus we only have to show that it does not contain an AM
similar copy of (S, s0). Let ({r1, . . . , rn}, q0) be a similar copy of (S, s0), with

‖r1‖1 ≤ ‖r2‖1 ≤ . . . ≤ ‖rn‖1. (2)

Claim 3.1 {‖r2‖1, . . . , ‖rn‖1} is contained in the union of two consecutive intervals
of the form [L · K j , L · K j+1).

Proof For any ri with i ≥ 2 we have

‖ri‖1 ≤ ‖r2‖1 + ‖ri − r2‖1
≤ ‖r2‖1 + √

d ‖ri − r2‖ (by (1))

= ‖r2‖1 + √
d

‖ri − r2‖
‖r2 − r1‖ ‖r2 − r1‖

< ‖r2‖1 + K − 1

2
‖r2 − r1‖ (by the definition of K )

≤ ‖r2‖1 + K − 1

2
(‖r2‖ + ‖r1‖) (by the triangle inequality)

≤ ‖r2‖1 + K − 1

2
(‖r2‖1 + ‖r1‖1) (by (1))

≤ K‖r2‖1. (by (2))

�
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Assume now that ({r1, . . . , rn}, q0) is AM. Note that ‖x‖1 is
√
d times the length of

the projection of x on the x1 = . . . = xd line for x ∈ R
d≥0. Thus for any similar copy

ψ(S) of S we have ‖ψ(s0)‖1 ∈ conv {‖p‖1 : p ∈ ψ(S \ {s0})}, and we know that
q0 �= r1, rn because s0 is not an extreme point of S. This means that ϕ(r1) = ϕ(rn),
and there is exactly one h ∈ {2, . . . , n − 1} with ϕ(rh) �= ϕ(r1). This, by Claim 3.1
and by the definition of ϕ, is only possible if h = 2 and there are i ∈ N and j ∈ [L]
such that

‖r3‖1, . . . , ‖rn−1‖1 ∈ [L · Ki + ( j − 1)(Ki+1 − Ki ), L · Ki + j (Ki+1 − Ki )).

The following claim finishes the proof.

Claim 3.2 If L is sufficiently large and α is sufficiently small, then ‖r1‖1 is contained
in [L · Ki−1, L · Ki ) ∪ [L · Ki , L · Ki+1).

The claim indeed finishes the proof. By the definition of ϕ, then ϕ(r1) = ϕ(rn) implies

‖r1‖1 ∈ [L · Ki + ( j − 1)(Ki+1 − Ki ), L · Ki + j(Ki+1 − Ki )).

But then we have

‖r2‖1 ∈ [L · Ki + ( j − 1)(Ki+1 − Ki ), L · Ki + j(Ki+1 − Ki ))

as well, contradicting ϕ(r2) �= ϕ(r1).

Proof of Claim 3.2 It is sufficient to show that ‖rn−1‖1 − ‖r1‖1 < LK i − LK i−1. We
have

‖rn−1‖1 − ‖r1‖1 ≤ √
d‖rn−1 − r1‖ = √

d‖rn − rn−1‖ ‖rn−1 − rn‖
‖rn − rn−1‖

< ‖rn−1 − rn‖K − 1

2
,

by (1) and by the definition of K . Let H1 and H2 be the hyperplanes orthogonal
to the line x1 = . . . = xd at distance (L · Ki + ( j − 1)(Ki+1 − Ki ))/

√
d and

(L · Ki + j (Ki+1 − Ki ))/
√
d from the origin respectively. Since ‖rn‖1, ‖rn−1‖1 ∈

[L · Ki + ( j − 1)(Ki+1 − Ki ), L · Ki + j (Ki+1 − Ki )) we have that rn and rn−1 are
contained in the intersection T of C(α) and the slab bounded by the hyperplanes H1
and H2.

Thus ‖rn−1 − rn‖ is bounded by the length of the diagonal of the trapezoid which
is obtained as the intersection of T and the 2-plane through rn , rn−1, and the origin.
Scaled by

√
d, this is shown in Fig. 1. From this, by the triangle inequality we obtain

‖rn−1 − rn‖ ≤ 1√
d

(Ki+1 − Ki + 2 sin α · (LK i + ( j + 1)(Ki+1 − Ki )))

≤ 1√
d

(Ki+1 − Ki + 2 sin α · LK i+1) ≤ 2√
d

(Ki+1 − Ki ),
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α

√
dH2

√
dH1

Ki+1 − Ki

LK i + (j + 1)(Ki+1 − K i)

2(sinα)
(
LK i + (j + 1)(Ki+1 − Ki)

)

Fig. 1 T ∩ C(α)

where the last inequality holds if α is sufficiently small. Combining these inequalities
and choosing L = K 2/

√
d we obtain the desired bound ‖rn−1‖1 − ‖rn‖1 < LK i −

LK i−1, finishing the proof of the claim. �


3.2 Proof of ‘Only If’Direction of Theorem 1.5

The ‘only if’ direction follows from Theorem 2.1 in the case of d = 1, and from the
following stronger statement for d ≥ 2 (since in this case s0 is an extreme point of S).

Theorem 3.3 Let S ⊆ Z
d and s0 ∈ S be an extreme point of S. Then for every k there

is a constant 	 = 	(d, S, k) such that the following is true. Every k-colouring of Zd

contains either an AM similar copy of (S, s0) or a monochromatic similar copy of Zd

with an integer scaling ratio 1 ≤ λ ≤ 	.

Before the proof we need some preparation.

Lemma 3.4 There is an R > 0 such that for any ball D of radius at least R the
following is true. For every p ∈ Z

d outside D and at distance at most 1 from D there
is a similar copy (S′, s′

0) of (S, s0) in Zd such that s′
0 = p and S′ \ {s′

0} ⊂ D.

Proof Since s0 is an extreme point of S, there is a hyperplane that separates s0 from
S \ {s0}. Thus if R is sufficiently large, there is an ε > 0 with the following property.
If p is outside D and is at distance at most 1 from D, then there is a congruent copy
(S′′, s′′

0 ) of (S, s0) with s′′
0 = p and such that every point of S′′ \ {s′′

0 } is contained in
D at distance at least 2ε from the boundary of D.

LetQN = {a/b : a, b ∈ Z, b ≤ N } ⊆ Q. We use the fact that O (Rd) ∩Q
d×d , the

set of rational rotations, is dense in O(Rd) (see for example [13]). This, together with
the compactness of balls implies that we can find an N = N (ε) ∈ N and (S∗, s′

0∗) in
Q

d
N which is a rotation of (S′′, s′′

0 ) around p, ε-close to (S′′, s′′
0 ). With this S∗ \ {s∗

0 } is
contained in D. Moreover, if R is sufficiently large, then dilating (S∗, s′

0∗) from s′
0∗

by N !, S′ \ {s′
0} is contained in D ∩ Z

d . �

The proof of the following variant of Gallai’s theorem can be found in the appendix.

Theorem 3.5 (Gallai) Let S ⊆ Z
d be finite. Then there is a λ(d, S, k) ∈ Z such that

every k-colouring of Zd contains a monochromatic positive homothet of S with an
integer scaling ratio bounded by λ(d, S, k).

Proof of Theorem 3.3 Let R be as in Lemma 3.4 and let H be the set of points of Zd

contained in a ball of radius R. By Theorem 3.5 there is a monochromatic, say blue,
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Fig. 2 A 4-colouring avoiding AM homothets of (S, s0)

homothetic copy H0 = c + λH of H for some integer λ ≤ λ(d, H , k). Without loss
of generality we may assume that H0 = B(O, λR) ∩ λZd for some O ∈ Z

d , where
B(O, λR) is the ball of radius λR centred at O .

Consider a point p ∈ λZd \ H being at distance at most λ from H0. If p is not
blue then using Lemma 3.4 we can find an AM similar copy of (S, s0). Thus we may
assume that any point p ∈ λZd \ H0 which is λ close to H0 is blue as well.

By repeating a similar procedure, we obtain that there is either an AM similar copy
of (S, s0), or every point of Hi = B(O, λR + iλ) ∩ λZd is blue for every i ∈ N. But
the latter means λZd is monochromatic, which finishes the proof. �


3.3 Finding an AM Positive Homothet

The following statement shows that it is not possible to replace an AM similar copy of
(S, s0) with a positive homothet of (S, s0) in the ‘only if’ direction of Theorem 1.5.

Proposition 3.6 Let S ⊆ Z
d such that S is not contained in a line and s0 ∈ S. Then

there is an AP-free colouring of Rd without an AM positive homothet of (S, s0).

Proof We may assume that |S| = 3 and thus S ⊆ R
2. Since the problem is affine

invariant, we may further assume that S = {(0, 1), (1, 1), (1, 0)} with s0 = (1, 1),
s1 = (0, 1), and s2 = (1, 0). First we describe a colouring of R2 and then we extend
it to Rd .

For every i ∈ N let Qi be the square [−4i , 4i−1] × [−4i , 4i−1], and Q0 = ∅.
Further let H+ be the open halfplane x > y and H− be the closed halfplane x ≤ y.
We colour R2 using four colours, green, blue, red, and yellow as follows (see also
Fig. 2).
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Red: For every odd i ∈ N colour (Qi \ Qi−1) ∩ H+ with red.
Yellow: For every even i ∈ N colour (Qi \ Qi−1) ∩ H+ with yellow.
Green: For every odd i ∈ N colour (Qi \ Qi−1) ∩ H− with green.
Blue: For every even i ∈ N colour (Qi \ Qi−1) ∩ H− with blue.

A similar argument to that we used in the proof of Lemma 2.4 shows that this colouring
ϕ1 is AP-free. Thus we only have to check that it contains no AM positive homothet
of (S, s0). Let S′ be a positive homothet of S. First note that we may assume that S′ is
contained in one of the halfplanes bounded by the x = y line, otherwise it is easy to
see that it cannot be AM. Thus by symmetry we may assume that s′

0 ∈ Qi\Qi−1∩H+
for some i ∈ N.

If the x-coordinate of s′
0 is smaller than 4i−2 or the y-coordinate of s′

0 is smaller than
−4i−1, then s′

1 ∈ H+ implies s′
1 ∈ Qi\Qi−1, and hence S′ cannot be AM. Otherwise,

necessarily ‖s′
0 − s′

1‖ ≤ 2 · 4i−1. Since ‖s′
0 − s′

1‖ = ‖s′
0 − s′

2‖, this means that the
y-coordinate of s′

2 is at least−4i−1 −2 ·4i−1 > −4i . Thus, in this case s′
2 is contained

in Qi \ Qi−1, and hence S′ cannot be monochromatic.
To finish the proof, we extend the colouring toRd . Let T ∼= R

d−2 be the orthogonal
complement ofR2. Fix an AP-free colouring ϕ of T using the colour set {1, 2}. Further
let ϕ2 be a colouring of R2 isometric to ϕ1, but using a disjoint set of colours. For
every t ∈ T colour R2 + t by translating ϕi if ϕ(t) = i . This colouring is AP-free and
does not contain any AM positive homothet of (S, s0). �


4 ColouringQ

Before proving Theorem 1.6 we note that we could not replace S = {0, 1, 2}, s0 = 0,
with any arbitrary pair (S, s0) where s0 is an extreme point of S. For example let
S = {0, 1, 2, 3, 4}, s0 = 0, and colour Q as follows. Write each non-zero rational as
2t p/q where p and q are odd, and colour it red if t is even and blue if t is odd. This
colouring is non-monochromatic, but does not contain any AM homothet of (S, s0)
(in fact not even similar copies).

Indeed, let c+λS = {r1, r2, r3, r4, r5} = {r1, r1 +λ, r1 + 2λ, r1 + 3λ, r1 + 4λ} be
a homothet of S. Note that for any x, y, α ∈ Q we have that x and y are of the same
colour if and only if αx and αy have the same colour. That is, multiplying each ri with
the same α does not change the colour pattern. Thus we may assume that r1 = 2ab
and λ = 2t p for some a, t ∈ N and odd integers b, p.

If a < t , then {r1, r2, r3, r4, r5} is monochromatic, thus we may assume that t ≤ a
and divide by 2t , to obtain {2a−t b, 2a−t b+ p, 2a−t b+ 2p, 2a−t b+ 3p, 2a−t b+ 4p}
⊆ Z. But then two of 2a−t b+ p, 2a−t b+2p, 2a−t b+3p, 2a−t b+4p are odd, and one
of them is 2 mod 4, implying that {2a−t b+ p, 2a−t b+ 2p, 2a−t b+ 3p, 2a−t b+ 4p}
cannot be monochromatic.

To prove Theorem 1.6 we need the following lemma.

Lemma 4.1 If a k-colouring ϕ of Z does not contain an AM positive homothet of
(S, s0), where S = {0, 1, 2} and s0 = 0, then every colour class is a two-way infinite
AP. Moreover, there is an F = F(k) such that ϕ is periodic with F.
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Proof of Theorem 1.6 Let ϕQ be a colouring of Q without an AM positive homothet
of (S, s0). For any x ∈ Q, we define a colouring ϕ of Z as ϕ(n) = ϕQ(xn/F(k)).
Applying Lemma 4.1 for ϕ implies that ϕQ(0) = ϕ(0) = ϕ(F(k)) = ϕQ(x). this
means 0 and x have the same colour in ϕQ. �


Proof of Lemma 4.1 We first prove that if a and a + d for some d > 0 have the same
colour, say red, then every point in the two-way infinite AP {a + id : i ∈ Z} is also
red.

For this first we show that {a − id : i ∈ N} is red. Indeed, if it is not true, let j ∈ N

be the smallest such that a− jd is not red. But then {a− jd, a−( j−1)d, a−( j−2)d}
is AM, a contradiction. Second, we show that {a + id : i ∈ N} contains at most one
element of any other colour. Assume to the contrary that there are at least two blue
elements in {a+id : i ∈ N}, and let a+ jd, a+kd be the two smallest with j < k. But
then since a+ jd − (k− j)d is red, we have that {a+ jd − (k− j)d, a+ jd, a+ kd}
is AM, a contradiction. Finally we show that every element {a + id : i ∈ N} is red.
Assume that a + jd is the largest non-red element. (By the previous paragraph this
largest j exists.) But then, since a + ( j + 1)d and a + ( j + 2)d are red, we obtain
that {a + jd, a + ( j + 1)d, a + ( j + 2)d} is AM, a contradiction.

If d is the smallest difference between any two red numbers, this shows that the set
of red numbers is a two-way infinite AP. Thus to finish the first half of the claim, we
only have to show that if a colour is used once, then it is used at least twice. But this
follows from the fact that the complement of the union of finitely many AP is either
empty or contains an infinite AP.

In order to prove the second part, it is sufficient to show that there is an Nk depending
on k such that the following is true. IfZ is covered by k disjoint AP, then the difference
of any of these AP’s is at most Nk . Thus, by considering densities, the following claim
finishes the proof of Lemma 4.1.

Claim 4.2 There is an Nk such that if for x1, . . . , xk ∈ N we have
∑k

i=1(1/xi ) = 1,
then xi ≤ Nk for all 1 ≤ i ≤ k.

Proof We prove by induction on k that for every c ∈ R
+ there is a number Nk(c)

such that if we have
∑k

i=1(1/xi ) = c, then xi ≤ Nk(c) for all 1 ≤ i ≤ k. For
k = 1 setting N1(c) = �1/c� is a good choice. For k > 1 notice that the smallest
number whose reciprocal is in the sum is at most �k/c�. Thus we obtain Nk(c) ≤
max�k/c�

i=1 max(i; Nk−1(c − 1/i)). �


This finishes the proof of Lemma 4.1, and thus also of Theorem 1.6. �

It would be interesting to find a complete characterisation of those pairs (S, s0) for

which Theorem 1.6 holds.

Question 4.3 For which (S, s0) is it true that every finite colouring of Q with more
than one colour contains an AM positive homothet of (S, s0)?
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Fig. 3 A 34-vertex graph without a 4-colouring if the origin is bichromatic

5 Bold Bouquets and the Chromatic Number of the Plane

Suppose that for a graphG = (V , E)with a givenorigin (distinguishedvertex)v0 ∈ V ,
we have a colouring ϕ whereϕ : V \{v0} → {1, . . . , k} and ϕ(v0) ∈ ({1,...,k}

2

)
, i.e., each

vertex apart from v0 gets one color from the set {1, . . . , k}, while v0 get two colors
from {1, . . . , k}. We say that ϕ is a proper k-colouring with bichromatic origin v0, if
(v,w) ∈ E implies ϕ(v) ∩ ϕ(w) = ∅. There are unit-distance graphs with not too
many vertices that do not have a 4-colouringwith a certain bichromatic origin. Figure3
shows such an example, the 34-vertex graphG34, posted byHubai [10] in Polymath16.
Finding such graphs has been motivated by an approach to find a human-verifiable
proof of χ(R5) ≥ 5, proposed by the Pálvölgyi [11] in Polymath16.

G34 is the first example found whose chromatic number can be verified quickly
without relying on a computer. To see this, note that the vertices connected to the
central vertex have to be coloured with two colours, and they can be decomposed into
three 6-cycles. Using this observation and the symmetries of the graph, we obtain that
there are only two essentially different ways to colour the neighbourhood of the central
vertex. In both cases, for the rest of the vertices a systematic back-tracking strategy
shows in a few steps that there is no proper colouring with four colours.

Theorem 5.1 with G = G34 shows that a human-verifiable proof of Conjecture 1.1
for k = 4 would provide a human-verifiable proof of χ(R2) ≥ 5. Note that G34 was
found by a computer search, and for finding other similar graphs one might rely on
a computer program. Thus, the approach we propose, is human-verifiable, however it
might be computer-assisted.

For a graphG with origin v0 let {C1, . . . ,Cn} be the set of unit circles whose centres
are the neighbours of v0, and let C(G, v0) = C1 ∪· · ·∪Cn be the bouquet through v0.
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Theorem 5.1 If there is a unit-distance graph G = (V , E) with v0 ∈ V which does
not have a proper k-colouring with bichromatic origin v0, and Conjecture 1.1 is true
for C(G, v0), then χ(R2) ≥ k + 1.

Proof Assume for a contradiction that there is a proper k-colouring ϕ of the plane.
Using ϕ we construct a proper k-colouring of G with bichromatic origin v0 ∈ V .

Let v1, . . . , vn be the neighbours of the origin v0, and C j be the unit circle centred
at v j . Then C = C1 ∪ · · · ∪Cn is a bouquet through v0. If Conjecture 1.1 is true for ϕ,
then there is a bold congruent copy C ′ = C ′

1 ∪ · · · ∪C ′
n of C through v′

0. That is, there
are points p1 ∈ C ′

1, . . . , pn ∈ C ′
n with � = ϕ(p1) = . . . = ϕ(pn) �= ϕ(v′

0).
For i ∈ [n] let v′

i be the centre of C
′
i . We define a colouring ϕ′ of G as ϕ′(v0) =

{ϕ(v′
0), �} and ϕ′(vi ) = ϕ(v′

i ) for v ∈ V \ {v0}. We claim that ϕ′ is a proper k-
colouring of G with a bichromatic origin v0, contradicting our assumption. Indeed, if
vi �= v0 �= v j then for (vi , v j ) ∈ E we have ϕ′(vi ) �= ϕ′(v j ) because ϕ(v′

i ) �= ϕ(v′
j ).

For (v0, vi ) ∈ E , we have ϕ′(vi ) �= ϕ(v0) because ϕ(v′
i ) �= ϕ(v′

0), and ϕ′(vi ) �= �

because ϕ(v′
i ) �= � since ‖v′

i − pi‖ = 1. This finishes the proof of Theorem 5.1. �


5.1 Bold Pencils

In this section we prove Theorem 1.3. The proof was originally an answer by the first
author to a MathOverflow question of the third author [4]. We start with the following
simple claim.

Claim 5.2 For every pencil L through O there is an ε > 0 for which the following is
true. For any circle C of radius R if a point p is at distance at most εR from C, then
there is a congruent copy L ′ of L through p such that every line of L ′ intersects C.

Proof It is sufficient to prove the following. If C is a unit circle and p is sufficiently
close to C , then there is a congruent copy L ′ of L through p such that every line of L ′
intersects C .

Note that if p is contained in the disc bounded by C , clearly every line of every
congruent copy L ′ of L through p intersects C . Thus we may assume that p is outside
the disc. Let 0 < α < π be the largest angle spanned by lines in L . If p is sufficiently
close to C , then the angle spanned by the tangent lines of C through p is larger than α.
Thus, any congruent copy L ′ of L through p can be rotated around p so that every
line of the pencil intersects C . �


Proof of Theorem 1.3 Assume for contradiction that ϕ is a colouring using at least two
colours, but there is a pencil L such that there is no congruent bold copy of L .

First we obtain a contradiction assuming that there is a monochromatic, say red,
circle C of radius r . We claim that then every point p inside the disc bounded by C is
red. Indeed, translating L to a copy L ′ through p, each line L ′

i will intersect C , and
so have a red point. Thus p must be red.

A similar argument together with Claim 5.2 shows that if there is a non-red point
at distance at most εr from C , we would find a congruent bold copy of L through p.
Thus there is a circle C ′ of radius (1 + ε)r concentric with C , such that every point
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of the disc bounded by C ′ is red. Repeating this argument, we obtain that every point
of R2 is red contradicting the assumption that ϕ uses at least two colours.

To complete the proof, we show that there exists a monochromatic circle. For
1 ≤ i ≤ n let αi be the angle of Li and Li+1. Fix a circle C , and let a1, . . . , an ∈ C be
points such that if c ∈ C \ {a1, . . . , an}, then the angle of the lines connecting c with
ai and c with ai+1 is αi . By Gallai’s theorem there is a monochromatic (say red) set
{a′

1, . . . , a
′
n} similar to {a1, . . . , an}. Let C ′ be the circle that contains {a′

1, . . . , a
′
n}.

ThenC ′ is monochromatic. Indeed, if there is a point p onC ′ for which ϕ(p) is not red,
then by choosing L ′

j to be the line connecting pwith a′
j , we obtain L

′ = L ′
1∪· · ·∪L ′

n ,
a bold congruent copy of L . �


5.2 Conjecture 1.1 for Lattice-Like Bouquets

Using the ideas from the proof of Theorem 3.3, we prove Conjecture 1.1 for a broader
family of bouquets.

5.2.1 Lattices

A lattice L generated by linearly independent vectors v1, v2 ∈ R
2 is the set L =

L(v1, v2) = {n1v1 + n2v2 : n1, n2 ∈ Z}. We call a lattice L rotatable if for every
0 ≤ α1 < α2 ≤ π there is an angle α1 < α < α2 and scaling factor λ = λ(α2, α1)

such that λα(L) ⊂ L, where α(L) is the rotated image of L by angle α around the
origin. For example, Z2, the triangular grid, and {n1(1, 0) + n2(0,

√
2) : n1, n2 ∈ Z}

are rotatable, but L = {n1(1, 0) + n2(0, π) : n1, n2 ∈ Z} is not.2
The rotatability of L allows us to extend Lemma 3.4 from Z

2 to L. This leads to an
extension of Theorem 3.3 to rotatable lattices.

Theorem 5.3 Let L be a rotatable lattice, S ⊆ L be finite and s0 be an extreme point
of S. Then for every k ∈ N there exists a constant 	 = 	(L, S, k) such that the
following is true. In every k-colouring of L there is either an AM similar copy of
(S, s0) with a positive scaling factor bounded by 	, or a monochromatic positive
homothetic copy of L with an integer scaling factor 1 ≤ λ ≤ 	.

The proof of extending Lemma 3.4 to rotatable lattices is analogous to the original
one, so is the proof of Theorem 5.3 to the proof of Theorem 3.3. Therefore, we omit
the details.

5.2.2 Lattice-Like Bouquets

Let C = C1 ∪ · · · ∪ Cn be a bouquet through O , and for i ∈ [n] let Oi be the centre
ofCi . We callC lattice-like if O is an extreme point of {O, O1, . . . , On} and there is a
rotatable lattice L such that {O, O1, . . . , On} ⊆ L. Similarly, we call a unit-distance
graph G = (V , E) with an origin v0 ∈ V lattice-like if there is a rotatable lattice L
such that v0 and its neighbours are contained in L, and v0 is not in the convex hull of
its neighbours.

2 For another characterization of rotatable lattices, see https://mathoverflow.net/a/319030/955.
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Since Z2 is a rotatable lattice, Theorem 1.2 is a direct corollary of the result below.

Theorem 5.4 If C is a lattice-like bouquet, then every proper k-colouring of R2 con-
tains a bold congruent copy of C.

This implies the following, similarly as Conjecture 1.1 implied Theorem 5.1.

Theorem 5.5 If there exists a lattice-like unit-distance graph G = (V , E) with an
origin v0 that does not admit a proper k-colouring with bichromatic origin v0, then
χ(R2) ≥ k + 1.

In the proof of Theorem 5.4, we need a simple geometric statement.

Proposition 5.6 Let C = C1 ∪ · · · ∪ Cn be a bouquet through O, and let O =
{O1, . . . , On}, where O j is the center of C j . Then for every 0 < λ ≤ 2 there are n
points P1, . . . , Pn such that Pj ∈ C j and {P1, . . . , Pn} is congruent to λO.

Proof For λ = 2 let Pj be the image of O reflected in Oj . Then Pj ∈ C j , and
{P1, . . . , Pn} can be obtained by dilating O from O with a factor of 2. For λ < 2,
scale {P1, . . . , Pn} by λ/2 from O obtaining {P ′

1, . . . , P
′
n}. Then there is an angle α

such that rotating {P ′
1, . . . , P

′
n} around O by α, the rotated image of each P ′

j is on C j .
�


Proof of Theorem 5.4 Let C = C1 ∪ · · · ∪ Cn be the lattice-like bouquet through O ,
Oi be the centre of Ci for i ∈ [k], and L be the rotatable lattice containing S =
{O, O1, . . . , On}. Consider a proper k-colouring ϕ of R2 and let δ ∈ Q to be chosen
later.

By Theorem 5.3, the colouring ϕ either contains an AM similar copy of δ(S, s0)
with a positive scaling factor bounded by λ(L, S, k), or a monochromatic similar copy
of δL with an integer scaling factor bounded by λ(L, S, k).

If the first case holds and δ is chosen so that δλ(L, S, k) ≤ 2, Proposition 5.6
provides a bold congruent copy of C . Now assume for contradiction that the first case
does not hold. Then there is a monochromatic similar copy L′ of δL with an integer
scaling factor λ bounded by λ(L, S, k). However, if we choose δ = 1/λ(L, S, k)!,
then for any 1 ≤ λ ≤ λ(L, S, k)we have δλ = 1/Nλ for some Nλ ∈ N. But this would
imply that there are two points in the infinite lattice λδL at distance 1, contradicting
that ϕ is a proper colouring R

2. �


6 Further Problems and Concluding Remarks

Problems in the main focus of this paper are about finding AM sets similar to a given
one. However, it is also interesting to find AM sets congruent to a given one. In this
direction, Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus made the
following conjecture.

Conjecture 6.1 (Erdős et al. [2]) Let s0 ∈ S ⊂ R
2, |S| = 3. There is a non-mono-

chromatic colouring of R2 that contains no AM congruent copy of (S, s0) if and only
if S is collinear and s0 is not an extreme point of S.
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As noted in [2], the ‘if’ part is easy; colour (x, y) ∈ R
2 red if y > 0 and blue if y ≤ 0.

In fact, this colouring also avoids AM similar copies of such S. Conjecture 6.1 was
proved in [2] for the vertex set S of a triangle with angles 120◦, 30◦, and 30◦ with any
s0 ∈ S. It was also proved for any isosceles triangle in the case when s0 is one of the
vertices on the base, and for an infinite family of right-angled triangles.

Much later, the same question was asked independently in a more general form
by the third author [12]. In a comment to this question on the MathOverflow site, a
counterexample (to both the MathOverflow question and Conjecture 6.1) was pointed
out by user ‘fedja’, which we sketch below.

Counterexample (‘fedja’ [3]) Let S = {0, 1, s0} where s0 /∈ [0, 1] is a transcenden-
tal number. Then there is a field automorphism τ ofC overQ such that τ(s0) ∈ (0, 1).
Pick an arbitrary halfplane H ⊂ C, and colour x red if τ(x) ∈ H and blue if x /∈ H.
Suppose that there is anAMsimilar copy {a, a+b, a+bs0} of (S, s0). Then these points
are mapped by τ to τ(a), τ(a) + τ(b), and τ(a) + τ(b)τ (s0). Since τ(s0) ∈ (0, 1),
the point τ(a) + τ(b)τ (s0) falls inside the planar segment [τ(a), τ (a) + τ(b)].
If a and a + bs0 have the same color, then either τ(a), τ (a) + τ(b) ∈ H, or
τ(a), τ (a) + τ(b) /∈ H. But if τ(a), τ (a) + τ(b) ∈ H, then τ(a) + τ(b)τ (s0) ∈ H,
and similarly, if τ(a), τ (a) + τ(b) /∈ H, then τ(a) + τ(b)τ (s0) /∈ H, which implies
that a + b gets the same color, so {a, a + b, a + bs0} cannot be an AM copy.

Straightforward generalisations of our arguments from Sect. 5 would also imply lower
bounds for the chromatic number of other spaces. For example, if C is a lattice-like
bouquet of spheres, then every proper k-colouring of Rd contains a bold congruent
copy of C . This implies that if one can find a lattice-like unit-distance graph with an
origin v0 that does not admit a proper k-colouring with bichromatic origin v0, then
χ(Rd) ≥ k + 1. Possibly one can even strengthen this further; in Rd it could be even
true that there is a d-bold congruent copy of any bouquet C , meaning that there are
d colours that appear on each sphere of C . This would imply χ(Rd) ≥ k + d − 1 if
we could find a lattice-like unit-distance graph with an origin v0 that does not admit
a proper k-colouring with d-chromatic origin v0.

In our AP-free colourings that avoid AM similar copies of certain sets, we often use
many colours. It would be interesting to know if constructionswith fewer colours exist,
particularly regarding applications to the Hadwiger–Nelson problem. In Lemma 2.4
(and also in the colouring used for proving the ‘if’ direction of Theorem 1.5) the
number of colours we use is not even uniformly bounded. Are there examples with
uniformly bounded number of colours?

One of our main questions is about characterising those pairs (S, s0) for which
in every colouring of Rd we either find an AM similar copy of (S, s0) or an infinite
monochromaticAP.However, regarding applications to theHadwiger–Nelsonproblem
the following, weaker version would also be interesting to consider: Determine those
(S, s0) with S ⊆ R

d and s0 ∈ S for which there is a D = D(k, S) such that the
following is true. For every n in every k-colouring of RD there is an AM similar copy
of (S, s0) or an n-term monochromatic AP with difference t ∈ N bounded by D. Note
that there are pairs for which the property above does not hold when colouring Z. For
example let S = {−2,−1, 0, 1, 2}, s0 = 0, and colour i ∈ Z red if �i/D� ≡ 0 mod 2
and blue if �i/D� ≡ 1 mod 2.
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Appendix A: Proof of Gallai’s Theorem

For completeness, we prove the stronger version of Gallai’s theorem, Theorem 3.5.
We use the Hales–Jewett theorem, following the proof from [6]. A combinatorial line
in [n]N is a collection of n points, p1, . . . , pn , such that for some fix I ⊂ [N ] for
every i ∈ I the coordinate (p j )i is the same for every j , while for i /∈ I the coordinate
(p j )i = j for every j .

Theorem 6.2 (Hales–Jewett [9]) For every n and k there is an N such that every
k-colouring of [n]N contains a monochromatic combinatorial line.

Proof of Theorem 3.5 Suppose thatwewant to find amonochromatic positive homothet
of some finite set S = {s1, . . . , sn} from Z

d in a k-colouring of Zd . Choose an N that
satisfies the conditions of the Hales–Jewett theorem for n and k. Choose an injective
embedding of [n]N into Z

d given by �(x1, . . . , xN ) = ∑N
i=1 λi sxi , where the λi ’s

are to be specified later. Then every combinatorial line is mapped into a positive
homothet of S,with scaling

∑
i∈I λi for somenon-empty I ⊂ [N ]. Therefore, applying

the Hales–Jewett theorem for the pullback of the k-colouring of our space gives a
monochromatic homothet of S.

We still have to specify how we choose the numbers λi . For � to be injective,
we need that

∑N
i=1 λi (sxi − sx ′

i
) �= 0 if x �= x ′. These can be satisfied for some

1 ≤ λi ≤ nN by choosing them sequentially. This means that the scaling of the
obtained monochromatic homothet is at most

∑N
i=1 λi ≤ NnN . �


Remark 6.3 The proof above works in every abelian group of sufficiently large cardi-
nality, thus Zd in Theorem 3.5 can be replaced with Rd or any lattice L.

References
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