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Abstract
Tutte’s embedding theorem states that every 3-connected graph without a K5- or K3,3-
minor (i.e., a planar graph) is embedded in the plane if the outer face is in convex
position and the interior vertices are convex combinations of their neighbors.We show
that this result extends to simply connected tetrahedral meshes in a natural way: for
the tetrahedral mesh to be embedded if the outer polyhedron is in convex position and
the interior vertices are convex combination of their neighbors it is sufficient (but not
necessary) that the graph of the tetrahedral mesh contains no K6 and no K3,3,1, and
all triangles incident on three boundary vertices are boundary triangles.

Keywords Tetrahedral mesh · Tutte embedding · Convex combination · Linkless
embedding · Harmonic map

Mathematics Subject Classification 05C10 · 05C85

1 Introduction

Every planar graph has a straight line embedding in the plane [5]. Tutte’s celebrated
embedding theorem [17] provides a constructive proof for 3-connected planar graphs:
if the outer polygon of the graph is in convex position and the interior vertices are
convex combinations of their neighbors then the realization is an embedding (and
every face is convex). This means, we can compute an embedding by placing the
vertices of the boundary polygon so that it is convex and then solving a linear system
for the positions of the interior vertices. This procedure has become an invaluable tool
in computer graphics, geometry processing, and CAGD, where it is used to construct
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mappings for triangulations [6]. It has been generalized to other surface geometries
and topologies [1, 2, 9].

A particularly useful generalization of Tutte embeddings would be the three-
dimensional case and, in particular, tetrahedral meshes. Embedding a given tetrahedral
mesh with fixed convex boundary would enable bijective piecewise linear mappings
between different domains represented by the same boundary triangulation. Alas,
Tutte’s result fails to generalize to 3D in a simple way for arbitrary polyhedral com-
plexes [4]. It has been observed to fail even for well behaved tetrahedral meshes
in practice [3, Fig. 2]. We have conducted simple experiments on small tetrahedral
meshes that suggests the convex combination approach will fail for “most” randomly
chosen convex combination weights. Note that in most practical case one starts with
an embedded tetrahedral mesh. If the mesh is already realized with convex boundary,
there clearly exists a convex combination map that would generate the realization
(just express every interior vertex as the convex combination of its neighbors). Our
experiments suggest that the chance of finding such weights by random sampling is
small.

The smallest possible counterexample is composed of two vertices inside a tetrahe-
dron, with the two vertices connected to each other and all four boundary vertices [7].
The graph of this tetrahedral mesh is the complete graph on six vertices K6. In view of
the fact that Tutte’s original work showed that 3-connected graphs may be embedded
in the plane if (and only if) they have no K5 and K3,3 as a minor, one might ask if
the observation that a K6 is a counterexample for the tetrahedral case has any mean-
ing. Note that K6 is a forbidden minor in the class of linklessly embeddable graphs,
which have been termed the natural three-dimensional analogue of planar graphs [14].
An important difference to the planer case, of course, is that a tetrahedral mesh with
vertices and edges forming a K6 can be embedded, meaning that there exist some con-
vex combination weights that lead to an embedding (unlike in the case of non-planar
graphs). We may still ask if tetrahedral meshes that are linklessly embeddable (con-
cretely, have no K6 and K3,3,1 as a minor, see Sect. 2) guarantee Tutte embeddings.
Indeed, this turns out to be the case.

Apart from excluded minors, however, there is one more obstruction. It has long
been observed in the continuous domain that the harmonic extension from a boundary
homeomorphism fails to be injective in 3D [12]. In fact, arbitrarily small perturbations
of the identity map on the boundary are sufficient to cause the loss of injectivity [10].
For Tutte’s embedding this has been elucidated by Floater1 as follows:

[...] there are very many ways to map, 1-1, one convex boundary into another
(imagine creating lots of twists and turns). Won’t that create foldover in the 3D
embedding inside? So I guess the boundary mapping needs to be restricted.

We find that this problem materializes if an interior triangle in the tetrahedral mesh
is fixed on the boundary, but the remaining vertices of its incident tetrahedra are not.
Then “pulling” boundary vertices allows moving the interior vertices on either side of
the fixed triangle. Interestingly, some proofs of Tutte’s theorem require no chords in
the graph. In 2D, this restriction can be lifted by observing that chords simply divide

1 The quote is from private email exchange on the topic of tetrahedral Tutte embeddings.
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the outer polygon into two smaller polygons. In 3D, however, a triangle on boundary
vertices is generally not dividing the mesh into two components.

As we will show, the two restrictions mentioned above are sufficient to prove a
version of Tutte’s embedding theorem for tetrahedral meshes. The result is as follows:

Theorem 1.1 Given a tetrahedral mesh with the following properties:

• The boundary is simply connected.
• A triangle incident on three boundary vertices is on the boundary.
• The graph is 4-connected.
• The graph has no K6 or K3,3,1 as a minor.

If the vertex positions of the mesh are realized in R
3 so that (a) the boundary triangles

form a strictly convex polyhedron and (b) each interior vertex is a strictly convex
combination of its neighbors then the mesh is embedded.

We hasten to point out that this result has little direct consequence on the practice of
using the commonly generated tetrahedral meshes for creating PL mappings: almost
all of them have a K6-minor and, consequently, a convex combination mapping will
likely not be an embedding. We discuss possible practical consequences in Sect. 5.

2 Tetrahedral Meshes and Linkless Embeddings

A tetrahedral mesh T is a simplicial complex consisting of vertices, edges, triangular
faces and tetrahedral cells.We assume the tetrahedral mesh is a topological ball, mean-
ing it has a simply connected interior. The boundary forms the graph of a polyhedron,
a planar 3-connected graph with triangular faces [16]. Boundary faces are incident
on one cell, interior faces are incident on two cells. In the following we assume that
interior triangles satisfy the assumption of Theorem 1.1, i.e., they are incident on at
most two boundary vertices.

The star of a vertex v is formed by the simplices incident on v. The link is the
boundary of the star. We make the following observation about the connectivity of
links:

Lemma 2.1 The link Lv of a vertex v is 3-connected.

Proof If v is an interior vertex, Lv is 3-connected by Steinitz’s theorem [16]. Let v
be a boundary vertex and Vb be the boundary vertices connected to v. The link Lv is
a planar triangulation with boundary Vb. Every edge in Lv forms a triangle with v.
A chord would induce a triangle that is not on the boundary of T , but all its vertices
are boundary vertices. So there is no chord. This implies that the triangulation Lv is
3-connected [11, 3.2]. ��

Every interior vertex has degree at least 4. Boundary vertices with degree 3 create
ears: tetrahedra with three faces on the boundary connected to the remaining tetrahe-
dral mesh through a single face. Since we ask that there are no interior faces incident
on three boundary vertices, the tetrahedral meshes we consider contain no ears, and
also boundary vertices have degree at least 4.
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Fig. 1 The seven graphs of the Petersen family. The larger ones in the top row, K6 and K3,3,1, are necessary
for the characterization of tetrahedral meshes that can be embedded by convex combination mappings. A
graph is linklessly embeddable if it has nominor in this family. Drawing adopted fromDavid Epstein (public
domain)

By tetrahedral graph we mean the graph induced by the vertices and edges of T .
Linkless embeddings of graphs, intuitively, are realizations of the graph in R3 so that
there are no two cycles that are linked, i.e., that cannot be homotopically deformed
so that the two cycles are topological disks. Sachs [14] showed that the Petersen
graphs (see Fig. 1) are intrinsically linked andminimal. He suspected that all linklessly
embeddable graphs can be characterized as those without a Petersen graph as a minor.
This was eventually proved by Robertson et al. [13].

Of the seven graphs in the Peterson family, we only need the complete graph K6 and,
to show that certain degeneracies cannot occur, the complete tripartite graph K3,3,1.
This seems quite natural, as the other graphs have vertices with degree less than 4, so
cannot serve as minimal counter-examples for tetrahedral Tutte embeddings.

The proof of the main statement is inspired by earlier proofs and their adaptations
of Tutte [17], Geelen [8], Spielman [15], and the one focusing on PL mappings by
Floater [6].
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3 Realization by Convex Embedding, and Degeneracies

The graph T is realized by assigning coordinates to the vertices, i.e., V �→ R
3×|V |.

We denote the coordinate of vertex v as x(v) ∈ R
3. We assume the vertices on the

boundary are realized so that the boundary faces form a convex polyhedron.
Every interior vertex is realized as a convex combination of its neighbors:

x(v) =
∑

(v,w)∈T

b(v,w)x(w),
∑

(v,w)∈T

b(v,w) = 1, b(v,w) > 0.

This implies that x(v) lies strictly in the interior of the convex hull of its neighbors.
In the following we want to show that (a) the convex hull of the neighbors cannot
degenerate, i.e., be contained in a common plane; and (b) that x(v) lies strictly inside
the boundary polyhedron for interior vertices v.

We start by recalling that a plane through q ∈ R
3 with normal vector n ∈ R

3,
nTn = 1, is defined as the set

Pn,q = {x ∈ R
3 : nT(x − q) = 0}.

The positive open half-space is the set of points on the side of the plane in the direc-
tion n, i.e., P+

n,q = {z ∈ R
3 : nT(z− q) > 0}. The negative open half-space is defined

analogously. We make the following simple observation for interior vertices:

Lemma 3.1 Let v be an interior vertex. Consider the plane Pn,x(v). If v has a neighbor
realized in P+

n,x(v) then it has at least one neighbor in P−
n,x(v) (and vice versa).

Proof This follows by contradiction from x(v) being in the interior of the convex hull
of its neighbors. ��

If v is a boundary vertex, it is possible that that all neighbors are contained in
Pn,x(v) and either P+

n,x(v) or P−
n,x(v). In this case we call v extreme along n, because

the convexity of the boundary polyhedron implies that there is no other vertex v′ with
nT(v′) > nT(v). We also observe that interior vertices are never extreme:

Lemma 3.2 An interior vertex is not realized on the boundary.

Proof Assume vertex vi is realized on a boundary element b—this may be a vertex,
edge, or face. Let Vi be the vertices realized in b that are connected to vi by a path
realized in b. All vertices in Vi are realized in a common plane Pn,vi and n can be
chosen so that nTvi ≥ nTv, v ∈ T , because the boundary polyhedron is convex. We
may delete the at most three boundary vertices incident on b and Vi remains connected
to a vertex v′ outside Vi because we assume T to be 4-connected. The vertex v′ is not
realized in Pn,vi and n, so by Lemma 3.1 there exists a vertex in Vi with neighbors
realized in both half-spaces P+

n,x(v), which is a contradiction. ��
We say that a path v0, v1, . . . is non-decreasing w.r.t. n if the realizations of the

vertices along the path satisfy nT(v0) ≤ nT(v1) ≤ . . . We observe that any vertex is
connected to an extreme boundary vertex by a non-decreasing path.
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Lemma 3.3 For any vertex v0 and any direction n there is a non-decreasing path
v0, v1, . . . , vb satisfying nT(v0) ≤ nT(v0) ≤ . . . ≤ nT(vb), with vb on the boundary
and extreme.

Proof Consider vertex vk along the path, which may be an interior or boundary vertex.
If vk has a neighbor v′ satisfying nTx(v′) > nTx(vk) set vk+1 = v′ and continue
with vk+1.

Now assume we have found a vertex v such that nTx(v) ≥ nTx(v′) for all vertices
v′ adjacent to v. If v is on the boundary we are done. If v is interior, Lemma 3.1
forces nTx(v) = nTx(v′), meaning all neighbors of v lie in the plane Pn,x(v). Let V
be the set of vertices realized in Pn,x(v) that are connected to v by a path realized
in Pn,x(v). Because the boundary polyhedron is not flat there are vertices in T not
in V . But T is connected so there must be a vertex v′ ∈ V connected to a vertex not
in Pn,x(v). If v′ is interior, Lemma 3.1 implies that v′ has a neighbor v′′ satisfying
nT(v′′) > nTx(v′) = nTx(vi ). Because v is connected to v′ through vertices contained
in Pn,x(vi ) there is non-decreasing path through V to v′′, and the process continues.
This shows that the process has to end in a boundary vertex vb, which is extreme
because it satisfies nTx(vb) ≥ nTx(v′) for all neighbors v′. ��
Corollary 3.4 Let P+

n,q be an open half-space and V +
n,q be the vertices contained in it,

i.e., v ∈ Vn,q implies x(v) ∈ P+
n,q. The graph induced by V +

n,q is connected.

Proof Let V b
n contain all boundary vertices vb thatmaximizenTx(vb). This set consists

of either a single vertex, or two vertices incident on a common edge, or three vertices
incident on a common face. Note that V b

n is connected. Any vertex in V +
n,q is connected

to V b
n by a non-decreasing path, which is entirely contained in P+

n,q. ��
Wenow show that the neighbors of a vertex cannot degenerate to a flat configuration

if the graph is linklessly embeddable.

Lemma 3.5 Let v be a vertex in a tetrahedral graph T . If v and all its neighbors are
realized in a common plane Pn,v then T has K3,3,1 as a minor.

Proof Let V be the set of vertices contained in P that are connected to v by a path
realized in Pn,x(v). We distinguish two types of vertices in V : vertices Vi whose
neighbors are all in V (such as v); and vertices Vb, which have at least one neighbor
not in V . Note that vertices in Vi cannot be boundary vertices.

Let V +, resp. V − be the vertices contained in P±
n,x(v). Both are connected (Corol-

lary 3.4). Since v is interior, Lemma 3.2 implies that none of the vertices in Vb is
extreme along n. So all vertices in Vb are connected to vertices in both V + as well
as V −: for interior vertices this follows from Lemma 3.1 and for boundary vertices
from the realization of the boundary as a convex polyhedron.

Pick a vertex vb ∈ Vb that is connected to a vertex vi ∈ Vi . Such pair must exist
because V is connected. Consider the link Lvb of vb. It contains vi as well as a vertices
in V ±. The vertices in Vi ∩ Lvb cannot be connected by an edge to the vertices in
(V + ∪ V −) ∩ Lvb , so there must be a set of vertices vk

b ∈ in Vb ∩ Lvb separating
the two sets. This set contains at least three vertices, because Lvb is 3-connected
(Lemma 2.1).
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Fig. 2 Illustration for Lemma 3.5: Vertex vi and all its neighbors are in a common plane. Vertices v∗
b are in

the same plane but connected to vertices in both half-spaces. The vertices form a K3,3,1

Now notice that Vi , V +, V − are connected to all v1,2,3b , and vb is connected to

Vi , V +, V − as well as v1,2,3b . This is a K3,3,1 (see illustration in Fig. 2). ��

By showing that the neighbors of a vertex are not co-planar, we have also shown that
they are not co-linear or degenerate to a single point. Moreover, we have established
that for any plane Pn,x(v), vertex v will have neighbors in both half-spaces P±

n,x(v).
This observation allows us to sharpen Lemma 3.3 to strictly increasing path v0, v1, . . .
satisfying nTx(vi ) < nTx(v j ) for i < j .

Corollary 3.6 For any direction n every interior vertex v has a strictly increasing path
v = v0, v1, . . . , vb that ends in a boundary vertex vb.

Proof The proof is analogous to Lemma 3.3 except that Lemmas 3.1 and 3.5 now
guarantee that every interior vertex vk has a neighboring vertex vk+1 satisfying
nTx(vk+1) > nTx(vk+1). ��

4 Local and Global Injectivity

The fact that interior vertices are strictly in the interior of the boundary polyhedron
(Lemma 3.2) establishes the injectivity for tetrahedra incident on boundary triangles:

Corollary 4.1 Consider a boundary face f , its incident tetrahedron t and the vertex v
in t not in f . All elements of t have positive (signed) measure.

Proof Since v is strictly inside the boundary polyhedron, t has positive volume. If any
of the triangles or edges had zero area or lengths, the volume of the tetrahedron would
be zero, so they are all strictly positive. ��
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Fig. 3 Illustration for Lemma 4.3: The interior face f = (a, b, v) (in orange) is incident on two tetrahedra
spanned by vertices u and l. The leftmost illustration shows a proper realization. The other illustrations
correspond the cases 1, 2, and 3 (from left to right)

Let us now consider two tetrahedra incident on an interior triangle. We want to
show that if one of the tetrahedra is realized injectively then the other one must be as
well. This local consistency will then imply global injectivity.

We need the following observation about planar triangulations, i.e., a planar graph
whose faces all have degree 3, except possibly the outer face.

Proposition 4.2 In a planar triangulation without chords, the graph induced by the
interior vertices is connected. Contracting the interior vertices results in a triangula-
tion of the boundary polygon with a single interior vertex connected to all boundary
vertices.

Proof We assume the planar triangulation has at least two interior vertices. Assume
that a and b are interior vertices not connected by a path of interior edges. Since there
are no chords, the triangulation is 3-connected [11, 3.2], so a and b are connected to
three boundary vertices vk

b , k = 1, 2, 3. Add vertex e outside the boundary and connect
it to vk

b with non-crossing paths. This creates a K3,3, which is impossible, because the
triangulation (including the paths to the exterior vertex) is planar.

Since the interior vertices are connected they can be contracted to a single vertex
without altering the boundary. Each boundary vertex is connected to a least one interior
vertex, because there are no chords, so there are no ears. ��

Lemma 4.3 Let f be an interior triangle with incident tetrahedra tu, tl and u, l the
vertices in tu, tl not in f . Let Pn,x(v) be the plane through f and assume x(u) ∈ P+

n,x(v).

If x(l) /∈ P−
n,x(v) then T contains K6 or K3,3,1 as a minor.

Proof Assume x(l) is contained Pn,x(v) ∪ P+
n,x(v). As f is an interior face it has at

least one interior vertex. Let v be the interior vertex of f and a, b the other two. The
link Lv of v is a polyhedral graph. It contains the triangles (a, b, u) and (l, b, a). The
remainder of Lv is a triangulation bounded by the cycle (a, u, b, l). For illustrations
see Fig. 3.

The vertex q−: As v has neighbors realized in P+
n,x(v) it must have at least one neighbor

in P−
n,x(v) (by Lemma 3.1). Every neighbor of v is in Lv , but none of a, u, b, l are

realized in P−
n,x(v). So there must be at least one other vertex in Lv . Among the
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vertices q ∈ Lv realized in P−
n,x(v) we pick one vertex and call it q−. Note that all

vertices q ∈ Lv are connected to v.

The path C : If l is realized in P+
n,x(v) there exists a path C from l to u realized in

P+
n,x(v) by Lemma 3.4. If l is realized in Pn,x(v) it has a neighbor realized in P+

n,x(v) by
Lemmas 3.5 and 3.1 (and because f is not on the boundary). In this case there exists
a path C from l to u such that C \ {l} is realized in P+

n,c. We now consider three cases
based on the intersection of C and Lv .

Case 1: Vertices u and l are connected by an edge. This creates the two cycles
(a, l, u) and (b, u, l) in Lv . The triangulation of one them contains q−. Assume this
is b, u, l—the other case is analogous. The triangulation of (b, u, l) is connected by
Proposition 4.2 and we contract it to Q−, which is connected to u, l, and b. A path to
a is constructed from decreasing paths starting in a and any vertex in Q−. All vertices
in this path, except for a are realized in P−

n,x(v), so the path cannot contain any of b,
u, l, or v. This means a, u, b, l together with v and Q− form a K6.

Case 2: The edge (u, l) is not present and C ∩ Lv = {u, l}, i.e., the path C has no
intersection with Lv except for the endpoints. In this case contract the interior vertices
of the triangulation in the cycle (a, u, b, l). The triangulation has no chords, because
(u, l) is not present, so it is connected (Proposition 4.2) and we contract it into Q−.
All boundary vertices a, u, b, l of the triangulation in the cycle are connected to Q−
(Proposition 4.2). As above, a, u, b, l together with v and Q− form a K6.

Case 3: The edge (u, l) is not present and C intersects Lv in at least one vertex q+.
The name q+ indicates that it is realized in P+

n,c because C \ l is. This implies that q+
is distinct from q−. Because q+ ∈ C , it is connected to both u and l. We construct
decreasing paths from a, b, and q−, establishing a path from q− to a and to b. Each
of a and b has a neighbor in Pn,x(v), so a is not in the path from q− to b and vice
versa. Lastly, q+ and q− are connected in Lv \ {a, u, b, l}, because the triangulation
inside (a, u, b, l) has no chords and is connected (Proposition 4.2). Now {u, l, q−}
and {a, b, q+} form a K3,3. Since all of the six vertices are in Lv , together with v they
form a K3,3,1. ��

This establishes that if one of the two tetrahedra incident on an interior face is
non-degenerate and correctly oriented, the other one is as well. Since the tetrahedra
incident on the boundary are non-degenerate and correctly oriented (Corollary 4.1)
and the dual graph of T is connected it follows that all tetrahedra are non-degenerate
and correctly oriented.

The global injectivity (i.e., every point in the interior of the boundary is inside
exactly one simplex) can be established by a homotopy argument (similar to the 2D
case [8, 15]): for any point q in the interior of the boundary consider a half-line l,
originating at q, not intersecting any vertex or edge. Such line exists because the
shadows of the vertices and edges on the sphere of directions consists of finitely many
at most one-dimensional subsets. Start with any point x on l outside the boundary
and move towards q. The number of tetrahedra that contain x can only change if x
crosses a face. As x crosses the boundary face, the number of tetrahedra containing
x changes from 0 to 1. Note that no interior vertex, edge, or face can intersect any
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boundary face (by Corollary 4.1). In the interior, the number of tetrahedra containing
x stays constant as x crosses interior faces by Lemma 4.3. This is the case even if l
intersects more than one face in the same point. However, the fact that the number of
tetrahedra containing any interior point is always one rules out the possibility that two
faces intersect, because in the vicinity of the intersection more than one tetrahedron
would contain the point.

5 Discussion

Whereas both K5 and K3,3 cannot be embedded in the plane, a tetrahedral mesh with
K6 as the underlying graph may well be embedded inR3. Whether a realization based
on convex combinations is embedded depends on the weights. We have not been able
to create a similar situation for a tetrahedral mesh with only a K3,3,1-minor (and no
K6-minor). Or, in other words, we were unable to generate an example that would
demonstrate the necessity of excluding K3,3,1-minors. In fact, every graph without a
K6-minor turned out to be embedded by a any convex combination map. This leads
to the question whether excluding K3,3,1 is necessary for the proof.

There are certain bounds on the number k-cliques in a graph without Kt -minors
[18]. For themaximal number of 4-cliques in a graph on n vertices without a K6-minor
we find 4n −15. Since every tetrahedron is a 4-clique a tetrahedral mesh on n vertices
with more than 4n − 15 tetrahedra has to contain a K6-minor. Consequently, only for
tetrahedral meshes with few elements there is hope that convex combinationmappings
are guaranteed to work. This may be considered in contrast to the speculation by
Chilakamarri et al. [4] that ‘high’ connectivity is necessary for an extension of Tutte’s
theorem. If this is interpreted as the graph containing many edges, we find that rather
the opposite is the case for tetrahedral meshes.

Moreover, already the bound on the number of 4-cliques suggests that most tetra-
hedral meshes used in practice are guaranteed to contain a K6 and, based on our and
others’ experiments, unlikely embedded by ’random’ convex combination maps. One
route for future investigations may be the reduction of the number of tetrahedra using
bistellar flips, or the reduction of the graph by edge contractions.
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