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Abstract
Many polytopes arising in polyhedral combinatorics are linear projections of higher-
dimensional polytopeswith significantly fewer facets. Such liftsmay yield compressed
representations of polytopes, which are typically used to construct small-size linear
programs. Motivated by algorithmic implications for the closest vector problem, we
study lifts of Voronoi cells of lattices. We construct an explicit d-dimensional lattice
such that every lift of the respective Voronoi cell has 2�(d/log d) facets. On the positive
side, we show that Voronoi cells of d-dimensional root lattices and their dual lattices
have lifts withO(d) andO(d log d) facets, respectively. We obtain similar results for
spectrahedral lifts.
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Mathematics Subject Classification 52B05 · 52B12 · 90C05 · 52C07

1 Introduction

Many polytopes that arise in the study of polyhedral combinatorics are linear projec-
tions of higher-dimensional polytopes, also called lifts, with significantly fewer facets.
Prominent examples include basic polytopes such as permutahedra [19], cyclic poly-
topes [5], and polygons [44], as well as several polytopes associated to combinatorial
optimization problems such as spanning tree polytopes [33, 47], subtour-elimination
polytopes [48], stable set polytopes of certain families of graphs [8, 14, 39], matching
polytopes of bounded-genus graphs [18], independence polytopes of regular matroids
[2], or cut dominants [7].
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Fig. 1 A lattice in R
2 together with its Voronoi cell and the corresponding tiling of the plane via its lattice

translates

In this work, we study to which extent this phenomenon also applies to Voronoi
cells of lattices. Here, a lattice is the image of Z

k under an injective linear map. We
say that a lattice is k-dimensional, if k is the dimension of its linear hull. The Voronoi
cell VC(�) of a lattice � ⊆ R

d is the set of all points in lin(�) for which the origin
is among the closest lattice points, i.e.,

VC(�) := {x ∈ lin(�) : ‖x‖ ≤ ‖x − z‖ for all z ∈ �},

where lin( · ) denotes the linear hull and ‖ · ‖ denotes the Euclidean norm. The lattice
translates z+VC(�), z ∈ �, induce a facet-to-facet tiling of lin(�), so that in particular
Voronoi cells of lattices are what is commonly called space tiles, see Fig. 1. Moreover,
it is known that VC(�) is a centrally symmetric polytope with up to 2(2d − 1) facets.
We refer to [25, Chap. 32] for background on translative tilings of space.

It is tempting to believe that the rich structure of Voronoi cells of lattices allows
to construct polytopes with significantly fewer than 2(2d − 1) facets and that linearly
project onto VC(�). In fact, this is true for several examples: A lattice whose Voronoi
cell has the largest possible number of facets is the dual root lattice A�

d (see Sect. 3.1
for a definition). However, its Voronoi cell is a permutahedron and admits a lift with
only O(d log d) facets [19], see Sect. 3.1. More generally, if the Voronoi cell of a
d-dimensional lattice is a zonotope, then it has O(d2) generators and hence has a lift
with O(d2) facets. We discuss this result in detail in Sect. 3.2.

The lattice A�
d also belongs to the prominent class of root lattices and their duals. By

their algebraic and geometric properties, these lattices are prime examples in various
contexts: For example, they play a crucial role in Coxeter’s classification of reflection
groups (cf. [9, Chap. 4]), and they yield the densest sphere packings and thinnest
sphere coverings in small dimensions (see [9] or [43]).

As one part of our work, we show that Voronoi cells of such lattices generally admit
small lifts. In what follows, for a polytope P we write xc(P) for the minimum number
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of facets of any polytope that can be linearly projected onto P . This number is called
the extension complexity of P .

Theorem 1.1 For every d-dimensional lattice � that is a root lattice or the dual of a
root lattice, we have xc(VC(�)) = O(d log d).

This raises the question whether Voronoi cells of other lattices also have a small
extension complexity, say, polynomial in their dimension. One of themainmotivations
for representing a polytope P as the projection of another polytope Q is that a linear
optimization problem over P can be reduced to one over Q. If Q has a small number
of facets, then the latter task can be expressed as a linear program with a small number
of inequalities, also known as an extended formulation.

Thus, given a lattice� ⊆ R
d whose Voronoi cell has a small extension complexity,

we may phrase any linear optimization problem over VC(�) as a small-size linear
program. Such a representation may have several algorithmic consequences for the
closest vector problem. In this problem, one is given � in terms of a lattice basis and
a point x ∈ R

d and is asked to determine a lattice point that is closest to x , i.e., a point
in

cl(x,�) := {z ∈ � : ‖x − z‖ ≤ ‖x − z′‖ for all z′ ∈ �}.

Note that z ∈ cl(x,�) if and only if x − z ∈ VC(�). Thus, a small extension
complexity of VC(�)would yield a small-size linear program to test whether a lattice
point is the closest lattice vector to x . However, in view of the fact that the closest
vector problem is NP-hard [11] and the belief that NP �= coNP, we do not expect
efficient algorithms that, for general lattices, decide whether a point is the closest
lattice vector to x .

Another sequence of algorithmic implications arises from the algorithm of Mic-
ciancio and Voulgaris [36], which also motivated other recent work on compact
representations of Voronoi cells, such as [28]. As discussed in the thesis of Hun-
kenschröder [27, Sect. 4.1], an optimization oracle for the Voronoi cell of a lattice is
sufficient to obtain an algorithm for the closest vector problem that runs in expected
polynomial time: Dadush and Bonifas [10] describe an efficient procedure to almost
uniformly sample a point y from VC(�), which can be used to traverse the so-called
Voronoi graph by a path of expected polynomial length to obtain a lattice vector that
is closest to a given target point x . For sampling y, they only require a membership
oracle for VC(�), which can be obtained from an optimization oracle [24, Sect. 6].
For traversing the Voronoi graph, it is necessary to have an efficient procedure for
determining the normal of a facet of VC(�) that is intersected by a given line seg-
ment. Again, this can be implemented with an optimization oracle for VC(�). Clearly,
a polynomial-size extended formulation for the Voronoi cell of a lattice yields an effi-
cient implementation of an optimization oracle. This motivates the study of Voronoi
cells of lattices for which small-size lifts can be efficiently constructed.

We remark that the mere existence of small size extended formulations of Voronoi
cells may not be immediately applicable, since finding such representations as well as
verifying that they indeed yield the Voronoi cell of a given lattice might be hard. Thus,
polynomial bounds on the extension complexities of Voronoi cells of general lattices
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would not contradict hardness assumptions in complexity theory. In fact, we initially
considered the possibility of such bounds. However, as our main result we explicitly
construct lattices with Voronoi cells of extension complexity close to the trivial upper
bound 2(2d − 1).

Theorem 1.2 There exists a family of d-dimensional lattices� such that xc(VC(�)) =
2�(d/log d).

Lower bounds on extension complexities have been established for various promi-
nent polytopes in recent years. Of particular note are results for cut polytopes
[6, 17, 29], matching polytopes [42], and certain stable set polytopes [21]. Lower
bounds for other polytopes Q are typically obtained by showing that a face F of Q
affinely projects onto one of the polytopes P from above and using the simple fact
xc(P) ≤ xc(F) ≤ xc(Q). Unfortunately, it seems difficult to construct lattices for
which this approach can be directly applied to the Voronoi cell. However, we will
exploit the lesser known fact that xc(Q) = xc(Q◦) holds for every polytope Q with
the origin in its interior, where Q◦ is the dual polytope of Q. In fact, we will describe a
way to obtain many 0/1-polytopes as projections of faces of dual polytopes of Voronoi
cells of lattices. As an example, for every n-node graph G we can construct a lattice
� of dimension at most n + 1 such that the stable set polytope of G is a projection of
a face of VC(�)◦. Theorem 1.2 then follows from a construction of Göös et al. [21]
of stable set polytopes with high extension complexity.

Another prominent way of representing polytopes is via linear projections of fea-
sible regions of semidefinite programs, i.e., spectrahedra. We will discuss how our
approach also yields a version of Theorem 1.2 for such semidefinite lifts with a slightly
weaker but still superpolynomial bound.

Outline In Sect. 2, we provide a brief introduction to lifts of polytopes and lattices,
focusing on tools and properties that are essential for our arguments in the following
sections. In Sect. 3, we derive upper bounds on the extension complexity of Voronoi
cells for some selected classes of lattices, such as root lattices and their duals, zonotopal
lattices, and a class of lattices that do not admit a compact representation in the sense of
[28]. The proof of Theorem 1.2 is given in Sect. 4, and in Sect. 5, we briefly introduce
semidefinite lifts and present a version of Theorem 1.2 with a superpolynomial bound
on the semidefinite extension complexity. We close our paper with a discussion of
open problems in Sect. 6.

2 Preliminaries

2.1 Extension Complexity: A Toolbox

Throughout this paper we only need basic facts regarding extension complexities of
polytopes and most of them are well known. For the sake of completeness, we provide
proofs here. First, we start with a simple fact already mentioned in the introduction.

Lemma 2.1 For every face F of a polytope P, we have xc(F) ≤ xc(P).
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Proof If P is the image of a polyhedron Q with k facets under a linear map τ , then F
is the image of τ−1(F) ∩ Q, which is a face of Q and hence has at most k facets. 
�

For the next fact we need the notion of a slack matrix of a polytope. To this end,
we consider a polytope P = {x ∈ R

d : 〈ai , x〉 ≤ bi , i ∈ [m]} = conv {v1, . . . , vn},
where [m] := {1, . . . ,m} and 〈 ·, · 〉 denotes the standard Euclidean scalar product.
Corresponding to these two descriptions of P , we define the slack matrix S = (Si, j ) ∈
R
m×n
≥0 via Si, j = bi −〈ai , v j 〉. Yannakakis [48] showed that the extension complexity

xc(P) of P equals the nonnegative rank of S, which is the smallest number r such
that S = FV , where F ∈ R

m×r
≥0 and V ∈ R

r×n
≥0 , and which is denoted by r+(S).

For a polytope P containing the origin 0 in its relative interior, the dual polytope
of P is defined as

P◦ := {y ∈ lin(P) : 〈x, y〉 ≤ 1 for all x ∈ P}.

It is a basic fact that P◦ is again a polytope with the origin in its relative interior,
lin(P◦) = lin(P), and (P◦)◦ = P . Moreover, it is easy to see that if

P = {x ∈ lin(P) : 〈wi , x〉 ≤ 1, i ∈ [m]} = conv {v1, . . . , vn},

then

P◦ = {y ∈ lin(P) : 〈vi , x〉 ≤ 1, i ∈ [n]} = conv {w1, . . . , wm}. (1)

In particular, this shows that if S is a slack matrix of P induced by v1, . . . , vn and
w1, . . . , wm , then Sᵀ is a slack matrix of P◦. Since r+(S) = r+(Sᵀ) we obtain the
following fact.

Lemma 2.2 For every polytope P ⊆ R
d that contains the origin in its relative interior,

we have

xc(P) = xc(P◦).

The next statement shows that the extension complexity behaves well under Cartesian
products, Minkowski sums, and intersections.

Lemma 2.3 If P ⊆ R
d , Q ⊆ R

d ′
are polytopes, then

(i) xc(P × Q) ≤ xc(P) + xc(Q).

Moreover, if d = d ′, then

(ii) xc(P + Q) ≤ xc(P) + xc(Q) and
(iii) xc(P ∩ Q) ≤ xc(P) + xc(Q).

Proof (i): If P ′ linearly projects onto P and Q′ onto Q, then P ′ × Q′ linearly projects
onto P × Q. Moreover, the number of facets of P ′ × Q′ is equal to the sum of the
number of facets of P ′ and Q′.
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(ii): The polytope P × Q linearly projects onto P + Q via (p, q) �→ p + q for
(p, q) ∈ P × Q, and hence the claim follows from (i).

(iii): If P = π(P ′) and Q = τ(Q′) hold for some polyhedra P ′, Q′ and linear maps
π, τ , then P ∩ Q is a linear image of the polyhedron L = {(y, z) ∈ P ′ × Q′ : π(y) =
τ(z)}. Moreover, the number of facets of L is at most the number of facets of P ′ × Q′,
which, again, is equal to the sum of the number of facets of P ′ and Q′. 
�

The next fact is a very useful result following from a work of Balas [3] deriving
a description of the convex hull of the union of certain polytopes. The proof of the
version presented here can be found in [46, Prop. 3.1.1].

Lemma 2.4 Let P1, . . . , Pk be polytopes, then

xc (conv (P1 ∪ . . . ∪ Pk)) ≤
k∑

i=1

xc(Pi ) + |{i ∈ [k] : dim(Pi ) = 0}|.

We mentioned already that some lattices have a permutahedron as their Voronoi cell.
These polytopes arise from a single vector by permuting its coordinates in all possible
ways and taking their convex hull. Let us denote the set of all bijective maps on
[d] by Sd . For a permutation π ∈ Sd and a vector v = (v(1), . . . , v(d)) ∈ R

d , let
π(v) := (v(π(1)), . . . , v(π(d))) be the vector that arises from v via permuting its
entries according to π .

Lemma 2.5 For every v ∈ R
d we have xc (conv {π(v) : π ∈ Sd}) ≤ d2.

Proof For π ∈ Sd , let P(π) ∈ {0, 1}d×d with P(π)i j = 1 if and only if π(i) = j ,
for all i, j ∈ [d], be the associated permutation matrix. It is easy to see that
conv {π(v) : π ∈ Sd} is the image of Bd := conv {P(π) : π ∈ Sd} under the linear
map τ : R

d×d → R
d with τ(X)i = ∑d

j=1 v j Xi j , for i ∈ [d]. The latter polytope is
the Birkhoff–von Neumann polytope [4, 38] described via

Bd =
⎧
⎨

⎩X ∈ R
d×d
≥0 :

d∑

i=1

Xi j = 1 for j ∈ [d],
d∑

j=1

Xi j = 1 for i ∈ [d]
⎫
⎬

⎭ ,

which has d2 facets. 
�
Goemans [19] showed that if v = (1, 2, . . . , d), then the above bound can be

improved to xc (conv {π(v) : π ∈ Sd}) = �(d log d).

2.2 Lattices andVoronoi Cells

Most basic notions regarding lattices and their Voronoi cells have been already intro-
duced in Sect. 1. In this section, we provide some further definitions and results that
we use to obtain bounds on the extension complexity of Voronoi cells of lattices.
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We call two lattices �,� ⊆ R
d isomorphic, if there exists an orthogonal matrix

Q ∈ R
d×d such that Q� = �. Note that VC(�) = Q VC(�) and therefore the

extension complexities of their Voronoi cells coincide. In some parts, we will consider
the dual lattice of a lattice � ⊆ R

d , which is defined as

�� = {x ∈ lin(�) : 〈x, y〉 ∈ Z for all y ∈ �}.

Note that for every two lattices�,�, their product�×� is also a lattice. The following
lemma shows that the Cartesian product behaves well with respect to Voronoi cells or
duals of lattices.

Lemma 2.6 For any two lattices � ⊆ R
d and � ⊆ R

d ′
we have

(i) VC(� × �) = VC(�) × VC(�) and
(ii) (� × �)� = �� × ��.

Proof The first claim follows since

VC(� × �) = {(x, y) ∈ lin(� × �) :
‖(x, y)‖2 ≤ ‖(x, y) − (w, z)‖2 for all (w, z) ∈ � × �}

= {(x, y) : x ∈ lin(�), y ∈ lin(�),

‖x‖2 + ‖y‖2 ≤ ‖x − w‖2 + ‖y − z‖2 for all (w, z) ∈ � × �}
= {(x, y) : x ∈ lin(�), y ∈ lin(�),

‖x‖2 ≤ ‖x − w‖2 for all w ∈ �, ‖y‖2 ≤ ‖y − z‖2 for all z ∈ �}
= VC(�) × VC(�)

holds. For the second claim, it is clear that �� × �� ⊆ (� × �)� holds. To see that
the reverse inclusion holds as well, let (x, y) ∈ (� × �)�. For every w ∈ �, we have
(w, 0) ∈ � × � and hence 〈x, w〉 = 〈(x, y), (w, 0)〉 ∈ Z. This yields x ∈ ��. We
obtain y ∈ �� in an analogous fashion. 
�

Amain ingredient for proving Theorem 1.2 is to consider the dual polytopeVC(�)◦
of VC(�). Recall that we have xc(VC(�)) = xc(VC(�)◦) by Lemma 2.2. The
following two observations are crucial for our arguments.

Lemma 2.7 For every lattice � we have

VC(�)◦ = conv

{
2

‖z‖2 z : z ∈ � \ {0}
}
.

Proof In view of the identities

VC(�) = {x ∈ lin(�) : ‖x‖2 ≤ ‖x − z‖2 for all z ∈ �}

=
{
x ∈ lin(�) : 〈x, z〉 ≤ ‖z‖2

2
for all z ∈ �

}
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=
{
x ∈ lin(�) :

〈
x,

2

‖z‖2 z
〉

≤ 1 for all z ∈ � \ {0}
}
,

the claim follows from (1). 
�
Lemma 2.8 Let � ⊆ R

d be a lattice and p ∈ R
d . If 0 ∈ cl(p,�), then

conv

{
2

‖z‖2 z : z ∈ cl(p,�) \ {0}
}

is a face of VC(�)◦.

Proof Since 0 ∈ cl(p,�), every nonzero lattice point z ∈ �\{0} satisfies ‖p− z‖2 ≥
‖p‖2, with equality if and only if z ∈ cl(p,�) \ {0}. Note that the above inequality
is equivalent to 〈p, (2/‖z‖2)z〉 ≤ 1. Thus, due to Lemma 2.7 we see that F := {y ∈
VC(�)◦ : 〈p, y〉 = 1} is a face of VC(�)◦. This establishes the claim since

F = conv

{
2

‖z‖2 z : z ∈ � \ {0},
〈
p,

2

‖z‖2 z
〉

= 1

}

= conv

{
2

‖z‖2 z : z ∈ cl(p,�) \ {0}
}
. 
�

3 Lattices with Small Extension Complexity

In this section, we provide bounds on the extension complexities of Voronoi cells of
some prominent lattices.

3.1 Root Lattices and Their Duals

We start with Voronoi cells of root lattices and their duals. An irreducible root lattice
is a lattice � for which there exists a finite set S of vectors of squared length equal
to 1 or 2, such that � = {∑

b∈S αbb : αb ∈ Z for all b ∈ S
}
. We say that a lattice is

a (general) root lattice, if it is isomorphic to a lattice obtained by iteratively taking
Cartesian products with irreducible root lattices. A well-known theorem related to the
classification of reflection groups states that besides the lattice Z

d of integers, up to
isomorphism the irreducible root lattices split into the two infinite classes

Ad = {x ∈ Z
d+1 : x(1) + · · · + x(d + 1) = 0} and

Dd = {x ∈ Z
d : x(1) + · · · + x(d) is even},

and the three exceptional lattices

E8 = D8 ∪
(
1

2
1 + D8

)
,

E7 = {x ∈ E8 : 〈x, e7 + e8〉 = 0}, and
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E6 = {x ∈ E7 : 〈x, e6 + e8〉 = 0}.

Here and in the following, we denote by ei the i th standard Euclidean unit vector and
by 1 the all-one vector in the corresponding space. Moreover, the dual lattices of the
two infinite classes Ad and Dd are given by

A�
d =

d⋃

i=0

(vi + Ad),

with

vi =
(

i

d + 1
, . . . ,

i

d + 1︸ ︷︷ ︸
j times

,− j

d + 1
, . . . ,− j

d + 1︸ ︷︷ ︸
i times

)
,

for 0 ≤ i ≤ d and j = d + 1 − i , and

D�
d = Z

d ∪
(
1

2
1 + Z

d
)

,

respectively. In the literature the dual D�
d is usually scaled by a factor of 2 in order to

get an integral lattice, which is often more convenient to investigate. In order to avoid
confusion, we denote it by

D̄�
d := 2D�

d = (2Z
d) ∪ (1 + 2Z

d),

and note that this scaling has no effect on the extension complexity of its Voronoi
cell. We refer to Conway and Sloane [9, Chaps. 4 and 21] and Martinet [34, Chap. 4]
for proofs, original references and background information on root lattices. Details
on Voronoi cells and Delaunay polytopes of root lattices can be found in Moody and
Patera [37], which together with the two aforementioned monographs are our main
sources of information.

Given a lattice � ⊆ R
d we write |�| = min {‖z‖ : z ∈ � \ {0}} for the length of

a shortest non-trivial vector in �. A minimal vector of � is any vector z ∈ � with
‖z‖ = |�|, and a facet vector of � is any vector w ∈ �, such that the constraint
〈x, w〉 ≤ ‖w‖2/2 defines a facet of the Voronoi cell VC(�). For convenience, we
write

S(�) = {z ∈ � : ‖z‖ = |�|} and F(�) = {w ∈ � : w is a facet vector of �},

for the set of minimal vectors and facet vectors, respectively. In general, one has the
inclusion S(�) ⊆ F(�), which however is usually strict. Root lattices are now neatly
characterized by the property that every facet vector is at the same time a minimal
vector, that is, the equality S(�) = F(�) holds (see Rajan and Shende [40]).
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Since the set of minimal vectors of the irreducible root lattices are well understood,
this allows to describe their Voronoi cells as well. For the sake of the asymptotic
study of the extension complexity of their Voronoi cells, it suffices to understand
the two infinite families Ad and Dd , and their duals A�

d and D�
d . In the sequel, we

provide bounds on the extension complexities of the Voronoi cells of these lattices.
To achieve these bounds, we sometimes use a characterization of the facet vectors and
in other cases we use a characterization of the vertices of the Voronoi cell. For the
sake of easy reference, we describe the vertices and facet vectors in all cases. Due to
Lemmas 2.3 and 2.6, these bounds directly imply Theorem 1.1. Moreover, the bound
in Theorem 1.1 is asymptotically tight since the Voronoi cell of A�

d is a permutahedron,
see Lemma 3.3.

3.1.1 Voronoi Cell of Ad

The Voronoi cell of the root lattice Ad is given by

VC(Ad) = conv {π(vi ) : π ∈ Sd+1, i ∈ {0, . . . , d}},

where

vi =
(

i

d + 1
, . . . ,

i

d + 1︸ ︷︷ ︸
j times

,− j

d + 1
, . . . ,− j

d + 1︸ ︷︷ ︸
i times

)
∈ R

d+1

with j = d + 1 − i . Moreover, we have

VC(Ad) = {x ∈ R
d+1 : 〈x, z〉 ≤ 1 for all z ∈ F(Ad)}, where

F(Ad) = {π((1,−1, 0, . . . , 0)) : π ∈ Sd+1}

(see [9, Chaps. 21 and 4, Sect. 6]).

Lemma 3.1 xc(VC(Ad)) = O(d).

Proof Using the description of the facet vectors stated above, we obtain that
VC(Ad)

◦ = S+(−S),where S is thed-dimensional simplex S = conv {e1, . . . , ed+1}.
Hence, using Lemmas 2.3 and 2.7, we obtain the upper bound xc(VC(Ad)) ≤ 2(d+1).


�

3.1.2 Voronoi Cell of Dd

The Voronoi cell of Dd is given by

VC(Dd) = conv

(
{±e1, . . . ,±ed} ∪

{
−1

2
,
1

2

}d)
.
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Moreover, we have

VC(Dd) = {x ∈ R
d+1 : 〈x, z〉 ≤ 1 for all z ∈ F(Dd)}, where

F(Dd) = {±ei ± e j : 1 ≤ i < j ≤ d}.

This follows from the characterization of the minimal (and thus facet) vectors of Dd

given in [9, Chap. 4, Sect. 7]. The inner description of the Voronoi cell can be read off
from the vertices of a fundamental simplex for Dd (see [9, Chap. 21, Fig. 21.7]).

Lemma 3.2 xc(VC(Dd)) = O(d).

Proof Using the description of the vertices of VC(Dd) stated above, we obtain that

VC(Dd)
◦ = 2 · conv {±e1, . . . ,±ed} ∩ [−1, 1]d .

Hence, the dual of the Voronoi cell is the intersection of a hypercube and a
crosspolytope. Since

xc([−1, 1]d) = xc (conv {±e1, . . . ,±ed}) = 2d, (2)

(see, e.g., [23, Cor. 2.5]), Lemmas 2.3 and 2.7 imply xc(VC(Dd)) = O(d). 
�

3.1.3 Voronoi Cell of A�
d

The Voronoi cell of the dual of the root lattice A�
d is given by

VC(A�
d) = conv {π(v) : π ∈ Sd+1},

where

v = 1

2d + 2
(−d,−d + 2, . . . , d − 2, d) ∈ R

d+1.

Moreover, we have

F(A�
d) = {v ∈ lin(A�

d) : v is a vertex of VC(Ad)}.

The characterization of the vertices can be found in [9, Chap. 21, Sect. 3F] and the
fact that the facet vectors are exactly the vertices of VC(Ad) is explained in detail in
the unpublished monograph [12, Chap. 3.5].

Lemma 3.3 xc(VC(A�
d)) = �(d log d).

Proof Using the description of the vertices of VC(A�
d) stated before, we obtain that

VC(A�
d) is an affine linear transformation of the standard permutahedron

Pd = {(π(1), . . . , π(d + 1)) : π ∈ Sd+1}.
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In fact,

VC(A�
d) = 1

d + 1
Pd − d + 2

2d + 2
1.

The claim follows, since Goemans [19] showed that the extension complexity of Pd
is in �(d log d). 
�

3.1.4 Voronoi Cell of D�
d

As explained before, we consider the integral lattice D̄�
d instead of D�

d . The Voronoi
cell of D̄�

d is given by

VC(D̄�
d) = conv {π(v) : π ∈ Sd , v ∈ V },

where

V =
⎧
⎨

⎩

{0}d/2 × {−1, 1}d/2 if d is even,

{0}(d−1)/2 ×
{
−1

2
,
1

2

}
× {−1, 1}(d−1)/2 if d is odd.

Moreover, we have

F(D̄�
d) = {±2e1, . . . ,±2ed} ∪ {−1, 1}d .

We refer to [9, Chap. 21, Sect. 3E] for the characterization of the facet vectors and
the inner description of the Voronoi cell, which is therein denoted by the symbols
β(d, d/2), for d even, and δ(d, (d − 1)/2)/2, for d odd.

Lemma 3.4 xc(VC(D�
d)) = O(d).

Proof Using the above description of the facet vectors, we obtain that

VC(D̄�
d) = [−1, 1]d ∩

(
d

2
· conv {±e1, . . . ,±ed}

)
.

Hence, the Voronoi cell of D�
d is the intersection of a hypercube and a crosspolytope.

As in the case of the root lattice Dd , the stated bound follows by Lemma 2.3 and (2).

�

Note that all the bounds stated in Lemmas 3.1, 3.2, and 3.4 are asymptotically tight,
since the extension complexity of a polytope grows at least linearly with its dimension
(cf. [15, Eq. 2 and Prop. 5.2]).
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3.2 Zonotopal Lattices

A zonotope Z ⊆ R
d is the Minkowski sum of finitely many line segments, that is,

there are vectors a1, b1, . . . , am, bm ∈ R
d such that Z = ∑m

i=1 conv {ai , bi }. The
non-zero vectors zi = bi − ai are usually called the generators of the zonotope, and
clearly, Z is an affine projection of the m-dimensional cube [−1, 1]m via ei �→ zi ,
for 1 ≤ i ≤ m, and a suitable translation. Regarding the extension complexity of a
zonotope Z , the bound xc(Z) ≤ 2m thus immediately follows from the definition.

A lattice � ⊆ R
d is said to be zonotopal if its Voronoi cell is a zonotope. Every

lattice of dimension at most three is zonotopal, but from dimension four on there exist
non-zonotopal lattices. For instance, the Voronoi cell of the root lattice D4 is the non-
zonotopal 24-cell. Examples of classes of zonotopal lattices areZ

d , the root lattice Ad ,
its dual lattice A�

d , lattices of Voronoi’s first kind, and the tensor product Ad ⊗ Ad ′ .
Zonotopal space tiles have been extensively studied over the years, mostly due to their
combinatorial connections to regular matroids, hyperplane arrangements, and totally
unimodular matrices. For a detailed account on zonotopal lattices and pointers to the
original works containing the previous statements we refer to [35, Sect. 2].

The tiling constraint on a zonotope that arises as the Voronoi cell of a lattice, allows
it to have atmost quadraticallymany generators in terms of its dimension. In particular,
these polytopes admit lifts with quadratically many facets.

Theorem 3.5 Each zonotopal lattice � ⊆ R
d satisfies xc(VC(�)) ≤ d(d + 1).

Proof It suffices to argue that the Voronoi cell is generated by at most
(d+1

2

)
line

segments. Indeed, each line segment L satisfies xc(L) = 2 and hence the statement
follows using Lemma 2.3.

Erdahl [13, Sect. 5] proved that the generators of a space tiling zonotope correspond
to the normal vectors of a certain dicing. A dicing in R

d is an arrangement of hyper-
planes consisting of r ≥ d families of infinitely many equally spaced hyperplanes
such that: (a) there are d families whose corresponding normal vectors are linearly
independent, and (b) every vertex of the arrangement is contained in a hyperplane of
each family.

By [13, Thm. 3.3], every dicing is affinely equivalent to a dicing whose set of
hyperplane normal vectors-one normal vector for each of the r families-consists of the
columns of a totally unimodular d×r matrix. By construction, this totally unimodular
matrix is such that for any two of its columns v,w, we have v �= ±w and v,w �= 0.
A classical result, that is often attributed to Heller [26] but already appears in Korkine
and Zolotarev [31], yields that every such totally unimodular d × r matrix has at most
r ≤ (d+1

2

)
columns. Thus, the zonotopal Voronoi cell VC(�) is generated by at most(d+1

2

)
line segments. 
�

Alternatively, the fact that zonotopal Voronoi cells in R
d are generated by at

most
(d+1

2

)
line segments also follows fromVoronoi’s reduction theory. The Delaunay

subdivisions of zonotopal lattices correspond to certain polyhedral cones (Voronoi’s
L-types) in the cone Sd≥0 of positive semi-definite d×d matrices that are generated by

rank one matrices. Since Sd≥0 has dimension
(d+1

2

)
, Carathéodory’s Theorem yields
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the bound. We refer the reader to Erdahl [13, Sect. 7] for an intuitive description and
references to the original works.

3.3 Lattices Defined by Simple Congruences

For any a ∈ N, we consider the lattice

�d(a) := {x ∈ Z
d : x1 ≡ x2 ≡ . . . ≡ xd mod a}. (3)

The case a = �d/2� played a special role in [28, Thm. 2] for the determination of
lattices that do not have a basis that admits a compact representation of theVoronoi cell.
To this end, the authors determined the set F(�d(�d/2�)) of facet vectors explicitly
(there are exponentially many of them). However, their proof can be extended to
general a to give a description of the facet vectors of F(�d(a)) that is precise enough
to allow drawing conclusions towards small extended formulations.

Lemma 3.6 For all a ∈ N, the set of facet vectors of �d(a) is contained in

F(�d(a)) ⊆ {1,−1} ∪ {±aei : i ∈ [d]}
∪
{
vS,� ∈ R

d : ∅ �= S � [d], � ∈
{⌊

a|S|
d

⌋
,

⌈
a|S|
d

⌉}}
,

where vS,�(i) = a − �, if i ∈ S, and vS,�(i) = −�, if i /∈ S.

Proof Follows directly with the proof of [28, Lem. 3]. 
�
Theorem 3.7 For all a ∈ N, we have xc(VC(�d(a))) ∈ O(d3).

Proof Due to Lemma 3.6 and (1), the dual polytope of the Voronoi cell of �d(a)

equals

VC(�d(a))◦ = conv

⎛

⎝V±1 ∪ V±a ∪
⋃

k,�

Vk,�

⎞

⎠ ,

where the last union is over all k ∈ [d − 1], � ∈ {�ak/d�, �ak/d�}, and the sets V±1,
V±a , and Vk,� are defined as follows:

V±1 := conv

{
2

d
1,− 2

d
1
}
, V±a := conv

{
± 2

a2
aei : i ∈ [d]

}
, and

Vk,� := conv

{
2

k (a − �)2 + (d − k) �2
z : z ∈ {a − �,−�}d

with exactly k entries equal to a − �

}
.
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Clearly, xc(V±1) = 2.Moreover, xc(V±a) = 2d, since V±a is a crosspolytope, see (2).
Furthermore, for k ∈ [d − 1] and � ∈ {�ak/d�, �ak/d�}, using Lemma 2.5 and the
fact that Vk,� equals

Vk,� = conv {π(vk,�) : π ∈ Sd},

where vk,�(a − �, . . . , a − �,−�, . . . ,−�) with exactly k entries equal to a − �, we
obtain xc(Vk,�) ≤ d2. Combining these bounds and applying Lemmas 2.4 and 2.2, we
obtain the desired bound. 
�

4 Lower Bounds on the Extension Complexity of Voronoi Cells

The aim of this section is to prove Theorem 1.2. Inspired by Kannan’s proof [30,
Sect. 6] of the NP-hardness of the closest vector problem, for every 0/1-polytope P
we are able to construct a lattice such that a face of its dual Voronoi cell projects
onto P . To obtain a lattice of small dimension, P needs to fulfill some extra condition.

Lemma 4.1 Let H ⊆ R
k be an affine subspace such that all vectors in X := {0, 1}k∩H

have the same norm. There is a lattice�with dim(�) ≤ dim(H)+1 such that conv(X)

is a linear projection of a face of VC(�)◦.

Proof Let α ≥ 0 be such that ‖x‖ = α for all x ∈ X . We may assume that H is
nonempty and that α > 0, otherwise conv(X) is empty or consists of a single point,
in which case the claim is trivial. Let h ∈ H and let L be the linear subspace such that
H = L + h. Consider the lattice

� :=
{
z = (z′, z′′) ∈ Z

k × αZ : z′ + 1

α
z′′h ∈ L, 〈1, z′〉 + αz′′ = 0

}

and let p := (0,−α) ∈ R
k+1. We will show that

cl(p,�) = {0} ∪ {(x,−α) : x ∈ X} =: U (4)

holds. By Lemma 2.8, this will imply that

conv

{
2

‖(x,−α)‖2 (x,−α) : x ∈ X

}
= conv

{
1

α2 (x,−α) : x ∈ X

}

is a face of VC(�)◦ that linearly projects onto conv(X).
First note that U ⊆ �. Moreover, we have ‖p − 0‖ = α and for each x ∈ X we

have ‖p − (x,−α)‖ = ‖x‖ = α. Thus, in order to establish (4) it remains to show
that every lattice point z = (z′, z′′) ∈ � \ U satisfies α < ‖p − z‖. Equivalently, we
have to show that every such point satisfies

f (z) := ‖z′‖2 + ‖z′′ + α‖2 > α2. (5)
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This is clear if z′′ /∈ {0,−α,−2α}. If z′′ = 0, then since z /∈ U we must have z′ �= 0
and hence f (z) = ‖z′‖2 + α2 > α2. If z′′ = −α, then z′ ∈ H and 〈1, z′〉 = α2

hold. Since z′ ∈ Z
k , we obtain f (z) = ‖z′‖2 ≥ 〈1, z′〉 = α2 with equality only

if z′ ∈ {0, 1}k . However, in the latter case we would have z′ ∈ {0, 1}k ∩ H = X
and hence z ∈ U , a contradiction. Thus, we obtain (5). Finally, if z′′ = −2α, then
f (z) = ‖z′‖2 + α2 and 〈1, z′〉 = 2α2 > 0, implying z′ �= 0 and hence (5) holds. 
�
While the previous lemma appears quite restrictive, the next lemma shows that we

may apply it to a large class of 0/1-polytopes.

Lemma 4.2 Let X = {x ∈ {0, 1}k : Ax ≤ b}, for some A ∈ R
m×k , b ∈ R

m such that
b − Ax ∈ {0, 1}m, for all x ∈ X. There is a lattice � of dimension at most k + 1 such
that conv(X) is the linear projection of a face of VC(�)◦.

Proof Consider the set

X ′ := {(x, x ′, s, s′) ∈ {0, 1}k+k+m+m : Ax + s = b, x + x ′ = 1, s + s′ = 1}

and observe that projecting X ′ onto the first k coordinates yields the set X . Moreover,
notice that every vector in X ′ consists of exactly k+m ones. In other words, the norm
of every vector in X ′ is

√
k + m and hence, we may apply Lemma 4.1 to obtain a

lattice � with dimension at most k + 1 such that conv(X ′) is the linear projection of
a face F of VC(�)◦. Since conv(X) is a linear projection of conv(X ′), we see that
conv(X) is also a linear projection of F . 
�
Proof of Theorem 1.2 We use a result of Göös et al. [21] that yields a family of n-node
graphs G such that the stable set polytope PG of G satisfies xc(PG) = 2�(n/log n). Let
X ⊆ {0, 1}n denote the set of characteristic vectors of stable sets in G. Notice that

X = {x ∈ {0, 1}n : x(i) + x( j) ≤ 1 for all {i, j} ∈ E(G)}.

By Lemma 4.2, there is a d-dimensional lattice � with d ≤ n + 1 such that conv(X)

is a linear projection of a face F of VC(�)◦. We conclude

xc(VC(�)) = xc(VC(�)◦) ≥ xc(F) ≥ xc(conv(X)) = xc(PG) = 2�(n/log n),

and the claim follows since d = O(n). 
�

5 Spectrahedral Lifts

A generalization of linear lifts of a polytope is the following. By Sm we denote the
set of all symmetric, real m × m matrices. Moreover, by Sm+ we denote the set of all
those matrices in Sm that are positive semidefinite (PSD). A spectrahedron is a set
containing all vectors x ∈ R

n that fulfill conditions of the form M(x) ∈ Sm+ , where
M : R

n → Sm is an affine function. For a polytope P , the pair (Q, π), where Q ⊆ R
n

is a spectrahedron and π : R
n → R

d is an affine map with π(Q) = P , is called a
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(PSD) lift of P . The size of this lift refers to the dimension of the matrix M(x). For
Q = {x ∈ R

n : M(x) ∈ Sm+} the size equalsm. The semidefinite extension complexity
of P , denoted by sxc(P), is defined as the smallest size of any of its (PSD) lifts.

Given a polyhedron Q = {x ∈ R
n : 〈ai , x〉 ≤ bi , i ∈ [m]}, we can define

M : R
n → Sm via M(x)i i = bi − 〈ai , x〉, for all i ∈ [m] and M(x)i j = 0 for i �= j

and hence Q = {x ∈ R
n : M(x) ∈ Sm+}. This shows that every polyhedron is a

spectrahedron and therefore

sxc(P) ≤ xc(P).

Hence, the upper bounds obtained in Sect. 3 also apply to the semidefinite case.
Furthermore, it is clear from the definition that for anypolyhedron P and any affinemap
π wehave that sxc(π(P)) ≤ sxc(P).Moreover, Lemmas 2.1 and 2.2 analogously hold
in the semidefinite case, since Yannakakis’ result on the nonnegative rank of a slack
matrix was extended to (PSD) lifts in [16, 22]: The semidefinite extension complexity
P equals the PSD rank of S, which is the smallest dimension r for which there exist
PSDmatrices F1, F2, . . . , Fm ∈ Sr+ andV1, V2, . . . , Vn ∈ Sr+ such that Si j = 〈Fi , Vj 〉
where the scalar product of two matrices is defined via 〈A, B〉 =∑i, j Ai j Bi j .

We obtain a superpolynomial lower bound on the semidefinite extension complexity
ofVoronoi cells of certain lattices using a lower bound of Lee et al. [32] on semidefinite
extension complexities of correlation polytopes.

Theorem 5.1 There exists a family of d-dimensional lattices � such that
sxc(VC(�)) = 2�(d1/13).

Proof In [32] it is proven that the semidefinite extension complexity of the correlation
polytope

Pn = conv {xxᵀ : x ∈ {0, 1}n}

is bounded from below by 2�(n2/13). Notice that

Pn = conv {Y ∈ {0, 1}n×n : Yi j ≤ Yii , Yi j ≤ Y j j , Yii + Y j j − 1 ≤ Yi j ,

for all i, j ∈ [n] with i �= j}.

Hence, the correlation polytope can be written as the convex hull of binary vectors
Y ∈ {0, 1}n×n satisfying linear inequalities whose slacks only have values in {0, 1}.
Therefore, by Lemma 4.2 there is a lattice of dimension d where d ≤ n2 +1 = �(n2)
such that Pn is a linear projection of a face F of VC(�)◦. Analogously to the proof
of Theorem 1.2 for the linear extension complexity, we conclude

sxc(VC(�)) = sxc(VC(�)◦) ≥ sxc(F) ≥ sxc(Pn) = 2�(n2/13),

and the claim follows since n = �(
√
d). 
�
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6 Open Questions

We conclude our investigations of the extension complexity of Voronoi cells of lattices
with a collection of some open problems that naturally arise fromour studies andwhich
we find interesting to pursue in future research.

In view of Theorem 1.2 a natural question is whether the logarithmic term in the
lower bound 2�(d/log d) on the extension complexity of certain Voronoi cells can be
removed:

Question 6.1 Does there exist a family of d-dimensional lattices � such that
xc(VC(�)) = 2�(d)?

We remark that our bound relies on a lower bound by Göös et al. [21] on extension
complexities of stable set polytopes, which meet the criteria of Lemma 4.2. It is
known that there exist d-dimensional 0/1-polytopes with extension complexity 2�(d),
see [41]. However, no explicit construction of such polytopes is known and so it is
unclear how to transform such polytopes in order to apply Lemma 4.1 efficiently.

Comparing the superpolynomial bound in Theorem 1.2 with the polynomial upper
bounds for certain classes of lattices in Sect. 3, the question arises what we can expect
the extension complexity of the Voronoi cell of a generic lattice to be.

Question 6.2 What is xc(VC(�)) for a “random” d-dimensional lattice �?

Of course, this requires a suitable notion of a random lattice. Our question refers
to interesting examples such as Siegel’s measure [45] or uniform distributions over
integer lattices of a fixed determinant, see Goldstein and Mayer [20].

In Theorem 1.2 we have shown that exactly describing a Voronoi cell of a lattice
may require superpolynomial-size extended formulations. It would be interesting to
understand how this situation changes if we allow approximations instead of exact
descriptions, in particular in view of various results on the complexity of the approxi-
mate closest vector problem, see, e.g., Aharonov and Regev [1]. To this end, for α ≥ 1
we say that a polytope Q is an α-approximation of a polytope P , if P ⊆ Q ⊆ αP .

Question 6.3 What can be said about extension complexities of α-approximations of
Voronoi cells of lattices?

We have seen in Theorem 1.1 that not only the root lattices but also their dual
lattices have polynomial extension complexity. Is that a general phenomenon?

Question 6.4 Given a d-dimensional lattice �, is there a polynomial relationship
between xc(VC(�)) and xc(VC(��))?

Given that in view of Theorem 3.5 zonotopal lattices admit lifts with quadratically
many facets, and the fact that the closest vector problem on such lattices can be
solved in polynomial time (see [35]), one might expect that small-sized lifts of the
corresponding Voronoi cells can actually be constructed explicitly.

Question 6.5 Given a basis of a d-dimensional zonotopal lattice �, is it possible to
construct an explicit lift ofVC(�) with polynomially many facets in polynomial time?
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Note that our arguments leading to Theorem 3.5 are not constructive.

As discussed in the introduction, a small lift for the Voronoi cell of a lattice gives an
expected polynomial-time algorithm for the closest vector problem. Similarly, given
a c-compact basis b1, . . . , bk of a lattice �, i.e.,

F(�) ⊆
{

k∑

i=1

λi bi : λ ∈ [−c, c]k ∩ Z
k

}
,

one can adjust the algorithm ofMicciancio andVoulgaris to obtain a polynomial-space
algorithm for the closest vector problem with running time (2c)O(n). This notion was
introduced in [28]. In Sect. 3.3, we have shown that there are lattices that do not admit
c-compact bases for constant c but whose Voronoi cells have small lifts. One may ask
whether the converse holds as well, or, equivalently:

Question 6.6 Given a d-dimensional lattice � and a c-compact basis of �, can
xc(VC(�)) be bounded by a polynomial in d, for fixed c?
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