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Received: 24 June 2021 / Revised: 6 July 2022 / Accepted: 8 August 2022 /
Published online: 20 July 2023
© The Author(s) 2023

Abstract
Wepresent an algorithm that, givenfinite diagramsof simplicial sets X , A, Y , i.e., func-
tors Iop→ sSet, such that (X , A) is a cellular pair, dim X ≤ 2 · conn Y , conn Y ≥ 1,
computes the set [X , Y ]A of homotopy classes ofmaps of diagrams � : X → Y extend-
ing a given f : A→ Y . For fixed n = dim X , the running time of the algorithm is poly-
nomial. When the stability condition is dropped, the problem is known to be undecid-
able. Using Elmendorf’s theorem, we deduce an algorithm that, given finite simplicial
sets X , A, Y with an action of a finite group G, computes the set [X , Y ]AG of homotopy
classes of equivariant maps � : X → Y extending a given equivariant map f : A→ Y
under the stability assumption dim X H ≤ 2 · conn Y H and conn Y H ≥ 1, for all sub-
groups H ≤ G. Again, for fixed n = dim X , the algorithm runs in polynomial time.We
further apply our results to Tverberg-type problem in computational topology: Given
a k-dimensional simplicial complex K , is there a map K → R

d without r -tuple inter-
section points? In the metastable range of dimensions, rd ≥ (r+1)k+3, the problem
is shown algorithmically decidable in polynomial time when k, d, and r are fixed.
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1 Introduction

Determining information about the set of homotopy classes of maps [X , Y ] between
topological spaces X , Y is one of the classical problems of algebraic topology. Indeed
the research in particular instances of the problem such as the computation of higher
homotopy groups of spheres [Sn, Sk] led to a development of new algebraic methods
and tools such as spectral sequences. Further, many problems such as classification
of vector bundles (up to isomorphism) and submanifolds (up to cobordism) can be
expressed via computation of a homotopy invariant.

Froman algorithmic perspective, the computation of homotopy invariants unlike the
computations of homology and (co)homology groups, is a hard problem. Inmany cases
the problem is even computationally undecidable—for example, it is algorithmically
undecidable, whether π1(Y ) is nontrivial, even though Y is a finite simplicial complex.
Despite this, there have been several results in the area. Already in the 1950s Brown [2]
presented an algorithm which computes the set [X , Y ]A of homotopy classes of maps
X → Y that extend a specific map A → X under the conditions that A, X , Y , are
represented as finite simplicial complexes, f is a simplicial map and Y is 1-connected
and has finite homotopy groups.

Although the results of [2] lead for example to an algorithm computing the higher
homotopy groups of spheres, Brown himself remarked that the algorithms are imprac-
tical for computations.

Further progress was achieved in [3], where an algorithm was presented that
computes [X , Y ] for spaces X , Y given as finite simplicial sets satisfying dim X ≤
2 · conn Y and conn Y ≥ 1 (i.e., Y is 1-connected). Here dim X denotes the dimension
of X and conn Y the connectivity of Y . The algorithm was later detailed in [5], where
the computational complexity was further discussed.

In the article [6], the authors extended the results from [3, 5] to the case when a
finite group G acts freely on the spaces X , Y . In particular, they have obtained an
algorithm, that given spaces A, X , Y as finite simplicial sets with a free action of a
finite group G and assuming dim X ≤ 2 · conn Y and conn Y ≥ 1, computes the set
[X , Y ]AG of equivariant homotopy classes of maps.

We remark that the stability assumptions in the algorithms are tight—when Y is
not 1-connected, the question whether [X , Y ]A is nonempty is undecidable by the
result of Novikov [18] and for 1-connected Y and dim X > 2 · conn Y + 1, the
nonemptiness of [X , Y ]A is undecidable by [4]. On the other hand, in the stable range
dim X ≤ 2 · conn Y , the set [X , Y ]AG has a structure of an Abelian group and it is this
structure that is computed in [5, 6]. In the boundary case when dim X = 2 ·conn Y+1,
the set [X , Y ]AG no longer has the structure of an Abelian group, however using the
results of [5, 6], one can algorithmically decide its nonemptiness.

A number of further related results was presented in recent years, for example,
in [12], we gave an algorithm that computes the set of pointed homotopy classes of
maps [Σ X , Y ]∗ under the assumptions that X , Y are finite simplicial sets and Y is
1-connected, which leads to an algorithm that given two maps f , g : X → Y decides
whether f and g are homotopic rel A.

The motivation behind the results in [3, 5, 6] was the embeddability problem from
computational topology. In short, can one decide whether a k-dimensional simplicial
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complex K is embeddable inRd? In the so-calledmetastable range of dimensions, this
problem is equivalent to deciding the nonemptiness of the set [K ∗, Sd−1]Z2 , where
K ∗ denotes the deleted product and both K ∗ and Sd−1 are endowed with a free action
ofZ2. Hence the article [6] was able to provide a solution to the embeddability problem
in the metastable range.

Our motivation is likewise based on Tverberg-type problem—a generalization of
the embeddability problem, where one asks wheteher there is an r -almost embedding,
i.e., a map f : K → R

d without r -tuple intersection points. The Mabillard–Wagner
theorem, formulated in [15] (see [14, 20, 21] for full discussion on its proof), states
that under the condition rd ≥ (r+1)k+3, the Tverberg type problem is equivalent to
the nonemptiness of the set [K r \Δr , Sd(r−1)−1]Sr , where the symmetry group Sr acts
freely on K r \Δr and non-freely on Sd(r−1)−1. Can one determine the nonemptiness
algorithmically1? To do so would require a generalization of the results of [5, 6] to
situations with nonfree group actions.

Our approach is based on the application of the Elmendorf’s theorem [9], which,
for a finite group G, gives a Quillen equivalence between the category G-sSet of
G-simplicial sets and the category [Oop

G , sSet] of functors from the so called orbit
categoryOG . Hence the computation of the homotopy classes of maps between finite
diagrams of spaces leads immediately to results in equivariant homotopy theory.

We formulate our main result as follows:

Theorem 1.1 Let I be a finite category and A, X , Y : I → sSet be finite diagrams of
finite simplicial sets such that (X , A) is a cellular pair,2 conn Y ≥ 1, and

dim X ≤ 2 · conn Y . (�)

Then there exists an algorithm that computes the set [X , Y ]A of homotopy classes of
maps3 � : X → Y extending a given map f : A→ Y . For a fixed dim X, the algorithm
runs in polynomial time.

By computing [X , Y ]A we mean the computation of the isomorphism type of this
Abelian group—the Abelian group structure is described in Theorem 3.15 and uses
the stability condition (�).

Remark 1.2 There are multiple ways to interpret the condition (�) in the statement of
Theorem 1.1 as one can define dimension and connectivity in multiple ways. The most
simple one is to use maximum dimension and minimum connectivity, i.e.,

dim X = max {dim X(i) | i ∈ I}, conn Y = min {conn Y (i) | i ∈ I}.
One can also treat both the dimension and the connectivity of diagrams X , Y as col-
lections of numbers indexed by the objects of I and Theorem 1.1 holds true even if
the stability condition is interpreted in this pointwise way. As a further remark, it is
even possible to define dim X(i) as the maximal dimension of a cell at i , see Sect. 3.5.

1 As it turns out, yes, see Theorem 1.5 and Sect. 10.1.
2 We formally introduce cellularity in Sect. 3. It is a strengthening of the notion that A→ X is a cofibration.
3 More precisely, this is the set of morphisms in the homotopy category of [Iop, sSet], i.e., homotopy
classes of maps from X to a fibrant replacement of Y relative to A. Details are explained in Sect. 3.
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Remark 1.3 The assumption conn Y ≥ 1 can be easily removed. The exact algorithm
as described in this paper works also for conn Y ≥ 0 since it is based on the Postnikov
tower of ΣY which is 1-connected in this case. As a matter of fact, it works for
conn Y ≥ −1, i.e., if all the spaces in the diagram are non-empty. With a careful
treatment of nonconnected spaces it works even in a complete generality, but there
is a simpler solution: let J ⊆ I denote the full subcategory on objects where Y
is nonempty. Then [X , Y ]A = ∅ unless X is also empty on I \ J , in which case
[X , Y ]A = [X |J , Y |J ]A|J and we are in the simpler situation conn Y ≥ −1 as
above.

Let G be a finite group. The orbit category OG of G is a finite category with objects
G/H , for subgroups H ≤ G, and arrows the equivariant maps G/H → G/K .
Suppose now that A, X , Y arefinite simplicial setswith an actionof afinite groupG. By
Elemendorf’s theorem [9] the categories G-sSet of G-simplicial sets and [Oop

G , sSet]
are Quillen equivalent, namely [X , Y ]AG ∼= [Φ X , ΦY ]Φ A, where

Φ(X)(G/H) = X H = {x ∈ X | hx = x, ∀ h ∈ H}.

For details see e.g. Chapter V in [17] or [9]. Therefore, as a straightforward conse-
quence of Theorem 1.1 we obtain

Theorem 1.4 Let A ⊆ X and Y be finite simplicial sets with an action of a finite
group G. Supposing that dimΦ X ≤ 2 · connΦY and connΦY ≥ 1, there is an
algorithm that computes the set [X , Y ]AG of equivariant homotopy classes of maps
X → Y extending a given equivariant map A → Y . If dim X is fixed, the algorithm
runs in polynomial time.

1.1 Applications

Wepresent two applications of Theorem1.4 for computations in equivariant homotopy
theory. First describes a solution to the aforementioned Tverberg-type problem from
computational topology. The second application is of more theoretical nature and
gives an algorithm that computes equivariant stable homotopy groups of spheres. We
introduce both here, while proofs of these results are postponed until Sect. 10.

Tverberg Problem

Let K be a k-dimensional simplicial complex and let f : K → R
d be a map. A point

x ∈ f (K ) is called an r -Tverberg point if it has preimages lying in r pairwise disjoint
simplices of K .

The Tverberg-type problem is a question whether there exists an almost r -
embedding, i.e., a map f : K → R

d which contains no r -Tverberg points. We will
show that Theorem 1.1 implies the following:

Theorem 1.5 Let K be a k-dimensional simplicial complex, d, r ∈ N, such that rd ≥
(r + 1)k + 3. Then there is a polynomial time algorithm that decides whether there is
an almost r-embedding f : K → R

d .
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Stable Homotopy Groups

As a second application, we obtain

Theorem 1.6 Let X , Y be finite simplicial sets with an action of a finite group G. Then
there is an algorithm that computes the set {X , Y }G of equivariant stable homotopy
classes of maps X → Y .

2 The Idea of the Proof of theMain Theorem

The proof consists of three main steps.

– Using stability, replace [X , Y ]A by the isomorphic [Σ X ,ΣY ]Σ A whereΣ denotes
the unreduced suspension.

– Construct the Postnikov tower for ΣY , with stages P(n) that capture the homo-
topical information up to dimension n, such that the difference between P(n) and
P(n − 1) is isolated in dimension n and is rather easy to handle explicitly, using
a certain “exact sequence”.

– If non-empty, [Σ X , P(n)]Σ A becomes an Abelian group via homotopy concate-
nation (to be more precise, it is an Abelian heap). Inductively with respect to n,
propagate the structure of an “effective” Abelian group from [Σ X , P(n − 1)]Σ A

to [Σ X , P(n)]Σ A, using the exact sequence from the previous point.

An important part of the mentioned effective Abelian group structure is an algo-
rithm that outputs its isomorphism type. For n = dimΣ X , we have [X , Y ]A ∼=
[Σ X ,ΣY ]Σ A ∼= [Σ X , P(n)]Σ A and the computation is finished.

2.1 New Ingredients

Although the structure of the computation is mostly identical to that of our previous
work [5, 6], there are two important differences, the reader should be aware of:

– Firstly, the construction of the Postnikov tower requires the Postnikov stages to
be cofibrant (more careful explanation is given later in Sects. 3.15 and 3.20) and
this is generally not the case for diagrams. Our solution consists of employing a
cofibrant replacement that, however, makes the basic shape of the towermore com-
plicated (we need both the stages and their cofibrant replacements) and renders the
Postnikov stages non-fibrant. For this reason, homotopy classes in [Σ X , P(n)]Σ A

are not represented by actual maps Σ X → P(n). Instead, as a way around these
technical problems, we develop a convenient category of towers, in which the
homotopy classes admit representatives, and use this framework throughout the
paper.

– Secondly, the exact sequence relating homotopy classes of maps into consecutive
Postnikov stages consists more naturally of unpointed sets andwe follow this more
conceptual approach in the paper (it already appeared in [12]). The main point is
that the action of K (πn, n) on P(n), which is free with P(n − 1) as the space
of orbits, induces an action of [Σ X , K (πn, n)]Σ A on [Σ X , P(n)]Σ A, but with
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possibly non-trivial stabilizers and with the set of orbits possibly a proper subset
of [Σ X , P(n − 1)]Σ A. The exact sequence captures both the stabilizers and the
subset. For details, see Sect. 3.21.

2.2 Plan of the Paper

We start by setting up the mathematical notions required in the paper, Sect. 3. Then,
in Sect. 4 we explain various ways of endowing these mathematical objects with a
computational layer. After that we give a more detailed idea of the proof with more
precise statements (Sect. 5), while some more technical aspects of the proof—the
obstruction theory for diagrams, the exact sequence, further effective homological
algebra and construction of Postnikov towers are presented in Sects. 6–9. Finally, in
Sect. 10, we discuss applications of Theorem 1.1.

3 Mathematical Background

3.1 Model Category Formalism

One of the successful formalisms in homotopy theory is that of model categories.
We will be dealing with the model category of spaces, G-spaces, chain complexes,
and diagrams in these categories. A precise definition of a model structure will not
be needed4 as only a fragment of the model structure in the above examples will be
required—the class of cofibrant objects, the class of fibrant objects, and a homotopy
relation. These are crucial concepts since, for X cofibrant and Y fibrant in C, the
hom-set [X , Y ] in the homotopy category Ho(C) is defined to be the set of homotopy
classes of maps from X to Y . For general X and Y , one needs to choose a cofibrant
replacement X cof and a fibrant replacement Y fib and then defines the hom-set in Ho(C)

to be

[X , Y ] = map(X cof , Y fib)/∼.

We remark that the notion of “replacement” also requires the specification of weak
equivalences.

The cofibrant objects are usually described via a generating set of cofibrations
K j → L j , thought of as boundary inclusions of cells (of various shapes). We then
say that the pushout X in

K j A

L j X = A ∪K j L j

4 We refer the reader to standard resources [13] for full details.
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is obtained from A by attaching a cell along the attaching map K j → A, where by
an actual cell we understand the canonical map L j → X . Any object X obtained
from the initial object ∅ by successively attaching cells is said to be cellular or a cell
complex; any such X is cofibrant. We remark that the cells are attached in some order
and, thus, a cell complex is generally not specified by the collection of cells. For our
model categories, it will always be possible to attach cells in the order of increasing
dimension and this technical issue disappears.

3.2 Relative Categories

When C is a model category and A ∈ C an object, the slice category A/C, or the
category of objects under A, has as objects maps in C with domain A; its maps from
f : A→ X to g : A→ Y are commutative triangles

X
A

f

g Y

Wewill now explain the important model category concepts for A/C in terms of C. The
cofibrant objects are cofibrations in the model structure of C, while fibrant objects are
maps with fibrant codomain. If X is obtained (in C) from A by successively attaching
cells, the canonicalmap A→ X is said to be a relative cell complex and these constitute
exactly the cell complexes in A/C. In our examples, A will always be a subobject of X
and wewill denote the relative cell complex as a pair (X , A). The hom-set in Ho(A/C)

will be denoted by [X , Y ]A, where we suppress from the notation the involved maps
A→ X and A→ Y ; these will always be fixed and clear from the context. For (X , A)

cofibrant and (Y , A) fibrant, this is the set of homotopy classes relative to A.

3.3 Spaces= Simplicial Sets

For computational purposes, a space will mean a simplicial set. We denote by sSet
the category of simplicial sets and simplicial maps between them.We equip simplicial
sets with the Kanmodel structure: Generating cofibrations are the boundary inclusions
∂Δn → Δn , for n ≥ 0, where Δn denotes the standard n-simplex and ∂Δn the union
of all its proper faces. In this way, any simplicial set is cofibrant, in fact cellular. Thus,
cells are maps Δn → Y or equivalently n-simplices of Y , for arbitrary n ≥ 0. The
canonical cellular structure on Y , unique up to the order of cells, has as cells precisely
all non-degenerate simplices.

Fibrant objects, the so-called Kan complexes, are simplicial sets that have the right
lifting property with respect to the horn inclusions n

k → Δn , where n
k is the union

of all proper faces of Δn with the exception of the k-th face. Most importantly for us,
all simplicial groups are fibrant.

We will also use the notation I = Δ1 for the interval, especially when talking
about homotopies. We will denote by sJ = s jr · · ·s j1 a degeneracy operator for a set
J = { jr > . . . > j1}. For each simplex x there is a unique non-degenerate simplex
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x and a unique degeneracy sJ such that x = sJ x . The set J consists of all the j for
which x lies in the image of s j . By definition, x is non-degenerate if and only if J = ∅.

3.4 Diagrams

Let I be a small category. For a category C, we will denote by C-I the category of
diagrams Iop → C. We thus have the category sSet-I of diagrams of spaces, Ab-I
of diagrams of Abelian groups, Ch-I of diagrams of chain complexes, etc. (as the
notation suggests, we think of them as right I-modules with values in C).

3.5 Diagrams of Spaces

In particular, we have the category sSet-I of I-shaped diagrams of spaces. The rep-
resentable functor I (−, i) : Iop→ sSet can be interpreted as a functor with values in
(discrete) simplicial sets and we will thus write I (−, i) ∈ sSet-I.

The model structure on sSet-I, the so-called projective model structure which we
are about to describe, is more complicated than that on sSet in that not every object is
cofibrant; on the other hand, fibrant objects are simply diagrams consisting of fibrant
objects. The generating cofibrations are the maps

∂Δn × I (−, i)→ Δn × I (−, i).

In this way, a cell is a map Δn × I (−, i)→ Y or, equivalently, an n-simplex of Y (i),
for n ≥ 0 and i ∈ I arbitrary. This results in the following characterization:

Proposition 3.1 A diagram X is cellular if and only if there is a collection of simplices
eα ∈ (X(iα))nα , for α ∈ A, called cells, such that any simplex e ∈ (X(i))n is
obtained uniquely from a cell by applying a map in the diagram and a degeneracy,
i.e., e = sJ ( f ∗(eα)) for unique α ∈ A, f : i → iα and degeneracy sJ . More generally,
a cellular pair (X , A) is one for which the above condition is satisfied for simplices
e ∈ X \ A.

3.6 Equivariant Spaces

Let G be a fixed finite group. If we interpret G as a one-object category, spaces with
a G-action (G-spaces) are functors G → sSet and their category will be denoted
G-sSet. This category is equipped with a model structure that is described below and
is different from the projective model structure on diagrams of spaces. However, a
theorem of Elmendorf says that this category if Quillen equivalent to sSet-OG for the
so called category of orbitsOG (consisting of all orbits G/H and all equivariant maps
between them). This is how questions of homotopical nature regarding G-sSet are
answered: by translating to sSet-OG and solving there.

For the purpose of the translation, it will be useful to describe the generating set of
cofibrations for G-sSet. They are given by inclusions ∂Δn×G/H → Δn×G/H , for
all n ≥ 0 and for all subgroups H ofG. Thus, a cell of X is amapΔn×G/H → X , i.e.,
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an n-simplex of the fixed point space X H . Similarly to simplicial sets, every object is
cofibrant. The functor Φ : G-sSet→ sSet-OG takes a G-space to the collection of its
H -fixed point subspaces, for all subgroups H ofG and all actionmaps between them. It
is not too difficult to see5 that a cellΔn×G/H → X gives a cellΔn×OG(−, G/H)→
Φ(X) and, in this way, the diagram Φ(X) is cellular for any cellular G-space X (with
cells of Φ(X) corresponding to those of X ).

3.7 Chain Complexes

We will be working exclusively with non-negatively graded chain complexes of
Abelian groups in their projectivemodel structure, denotedCh. The free chain complex
Dn generated by x in dimension n has, for n > 0, the Abelian group Z in dimensions
n and n− 1, generated by x and ∂x respectively. Its boundary ∂ Dn is the subcomplex
generated by ∂x , i.e., has Z in dimension n − 1. The case n = 0 is special in that
∂x = 0, and thus Dn = Z, ∂ Dn = 0. The boundary inclusions ∂ Dn → Dn are the
generating cofibrations for the projective model structure on chain complexes. There-
fore, cells are maps Dn → C and correspond to n-chains c ∈ Cn . A cellular chain
complex consists of free Z-modules with a basis in each dimension formed by the
cells viewed as chains.

3.8 Diagrams of Chain Complexes

In the category Ch-I of diagrams of chain complexes, cofibrations are generated
similarly by boundary inclusions ∂ Dn

i → Dn
i where Dn

i is a free diagram generated
by a single element x at object i sitting in dimension n. This has ZI (−, i) ∈ Ab-I
(the free Abelian group on a representable diagram) in dimensions n and n − 1 with
boundary the identity. A diagram of chain complexes is cellular if and only if, in each
dimension, it is a direct sum of diagrams of the form ZI (−, i). More concretely, we
have the following characterization:

Proposition 3.2 A diagram C is cellular if and only if there is a collection of cells (i.e.,
chains) cα ∈ C(iα)nα , for α ∈ A, such that any chain c can be obtained uniquely from
cells by applying maps in the diagram and linear combinations, i.e.,

c =
∑

α∈A
f : i→iα

kα, f f ∗(cα) (3.1)

for unique kα, f ∈ Z (only a finite number of non-zero coefficients). More generally, a
cellular pair (C, C ′) is one for which the above condition is satisfied modulo C ′.
As an important example, if X is a diagram of spaces then the normalized6 chain
complexes C∗(X(i)) of the spaces in the diagram form a diagram C∗(X) of chain

5 However, we remark that this requires commutation of certain limits and colimits and as such does not
hold in arbitrary categories, but only in categories exhibiting this kind of “exactness”.
6 The normalized chain complex of a simplicial set K has Cn(K ) freely generated by simplices of K with
all degenerate simplices quotiented out.
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complexes. Since we are dealing (exclusively) with normalized chain complexes, for
a cellular diagram X , the diagram C∗(X) of chain complexes is also cellular with
cells corresponding bijectively to those of X . There is an obvious generalization to
the relative situation of a cellular pair (X , A).

3.9 Bredon Cohomology

For a cellular pair (X , A) of diagrams and for a diagram π ∈ Ab-I of Abelian groups
the cochain complex

C∗(X , A;π) = HomAb-I(C∗(X , A), π),

equipped with the differential7 δ = ∂∗, is called the Bredon cochain complex. The
cohomology of this cochain complex C∗(X , A;π) is known as Bredon cohomology,
see [1, 17].As a functor of the pair (X , A)wewill explain shortly that this is represented
by an Eilenberg–Mac Lane diagram.

3.10 Cofibrant Replacement in sSet-I

We will use a concrete model for the cofibrant replacement, namely the Bousfield–
Kan model. Let X be any diagram. Then the cofibrant replacement X cof = |B X | is a
geometric realization of a certain simplicial object B X ; we start with describing the
involved simplicial object B X : Δop→ sSet-I; in dimension n it is

(B X)n =
∐

i0,...,in∈I
Xi0 × I (i1, i0)× · · · × I(in, in−1)× I (−, in)

with the face map d j given either by composition, for j > 0, with d0 being the
right action Xi0 × I (i1, i0) → Xi1 coming from X being a contravariant functor
X : Iop→ sSet, and with degeneracy maps inserting the identity at various positions.
The geometric realization of B X is then the quotient

X cof =
∐

n≥0
i0,...,in∈I

Δn × Xi0 × I (i1, i0)× · · · × I (in, in−1)× I (−, in)/∼,

where the relation is similar to that of a tensor product (formally, such a construction is
called the coendΔ• ∗Δop B X ): we require (θ∗t, z) ∼ (t, θ∗z), for t ∈ Δm , z ∈ (B X)n ,
and θ a morphism in Δop; of course, faces and degeneracies are sufficient to generate
all relations.

Lemma 3.3 For any space K we have K × X cof ∼= (K × X)cof , i.e., the cofibrant
replacement commutes with sSet-tensors.

7 Any other choice works equally well, e.g., the usual δc = −(−1)|c| · ∂∗c, as long as this is reflected in
the (unspecified) isomorphism W K (π, n) ∼= K (π, n + 1) below.
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The cofibrant replacement X cof of any diagram is a cellular diagram. Precise details
will not be important for the paper, but are necessary for an implementation of our
algorithm. The cells are (t, x, f0, . . . , fn−1, id) for any chain

i0
f0←−− i1←− · · · ←− in−1

fn−1←−−− in

of non-identity morphisms and any non-degenerate simplex (t, x) ∈ Δn × Xin not
contained in ∂Δn × Xin . The non-degenerate simplices of a product can be described
equivalently as pairs (sJ t, sK x) for non-degenerate t , x and disjoint index sets J , K .

3.11 Eilenberg–Mac Lane Spaces

Given a group π and an integer n ≥ 0, an Eilenberg–Mac Lane space K (π, n) is a
simplicial set satisfying

πk(K (π, n)) =
{

π for k = n,

0 else.

In this text the symbol K (π, n)will always stand for the following concrete simplicial
model (see [16, p. 101])

K (π, n)k = Zn(Δk;π),

where Zn denotes the Abelian group of normalized cocycles. Similarly, we define the
contractible space W K (π, n) as

W K (π, n)k = Cn(Δk;π)

whereCn denotes the Abelian group of normalized cochains. Since both are simplicial
groups, they are fibrant. According to [16, Thm. 23.10], the universal principal bundle
with fibre K (π, n), i.e.,

K (π, n) ↪→ W K (π, n)
δ−→ W K (π, n),

has W K (π, n) isomorphic to K (π, n + 1) (a concrete isomorphism can be found
in [5]) and we will thus consider these spaces equal. The map δ is then the coboundary
from the n-cochains to (n+ 1)-cocycles. In the computational part, declaring the two
spaces equal amounts to applying the canonical isomorphism and its inverse. These
are given by straightforward formulas running in polynomial time, see [5, Lem. 3.15].

3.12 Principal Twisted Cartesian Products

Let X be a simplicial set and G a simplicial group. As in the preceding section, there
is a universal principal bundle with fibre G,
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G ↪→ W G
δ−→ W G.

A simplicial map τ : X → W G is known as a twisting function and prescribes a
principal twisted cartesian product X×τ G → X , a simplicial analogue of a principal
bundle. It is obtained by replacing one of the face operators in the usual cartesian
product according to τ , but we will not need to explain details here. There is an
obvious extension to diagrams—if X is a diagram of simplicial sets and G a diagram
of simplicial groups, a twisting function τ : X → W G is then just a compatible
family of twisting functions at each object and thus prescribes a “compatible” family of
principal twisted cartesian products; explicitly, compatibility means that the canonical
projection X ×τ G → X is a natural transformation, i.e., a map in sSet-I. We also
note that

X ×τ G W G

δ

X
τ

W G

is a map of principal bundles and is thus a pullback square.

3.13 Principal Bundles Categorically

For the purposes of a later generalization,wewill define principal bundles categorically
in any complete category C in the following way.8

Let G be a group object in C. A G-torsor is an object P of C with a simply
transitive (right) action of G. A regular action of G on itself presents G as a G-torsor.
Thinking of the group additively, the simple transitivity is expressed as a difference
map P × P → G, a generalization of the association (A, B) �→ −→AB = −A + B
from the theory of affine spaces; we will use the nicer looking B − A since we will
have commutativity anyway. It is a simple matter to write down a set of axioms (e.g.,
x + (y − x) = y, as for affine spaces), each expressed as commutativity of a diagram
involving finite products of G and P . In particular, any functor that preserves finite
products will automatically preserve group objects and their torsors.

Example A non-empty torsor in the category of sets is a so-called heap, which we
define later. Namely, for a heap S and for any choice of zero 0 ∈ S, the heap S
becomes a group, so that it possesses the regular right action on itself. For different
choices, the induced groups are canonically isomorphic and the actions are identified
under this isomorphism. The empty set is (in our definition) a torsor for any group.

A principal G-bundle is a map P → X , thought of as an object of the slice category
C/X , that is a torsor for the trivial group object X × G → X in C/X , given by the
projection. A simple example of the preservation of torsors is the fact that principal G-
bundles are closed under pullbacks—the pullback functor f ∗ : C/X → C/Y clearly

8 The definition will not capture surjectivity of the bundle projection, so that even the empty space over X
will be a principal G-bundle according to our definition.
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preserves all limits. Also, any functor from C preserving finite limits will preserve
principal bundles, since the product in the slice category C/X is the pullback in C.
Explicitly, the structure maps for a principal bundle in terms of the category C are

+: G × G → G, 0 : ∗ → G, Y−: G → G,

+: P × G → P, −: P ×X P → G,

where the action of G on P is required to be a map over X . For a principal twisted
cartesian product P = X ×τ G → X , the last two maps are: the action

+: P × G → P, (x, a)+ g = (x, a + g)

(a map over X ), and the difference

−: P ×X P → G, (x, a)− (x, b) = a − b.

In particular, we will need principal bundles whose fibres are the diagrams of
Eilenberg–Mac Lane spaces, which we describe next.

3.14 Eilenberg–Mac Lane Diagrams

For a diagram π ∈ Ab-I, we define a diagram of Eilenberg–Mac Lane spaces
K (π, n) ∈ sSet-I objectwise, i.e., by setting

K (π, n)(i) = K (π(i), n).

Analogously, we define the diagram W K (π, n)(i) = W K (π(i), n). Both these dia-
grams are fibrant (since they consist of fibrant objects). The advantage of the concrete
models described above is that maps to these diagrams can be identified with cochains
and cocycles of the Bredon cochain complex. The following lemmas are easy gener-
alizations of results in [16].

Proposition 3.4 Let (X , A) be a pair of diagrams and let π ∈ Ab-I. Then there are
natural isomorphisms

map ((X , A), (W K (π, n), 0)) ∼= Cn(X , A;π),

map ((X , A), (W K (π, n), 0)) ∼= Zn+1(X , A;π).

For a relative cell complex (X , A) (or more generally for a cofibration A → X ), we
also have

[X , W K (π, n)]A ∼= Hn+1(X , A;π),

where again maps on the left are fixed to be zero on A.
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3.15 Postnikov Tower of a Space

We will give a very concise definition of a Postnikov tower of a space, mainly to
explain that this definition has to be modified for diagrams; this case will then be
treated in much more detail.

A Postnikov tower of a simply connected space Y is a collection ofmaps Y → P(n)

that display P(n) as the result of killing homotopy groups of Y above dimension n.
These approximations are organized in a tower

· · · → P(n)→ P(n − 1)→ · · · → P(0);

i.e., the stages are connected bymaps P(n)→ P(n−1). These are principal fibrations
whose fibre is necessarily K (πn, n), for πn the n-th homotopy group of Y . In the
standard model, they are even principal twisted cartesian products and as such are
classified by a homotopy class kn : P(n − 1) → W K (πn, n), known as Postnikov
invariant. One may then write

P(n) = P(n − 1)×kn K (πn, n)

to get a very concrete inductive construction of the Postnikov tower, see [5] for the
algorithmic viewpoint. The Postnikov towers are employed in the algorithm by observ-
ing that [X , Y ]A ∼= [X , P(n)]A, for n ≥ dim X , and also by relating [X , P(n)]A to
[X , P(n − 1)]A via a long exact sequence that enables inductive computation.

The following problem occurs for diagrams: the diagram P(n− 1) is not cofibrant
in general and, as a result, the Postnikov invariant does not exist as an actual map
P(n − 1) → W K (πn, n), but rather as a map defined on its cofibrant replacement
P(n − 1)cof . As a result, the n-th stage P(n) is constructed as

P(n) = P(n − 1)cof ×kn K (πn, n)

and will need to be cofibrantly replaced for the construction of P(n + 1) etc. Thus,
for diagrams, a tower of the above simple shape must be replaced by a notion that
incorporates cofibrant replacements. We will first define a general notion of such a
tower and then give a precise definition of a Postnikov tower for a diagram of spaces.

3.16 Towers

Definition A tower T is a collection of diagrams T (m), for m ≥ 0, together with
maps T (m) → T (m − 1)cof . A map of towers ϕ : S → T is a collection of maps
ϕ(m) : S(m)→ T (m) for which the square
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S(m)
ϕ(m)

T (m)

S(m − 1)cof
ϕ(m−1)cof

T (m − 1)cof

commmutes for all m. We denote by Tow the category of towers of diagrams. An
n-restricted tower is the collection of data as above, but with both T (m) and T (m)→
T (m − 1)cof defined only for m ≤ n. The category of n-restricted towers will be
denoted Tow≤n .

There is a pair of adjunctions

(n) : Tow
(≤n)

⊥ Tow≤n
extn

(n)

⊥ sSet-I : [n]

with the first top functor (left adjoint) restricting a tower to m ≤ n and the second
associating to an n-restricted tower the diagram sitting at the top level n.

The bottom functors (right adjoints) are easily described as follows: The first one

extn : Tow≤n → Tow

extends the n-restricted tower T by iterated cofibrant replacements of T (n) in such a
way that the structure maps T (m)→ T (m − 1)cof are the identity maps, for m > n.
Since a 0-restricted tower is exactly a diagram, ext0 may be viewed as a functor
sSet-I → Tow and, from now on, we will not distinguish between a diagram Z and
its extension ext0 Z (consisting of iterated cofibrant replacements of the diagram Z ).
We will thus write

sSet-I ⊆ Tow.

In particular, the terminal diagram pt will be thought of as a tower in the following
description. The second right adjoint sSet-I → Tow≤n sends a diagram Z ∈ sSet-I
to the n-restricted tower T with T (m) = pt(m) for m < n and T (n) = pt(n)× Z . We
will not need a name for this functor, but the composite of the right adjoints will be
denoted by [n] : sSet-I → Tow and is clearly right adjoint to the n-th level functor
(n) : Tow→ sSet-I (the composite of the left adjoints). Also [0] = ext0.

Definition We say that a tower T is n-truncated, if it lies in the image of the extension
functor extn , i.e., if the structure maps T (m)→ T (m−1)cof are the identity maps for
m > n. The n-truncation trn T is the composite extn(T (≤ n)) and admits a canonical
map (the unit of the adjunction) T → trn T .
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3.17 Homotopy Groups of Diagrams and Towers

Let Y ∈ sSet-I be a diagram of simply connected spaces. We denote by πnY ∈ Ab-I
the diagram of the n-th homotopy groups of the spaces in the diagram Y . This makes
sense since the n-th homotopy group is a functor πn on simply connected spaces (it is
however not a functor on all spaces).

Definition For an n-truncated tower T , we define its j-th homotopy group to be
π j (T ) = π j (T (n)). We note that T is then also m-truncated, for any m ≥ n, and the
definition of π j (T ) is independent of m.

3.18 Principal Bundles

Let P → X be a principal G-bundle in the category of diagrams. For any n ≥ 0, the
right adjoint [n] preserves limits and, thus, P[n] → X [n] is a principal G[n]-bundle.
Concretely, this involves actions of iterated cofibrant replacements of pt and G and of
course can be verified directly.

3.19 Pullback of Towers

Lemma 3.5 A square of n-truncated towers

S U

T V

in which trn−1 U
∼=−→ trn−1 V is an isomorphism, is cartesian if and only if it is

cartesian at each level m ≤ n. Explicitly, this means S(m) = T (m) for m < n and
S(n) = T (n)×V (n) U (n). In particular, T × Z [n] agrees with T up to level n and its
level n is T (n)× Z.

Proof The proof follows directly from the definition of pullback and the fact that
pullbacks over diagrams are taken pointwise. ��

3.20 Postnikov Tower for Diagrams

Let Y be a diagram of simply connected spaces. Letting πn ∈ Ab-I be a diagram of
Abelian groups (it will follow from the axioms that πn ∼= πnY , hence the name), we
introduce the abbreviations

Kn = K (πn, n)[n], W Kn = W K (πn, n)[n], W Kn = W K (πn, n)[n].

As explained above, W Kn → W Kn is a principal Kn-bundle.
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Definition 3.6 A Postnikov system of Y is a map of towers ϕ : Y → P , satisfying the
following conditions for the n-truncation Pn = trn P and the associated ϕn : Y → Pn :

0. For each n ≥ 0, there is given a diagram πn of Abelian groups.
1. For each n ≥ 0,

(a) the induced map ϕn∗ : π j (Y )→ π j (Pn) is an isomorphism for 0 ≤ j ≤ n,
(b) π j (Pn) = 0 for j > n.

2. For each n ≥ 0, there is given a pullback square

Pn
qn

pn

W Kn

δn

Pn−1 kn
W Kn

Towers Pn are called stages of the Postnikov system, and maps kn are called Post-
nikov classes (the terms Postnikov factors or Postnikov invariants are also used in the
literature). These are part of the structure of a Postnikov system. We note that, since
δn : W Kn → W Kn is a principal Kn-bundle, so is its pullback pn : Pn → Pn−1 and,
in particular, there is an action Pn × Kn → Pn and a difference Pn ×Pn−1 Pn → Kn .

For the sake of completeness, we also provide a description of the conditions in the
definition in terms of the levels P(n) of the Postnikov tower P . However, whenever
possible the more compact and symmetric version with towers will be used.

Lemma 3.7 In terms of the levels P(n) of the Postnikov tower P, the conditions are
equivalent to:

0. For each n ≥ 0, there is given a diagram πn of Abelian groups.
1. For each n ≥ 0,

(a) the induced map ϕn∗ : π j (Y (n))→ π j (P(n)) is an isomorphism, 0 ≤ j ≤ n,
(b) π j (P(n)) = 0 for j > n.

2. The n-the level P(n) is a pullback in the following diagram:

P(n)
qn

pn

W K (πn, n)

δn

P(n − 1)cof
kn

W K (πn, n)

Proof The first point is clear and the second is an instance of Lemma 3.5. ��
Wewill only work with n-truncated towers, where n = dim X . Clearly, a map between
n-truncated towers is the same as a map between the restricted towers T (m), m ≤ n.
For this reason, it will be possible to represent towers and maps between them in a
computer.
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Lemma 3.8 A map ϕ : S → T from a 0-truncated tower S to an n-truncated tower
T is determined uniquely by the component ϕ(n). However, not every such map ϕ(n)

determines a map of towers.

Proof The components ϕ(m) with m > n are determined from ϕ(n) by the n-
truncatedness of T , while the components ϕ(m) with m < n by the 0-truncatedness
of S and from the cofibrant replacement functor (−)cof being faithful. ��

Theorem 3.9 Let (X , A) be a cellular pair. Then there is an isomorphism [X , Y ]A ∼=
[X , P(n)]A for n ≥ dim X, where dim X is to be interpreted as the highest dimension
of a cell in a cellular structure on (X , A).

Proof This is essentially the Whitehead theorem and the usual proof can be adopted.
An abstract Whitehead theorem in model categories is proved in [22, Thm. 2.2] and
it applies here as well. ��

We stress however that P(n) is not fibrant and, thus, the homotopy classes are not
represented by maps of diagrams. On the other hand, there is a model structure on
the category of towers in which the Postnikov tower and its truncations Pn are fibrant
and thus, unlike for the levels P(n), homotopy classes will be represented by actual
maps of towers to Pn . We will not construct the model structure but give a direct
proof of the representation theorem. To make this precise, for a diagram X (i.e., a
0-truncated tower), we specify the homotopy relation on maps of towers X → Pn to
be the homotopy with respect to a cylinder object I × X (again a 0-truncated tower
associated with I × X and where we remind our notation I = Δ1). The resulting set
of relative homotopy classes will be denoted by [X , Pn]A.

Theorem 3.10 Let (X , A) be a cellular pair. Associating to a map of towers � its n-th
component �(n) induces an isomorphism

[X , Pn]A
∼=−→ [X(n), P(n)]A(n)

∼=←− [X , P(n)]A

on the sets of homotopy classes. More precisely, given a homotopy class in [X , P(n)]A
and a representative of its image in [X , P(n − 1)]A by a map of towers X → Pn−1
under A, there exists a lift X → Pn, again a map of towers under A, that represents
the original homotopy class.

Proof As usual, it is sufficient to prove the existence part, since the uniqueness is
simply the existence of a homotopy.

Firstly, wewill construct special fibrant replacements of the Postnikov stages, P(n)′
of P(n)cof and P(n)fib of P(n), fitting into the commutative diagram
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P(n)
∼

P(n)fib

P(n − 1)cof ∼ P(n − 1)′

P(n − 1) ∼ P(n − 1)fib

Proceeding inductively, we let P(0)
∼−→ P(0)fib be a fibrant replacement of P(0), e.g.,

we can take the identity. In the inductive step, factor the composition P(n − 1)cof
∼−→

P(n − 1)
∼−→ P(n − 1)fib into a trivial cofibration followed by a (necessarily trivial)

fibration,

P(n − 1)cof ∼ P(n − 1)′ P(n − 1)fib.

This ensures that P(n − 1)′ is indeed fibrant, since it admits a fibration to a fibrant
P(n−1)fib. Using that W K (πn, n) is fibrant, we obtain a factorization of the Postnikov
invariant kn ,

kn : P(n − 1)cof ∼ P(n − 1)′ → W K (πn, n).

Now we take the pullbacks P(n)fib and P(n) of the Eilenberg–Mac Lane fibration
along the above factorization of the Postnikov invariant kn :

P(n)
∼

P(n)fib W K (πn, n)

P(n − 1)cof ∼
P(n − 1)′ W K (πn, n)

This ensures that P(n)fib is indeed fibrant, as it admits a fibration to a fibrant P(n−1)′.
We are now ready to prove the proposition. Let a homotopy class in [X , P(n)]A

be represented by a map ψ(n) : X(n) → P(n)fib under A(n). Let the image of this
homotopy class in [X , P(n − 1)]A be represented by a map of towers � : X → Pn−1
under A and consider the cofibrant replacement of its top component:

X(n) = X(n − 1)cof
�n−1cof−−−−−→ P(n − 1)cof .
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Then the outer square in

X(n) ψ(n)

�n−1cof
P(n) P(n)fib

P(n − 1)cof P(n − 1)′

commutes up to homotopy under A(n), which enables us to replace the mapψ(n) by a
map, homotopic under A(n), for which this square commutes strictly. Thus, it induces
a map �(n) : X(n)→ P(n) under A(n), and, together with the given �(m), m < n, a
map of towers X → Pn , as desired. ��
Putting these two theorems together, we observe that elements of [X , Y ]A are repre-
sented by maps of towers X → Pn up to homotopy relative to A. It remains to relate
[X , Pn]A with [X , Pn−1]A to enable inductive computation.

For the principal Kn-bundle Pn → Pn−1, we will derive an exact sequence of
homotopy classes that involves also [X , Kn]A and [X , W Kn]A. Since we represent
homotopy classes of maps to Postnikov stages by maps of towers, it will be convenient
to do the same for maps into Eilenberg–Mac Lane diagrams:

Lemma 3.11 Let (X , A) be a cellular pair. There is an isomorphism

[X , Kn]A ∼= [X , K (πn, n)]A

and the homotopy classes are represented both by maps X → K (πn, n) of diagrams
under A and by maps X → Kn of towers under A.

Proof The representability on the level of diagrams follows from K (πn, n) being
fibrant. Then, by adjunction, we get the first isomorphism in

[X , Kn]A = [X , K (πn, n)[n]]A ∼= [X(n), K (πn, n)]A(n) ∼= [X , K (πn, n)]A,

the second follows from homotopy invariance. ��

3.21 Exact Sequences

We derive a general “exact sequence” that relates the sets of homotopy classes of
maps to consecutive stages of a Postnikov tower and that does not depend on the
choices of basepoints. As was explained in Sect. 2, the action of [X , K (πn, n)]A on
[X , P(n)]A has possibly non-trivial stabilizers and set of orbits possibly a proper
subset of [X , P(n− 1)]A and the exact sequence captures both the stabilizers and the
subset. A sequence is a diagram of the following shape

G•
Δ•−−→ H D

s−→ E
t−→ F (3.2)
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where D, E are sets, F a pointed set with basepoint 0 ∈ F , H a group, and G a
collection of groups Ge indexed by e ∈ E . Themaps s and t aremaps of sets, the arrow
at D denotes an action of H on D and Δ• is a collection of group homomorphisms
Δd : Gs(d) → H indexed by d ∈ D.

Remark 3.12 In fact, the groups G• and group homomorphismsΔ• will not be indexed
by elements of D and E , but rather by elements of some bigger setsD and E that surject
onto D and E . Mathematically, this does not change anything, since the image of Δ•
does not depend on the representative in D and this will be the main object, by the
following definition.

Definition 3.13 We say that the above sequence is exact if

• t−1(0) = im s,
• s(d) = s(d ′) if and only if d, d ′ lie in the same orbit of the H -action, i.e., d+h = d ′
for some h ∈ H , and
• the stabilizer of d ∈ D is exactly the image of Δd .

We may construct out of this sequence an ordinary exact sequence of pointed sets in
the following way: choose a basepoint d ∈ D and then consider

Gs(d)
Δd−−→ H

a−→ D
s−→ E

t−→ F

with a(h) = d+h, the action of H on the fixed element d. It is easily seen to be really
exact, where Gs(d) and H are equipped with the respective zeroes as basepoints, D
with basepoint d, E with basepoint s(d), and F with the given element 0 ∈ F .

Exact Sequence Relating Consecutive Stages

By composing α : A → Y with various maps in the Postnikov tower of Y , we make
all

Pn, Pn−1, W Kn, W Kn

into towers under A, i.e., objects of A/Tow. Further, Kn is considered as a tower under
A via the constant map onto the zero of Kn ; more precisely, the constant map onto
the zero A(n)→ K (πn, n) is adjoint to the required A→ Kn . For the purpose of the
description of the exact sequence, we will denote maps X → Pn−1 by �n−1, �′n−1,
etc. and maps X → Pn by �n , �′n , etc. Our main exact sequence is

[I × X , Pn−1]∂• Δ•−−→ [X , Kn]A [X , Pn]A pn∗−−−→ [X , Pn−1]A
kn∗−−→ [X , W Kn]A, (3.3)

whose only non-trivial object is the collection of groups

[I × X , Pn−1]∂• := [I × X , Pn−1](∂ I×X)∪(I×A)• ,
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indexed by e ∈ [X , Pn−1]A, where for each such e = [�n−1], the corresponding group
[I × X , Pn−1]∂e is the group of homotopy classes fixed on each copy of X by �n−1 and
on I × A by the constant homotopy at the given map A→ Pn−1. (As explained in the
above remark, this collection is indexed by actual maps �n−1 : X → Pn−1 rather than
the homotopy classes [�n−1]; this will be important later in the computational part.)
The element 0 ∈ [X , W Kn]A (the basepoint) is the only homotopy class in the image
of δn∗ : [X , W Kn]A → [X , W Kn]A (since W Kn is contractible, there is a unique
homotopy class X → W Kn , see Lemma 7.3 for a more precise statement and proof).

The maps pn∗ and kn∗ are induced by pn and kn , respectively. The action is also
induced by the action of Kn on Pn . It remains to describe the homomorphisms

Δ[�n ] : [I × X , Pn−1]∂[�n−1] → [X , Kn]A,

where �n−1 = pn∗(�n). Starting with a homotopy h : I × X → Pn−1 as above, lift
it to a homotopy h̃ : I × X → Pn starting at �n and relative to A. The restriction
h̃|1×X is then of the form �n+ ζ for a unique ζ : X → Kn (namely, ζ is the difference

h̃|1×X − �n) and we set Δ[�n ][h] = [ζ ].
Proposition 3.14 The above is a well-defined exact sequence.

Proof The proof in [12, Sect. 5] applies to any principal bundlewith a homotopy lifting
property for the pair (X , A), such as Kn → Pn → Pn−1. ��

3.22 Heaps

In the stable situation dim X ≤ 2 · conn Y , the set [X , Y ]A is actually an Abelian
heap (this is proved later in Theorem 3.15) and we will exploit this structure for the
computations. We start with a formal definition of a heap. Intuitively, a heap is a group
without a definite choice of zero, so that one has addition with respect to an arbitrary
zero.

Definition A heap is a set S with a ternary operation, denoted by x +p y in this paper,
that satisfies the identity law

x +p p = x = p +p x

together with a “partial para-associative law,” or just associative law,

(x +p y)+q z = x +p (y +q z).

It is said to be Abelian if

x +p y = y +p x .

Given p ∈ S, we obtain a group structure on S with zero p, addition given by x+ y =
x+p y and inverse−x = p+x p; we denote this group by Sp. It is Abelian if and only
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if the heap S is Abelian. A different choice of the zero element leads to an isomorphic
group, the isomorphism being the translation map Sp → Sq , x �→ x+p q. We will not
work with heaps directly, but rather we will choose a zero and work with the induced
group.

3.23 Exact Sequences of Heaps

Thus, if an exact sequence in the sense of Definition 3.13 consists of Abelian heaps and
heap homomorphisms, by choosing basepoints, we obtain an ordinary exact sequence
of Abelian groups. Since computations with exact sequences of Abelian groups (and
known homomorphisms) are possible, this finishes our mathematical description of
the computation of [X , Pn]A, once we explain how this is an Abelian heap.

3.24 Stability and Abelian Heaps

The (unreduced) suspension ΣY of a diagram Y is the quotient of Δ1 × Y under the
identification that squashes each of 0×Y and 1×Y separately to a point, i.e., it is the
diagram of unreduced suspensions.

Theorem 3.15 Let (X , A) be a cellular pair. When dim X ≤ 2 · conn Y , there is a
bijection

[X , Y ]A ∼= [Σ X ,ΣY ]Σ A

and the set on the right admits a canonical structure of an Abelian heap.

Proof This is essentially contained in the proof of [22,Thm. 1.1] applied to the category
M = A/sSet-I of diagrams under A. More precisely, it is proved in that theorem that
[X , Y ]A is isomorphic to [Σ X ,ΣY ]∂I, where I is the suspension of the initial object,
i.e., of A, and is thus Σ A. Both Σ X and ΣY are made into diagrams under Σ A in
an obvious way by suspending the given maps A → X and A → Y . The second
statement is a part of [22, Thm. 1.1] and will be explained in greater detail in the proof
of Theorem 6.7. ��

4 Algorithmic Structures onMathematical Objects

In this section, we deal with algorithmic aspects of the mathematical objects treated
in the previous section. First we present our point of view on computations in/with
an object like a simplicial set X and introduce various levels of its computability—
(weakly) locally effective, effective (and later also homologically effective). As the
running time analysis of computations of invariants like [X , Y ]A for a single instance
makes little sense, we will have to deal, at least implicitly, with families of inputs for
this purpose and this introduces a further layer of complexity into the picture. For this
reason, we postpone this undertaking to the very end of this section.
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4.1 Computations in Objects vs Computations with Objects

We would like to point out a qualitative difference between two computational
problems concerning a simplicial set. The first task is to compute the j-th face or
degeneracy of a given simplex and the second is to compute the n-th homology
group.

The first problem can quite often be tackled without exact knowledge of the simpli-
cial set in question, e.g., it is computed in exactly the same way in a space and in any
of its subspaces; thus, it only concerns a “neighbourhood” of the given simplex and
that is why we call it local. If all such local computations are available (in this case,
faces and degeneracies), we call a simplicial set locally effective; we give a precise
definition later. It is simple to give a similar definition for any algebraic structure—all
operations should be computable, e.g., addition, zero and inverse in a locally effective
Abelian group etc. In general, we speak of locally effective objects.

On the other hand, the second problem of computing Hn concerns the whole sim-
plicial set and is thus global. Provided that X is locally effective and that we are given
a list of all its (non-degenerate) simplices, we call X effective and for such X it is
possible to compute basically anything, including the homology groups. This should
be viewed as the strongest version of (global) effectiveness of X .

A general definition of an effective object has the following scheme: We declare
certain locally effective objects to be “standard effective objects”, e.g., in the case of
Abelian groups these are the products of cyclic groups, and in the model categorical
cases these are the cell complexes whose elements are represented uniquely using cells
as in Propositions 3.1 and 3.2. Then a general locally effective object is effective if
there is provided a computable isomorphism with a standard effective object.

In the last part of the paper, we will use heavily homologically effective chain
complexes—these are generalizations of effective chain complexes, where an isomor-
phism with a standard effective object is replaced by a chain homotopy equivalence.

4.2 Weak Local Effectiveness

There is one more issue that was not apparent for simplicial sets. Our main object
is [X , Y ]A, the set of homotopy classes of maps and our algorithms naturally work
with actual maps, i.e., non-unique representatives of these homotopy classes. We also
mention a much simpler example of the group Z/n where, for example, on the level
of representatives the addition is the usual addition of integers, regardless of n, and
is thus no different from Z. Of course, one can make representatives unique if one
chooses a set of preferred representatives and output only these in all algorithms;
this may sound natural for Z/n but there are no obvious preferred representatives in
[X , Y ]A so that the non-unique representation is unavoidable. When speaking about
local computations, we were silently assuming that representatives were unique, in
which case there is an easy way of distinguishing Z/n from Z: pick any non-zero
element (assume it is given), multiply it by n and check whether the result is zero.
The same works with non-unique representatives if equality is decidable, i.e., if there
is provided an algorithm testing whether two inputs represent the same element. If
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this is the case and all local computations are available, we still call the object locally
effective.

Thus, in order tomake [X , Y ]A locally effective (even as a set), wewould require an
algorithm testing whether two maps are homotopic. In fact, such an algorithm exists
even non-stably (by the methods of [12]) but is not needed in this paper. We will thus
also work with structures where local computations are possible but equality is not
necessarily decidable. We call such structures weakly locally effective. (Previously,
these were called semi-effective, but since they are weaker than locally effective ones,
we decided to change the name.)

We remark that there will be no weakly effective objects, since equality will be
decidable in all our standard effective objects and, for effective objects, one can transfer
the equality problem along the given isomorphism to a standard effective object.

4.3 Preview on Running Times

Given that an effective Abelian group is a collection of algorithms we would like to
clarify on claims concerning the running time of computing [X , Y ]A or,more precisely,
the running time of the algorithm giving the isomorphism type of this Abelian group.
Practically, and in accordance with our partial implementation within the framework
of object-oriented programming, such a computation usually splits into the “construc-
tion” of the object [X , Y ]A itself (in OOP terms the call of the constructor) and the
call of the responsible function (in OOP terms the call of the “method”); what matters,
of course, is the total running time.

We do not specify how to split the computation. One of the options is the lazy
implementationwhere nothing is computed before it is needed. In this extreme case, the
construction running time is zero and the running timeof themethod is the only relevant
part. However, in this approach, any required data involving any intermediate step is
computed repeatedly from a scratch, and so this does not prescribe a very practical
algorithm. In the opposite extreme, the isomorphism type etc. can be computed upon
the construction andoutputting it via themethod then takes very little time. Tomake our
running time analysis simpler, and only for this reason, we will be assuming the lazy
implementation, so that the construction time does not enter the analysis.9 Thus, our
way to prove the polynomiality claimwill be to show recursively that all the algorithms
comprising any involved computational object (e.g., the Postnikov stage Pn) run in
polynomial time provided that the same is true for all algorithms of all objects used
inside this object (e.g., the previous Postnikov stage Pn−1). We will elaborate on this
at the end of this section, but it might be helpful to have this goal in mind already now.

9 A more detailed analysis allowing non-lazy implementations was developed in [5] and further in [6].
Following this formalism, one can show that even the non-lazy implementation runs in polynomial time,
although we believe that the reader should consider it rather clear that its running time is not greater than
that of the lazy implementation.
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4.4 Weakly Locally Effective Sets

Let A be a set. We say A is weakly locally effective if there is given a set A and a
surjective map A→ A (a weakly locally effective representation), denoted α �→ [α],
in such a way that elements of A have a specified representation in a computer (for
definiteness, we might assume that elements of A are actual bit strings, but we will
not go into such details). A mapping f : A → B between weakly locally effective
sets is said to be computable if there is given an algorithm that computes a mapping
ϕ : A→ B that represents f , i.e., such that f ([α]) = [ϕ(α)].

4.5 Locally Effective Sets

We say that the representation of A is locally effective if there is provided an algorithm
that, given α, β ∈ A, decides whether [α] = [β]. One of the possibilities, occurring
frequently in this paper, is that the representation map A → A is bijective, i.e., that
any element of A has a unique representative.

4.6 (Weakly) Locally Effective Surjections

Before explaining the algebraic examples, we mention a general principle in the com-
putational world: existence should be replaced by computability. This will not be of
much concern to us, since algebraic structures are defined by equalities, but when
dealing with exactness, surjectivity is crucial. In ordinary mathematics, a mapping
f : A→ B is surjective if

∀ b ∈ B ∃ a ∈ A : f (a) = b.

In the computational world, we thus require an algorithm computing, for any b ∈ B,
some preimage a ∈ f −1(b). In addition, in the weakly locally effective setup, this
is handled on the level of representatives, so that the algorithm computes, for any
representative β ∈ B, a representative α ∈ A of its preimage, i.e., f ([α]) = [β].
We remark, that this computable mapping does not, in general, prescribe a mapping
B → A, i.e., it may happen that [β] = [β ′], while for the computed preimages
[α] �= [α′]. For this reason, the computable mapping B → A will be called a weak
section of f : A→ B. To summarize, wemay say that f is a surjection in the effective
setting, if it admits a computable weak section.

4.7 (Weakly) Locally Effective Algebraic Structures

An algebra is a collection of sets and operations among them satisfying certain iden-
tities (i.e., an object of some variety of multi-sorted algebras). We then say that it is
(weakly) locally effective if all the involved sets are (weakly) locally effective and if
all operations are computable. We will now give a detailed definition for the structures
used in this paper.
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4.8 Abelian Groups

A weakly locally effective Abelian group A is a weakly locally effective set for which
the zero, addition and inverse are computable. In more detail we can compute o ∈ A
such that [o] = 0, given anyα, β ∈ Awe can compute γ ∈ A such that [γ ] = [α]+[β]
and given any α ∈ A we can compute β ∈ A such that [β] = −[α],

A weakly locally effective Abelian group is A effective if there is given an isomor-
phism A ∼= Z/q1 ⊕ · · · ⊕ Z/qr , computable together with its inverse. In detail, this
consists of

– an algorithm that outputs a finite list of generators a1, . . . , ar of A (given by
representatives) and their orders q1, . . . , qr ∈ {2, 3, . . .}∪{0} (where qi = 0 gives
Z/qi = Z),

– an algorithm that, given α ∈ A, computes integers z1, . . . , zr so that [α] =∑r
i=1 zi ai ; each coefficient zi is unique within Z/qi .

We will utilize the following lemmas; they were originally given in [3].

Lemma 4.1 (kernel and cokernel) Let f : A → B be a computable homomorphism
of effective Abelian groups. Then both ker( f ) and coker( f ) can be represented as
effective Abelian groups.

For the second lemma, we need a definition of exactness in the computational setting.
Assuming g ◦ f = 0, the exactness of a sequence

A
f

B
g

C ,

means surjectivity of the restricted map f : A → ker g. By the above, this condition
should be replaced by a computable weak section and we arrive at the following
definition.

Definition 4.2 A weakly locally effective short exact sequence is an exact sequence

0 A
f

B
g

C 0

consisting of weakly locally effective Abelian groups and computable homomor-
phisms together with computable mappings σ and ρ such that

– σ : C → B such that g([σ(γ )]) = [γ ] for all γ ∈ C,
– ρ : B→ A, defined only on representatives of ker g, such that f ([ρ(β)]) = [β].

Lemma 4.3 (short exact sequence) There is an algorithm that, given a weakly locally
effective short exact sequence

0 A
f

B
g

C 0

with A and C effective, supplies an effective representation of B.
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Lemma 4.4 (preimage) Let f : A→ B be a computable homomorphism of effective
Abelian groups. Then there is an algorithm that, given b ∈ B, decides whether it lies
in im f . If it does, it computes a preimage a ∈ f −1(b).

Proof Compute the images f (a1), . . . , f (ar ) of the generators of A. Next, decide if
the equation

x1 f (a1)+ · · · + xr f (ar ) = b

has a solution (this is done by translating to the direct sum of cyclic groups and solving
there using the standard methods). If a solution exists, output a = x1a1 + · · · + xr ar .

��
Later, the following lemmas will be used in the computation of Bredon cohomology
which, in turn, will be useful in describing maps into Postnikov stages.

Lemma 4.5 Let A, B be effective Abelian groups. Then Hom(A, B) is an effective
Abelian group.

Proof The proof is not complicated.Wewill only need the case of A being freeAbelian
so that Hom(A, B) is a product of copies of B and the result is trivial. ��
Let I be a fixed finite category and let π ∈ Ab-I be a diagram such that every π(i) is
effective Abelian and every morphism is a computable homomorphism. We then say
that π is an effective diagram of Abelian groups. As a consequence of the previous
lemma, we get:

Lemma 4.6 Let I be a fixed finite category and let π, ρ ∈ Ab-I be effective diagrams
of Abelian groups. Then HomAb-I(ρ, π) is an effective Abelian group.

Proof Clearly Hom(ρ, π) is the kernel of the homomorphism

F :
∏

i∈I
Hom(ρ(i), π(i)) −→

∏

f : i0→i1

Hom(ρ(i1), π(i0))

given by

F(gi )i∈I = (π( f )gi1 − gi0ρ( f )) f : i0→i1

and as such is effective according to Lemmas 4.5, 4.3, and 4.1 (dealing with Hom,
finite products and kernel, respectively). ��

4.9 Simplicial Sets

For simplicial sets, we will assume that the representative of each simplex is unique
(though, decidable equality should be sufficient).

Definition 4.7 Let X be a simplicial set. We say that X is locally effective if the
underlying sets Xn of n-simplices are locally effective and algorithms are provided
computing the faces and degeneracies of any given simplex of X .
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We will now use the canonical cellular structure of a simplicial set X to describe a
standard representation of a finite simplicial set. We recall that cells are exactly the
non-degenerate simplices of X and that any simplex x can be uniquely written as
x = sJ x , a degeneracy of a non-degenerate simplex x . We may then represent x as a
pair (J , x), where it is simple to come up with an encoding of a finite index set like
J and of a finite number of non-degenerate simplices like x . In order to describe the
cellular structure, we need to specify the attaching maps, i.e., for each non-degenerate
simplex x , we need to prescribe each of its faces: di x = sJ y. This then gives enough
information for the computation of faces and degeneracies of arbitrary simplices, usign
the simplicial identities.

We might call a simplicial set given as above, i.e., via a list eα of its non-degenerate
simplices and lists of identities of the form di eα = sJ eβ with eα and eβ non-degenerate,
a standard effective simplicial set. According to this choice, an effective simplicial set
is a locally effective simplicial set equipped with an isomorphism, computable in
both directions, with a simplicial set as above. Explicitly, this means: there exists an
algorithm producing a list of all non-degenerate simplices10 and an algorithm that
expresses any given simplex as a degeneracy of a non-degenerate one (though, such
an algorithm already follows from local effectivity).

The notion of local effectiveness specializes to diagrams of simplicial sets in the
following way:

Definition 4.8 Let I be a finite category. We say that a diagram X ∈ sSet-I is locally
effective, if, for any object i of I, the simplicial set X(i) is locally effective and, for
any morphism f of I, the map X( f ) is computable.

Definition 4.9 A cellular pair (X , A) of diagrams of simplicial sets is effective if X is
locally effective (and hence also A) and there is given

– an algorithm that outputs a finite list of cells eα ∈ X(iα), α ∈ A;
– an algorithm that, given a simplex e ∈ X \ A, computes the unique expression

e = sJ ( f ∗(eα))

of Proposition 3.1.

There is a completely analogous definition of a pointwise effective diagram, where
the cells generate the individual simplicial sets in the diagram separately, i.e., the
expression in the second point is replaced by e = sJ (eα).

4.10 Chain Complexes

A chain complex C locally effective if all the chain groups Cn are locally effective
Abelian groups and the differentials are computable. Analogously, a diagram C ∈
Ch-I of chain complexes is locally effective if C(i) is locally effective for every object
i of I and if C( f ) is a computable homomorphism for every morphism f of I.
10 It is also possible to ask only for the list of all non-degenerate simplices of any given dimension (passed
as the input), leading to what mathematicians would call a locally finite simplicial set (for a meaning of
local different from ours).
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Definition 4.10 A cellular pair (C, C ′) of diagrams of chain complexes is effective if
C is locally effective (and hence also C ′) and there is given

– an algorithm that outputs a finite list of cells cα ∈ C(iα), α ∈ A;
– an algorithm that, given a chain c ∈ C , computes the unique expression

c =
∑

α∈A
f : i→iα

kα, f f ∗(cα) mod C ′

of Proposition 3.2.

The following lemma follows easily from the definitions given in this section.

Lemma 4.11 Let (X , A) be a locally effective pair of diagrams of simplicial sets
A, X ∈ sSet-I and let ρ ∈ Ab-I be an effective diagram of Abelian groups. The
following hold:

1. If (X , A) is effective, then C∗(X , A) is effective.
2. If (X , A) is effective, then Cn

I(X , A; ρ), Zn
I(X , A; ρ), and Hn

I (X , A; ρ) are effec-
tive Abelian groups.

We remark that C∗I(X , A; ρ) is not an effective chain complex according to our defi-
nition since it does not consist of free Abelian groups.

4.11 Eilenberg–Mac Lane Diagrams

Since the Eilenberg–Mac Lane diagram K (π, n) has as n-simplices (K (π, n))n ∼= π ,
for a locally effective K (π, n) the coefficient system π must be locally effective, too.
In addition π ∼= Hn(K (π, n)), so that the (not yet defined) pointwise homologically
effective K (π, n) will have π effective; the converse is also true (this is [5, Theorem
3.16]), but not needed. Since we do not want to introduce another name for locally
effective diagrams K (π, n) with π effective, we will call them pointwise homologi-
cally effective; until the construction of the Postnikov tower, the reader may consider
these synonymous. The isomorphism

map((X , A), (W K (π, n), 0) ∼= Zn+1(X , A;π)

is computable in both directions and so is the one for cochains. When π is effective,
we may decide if a cocycle is a coboundary (cochain groups are effective and the
differential is computable), so that we may also decide whether a given map X →
W K (π, n), zero on A, lifts to a map X → W K (π, n), zero on A. This will be a crucial
ingredient for the computational version of the obstruction theory.

4.12 Cofibrant Replacements

As mentioned in Sect. 3.10, the cofibrant replacement of any diagram is cellular. By
the explicit description of the cells, it is clear that the cofibrant replacement of a
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pointwise effective diagram is effective. We will later see a variation of this result in
Proposition 8.10—the cofibrant replacement of a pointwise homologically effective
diagram is homologically effective.

4.13 Towers

We will be working only with n-truncated towers, for n fixed. In this situation, we
may replace all n-truncated towers by n-restricted towers. The locally effective towers
then have the obvious definition. Of course, locally effective (non-truncated) towers
can be defined easily too.

4.14 Postnikov Towers

Theorem 9.2 constructs a pointwise homologically effective n-restricted Postnikov
tower. With the exception of the proof of this theorem, we will only use local effec-
tiveness of the tower and the effectiveness of homotopy groups, as explained in
Sect. 4.11—the full strength of pointwise homological effectiveness is employed in
the inductive construction of the tower.

4.15 Weakly Locally Effective Exact Sequences

Aweakly locally effective collection of groups G• is a collection of groups Gε, indexed
by ε ∈ E , together with surjections Gε → Gε that, together, provide a weakly locally
effective representation

G =
∐

Gε →
∐

Gε

Addition in these groups is represented by a computable map
∐Gε × Gε → ∐Gε,

i.e., G ×E G → G, etc. In other words, a single algorithm is required, computing the
addition in all the groups in the collection.

Similarly, an effective collection of groups is a weakly locally effective collection
of groups that possesses, in addition, an algorithm that computes for any given ε ∈ E a
set of generators of Gε together with their orders and also an algorithm that computes
the expression of any element of G as an integral combination of these generators.

A computable collection of group homomorphisms Δδ : Gσ(δ) → H , indexed by
δ ∈ D, is similarly represented by a computable map Δ̃ : D×E G → H, taking a pair
(δ, α) to a representative of Δδ([α]).

A weakly locally effective sequence is

G•
Δ•−−→ H D

s−→ E
t−→ F

where D, E are weakly locally effective sets, F a weakly locally effective pointed set
with basepoint [o] ∈ F , H a weakly locally effective group and G• a weakly locally
effective collection of groups Gε indexed by ε ∈ E . The maps s and t are computable
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maps of sets, represented by σ and τ , the arrow at D denotes a computable action of H
on D and Δ• is a computable collection of group homomorphisms Δδ : Gσ(δ) → H
indexed by δ ∈ D.

A weakly locally effective exact sequence is a weakly locally effective sequence in
which the following algorithms are provided, parallel to Definition 3.13:

– for ε ∈ E such that t[ε] = 0, compute δ ∈ D such that s[δ] = [ε],
– for δ, δ′ ∈ D such that s[δ] = s[δ′], compute β ∈ H such that [δ] + [β] = [δ′],
– for δ ∈ D and β ∈ H such that [δ] + [β] = [δ], compute α ∈ Gσ(δ) such that
[β] = Δδ[α].

Remark 4.12 These algorithms are all the effective versions of certain natural surjec-
tions (i.e., computable weak sections of these surjections):

– the restriction s : D → t−1(0),
– the collection, indexed by δ, of the action maps H → s−1(s[δ]), h �→ [δ] + h,
– the collection, indexed by δ, of the maps Δδ : Gσ(δ) → St[δ] to the stabilizer
group of [δ] under the action of H .

Assuming that all terms are weakly locally effective Abelian heaps and a basepoint
[δ] ∈ D is computable, we will obtain a weakly locally effective exact sequence of
Abelian groups in the sense of Sect. 4.8, details are given in the proof of Theorem 7.5.

4.16 Running Times and Parametrized Effectivity

Wewill now comment on our approach to the computational complexity of algorithms,
a somewhat simplified version of [5, 6]. We will explain this on the algorithm Hn

computing, for a given finite simplicial set X , its n-th homology group Hn X . Of
course, this algorithm is quite simple—setup the chain complex of X and compute
its homology using the Smith normal form. The main point, however, is that the
algorithm uses as subroutines the algorithms computing the faces of X and also other
algorithms of X (its effective structure); otherwise, the algorithm is exactly the same
for all simplicial sets. Therefore, the running time of Hn X depends (heavily) on the
running times of the algorithms of X and as such should be treated as a function of
these running times. We have decided not to formalize this approach and, instead,
we formulate our statements in the following vein: If all the algorithms of X run in
polynomial time then so do the algorithms of Hn X—here, the algorithms for X are
those of an effective simplicial set, while those for Hn X are those of an effective
Abelian group; this involves, in particular, the algorithm outputting the isomorphism
type.

Clearly, when speaking about the complexity of computing Hn X , we must consider
a class of simplicial sets and X should then be treated as an argument of Hn . Techni-
cally, we consider X to be parametrized by a parameter p ∈ P that involves all the data
needed for the computations inside X(p): a number of options is possible, e.g., one
can specify a finite simplicial complex by the collection of its maximal simplices, one
can specify a finite simplicial set as in Sect. 4.9 by the collection of its non-degenerate
simplices and their faces, one can specify the Eilenberg–Mac Lane space K (π, n) via
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the group π (the list of the orders of its cyclic summands), etc. The face operator d j

in all the simplicial sets X(p) of a given class will be required to be computed by a
single algorithm that takes p as an extra argument, i.e., d j (p, x) computes the j-th
face of the simplex x ∈ X(p). We will then say that X is a family of simplicial sets.
We thus have a family of finite simplicial complexes, a family of finite simplicial sets,
a family of Eilenberg–Mac Lane spaces K (π, n) (for all finitely generated Abelian
groups π ), etc.

Definition 4.13 Generally, our computational objects consist of a mathematical object
and a set of algorithms. Denoting by C the class of all such computational objects,
the individual objects will be referred to as C-objects and the required algorithms as
C-algorithms.

Thus, to give a C-object (e.g., a weakly locally effective Abelian group), we need to
supply a full set of C-algorithms for it (e.g., addition, etc.). As explained above, we
have an obvious notion of a family of C-objects, where an extra parameter p ∈ P is
added.

Definition 4.14 We say that a given C-object is polynomial time if all the involved C-
algorithms have polynomial running time. Similarly, there is a notion of a polynomial
time family of C-objects.

Definition 4.15 A (computable) construction F : C → D is a mapping on the level of
mathematical objects (generally multi-valued) together with a full set ofD-algorithms
that are allowed to use formal calls to C-algorithms. In this way, a C-object X gives rise
to a D-object F∗X , by replacing the formal calls by calls to the actual C-algorithms
of X . We say that this construction is polynomial time, if it preserves polynomial time
objects, i.e., X polynomial time⇒ F∗X polynomial time.

Thus, a construction is like a D-object modulo C-algorithms and as such is suited for
studying running times recursively. The following proposition, while very simple to
prove, summarizes our approach to the running time analysis and explains why we do
not have to deal with families of objects explicitly.

Proposition 4.16 When X is a family of C-objects, F∗X is a family of D-objects.
Assuming F to be a polynomial time construction, if X is a polynomial time family,
then so is F∗X.

With these notions at hand, we may simply say that the kernel is a polynomial time
construction.However,wenote that the name“kernel” only describes themathematical
part of the objects, thus we have to further specify the involved algorithms, i.e., that
it takes a computable homomorphism between effective Abelian groups and gives an
effective Abelian group.

Remark 4.17 In this way, for different families of homomorphisms, we get different
families of kernels, i.e., the actual codes will differ, although only in the involved calls,
so that this approach leads to code duplication. Of course, there are standard ways of
dealing with this problem and we will not comment on this further.
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As a corollary, the n-th homology group C �→ Hn(C) is a polynomial time construc-
tion (from effective chain complexes to effective Abelian groups) and so is the total
homology C �→ H∗(C) valued in effective graded Abelian groups. However, the run-
ning times of our algorithms are very sensitive to dimension, so that we will need to
truncate all objects. Similarly, the association

(0→ A→ B → C → 0) �−→ B

from weakly locally effective exact sequences with the outer groups effective to effec-
tive Abelian groups is a polynomial time construction. The preimage is interpreted as
an association

( f : A→ B, b ∈ B) �−→ a

that is multi-valued, with the possibility of having no value at all (if b does not lie in
the image of f ). As such, it is again a polynomial time construction.

Remark 4.18 In a family of weakly locally effective collections of groups and also in a
family of computable collections of group homomorphisms, there are then employed
two levels of parameters—one coming from it being a family and the other from it
being a collection. We will explain this on the example of the exact sequence (3.3):
The map Δ̃ takes as arguments pairs (�n, h) with �n : X → Pn and h : I × X → Pn−1
a homotopy pn�n ∼ pn�n , relative to A; note that the conditions on h depend on the
parameter �n . In the setting of families, Δ̃ takes an extra argument p that specifies
X , Y , etc.: clearly, the conditions on �n depend on this extra parameter, so that the
arguments dependences are (p, �n(p), h(p, �n(p))) and the two parameter levels are
not independent.

5 Proof of theMain Theorem

Now that we have defined the main notions, we are able to give a more detailed outline
of the proof together with references to the appropriate statements forming the steps
in the proof.

Theorem 3.15 reduces the computation of [X , Y ]A to that of the Abelian heap
[Σ X ,ΣY ]Σ A. Then, according to Theorem 3.9, we may replace ΣY by its Postnikov
stage P(n), as long as n ≥ dimΣ X = 1+ dim X . We will thus compute

[Σ X , P(n)]Σ A

inductively and finish with n = 1 + dim X . According to Theorem 3.10, we further
replace P(n) by the truncated tower Pn , so that we are left to compute inductively

[Σ X , Pn]Σ A

(this, generally non-Abelian, heap is in fact computable even without the stability
assumption, using methods of this paper together with those of [12]).
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A pointwise homologically effective Postnikov system is constructed in Theo-
rem 9.2. Theorem 6.7 then equips each [Σ X , Pn]Σ A with a weakly locally effective
Abelian heap structure and these are organized in an exact sequence (3.3), which
is weakly locally effective by Theorem 7.2 and by induction. Finally, the algorithm
of Theorem 7.5 either finds out that [Σ X , Pn]Σ A is empty or equips this set with a
structure of an effective Abelian group.

To set up the full computational strength of the main exact sequence, we will need
to lift maps along the stages of the Postnikov tower. This is classically handled by the
obstruction theory and we will thus have to develop its computational version. The
importance of the suspension as a domain will come into the play at the very end;
for this reason, we will work all the time with homotopy classes of maps from X to
a Postnikov tower P of Y but with a view of applying the machinery to Σ X ,ΣY as
explained above.

Running Times

All the results invoked in the above proof are described as polynomial time construc-
tions of Definition 4.15. Thus, so is their composition

(A ⊆ X , Y , f : A→ Y ) �−→ [X , Y ]A

landing in the class of effective Abelian groups. Proposition 4.16 then shows that any
polynomial time family of the input data produces a polynomial time family of the
outputs. This holds regardless of an explicit way of encoding the input diagrams and
maps, it is only required that all the (obvious) tasks should be computable in polynomial
time; on the other hand, we outlined in Sect. 4.16 a simple way of encoding finite
simplicial sets and this can be easily extended to finite diagrams of finite simplicial
sets. Through this encoding (or any other), we thus obtain a concrete realization of
our algorithm that is polynomial time.

6 Computational Obstruction Theory

Assumption 6.1 We will assume throughout this section that the Postnikov system
ϕ : Y → P is pointwise homologically effective; later, this will be strengthened but at
this point wewill make dowith P being locally effective and all diagrams of homotopy
groups being effective. In addition, we will assume that (X , A) is an effective pair of
diagrams.

For running time analysis, we have to fix a bound on the dimensions of all objects.
In this case, one should read all of the statements below as describing polynomial time
constructions. That is, given that the pointwise homologically effective Postnikov
system is polynomial time, as well as all the additional input data in the statements,
the same holds for the output.

We will now describe (effective) obstruction theory for diagrams: in order to lift a
homotopy class in [X , Pn−1]A to a homotopy class in [X , Pn]A, we represent the
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original homotopy class by a map of towers X → Pn−1 under A so that we get,
according to Theorem 3.10, to the following equivalent situation.

Proposition 6.2 Under Assumption 6.1, there is an algorithm that, given a computable
commutative square of towers

A Pn

pn

X Pn 1−

decides whether an indicated lift exists. If it does, it computes one. If Hn+1(X , A;π)

= 0, then such a lift is guaranteed to exist.

Proof Since pn is a pullback of δn , we obtain an equivalent lifting problem

A Pn W Kn

X Pn−1 W Kn

By adjunction between (n) and [n], this is further equivalent to the corresponding
lifting problem at level n:

A(n) P(n) W K (πn, n)

X(n) P(n − 1)cof W K (πn, n)

This liftingproblem is translated to a cohomological problem inCn+1(X(n), A(n);πn)

as usual—Lemma 6.3 makes this translation and solves the cohomological problem.
Finally, since P(n) is a pullback in the right hand side square by Lemma 3.7, it is easy
to compute a lift X(n) → P(n), and thus X → Pn , from the lift in the composite
square. ��

Lemma 6.3 There is an algorithm that, given an effective pair of diagrams (X ′, A′),
an effective diagram of Abelian groups π ∈ Ab-I and a computable commutative
square of diagrams

A
c

WK (π, n)

δ

X z WK (π, n)
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decides whether an indicated lift exists. If it does, it computes one. If Hn+1(X ′, A′;π)

= 0, then a lift exists for every c and z.

Proof Thinking of c as a cochain in Cn(A′;π), we extend it to a cochain on X ′ by
mapping all n-cells not in A′ to zero. This prescribes a map c̃ : X ′ → W K (π, n) that
is a solution of the lifting-extension problem from the statement for z replaced by δc̃.
Since the lifting-extension problems and their solutions are additive, one may subtract
this solution from the previous problem and obtain an equivalent lifting-extension
problem

A
0

WK (π, n)

δ

X
z δc

c0

WK (π, n)−

A solution of this problem is a relative cochain c0 whose coboundary is z0 = z − δc̃
(this c0 yields a solution c̃ + c0 of the original problem). Since C∗(X ′, A′) is effec-
tive, such a c0 is computable whenever it exists (and it always exists in the case
Hn+1(X ′, A′;π) = 0). ��
Whenever C∗(X , A) is acyclic, there exists a contraction of C∗(X , A) (see Proposi-
tion 8.11 and recall that (X , A) is assumed to be effective) and therefore its cohomology
groups with arbitrary coefficients are zero. Thus, in this situation, all possible obstruc-
tions are zero and we may proceed inductively, using Proposition 6.2, to lift through
arbitrary number of stages. As special cases, we obtain the following two results.

Proposition 6.4 (homotopy lifting) Under Assumption 6.1, given a computable com-
mutative square

(0 × X) ∪ (I × A)

∼

Pn

I X Pm×
it is possible to compute a lift. In other words, one may lift homotopies in Postnikov
towers algorithmically.

Proof The chain complex C∗(I × X , (0× X) ∪ (I × A)) � C∗(I , 0)⊗ C∗(X , A) is
acyclic, since C∗(I , 0) is. ��
The second result concerns algorithmic concatenation of homotopies. Let 2

1 denote
the first horn in the standard 2-simplex Δ2, i.e., the simplicial subset of the standard
simplex Δ2 spanned by the faces face01 and face12, where face jk ∼= I denotes the
subsimplex with vertices j, k. Given two homotopies h2, h0 : I × X → Y that are
compatible, in the sense that h2 is a homotopy from �0 to �1 and h0 is a homotopy
from �1 to �2, one may prescribe a map 2

1 × X → Y as h2 on face01×X and as h0
on face12×X . If this map has an extension H : Δ2 × X → Y , then the restriction
of H to face02×X gives a homotopy from �0 to �2, which can be thought of as a
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concatenation of h2 and h0. We will need the following effective, relative version; the
proof is entirely analogous to that of the previous proposition and we omit it.

Proposition 6.5 (homotopy concatenation) Under Assumption 6.1, given a compu-
table commutative square

( 2
i × X) ∪ (Δ2 × A)

∼

Pn

Δ2 × X Pm

it is possible to compute a lift. In other words, one may concatenate homotopies in
Postnikov towers algorithmically.

Since the algorithm takes the restrictions of homotopies to (∂ I × X) ∪ (I × A) as an
input, we obtain a corollary:

Corollary 6.6 Under Assumption 6.1, [I × X , Pn−1]A• is a weakly locally effective
collection of groups.

In the case that the homotopies are not relative, i.e., constant on A, it is not possible
to concatenate and we only get a heap structure.

Theorem 6.7 Under Assumption 6.1, it is possible to equip [Σ X , Pn]Σ A with a weakly
locally effective Abelian heap structure.

Proof There is an obvious isomorphism coming from the definition of a suspension
as a quotient of the cylinder:

[Σ X , Pn]Σ A ∼= [I × X , Pn](∂ I×X)∪(I×A)

(in fact, the right hand side is slightly more general in that it allows the maps to be
fixed on the two ends of the cylinder in a non-constant way). In accordance with
Theorem 3.10, we will work with maps of towers I × X → Pn under the appropriate
subspaces. Given three maps of towers �1, o, �2 : I × X → Pn , we organize them
into a single map

(face13×X) ∪ (face12×X) ∪ (face02×X)
(�1,o,�2)−−−−−−→ Pn

and we note that the tower on the left is (face13 ∪ face12 ∪ face02)× X .

•0

•
2

�2

•
1

o
• 3

�1

�
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Together with the composite

Δ3 × A
s0s2×id−−−−−→ I × A −→ Pn

(the first map takes vertices 0, 1 ∈ Δ3 to the vertex 0 ∈ I and vertices 2, 3 ∈ Δ3 to
1 ∈ I , while the second map is the common restriction of �1, o, �2), these describe
the top map in the diagram

((face13 ∪ face12 ∪ face02)× X) ∪ (Δ3 × A)

∼

Pn

Δ3 × X

An extension can be computed inductively using Proposition 6.2 as in the previous
special cases and its restriction to face03×X , denoted by � in the above picture, gives
a representative of [�1] +[o] [�2]. It is standard that the resulting map � is unique up
to homotopy relative to (∂ I × X) ∪ (I × A). ��
We remark that, as a slight simplification, it is enough to extend first to the face
face123×X and then to face023×X in order to obtain �.

7 An Exact Sequence and the Inductive Computation

Assumption 7.1 In addition to Assumption 6.1, we require the inductive hypothesis
that [I × X , Pm]∂• is an effective collection of Abelian groups, for all m < n. In fact,
this holds even without the stability assumption, although these groups are generally
not Abelian but only polycyclic, see [12]. Again, once a bound on the dimensions of
all objects is fixed, all the theorems prescribe polynomial time constructions, i.e., if
all the inputs are assumed to be polynomial time, the same holds for the output.

We recall the exact sequence (3.3):

[I × X , Pn−1]∂• Δ•−−→ [X , Kn]A [X , Pn]A pn∗−−−→ [X , Pn−1]A
kn∗−−→ [X , W Kn]A.

Theorem 7.2 Under Assumption 7.1, the above is a weakly locally effective exact
sequence.

Proof All terms are represented by maps of towers. This is covered by Theorem 3.10
and Lemma 3.11. The computability of various maps in the diagram is clear and the
weak locally effective group structure on the first term is provided by Corollary 6.6.
The computability of the basepoint of the last term follows from Lemma 7.3, since

the basepoint is given as an arbitrary composition X → W Kn
δn−→ W Kn .
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A weak section of pn∗ is computed by lifting a map �n−1 : X → Pn−1 to Pn , using
Proposition 6.2. A weak section ofΔ• is computed as follows: given �n : X → Pn and
ζ : X → Kn such that �n ∼ �n + ζ , compute such a homotopy h using Lemma 7.4
and project it to Pn−1 to obtain a preimage pnh, according to Δ[�n ][pnh] = [ζ ]. A
weak section for the action is computed by a combination of the previous ingredients:
given �n, �′n such that pn�n ∼ pn�′n , compute such a homotopy h using Lemma 7.4
and lift it, using Proposition 6.4 to a homotopy �n + ζ ∼ �′n to obtain a preimage ζ ,
according to [�n] + [ζ ] = [�′n]. ��

Lemma 7.3 For any effective pair (X , A) of diagrams and any computable map A→
W Kn, we have [X , W Kn]A = ∗and a representative can be computed algorithmically.

Proof We have [X , W Kn]A ∼= [X(n), W K (πn, n)]A(n). For any cellular A′ → X ′ the
extension problem

A′ W K (π, n)

X ′

is solvable—it just means that any cochain in Cn(A′;π) extends to a cochain in
Cn(X ′;π); any such extension is determined by the images of the cells of X ′ \ A′,
e.g., we may assign them the zero value.

Applying this to A(n)→ X(n) and to (∂Δ1× X(n))∪ (Δ1× A(n))→ Δ1× X(n)

yields the existence of a map and the existence of a relative homotopy between any
two such maps. ��

Lemma 7.4 An algorithm exists, computing for any given representatives �n, �′n with
[�n] = [�′n] ∈ [X , Pn]A a homotopy �n ∼ �′n relative to A.

Proof Given �n : X → Pn , we define �m to be the composition of �n with the canonical
projection Pn → Pm . We proceed by induction on the height m of the Postnikov tower
to compute a homotopy hm : �m ∼ �′m . When a homotopy hm−1 : �m−1 ∼ �′m−1 has
been computed, we lift it, using Proposition 6.4, to a homotopy h̃m−1 : �′′m ∼ �′m from
some map �′′m lying over �m−1. Then �′′m = �m + ζm for a unique ζm : X → Km ,
namely ζm = �′′m − �m .

Since Proposition 6.5 provides algorithmic means for concatenating homotopies, it
remains to construct a homotopy h′m : �m ∼ �′′m . Consider the connecting homomor-
phism in (3.3) for stages Pm−1 and Pm , i.e.,

Δ�m : [I × X , Pm−1]∂ −→ [X , Km]A.

From the exactness of (3.3) and from �m ∼ �′m ∼ �′′m = �m + ζm , it follows that [ζm]
lies in the image of Δ�m . Since the target is effective by Lemma 7.8, the algorithm of
Lemma 4.4 then computes some h′m−1 such that Δ�m [h′m−1] = [ζm].
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It is then easy to see (cf. [12, Prop. 7]) that the required homotopy h′m : �m ∼ �′′m can
be computed as a lift of the homotopy h′m−1 as in (i.e., both ends of h′m prescribed):

(∂ I × X) ∪ (I × A) Pm

I × X
h′m−1

h′m
Pm−1

Proposition 6.2 provides an algorithm for the computation of h′m and the proof is
finished. ��
Theorem 7.5 Under Assumption 7.1, if the main exact sequence consists of weakly
locally effective Abelian heaps and heap homomorphisms and if [X , Pn−1]A is
equipped with an effective Abelian group structure, then it is possible to algorith-
mically decide whether [X , Pn]A is non-empty and, if this is the case, further equip
[X , Pn]A with an effective Abelian group.

Remark 7.6 Our proof of themain theorem replaces the computation of [X , Y ]A by that
of [Σ X , PΣY

n ]Σ A, for n ≥ 1+dim X , with PΣY
n the Postnikov stage ofΣY , and then

utilizes the above theorem, since the latter carries a natural weakly locally effective
heap structure by Theorem 6.7. It is also possible to put a weakly locally effective
heap structure directly on [X , PY

n ]A, with PY
n the Postnikov stage of Y ; namely, it

is possible to construct a weak H-space structure (or rather a heap version of an H-
space structure) on the Postnikov stage PY , under the assumption n ≤ 2 · conn Y . The
advantage of this approach is that we need only dim X stages of the Postnikov tower
PY

n and we believe that this should make the resulting algorithm faster in practice. We
have decided to use the suspensionΣY mainly for the simplicity of the heap operation.

We now proceed with a few preliminary results needed for the proof of Theorem 7.5.

7.1 Translating Zero

Let S be a group and p ∈ S an element. We define a new group structure on S,
denoted by Sp, by declaring the right translation S → Sp, x �→ x + p, to be an
isomorphism. Consequently, Sp has zero p, addition x +p y = x − p+ y and inverse
−px = p − x + p.

Proposition 7.7 If the group S is weakly locally effective or effective, then so is Sp.

Proof The weak local effectiveness is obvious from the formulas. If S is effective with
generators ai of orders qi , then Sp is effective with generators the translates ai + p of
the same orders qi . An expression of a as an integral combination in Sp is obtained by
translating to S, i.e., by computing the coefficients of a− p as an integral combination
of the ai in S. ��
Before starting the proof of Theorem 7.5, we prove the full effectivity of the coho-
mology groups of an effective pair (X , A). This will be the basic building stone.
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Lemma 7.8 Let (X , A) be an effective pair of diagrams. Let c : A→ W K (π, n) be a
fixed computable map and make W K (π, n) into a diagram under A via δc. Then it is
possible to equip [X , W K (π, n)]A with a structure of an effective Abelian group; the
elements are represented by maps X → W K (π, n) whose restriction to A equals δc.

Proof According to Lemma 7.3, the set [X , W K (π, n)]A has a single element,
obtained by extending c to a map c̃ : X → E(π, n) and, thus, there is a well-defined
element [δc̃] ∈ [X , W K (π, n)]A; it will serve as the zero of the group. Denoting
the group from the statement temporarily by [X , W K (π, n)]A,c to stress the chosen
map c, we have an isomorphism

[X , W K (π, n)]A,c ∼= [X , W K (π, n)]A,0, [z] �→ [z − δc̃],

computable together with its inverse. We will thus assume from now on that c = 0
and drop it again from the notation. In this situation we have an isomorphism

[X , W K (π, n)]A ∼= Hn+1(X , A;π)

computable in both directions. Since the cochain complex

C∗(X , A;π) = Hom(C∗(X , A), π)

clearly consists of effective Abelian groups and since these are closed under subgroups
and quotients, the cohomology group is also effective. ��
The proof of Theorem 7.5 consists of two main steps.

7.2 Computing the Basepoint of [X, Pn]A

Since the group [X , Pn−1]A is effective, it is equipped with a zero [on−1]. We first
solve the problem of choosing a zero [on] ∈ [X , Pn]A.

A
fn

i

Pn
qn

pn

W Kn

δn

X on−1 Pn−1 kn
W Kn

Considering the set [X , W Kn]A of homotopy classes of maps whose restriction to
A equals δnqn fn , and equipping it with zero [knon−1], the map kn∗ : [X , Pn−1]A →
[X , W Kn]A becomes a computable homomorphismbetween effectiveAbelian groups.
We remark that the zero [knon−1] is generally different from the natural zero exhibited
in the proof of Lemma 7.8—we will denote this natural zero by 0.

According to Lemma 4.4, it is possible to decide whether 0 lies in the image of
kn∗ and compute some o′n−1 such that kn∗[o′n−1] = 0. Then, using Proposition 6.2,
it is possible to lift o′n−1 : X → Pn−1 to a map on : X → Pn that will represent our
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new basepoint [on] ∈ [X , Pn]A. If 0 does not lie in the image of kn∗ then [X , Pn]A is
empty.

7.3 Making [X, Pn]A Effective

Having computed [on], our general exact sequence (3.3) becomes, under our assump-
tions, an exact sequence of Abelian groups, that can be easily transformed into a short
exact sequence

0 cokerΔon j∗
[X , Pn]A pn∗

ρ

ker kn∗
σ

0.

By Lemma 4.1, both cokerΔon and ker kn∗ are effective. Since the indicated weak
sections are induced by those of (3.3), Lemma 4.3 applies and [X , Pn]A becomes
effective.

8 Effective Homological Algebra

8.1 Homologically Effective Diagrams

In this section, we define homologically effective diagrams of chain complexes and
simplicial sets, introduced originally in the article [10] under the name of diagrams
with effective homology, and describe several constructions with such diagrams. We
begin by introducing reduction and strong equivalence of diagrams:

Definition 8.1 Let C, C ′ ∈ Ch-I be diagrams of chain complexes. A reduction C ⇒
⇒ C ′ is a triple of natural transformations (α, β, η)

(α, β, η) : C ⇒⇒ C ′ ≡ Cη

α

C ′
β

such that α and β are chain maps satisfying the following conditions:

ηβ = 0, αη = 0, ηη = 0, αβ = id, ∂η + η∂ = id−βα. (8.1)

One of the most important and well-known examples of a reduction is the following,
first given in [7, 8]:

Example 8.2 (Eilenberg–Zilber reduction) Let X , Y be simplicial sets. Then there is
a reduction

C∗(X × Y )⇒⇒ C∗(X)⊗ C∗(Y ).

The operators in the reduction data can be computed using the acyclic models theorem
as e.g., in [16, Chapter 28] and they are not unique. We will further use the reduction
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data presented in [7, Thm. 2.1a]. An important observation is that the operators of
the reduction data are based on the face and degeneracy maps which means that the
reduction is functorial in simplicial sets, so that the above example extends to diagrams
of simplicial sets.

Definition 8.3 A strong equivalence C ⇐⇐⇒⇒ C ′ of diagrams of chain complexes is
defined as a span of reductions C ⇐⇐ Ĉ ⇒⇒ C ′.
Strong equivalences of diagrams can be composed as in the case of strong equivalences
of chain complexes.

Given a category I, we denote by Ĩ the category with the same set of objects but
with identity arrows only. There is an obvious inclusion Ĩ → I and thus a diagram
X : I → C induces a diagram X̃ : Ĩ → C. The following definition generalizes the
concept of an object with effective homology (see [19]) to the context of diagrams:

Definition 8.4 – We say that a locally effective diagram of chain complexes C is
homologically effective if there is given an effective diagram Cef ∈ Ch-I and a
strong equivalence C ⇐⇐⇒⇒ Cef .

– We say that a locally effective diagramof chain complexesC is pointwise homolog-
ically effective if its restriction C̃ ∈ Ch-Ĩ is homologically effective. Concretely,
this consists of a collection of strong equivalences C(i)⇐⇐⇒⇒ Cef(i) (not neces-
sarily natural in i ∈ I).

– A locally effective diagram of simplicial sets X ∈ sSet-I is (pointwise) homolog-
ically effective if C∗(X) is (pointwise) homologically effective.

As an important example, the diagram W K (π, n), where π ∈ Ab-I and n ≥ 1 is
pointwise homologically effective, which follows from [5, Thm. 3.16]. In general, we
aren’t aware of an algorithm that would show it is homologically effective. However, in
special cases such as when W K (π, n) is cofibrant, we obtain homologically effective
W K (π, n) (see Proposition 8.10).

8.2 Constructions with Homologically Effective Diagrams

We now introduce the standard results of homological perturbation theory in the con-
text of diagrams of chain complexes. We will utilise them to prove that certain objects,
such as cofibrant replacements, are homologically effective.

Definition 8.5 Let C, C ′ ∈ Ch-I. Notice that the differential ∂ on C can be seen as a
natural transformation C → C[1] satisfying ∂∂ = 0. Here C[1] is diagram of chain
complexes C with all the chain complexes moved up by one dimension. We call a
collection of maps δ : C → C[1] perturbation if the sum ∂ + δ is also a differential.

We now formulate the lemmas.

Easy Perturbation Lemma 8.6 Let (α, β, η) : (C, ∂)⇒ (C ′, ∂ ′) be a reduction of dia-
grams of chain complexes. Suppose δ′ is a perturbation of the differential ∂ ′. Then
there is a reduction (α, β, η) : (C, ∂ + βδ′α)⇒⇒ (C ′, ∂ ′ + δ).

Basic Perturbation Lemma 8.7 Let (α, β, η) : (C, ∂) ⇒⇒ (C, ∂ ′) be a reduction of
diagrams of chain complexes. Suppose δ is a perturbation of the differential ∂ and
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further for every i ∈ I and every c ∈ C(i) there is some k ∈ N such that
we get (ηδ)k(c) = 0. Then there is a reduction of diagrams of chain complexes
(α′, β ′, η′) : (C, ∂ + δ)⇒⇒ (C ′, ∂ ′ + δ′).

Proof of both lemmas follows directly from the original classical perturbation lemmas
(see e.g., [19]), as there is a concrete description of new reduction data in terms of
sums of compositions of α, β, η, ∂, δ. As we assume these are natural transformations,
the resulting reduction data will consist of natural transformations as well.

Lemma 8.8 1. Let C ∈ Ch-I and D ∈ Ch-J be homologically effective. Then so
is C ⊗̂ D ∈ Ch-(I × J ), given by C ⊗̂ D(i, j) = C(i) ⊗ D( j). In particular,
the tensor product of a homologically effective diagram of chain complexes with
a homologically effective chain complex is a homologically effective diagram of
chain complexes.

2. Let C, D ∈ Ch-I be homologically effective. Then so is C ⊕ D ∈ Ch-I.
3. Let C, D ∈ Ch-I be homologically effective and f : C → D computable. Then

the mapping cylinder M f ∈ Ch-I is homologically effective.

Proof In the first point, the strong equivalences are closed under the tensor product,
so that we have C ⊗̂ D ⇐⇐⇒⇒ Cef ⊗̂ Def and the right hand side Cef ⊗̂ Def is effective
with cells the tensor products of the cells of Cef and of Def . The special case in the
first point is obtained by taking J to be the trivial one-object category. The second
point is trivial and the final claim follows from [5, Prop. 3.8]. ��
In what follows we are going to apply a general lemma about filtered diagrams of
chain complexes. Let C ∈ Ch-I. We consider a filtration F on diagram C of chain
complexes:

0 = F−1C ⊆ F0C ⊆ F1C ⊆ . . .

such that C = ⋃
k FkC . We further assume that each FkC is a cellular subcomplex,

i.e., it is generated by a subset of the given basis of C and that the filtration is locally
finite, i.e., for each n we have FkCn = Cn for k � 0.

Lemma 8.9 [6, Lem. 7.3]Let C ∈ Ch-I be a diagram of chain complexes with filtration
F satisfying properties as above. If each filtration quotient GkC = FkC/Fk−1C is
homologically effective then so is C.

Proof We define G =⊕
k≥0 Gk . The sum is locally finite: By the properties of F , we

get that GkCn = 0 for k � 0. Thus for each n, we get a direct sum of homologically
effective diagrams GkCn ∈ Ch-I and it follows that G is homologically effective. The
diagramC can be seen as a perturbation of G. This perturbation decreases the filtration
degree. If we take a direct sum of given strong equivalences Gk ⇐⇐ Ĝk ⇒⇒ Gef

k , we
obtain a strong equivalence G ⇐⇐ Ĝ ⇒⇒ Gef . All the chain complexes are equipped
with a filtration degree. Since the perturbation on G decreases the filtration degree,
while the homotopy operator preserves it, we can apply the perturbation Lemmas 8.6
and 8.7 to obtain a strong equivalence C ⇐⇐ Ĉ ⇒⇒ Cef . ��
The main application of the lemma is in the proof of the following result:
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Proposition 8.10 [10, Thm. 1.3, Proposition 1.2] Let X ∈ sSet-I be a pointwise
homologically effective diagram. Then its Bousfield–Kan cofibrant replacement Xcof

is homologically effective.

Proof We remind that for any category I there is a simplicial set NI, the nerve of I.
The simplicial set NI can be seen as a homotopy colimit of the diagram consisting of
points. Then there is a projection q : X cof → NI given as a projection onto

⊔

n≥0
i0,...,in

Δn × I(i1, i0)× · · · × I(in, in−1)/∼

and we define the skeleton of X cof :

skk X cof = q−1(skk NI).

We want to use Lemma 8.9 to prove that the diagram C∗(X cof) ∈ Ch-I is homolog-
ically effective. Therefore, we first have to introduce a filtration F on the diagram of
chain complexes C∗(X cof). We define F as follows:

FkC∗(X cof) = C∗(skk X cof).

Denoting Gk = Fk/Fk−1, we get

Gk(C∗(X cof)) =
⊕

i0←···←ik
nondeg.

C∗
(
Δk × X(i0)× I(−, ik), ∂Δk × X(i0)× I(−, ik)

)
.

The sum is taken over chains of morphisms in I that do not contain identity as those
are cancelled out when taking the quotient Gk = Fk/Fk−1. By the finiteness of I,
the number of nondegenerate chains of morphisms of length k is finite, so the sum is
finite. The Eilenberg–Zilber reduction yields in this case

Gk(C∗(X cof))⇒⇒
⊕

i0←···←ik
nondeg.

C∗(Δk, ∂Δk)⊗ C∗(X(i0))⊗ ZI(−, ik). (8.2)

By definition, ZI(−, ik) ∈ Ch-I is effective and so is C∗(Δk, ∂Δk) ∈ Ch with a
single generator in dimension k. By assumption, C∗(X(i0)) ∈ Ch is homologically
effective and thus, by Lemma 8.8, so is each summand in (8.2):

C∗(Δk, ∂Δk)⊗ C∗(X(i0))⊗ ZI(−, ik) ∈ Ch-I.

The direct sum is then homologically effective too, making Gk(C∗(X cof)) itself homo-
logically effective. Now we can apply Lemma 8.9 to complete the proof. ��
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In order to construct Postnikov invariants in the Postnikov tower of a diagram Y , the
following proposition will be used. Before the statement itself, we define the diagram
of cycles Z : Given an effective diagram of chain complexes C ∈ Ch-I, there is a
diagram of cycles Zk ∈ Ab-I such that Zk(i) is the subgroup of cycles in Ck(i).

Proposition 8.11 Let C ∈ Ch-I be an effective diagram of chain complexes such that
Hk(C) = 0 for k ≤ n. Then there is a (computable) retraction r : Cn+1→ Zn+1, i.e.,
a homomorphism that restricts to the identity on Zn+1.

Proof The proof is a straightforward generalization of the proof of [6, Prop. 2.12]. We
will compute inductively a contractionσ : Ck → Ck+1, for k ≤ n, i.e., amap satisfying
∂σ + σ∂ = id and we use it to split off the cycles, namely we set r = id−σ∂ .

Since C is effective, the cells eα form a set of free generators of Ck ∈ Ab-I. Thus,
we only need to compute σ(eα) so that

∂σ(eα)+ σ∂(eα) = eα,

i.e., ∂σ(eα) = eα−σ∂(eα). This σ(eα) is computed by a Smith normal form algorithm
(or the more general Lemma 4.4), provided that it exists; since Bk(C) = Zk(C) by
assumption, we only need to verify the following (by a very easy argument using
induction hypothesis)

∂(eα − σ∂(eα)) = 0. ��

8.3 Representing aMap of Diagrams by an Effective Cocycle

In the Postnikov system algorithm, we will encounter the following situation: We
consider a homologically effective diagram X ∈ sSet-I, so that there is given a strong
equivalence C∗(X)⇐⇐⇒⇒ Cef∗ (X) to an effective diagram Cef∗ (X). Let f : C∗(X)→
Cef∗ (X) be the composite (natural) map in the strong equivalence. Let us also consider
a (k + 1)-cocycle

ψef ∈ Zk+1(Hom(Cef∗ (X), π)) = Zk+1
ef (X;π)

for some diagram of effective Abelian groups π . The superscript “ef” emphasise that
the cocycle belongs to the “effective” cochain complex C∗ef(X;π) obtained from the
effective diagram Cef∗ (X) associated to X . Thenψef can be represented by a system of
finite matrices, since it can be seen as a collection of maps from chain groupsCef

k+1(X)

of finite rank into π(i), i ∈ I. The composition ψ = f ψef : C∗(X)→ Cef∗ (X)→ π

is then also a cocycle and thus corresponds to a simplicial map ψ̂ : X → W K (π, k).
In the construction of Postnikov systems, we will encounter the following situation:

We are given a diagram of simplicial sets P ∈ sSet-I, plus a mapping f : P →
W K (π, n), for some diagram of Abelian groups π ∈ Ab-I and a fixed n ≥ 1. Nowwe
define a diagram Q ∈ sSet-I as the pullback according to the following commutative
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diagram:

Q W K (π, n)

δ

P
f

W K (π, n)

A result from [5], then gives the following

Corollary 8.12 [5, Cor. 3.18] Given π, n, P, f as above, where π is an effective dia-
gram of Abelian groups, the diagram P is pointwise homologically effective, and f is
computable, the pullback diagram Q is pointwise homologically effective.

8.4 Computational Complexity

As explained, for the running time analysis we need the polynomial time versions of
the above results, i.e., we view them as suitable polynomial time constructions. The
majority of these claims are straightforward generalizations of the results given in
[5, Sect. 3].

– Perturbations lemmas: The polynomial time version of Lemma 8.7, requires a
stronger nipotency condition: for every k ≥ 0, there exist some N (k) ≥ 0 such
that (ηδ)N (k)(x) = 0 for all x ∈ Ck . Under this condition, if the input data (chain
complex and reduction) are polynomial time, then so is the output chain complex
and reduction data. This further implies a polynomial time version of Lemma 8.9.

– Polynomial time versions of Lemma 8.8 and Corollary 8.12 are obtained in the
same way as in [5, Sect. 3], from which Proposition 8.10 follows.

– A polynomial time version of Proposition 8.11 follows from the fact that there is
a polynomial time algorithm computing the Smith normal form.

9 Postnikov Tower for Diagrams

In this section, we formally define an algorithmic (homologically effective) version of
the Postnikov systemof a diagramY which is used for computations in this paper. Then
we describe an algorithm that produces the algorithmic version of the tower in case
Y is pointwise homologically effective and 1-connected. Formally, we first state the
existence of such algorithm in Theorem 9.2. The proof is then given by first describing
the algorithm and then proving its correctness. The algorithmwas originally presented
in first author’s thesis [11]. Here, we give a slightly shorter version that covers the
most important points of the construction.

Definition 9.1 LetY ∈ sSet-I be a pointwise homologically effective diagram, n ∈ N.
We say that the n-stage Postnikov system (tower) for Y is pointwise homologically
effective if the following is provided:

– Pointwise homologically effective diagrams P(0), P(1), . . . , P(n) ∈ sSet-I.
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– Effective diagrams of Abelian groups π j (Y ) representing the homotopy groups
of Y , 1 ≤ j ≤ n.

– Computable maps ϕ( j) : Y ( j)→ P( j), 1 ≤ j ≤ n.
– Computablemaps representingPostnikov classes k j : P( j−1)cof→W K (π j (Y ), j),
1 < j ≤ n.

Theorem 9.2 (precise formulation) Let n ≥ 2 be fixed, let Y : I → sSet be a finite
pointwise homologically effective diagram such that every space in the diagram Y is
1-connected. Then there is an algorithm that computes the pointwise homologically
effective n-stage Postnikov system for Y .

9.1 Description of the Algorithm

The algorithm we present here is in fact a modification of an algorithm that constructs
a Postnikov tower for 1-connected simplicial sets presented in [5]. Themain difference
can be seen in the application of Proposition 8.11, which will be stressed later.

The following is a pseudo-code for the algorithm in Theorem 9.2:

(1) Set Y (0) = Y , set P(0) = {∗} and construct the (obvious) map ϕ(0) : Y (0) →
P(0).

(2) For j = 1 to n do:
(3) Compute the cofibrant replacement of ϕ( j − 1) using Proposition 8.10. We thus

obtain

ϕ( j − 1)cof : Y ( j) = Y ( j − 1)cof −→ P( j − 1)cof .

(4) Construct the homologically effectivemapping cone M :=Cone(ϕ( j−1)cof), with
a strong equivalence M ⇐⇐⇒⇒ Mef to an effective diagram Mef .

(5) Compute a retraction r : Mef
j+1→ Z j+1(Mef) using Proposition 8.11.

(6) Compute the homology group Hj+1(Mef) and the composite morphism

ρ : Mef
j+1

r−→ Z j+1(Mef)→ Hj+1(Mef).

(7) Set π j := Hj+1(Mef).
(8) Denoting by f : M j+1→ Mef

j+1 the composite chain homomorphism in the given
strong equivalence, consider the composition

C j (Y ( j))⊕ C j+1(P( j − 1)cof) = M j+1
f−→ Mef

j+1
ρ−→ π j .

This yields, by restriction, a cochain λ j : C j (Y ( j))→ π j . Compute the simplicial
map� j : Y ( j)→ W K (π j , j) corresponding toλ j usingProposition3.4.Theother
restriction κ j : C j+1(P( j − 1)cof)→ π j is a cocycle. Compute the corresponding
simplicial map k j : P( j − 1)cof → W K (π j , j), again via Proposition 3.4.

123



Discrete & Computational Geometry (2023) 70:866–920 915

(9) Apply Corollary 8.12 to obtain P( j) as a pullback in the diagram

P( j) W K (π j , j)

δ

Y ( j)
ϕ( j−1)cof

� j

ϕ( j)

P( j − 1)cof
k j

W K (π j , j)

(9.1)

and set ϕ( j) = (ϕ( j − 1)cof , � j ) as the map to the pullback P( j).

9.2 Correctness of the Algorithm

The correctness of the algorithm follows nearly directly from the proof of [5,
Thm. 4.1], where this is proven “pointwise”. Here, one has to show further that
maps r , ρ, λ j , � j , κ j , k j are well-defined morphisms of diagrams, which is a mat-
ter of technical verification and is described in full in [11]. Further, we use the fact
that P( j − 1)cof is homologically effective, hence so is the mapping cone M and
Proposition 8.11 may be applied.

9.3 Computational Complexity

Considering the computational complexity, the algorithm described in Theorem 9.2,
can be formulated as follows:

Theorem 9.3 Let n and I be fixed. The association Y �→ P, that takes a 1-connected
diagram Y of finite simplicial sets and gives its pointwise homologically effective
n-stage Postnikov tower, is a polynomial time construction.

Proof We split the algorithm of Theorem 9.2 into two inductive claims:

– Given a polynomial time computable map ϕ( j − 1) : Y ( j − 1) → P( j − 1)
between polynomial-time pointwise homologically effective diagrams, its cofi-
brant replacement ϕ( j−1)cof is a polynomial time map between polynomial time
homologically effective diagrams Y ( j), P( j − 1)cof .

– Given a polynomial time computable map ϕ( j − 1)cof : Y ( j) → P( j − 1)cof

between polynomial-time homologically effective diagrams, the remaining data
in the diagram (9.1) consists of polynomial time pointwise homologically effective
diagrams and polynomial time computable maps.

First point follows from the proof of Proposition 8.10. The second point is achieved
“pointwise” using methods from [5], thus they are polynomial time. The only differ-
ence is in the computation of retraction r : Mef

j+1→ Z j+1(Mef) which is polynomial
time by Lemma 8.11. ��
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10 Applications

10.1 The Tverberg-Type Problem

In the article [15], Mabillard and Wagner formulated the following generalization of
the classical Haefliger–Weber theorem:

Theorem 10.1 [15, Thm. 1] Let K be a (finite) simplicial complex of dimension k and
r , d ∈ N such that r ≥ 2, d − k ≥ 3 and rd ≥ (r + 1)k + 3. Then there is an
r-almost embedding f : K → R

d if and only if there exists a Sr -equivariant map
K r\Δr → Sd(r−1)−1.

Here the space K r \Δr is the r -fold product of K , with the “fat” diagonals removed.
Its cells can be viewed as r -tuples (σ1, . . . , σr ), where σi ∈ K and σi ∩ σ j = ∅ for
i �= j . The action of the symmetric group Sr on K r \Δr is induced by the permutation
action on K r and is thus free.

The sphere Sd(r−1)−1 is homotopy equivalent to (Rd)r\δr , for δr = {(y, . . . , y) |
y ∈ R

d}, i.e., the r -fold products with the “thin” diagonal removed and the action on
Sd(r−1)−1 is induced by the action on (Rd)r , which permutes the r -factors. It follows
that the action on Sr , has fixed points and for any H ≤ Sr , we get ((Rd)r \ δr )

H ∼
(Sd(r−1)−1)H = Sdq−1, where 0 ≤ q ≤ r − 1. We remark that given K ≤ Sr

subconjugate to H , we get (Sd(r−1)−1)H ⊆ (Sd(r−1)−1)K .

Remark 10.2 We remark that the proof of Mabillard–Wagner theorem in [14] was
criticised by Arkadiy Skopenkov, who summarized his critique in [20] and proved the
theorem in [21, Thm. 1.2].

Proof of Theorem 1.5 The proof is a consequence of Theorem 1.4 and Remark 1.3. We
notice that conn(Sd(r−1)−1)H = conn Sdq−1 = dq − 2, 0 ≤ q ≤ r − 1, i.e., in some
cases the connectivity can be less than one. From conditions r ≥ 2, d − k ≥ 3, and
rd ≥ (r + 1)k + 3, we can see that if for some H ⊂ Sr , (Sd(r−1)−1)H �= ∅, then
conn(Sd(r−1)−1)H ≥ 1.

Let J be the full subcategory of OG on the objects G/H where (Sd(r−1)−1)H is
nonempty. By Remark 1.3, we get

[K r \Δr , Sd(r−1)−1]sSet-OG
∼= [K r \Δr , Sd(r−1)−1]sSet-J .

Conditions dim (K r \Δr )( j) ≤ 2 · conn(Sd(r−1)−1)( j) and conn(Sd(r−1)−1)( j) ≥ 1
are satisfied for all objects j ∈ J , so it remains to check that rd ≥ (r + 1)k + 3,
r > 2, d − k ≥ 3, implies rk ≤ 2(d(r − 1) − 2). The application of Theorem 1.1
gives us the result. ��

10.2 Equivariant Stable Homotopy Groups of Spheres

In this section, we describe how Theorem 1.4 can be applied to the computation of
equivariant stable homotopy groups of G-spaces (represented as G-simplicial sets).
We showcase this on the example ofZ2 equivariant stable homotopy groups of spheres.
We are using [17, Chap. IX] as our source of definitions in this section.
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10.3 Basic Notions

Let G be a finite group, and let V be a representation of G, i.e., a real inner product
space (in our case we always assume a finite dimensional vector space over R) on
which G acts via linear isometries.11 For a representation V , we have the unit disc
D(V ) = {x ∈ V | ‖x‖ ≤ 1} and sphere S(V ) = {x ∈ V | ‖x‖ ≤ 1} and finally SV—a
one point compactification (or SV ∼= D(V )/S(V )).

For a based G-space X , wewriteΣV X = X∧SV . As an application of Freudenthal
suspension theorem, we obtain that the map

ΣV : [X , Y ]G → [ΣV X ,ΣV Y ]G
is surjective if

(i) dim X H ≤ 2 · conn Y H + 1 for all subgroups H such that V H �= 0;
(ii) dim X H ≤ conn Y K for all pairs of subgroups K ≤ H with V K �= V H ;

and bijective if the inequality is strict.

Let us describe how one can see SV0 , where V0 is the regular representation of a
finite group G (over R): The regular representation is a vector space of dimension |G|
and, identifying the coordinate unit vectors with the elements of G, the group G acts
by swapping them. Clearly, the dimension of SV0 is |G|. From here one can deduce a
simplicial set model of SV0 . For example, for G = Z2, the space SV0 is just a 2-sphere
and we can model it by gluing two discs D+, D− along their boundary (the equator),
group acts by switching the discs, while it keeps the equator fixed, thus (SV0)Z2 ∼= S1.
In simplicial sets, we can thusmodel SV0 by having two 2-simplices σ, τ and glue them
along their faces, say by setting d0σ = d0τ and d1σ = d1τ = d2σ = d2τ = s0d0d0σ
is the basepoint. The action of Z2 swaps σ and τ .

Definition 10.3 [17, IX, Defn. 2.1] A G-universe U is a countable direct sum of rep-
resentations such that U contains a trivial representation and also contains each of
its sub-representations infinitely often. Thus we can write U as a direct sum of sub-
spaces (Vi )

∞, where {Vi } runs through the set of distinct irreducible representations
of G. Universe is complete if, up to isomorphism, it contains every irreducible repre-
sentation of G. If G is finite and V is its regular representation, then U = V∞ is a
complete G-universe. A finite dimensional sub-G space of U is said to be an indexing
space in U .

We define the equivariant stable homotopy classes of maps X → Y as

{X , Y }G = colim
V
[ΣV X ,ΣV Y ]G,

where V goes through the indexing spaces inU and the colimit is taken over functions

(−∧ SW−V ) : [ΣV X ,ΣV Y ]G → [ΣW X ,ΣW Y ]G , V ⊂ W ,

11 One can see the representation also as a homomorphism G → O(V ).
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that are given by sending a map ΣV X → ΣV Y to its smash product with the identity
of SW−V .

Corollary 10.4 [17, IX, Cor. 2.3] If G is finite and X is finite dimensional, the Freuden-
thal suspension theorem implies the existence of a finite dimensional representation
V0 = V0(X) such that for any representation V ,

ΣV : [ΣV0 X ,ΣV0Y ]G → [ΣV0⊕V X ,ΣV0⊕V Y ]G
is an isomorphism. The definition of {X , Y }G then gives us

{X , Y }G = [ΣV0 X ,ΣV0Y ]G .

Proof The main idea is to choose a finite dimensional G-representation U satisfying
dimU K > dimU H > 0 for any pair of subgroups K ≤ H ≤ G. Clearly, the regular
representation, seen as theR[G]-moduleR[G], is such a representation. It is enough to
observe that for an element x =∑

k∈K k, it is true that xk = x , but for any h ∈ H\K ,
we get xh �= x . From a simple dimension and connectivity comparison it follows that
there exists an integer k such that for V0 = kU = U ⊕ · · · ⊕U︸ ︷︷ ︸

k times

, we get

– dim (ΣV0 X)H < 2 · conn(ΣV0Y )H + 1;
– dim(ΣV0 X)H < conn(ΣV0Y )K for all pairs of subgroups K ≤ H .

The inequalities (i) and (ii) then imply the result. ��
From the corollary above and the definition of {X , Y }G , we get that for finite sim-
plicial sets with an action of a finite group G there exists a (finite dimensional)
G-representation V such that

[ΣkV X ,ΣkV Y ]G = {X , Y }G .

Example Let us detail this general procedure in the case of the stable Z2-equivariant
homotopy groups: from the discussion above, {Sn, S0}Z2 is isomorphic to [ΣkV Sn,

ΣkV S0]Z2 , where V is the regular representation ofZ2. In this case, we have SV = S2

and (SV )Z2 = S1, and we can model this space as a simplicial set with two 2-cells,
one 1-cell and one 0-cell. Thus dim(ΣkV Sn) = 2k + n, connΣkV Sn = 2k + n − 1,
dim((ΣkV Sn)Z2 = k + n and conn(ΣkV Sn)Z2 = k + n − 1. As we further have
ΣkV S0 = ΣkV , we conclude that we are in the stable range if n < k − 1, thus to
compute the n-th stable homotopy group of S0, we should use n + 1 fold suspension
with the regular representation.

10.4 Proof of Theorem 1.6

According to Corollary 10.4, {X , Y } = [ΣV0 X ,ΣV0Y ]G , where V0 = V ⊕ · · · ⊕ V︸ ︷︷ ︸
k times

is a sum of k regular representations of G. Elmendorf’s theorem then implies that

[ΣV0 X ,ΣV0Y ]G ∼= [ΦΣV0 X , ΦΣV0Y ]G
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where the latter set is computable by our main result. It remains to compute k which
depends only on dimΦ X and connΦY—we pick the smallest k ∈ N such that for-
mulas (i) and (ii) are satisfied.
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